Fiscal foresight and the effects of government spending: It's all in the monetary-fiscal mix¹

Guido Ascari, *DNB and University of Pavia*Peder Beck-Friis, *PIMCO*Anna Florio, *Politecnico di Milano*Alessandro Gobbi, *University of Milan*

Bank of Finland and CEPR Joint Webinar New Avenues for Monetary Policy 10–11 September 20211

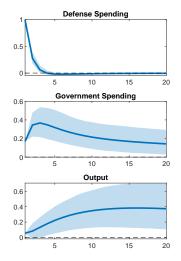
^{1*} Views expressed are those of the authors and do not reflect official positions of respective institutions of affiliation.

How does the economy respond to an anticipated rise in government spending?

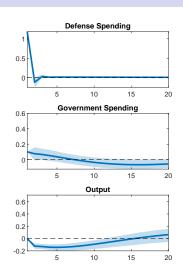
- How does the economy respond to an anticipated rise in government spending?
- Changes in fiscal policy are preannounced: inside and outside lag

- How does the economy respond to an anticipated rise in government spending?
- Changes in fiscal policy are preannounced: inside and outside lag
- Taking fiscal foresight into account, Ramey (2011) shows that IRFs from SVAR give different results than Blanchard and Perotti (2002)

- How does the economy respond to an anticipated rise in government spending?
- Changes in fiscal policy are preannounced: inside and outside lag
- Taking fiscal foresight into account, Ramey (2011) shows that IRFs from SVAR give different results than Blanchard and Perotti (2002)
 - long sample: 1939q1-2008q4


- How does the economy respond to an anticipated rise in government spending?
- Changes in fiscal policy are preannounced: inside and outside lag
- Taking fiscal foresight into account, Ramey (2011) shows that IRFs from SVAR give different results than Blanchard and Perotti (2002)
 - long sample: 1939q1-2008q4
 - with standard identification (BP choleski): output ↑, consumption ↑, hours ↑, real wage ↑ ⇒ NK

- How does the economy respond to an anticipated rise in government spending?
- Changes in fiscal policy are preannounced: inside and outside lag
- Taking fiscal foresight into account, Ramey (2011) shows that IRFs from SVAR give different results than Blanchard and Perotti (2002)
 - long sample: 1939q1-2008q4
 - with standard identification (BP choleski): output ↑, consumption ↑, hours ↑, real wage ↑ ⇒ NK
 - adding anticipation (war dates dummies): output \uparrow , consumption \downarrow , hours $\uparrow \uparrow$, real wage $\downarrow \Rightarrow$ Neoclassical


- How does the economy respond to an anticipated rise in government spending?
- Changes in fiscal policy are preannounced: inside and outside lag
- Taking fiscal foresight into account, Ramey (2011) shows that IRFs from SVAR give different results than Blanchard and Perotti (2002)
 - long sample: 1939q1-2008q4
 - with standard identification (BP choleski): output ↑, consumption ↑, hours ↑, real wage ↑ ⇒ NK
 - adding anticipation (war dates dummies): output \uparrow , consumption \downarrow , hours $\uparrow\uparrow$, real wage $\downarrow\Rightarrow$ Neoclassical
- This evidence favours a neoclassical view over a Keynesian one

Empirical evidence by subsamples

Ramey (2011) defence spending shocks

Great Inflation (1960q1-1979q2)

Great Moderation (1984q1-2007q2)

Why?

We extend the analysis taking monetary-fiscal interactions into account

Great Moderation ⇒ Monetary regime (M)

central bank sets interest rates government adjusts deficits to stabilize real debt ⇒ Ricardian equivalence holds, no wealth effects on debt

Great Inflation \Rightarrow Fiscal regime (F)

government sets deficits, central bank accommodates rates to let inflation stabilize real debt

 \Rightarrow fiscal theory at work, no Ricardian equivalence, wealth effects on debt

(e.g., Bianchi and Melosi, 2017, 2014; Bianchi, 2012; Chung et al., 2007; Sims, 2011; Davig and Leeper, 2007, 2011)

Does fiscal foresight lead fiscal shocks to have different effects under regime M or F?

Theoretically:

- Theoretically:
 - \bullet effects of anticipated government spending in regime M and F

- Theoretically:
 - effects of anticipated government spending in regime M and F
 - analytics in a simple model & simulations Smets and Wouters model

- Theoretically:
 - effects of anticipated government spending in regime M and F
 - analytics in a simple model & simulations Smets and Wouters model
- Empirically:

- Theoretically:
 - effects of anticipated government spending in regime M and F
 - analytics in a simple model & simulations Smets and Wouters model
- Empirically:
 - check empirical evidence with anticipation effects

- Theoretically:
 - effects of anticipated government spending in regime M and F
 - analytics in a simple model & simulations Smets and Wouters model
- Empirically:
 - check empirical evidence with anticipation effects
 - check what happens under standard identification

- Theoretically:
 - effects of anticipated government spending in regime M and F
 - analytics in a simple model & simulations Smets and Wouters model
- Empirically:
 - check empirical evidence with anticipation effects
 - check what happens under standard identification
- Explore the issue of non-fundamentalness

Theoretically

- Theoretically
 - → unanticipated GS shocks are expansionary in both regimes

- Theoretically
 - → unanticipated GS shocks are expansionary in both regimes
 - → anticipated GS shocks are expansionary in regime F and contractionary in regime M during the anticipation period

- Theoretically
 - → unanticipated GS shocks are expansionary in both regimes
 - → anticipated GS shocks are expansionary in regime F and contractionary in regime M during the anticipation period
- Empirical evidence corroborates theoretical results

- Theoretically
 - → unanticipated GS shocks are expansionary in both regimes
 - → anticipated GS shocks are expansionary in regime F and contractionary in regime M during the anticipation period
- Empirical evidence corroborates theoretical results
 - \rightarrow extend the VAR to include C, I, H, w

- Theoretically
 - → unanticipated GS shocks are expansionary in both regimes
 - → anticipated GS shocks are expansionary in regime F and contractionary in regime M during the anticipation period
- Empirical evidence corroborates theoretical results
 - → extend the VAR to include C, I, H, w
 - \rightarrow use other measures of anticipated shocks as Ramey and Shapiro (1998) and Forni and Gambetti (2016).

- Theoretically
 - → unanticipated GS shocks are expansionary in both regimes
 - → anticipated GS shocks are expansionary in regime F and contractionary in regime M during the anticipation period
- Empirical evidence corroborates theoretical results
 - \rightarrow extend the VAR to include C, I, H, w
 - ightarrow use other measures of anticipated shocks as Ramey and Shapiro (1998) and Forni and Gambetti (2016).
 - ightarrow same results using the standard VAR identification by Blanchard and Perotti (2002) \Rightarrow no difference with the Ramey (2011) measure

- Theoretically
 - → unanticipated GS shocks are expansionary in both regimes
 - → anticipated GS shocks are expansionary in regime F and contractionary in regime M during the anticipation period
- Empirical evidence corroborates theoretical results
 - \rightarrow extend the VAR to include C, I, H, w
 - ightarrow use other measures of anticipated shocks as Ramey and Shapiro (1998) and Forni and Gambetti (2016).
 - \rightarrow same results using the standard VAR identification by Blanchard and Perotti (2002) \Rightarrow no difference with the Ramey (2011) measure
- Conditional on the regime, shocks are fundamental: Granger causality tests ⇒ no evidence that shocks could have been forecasted

A simple New Keynesian model with fiscal policy block

Beck-Friis and Willems (2017)

$$\begin{split} \hat{y}_t - \alpha_1 \tilde{g}_t &= \mathbb{E}_t \hat{y}_{t+1} - \alpha_1 \mathbb{E}_t \tilde{g}_{t+1} - \alpha_2 [\hat{\imath}_t - \mathbb{E}_t \hat{\pi}_{t+1}] \qquad \text{(Euler)} \\ \hat{\pi}_t &= \beta \mathbb{E}_t [\hat{\pi}_{t+1}] + \kappa \alpha_3 \hat{y}_t - \kappa \alpha_4 \tilde{g}_t \qquad \text{(Phillips curve)} \\ \hat{\imath}_t &= \phi \hat{\pi}_t \qquad \qquad \text{(Taylor rule)} \\ \tilde{b}_t &= \frac{1}{\beta} \tilde{b}_{t-1} - \frac{1}{\beta} (\tilde{\tau}_t - \tilde{g}_t) - \frac{1}{\beta} \frac{b}{y} \hat{\pi}_t + \frac{b}{y} \hat{\imath}_t \qquad \text{(Government b.c.)} \\ \tilde{\tau}_t &= \psi \tilde{b}_{t-1} + \varepsilon_t^{\tau} \qquad \qquad \text{(Tax rule)} \\ \tilde{g}_t &= \rho \tilde{g}_{t-1} + \varepsilon_t^{g} \qquad \text{(Government spending rule)} \end{split}$$

Monetary and fiscal parametrization

Monetary regime

- active monetary policy: $\phi > 1$
- passive fiscal policy: $\psi > 1 \beta$

Fiscal regime

- ullet passive monetary policy: $\phi < 1$
- active fiscal policy: $\psi < 1 \beta$

We calculate analytically both anticipated and unanticipated GS multipliers on output for different degree of anticipation under the two regimes

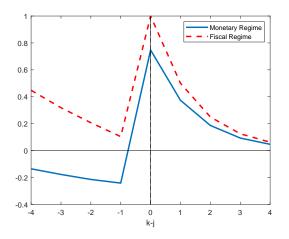
Monetary regime

- Unanticipated multipliers: Positive
 - shifts of labor supply (Neoclassical negative wealth effect)
 - shifts of labor demand (sticky prices)

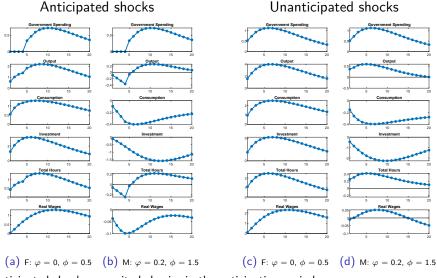
Monetary regime

- Unanticipated multipliers: Positive
 - shifts of labor supply (Neoclassical negative wealth effect)
 - shifts of labor demand (sticky prices)
- Anticipated multipliers : Negative
 - Two competing effects
 - 1. $\pi^e \uparrow \Rightarrow r \downarrow \Rightarrow c \uparrow \text{ (real interest rate channel)}$
 - 2. $c^e \downarrow \Rightarrow c \downarrow \text{ (negative wealth effect + consumption smoothing)}$
 - Potentially ambiguous response of current demand
 - For a standard calibration, demand and output decreases in the anticipation period
 - anticipated G shock lowers consumption, as it is fiscally backed

Effects on inflation and real debt

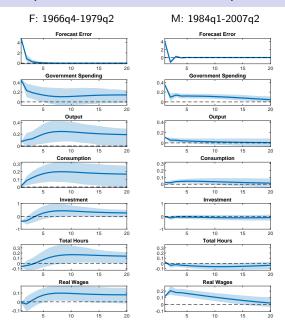

Fiscal regime

- Unanticipated multipliers: Positive
 - Nominal wealth effects (shut down under M)
 - $TM_F^y(0, k)$ newly-issued bonds increase net wealth for the households (equivalent to a debt-financed tax cut)
 - Keynesian and nominal wealth effects are both expansionary upon implementation (our calibration)
 - $GSM_F^y > GSM_M^y$

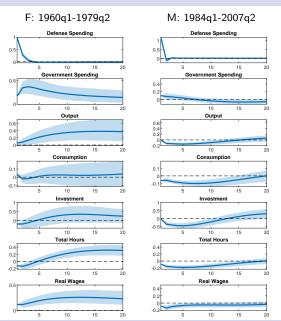

Fiscal regime

- Unanticipated multipliers: Positive
 - Nominal wealth effects (shut down under M)
 - $TM_F^y(0, k)$ newly-issued bonds increase net wealth for the households (equivalent to a debt-financed tax cut)
 - Keynesian and nominal wealth effects are both expansionary upon implementation (our calibration)
 - $GSM_F^y > GSM_M^y$
- Anticipated multipliers: Positive
 - Same intuition: Keynesian effect + nominal wealth effect
 - Keynesian effect contractionary during anticipation
 - nominal wealth effect expansionary during anticipation
 - Nominal wealth effect dominates
 True houses of activity.
 - \Rightarrow two bursts of activity

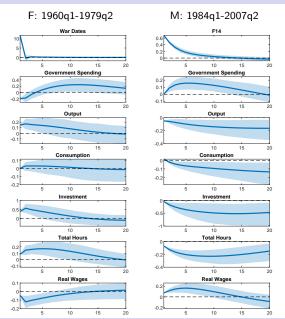
Output response to an announced fiscal expansion



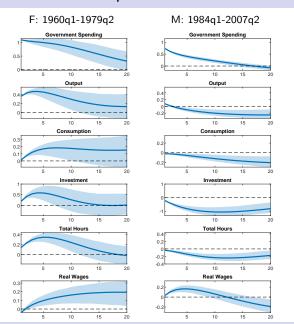
Smets and Wouters with 4-period anticipation


Anticipated shock: opposite behavior in the anticipation period; Unanticipated shock: same behavior (except for investment, consumption)

Empirical evidence: Unanticipated shocks


- Unanticipated shocks are identified as innovations to forecast errors using SPF data, Auerbach and Gorodnichenko (2012)
- no clear-cut differences between the two regimes

Additional empirical evidence: Anticipated shocks


 Ramey (2011) defence spending shocks with larger VAR

Additional empirical evidence: Anticipated shocks

- F: Ramey and Shapiro (1998) war dates
- M: Forni and Gambetti (2016) ⇒ SPF forecast of future spending growth in the next four quarters F(1,4), ordered second in the VAR

Additional empirical evidence: Standard BP identification

- Blanchard and Perotti (2002) standard recursive identification with government spending ordered first (no distinction anticipated vs. unanticipated shocks)
- No difference with fiscal foresight VARs and theoretical results for anticipated shocks
- Under F: anticipated and unanticipated shocks are both expansionary, cannot tell apart
- Under M: fall in output thus supporting the idea that anticipation effects are the main transmission mechanism of fiscal shocks
- once controlling for the regime, shocks may become fundamental
- Tes

• Fiscal foresight: fiscal shocks are mostly anticipated

- Fiscal foresight: fiscal shocks are mostly anticipated
- Theoretically effects of anticipated government spending depends crucially on the fiscal-monetary policy mix

- Fiscal foresight: fiscal shocks are mostly anticipated
- Theoretically effects of anticipated government spending depends crucially on the fiscal-monetary policy mix
 - expansionary in a F regime

- Fiscal foresight: fiscal shocks are mostly anticipated
- Theoretically effects of anticipated government spending depends crucially on the fiscal-monetary policy mix
 - expansionary in a F regime
 - contractionary in a M regime

- Fiscal foresight: fiscal shocks are mostly anticipated
- Theoretically effects of anticipated government spending depends crucially on the fiscal-monetary policy mix
 - expansionary in a F regime
 - contractionary in a M regime
- Data support this robust theoretical implication

- Fiscal foresight: fiscal shocks are mostly anticipated
- Theoretically effects of anticipated government spending depends crucially on the fiscal-monetary policy mix
 - expansionary in a F regime
 - contractionary in a M regime
- Data support this robust theoretical implication
- Measures of anticipated G shocks in the literature can help to empirically distinguish between the two regimes

- Fiscal foresight: fiscal shocks are mostly anticipated
- Theoretically effects of anticipated government spending depends crucially on the fiscal-monetary policy mix
 - expansionary in a F regime
 - contractionary in a M regime
- Data support this robust theoretical implication
- Measures of anticipated G shocks in the literature can help to empirically distinguish between the two regimes
- We were able to reconcile conflicting results in the empirical literature, that disappear conditioning the estimates on the existing monetary-fiscal policy mix

- Fiscal foresight: fiscal shocks are mostly anticipated
- Theoretically effects of anticipated government spending depends crucially on the fiscal-monetary policy mix
 - expansionary in a F regime
 - contractionary in a M regime
- Data support this robust theoretical implication
- Measures of anticipated G shocks in the literature can help to empirically distinguish between the two regimes
- We were able to reconcile conflicting results in the empirical literature, that disappear conditioning the estimates on the existing monetary-fiscal policy mix
- It could be (un)wise to anticipate future fiscal policies, depending on the regime in place.

References I

- AUERBACH, A. J. AND Y. GORODNICHENKO (2012): "Measuring the Output Responses to Fiscal Policy," *American Economic Journal: Economic Policy*, 4, 1–27.
- BECK-FRIIS, P. AND T. WILLEMS (2017): "Dissecting fiscal multipliers under the fiscal theory of the price level," *European Economic Review*, 95, 62–83.
- BIANCHI, F. (2012): "Evolving Monetary/Fiscal Policy Mix in the United States," *American Economic Review*, 102, 167–72.
- BIANCHI, F. AND L. MELOSI (2014): "Dormant Shocks and Fiscal Virtue," *NBER Macroeconomics Annual*, 28, 1–46.
- ——— (2017): "Escaping the Great Recession," *American Economic Review*, 107, 1030–58.
- BLANCHARD, O. AND R. PEROTTI (2002): "An Empirical Characterization of the Dynamic Effects of Changes in Government Spending and Taxes on Output," *The Quarterly Journal of Economics*, 117, 1329–1368.
- CHUNG, H., T. DAVIG, AND E. M. LEEPER (2007): "Monetary and Fiscal Policy Switching," *Journal of Money, Credit and Banking*, 39, 809–842.

References II

- DAVIG, T. AND E. M. LEEPER (2007): "Fluctuating Macro Policies and the Fiscal Theory," in *NBER Macroeconomics Annual 2006, Volume 21*, National Bureau of Economic Research, Inc, NBER Chapters, 247–316.
- ——— (2011): "Monetary-fiscal policy interactions and fiscal stimulus," European Economic Review, 55, 211–227.
- FORNI, M. AND L. GAMBETTI (2016): "Government spending shocks in open economy VARs," *Journal of International Economics*, 99, 68–84.
- RAMEY, V. A. (2011): "Identifying Government Spending Shocks: It's all in the Timing," *The Quarterly Journal of Economics*, 126, 1–50.
- RAMEY, V. A. AND M. D. SHAPIRO (1998): "Costly capital reallocation and the effects of government spending," *Carnegie-Rochester Conference Series on Public Policy*, 48, 145–194.
- SIMS, C. (2011): "Stepping on a rake: The role of fiscal policy in the inflation of the 1970s," *European Economic Review*, 55, 48–56.
- SMETS, F. AND R. WOUTERS (2007): "Shocks and Frictions in US Business Cycles: A Bayesian DSGE Approach," *American Economic Review*, 97, 586–606.

Effect on inflation and real debt

• Ambiguous effects on inflation

Effect on inflation and real debt

- Ambiguous effects on inflation
 - $Y \downarrow \Rightarrow \pi \downarrow$

Effect on inflation and real debt

- Ambiguous effects on inflation
 - $Y \downarrow \Rightarrow \pi \downarrow$
 - $\pi^e \uparrow \Rightarrow \pi \uparrow$

Effect on inflation and real debt

- Ambiguous effects on inflation
 - $Y \downarrow \Rightarrow \pi \downarrow$
 - $\pi^e \uparrow \Rightarrow \pi \uparrow$
- Ambiguous effects on real debt

Effect on inflation and real debt

- Ambiguous effects on inflation
 - $Y \downarrow \Rightarrow \pi \downarrow$
 - $\pi^e \uparrow \Rightarrow \pi \uparrow$
- Ambiguous effects on real debt
 - depends on the real interest rate (cost of servicing the debt)

Effect on inflation and real debt

- Ambiguous effects on inflation
 - $Y \downarrow \Rightarrow \pi \downarrow$
 - $\pi^e \uparrow \Rightarrow \pi \uparrow$
- Ambiguous effects on real debt
 - depends on the real interest rate (cost of servicing the debt)
 - in turn, it depends on inflation and how hawkish the central bank is

Fundamentalness: Ramey's (2011) Granger causality test

Granger-causality tests between the residual from

the Blanchard and Perotti (2002) VAR and Ramey and Shapiro (1998) war dates

	Full sample 1947q1-2008q4	F 1960q1-1979q2	M 1984q1-2007q2
4 lags			
Do war dates Granger-cause VAR shocks?	Yes (0.0004)	No (0.5056)	No (0.5785)
Do VAR shocks Granger-cause war dates?	No (0.4938)	No (0.3803)	No (0.2415)
2 lags			
Do war dates Granger-cause VAR shocks?	Yes (0.0069)	No (0.2946)	No (0.4523)
Do VAR shocks Granger-cause war dates?	No (0.4776)	No (0.1997)	No (0.6601)

- VAR shocks never Granger-cause war dates
- War dates Granger cause VAR shocks only in the full sample

return Blanchard-Perotti VAR

Fundamentalness: Ramey's (2011) Granger causality test

Granger causality test using SPF forecasts of future spending growth for one and four quarters ahead					
	Full sample 1968q4-2008q4	F 1968q4-1979q2	M 1984q1-2007q2		
2 lags					
Do one-quarter ahead professional forecasts Granger-cause VAR shocks?	Yes (0.0667)	No (0.6320)	No (0.1711)		
Do VAR shocks Granger-cause one-quarter ahead professional forecasts?	No (0.3618)	No (0.6059)	No (0.2488)		
Do four-quarter ahead professional forecasts Granger-cause VAR shocks?			No (0.6577)		
Do VAR shocks Granger-cause four-quarter ahead professional forecasts?			No (0.1462)		

- Non-fundamentalness present in the full sample, which does not distinguish
 M and F
- When well-defined monetary and/or fiscal regimes are considered, shocks become fundamental

Testing for fundamentalness: Forni and Gambetti (2016)

Orthogonality test - Regime M					
	1 lag	2 lags	3 lags		
f(0)	0.85	0.78	0.81		
f(1)	0.17	0.25	0.35		
f(2)	0.75	0.14	0.23		
f(3)	0.99	0.93	0.04		
f(4)	0.87	0.51	0.50		
f(0) to $f(4)$	0.59	0.13	0.13		
F(1,4)	0.55	0.81	0.70		

- Except for one case with 3 lags, there is always evidence of fundamentalness
- And this is true even if one considers a smaller (4-variables) VAR