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ABSTRACT
This paper describes an innovative extension of morpholog-
ical operators to the analysis and processing of three di-
mensional images represented by voxels. In particular, the
morphological skeleton well approximates the Medial Axis
of a 3D object rendered using a net of Kinect devices: it has
proven to be a really effective tool to obtain a compact repre-
sentation of the object surface that is accurate and very inex-
pensive in terms of computational time. The reconstructed
surface is representable either as a union of balls or as an
iso-surface of a 3D function defined as a linear combination
of elementary functions with radial support. Furthermore,
the representation is easily processable and hierarchically
interpretable. The morphological operators neither require
any prior information on the reconstructed volume, nor im-
pose any resolution requirement on the object under analy-
sis. The only input for morphological operators is a volume
of voxels. Information on the volume nature or resolution
requirements are related only to the particular application
to which the morphological operators are applied, but do not
limit the applicability of any of the proposed morphological
operators.
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1. INTRODUCTION
Recent improvements in automated shape acquisition have

stimulated a profusion of surface reconstruction techniques
for computer graphics and reverse engineering applications.
A typical surface acquisition application consists of the fol-
lowing steps: (1) data point acquisition: measurement of 3D
coordinates of points on the surface producing range images
as depth maps; (2) registering and integration: if multiple
views are used, a registering process is performed in order to
find the transformations that put the data in a common co-
ordinate system, followed by the integration of all the data
in a unified representation; (3) surface fitting: construction
of a concise and accurate approximation of the physical sur-
face. The goal of a surface reconstruction algorithm is to
construct a digital model of a physical surface. The meth-
ods compute a surface S’ that approximates an unknown
physical surface S using a sampled set X = {x1, ...,xn} of
points on it. Eventually, some additional information about
the sampling process or the geometry of the manifold S can
be available as well.

Surface reconstruction methods can be roughly classified
as Voronoi-based and mesh-free. Voronoi-based reconstruc-
tion algorithms compute the Delaunay triangulation of the
sample points, the dual of the Voronoi diagram. A subcom-
plex, interpolating the sampled surface, is then extracted
from the Delaunay triangulation [1], [5]. In the mesh-free
approaches, the surface is approximated or interpolated us-
ing explicit methods (such as deformable models), paramet-
ric methods (such as B-Spline), or implicit methods (such
as Radial Basis Functions (RBF), Poisson (PDE) or Moving
Least Squares (MLS)) [13], [10], [17]. Among the many tech-
niques developed for surface reconstruction, we can observe
that even if the results are very accurate, these methods
are time consuming, computationally heavy, and, above all,
based on data acquired in a very accurate manner, such as
with a laser scanner.

The demand for domestic applications has led to the de-
velopment of hardware that quickly extracts advanced infor-
mation of the scene, as Microsoft Xbox Kinect sensor [9]. In
particular, in the ISPG laboratory at Politecnico di Milano,
an acquisition system made by 3 Kinect devices is devel-
oped and it is used to obtain a volumetric representation of
an actor in the acquired scene [12]. In this case, however,
the surface sampling accuracy is not as high as required by
the aforementioned techniques. Basing on all these consid-
erations, we decide to build a system for the reconstruction
of the object surface acquired with not very accurate Depth-
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Figure 1: (a) Synthetic Right Hand (20 mm grid)
and (b) configuration for the depth map acquisition.

Image-Based Rendering (DIBR) devices.
The proposed solutions for surface reconstruction (in this

paper we use surface representation and reconstruction as
synonyms) take inspiration from two well known algorithms:
the surface representation as union of balls, proposed by
Amenta and Kolluri [2], and the surface representation as an
iso-surface of a function defined as linear combination of ra-
dial basis functions, proposed by Samozino et al. [13]. Both
methods require high surface sampling density. Therefore,
in order to compare the results of the proposed solutions
for surface reconstruction with the two techniques taken as
inspiration, we develop a simulated environment. This sim-
ulation allows to obtain a volumetric reconstruction with
a space discretization finer than that achievable with the
multi-Kinect acquisition setup developed in the ISPG labo-
ratory.
The rest of the paper is organized as follows: in Section

2, the method applied for building the depth maps database
used to test the proposed surface reconstruction approaches
is described. Section 3 talks about the surface represen-
tation as union of Maximal Balls [2] and as an iso-surface
[13]. Section 4 revisits the described methods introducing
new surface reconstruction methods that use morphological
operators. Conclusions end the paper.

2. SIMULATED ACQUISITION SET-UP
Taking into account the high surface sampling density re-

quired by the surface algorithms presented in the literature,
we cannot use the ISPG database of reconstructed volumes
in order to test the implemented methods. We simulate a
similar acquisition setup using LightWave 3D in order to
achieve a 3D reconstruction of the object in the scene with
a sampling density sufficient for applying both the aforemen-
tioned techniques for surface reconstruction. In this Section
we describe the implemented process for simulating a 3D ac-
quisition set-up similar to the multi-Kinect system, but able
to obtain a finer sampling of the 3D space.

2.1 Synthetic Depth Maps using LightWave
LightWave 3D is a high end computer graphics program

developed by NewTek [8]. It is a software package used
for rendering 3D images, both animated and static. The
great potential of LightWave [3] is here exploited to build
perspective depth maps, where the gray tone of each pixel
represents the distance of the corresponding 3D point to the
optical center of the depth-camera taken as reference (the
IR-camera of an hypothetic Kinect device). This result is
achieved by imposing a specific texture on the illuminated
surface of the object. In details, given any synthetic object,
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Figure 2: (a) Depth map achieved using LightWave
and (b) 3D surface points reconstruction.

as shown in Fig. 1(a), a perspective depth map that reflects
the configuration of Fig. 1(b) can be achieved by imposing
as texture a gradient that changes the gray tone of the ob-
ject linearly as a function of the distance from the IR-camera
optical center. We use a model of a human hand in order to
achieve the sampling accuracy required by the surface recon-
struction algorithms implemented. The camera in Fig. 1(b)
reflects the position of the Infra-Red (IR) camera of the sim-
ulated Kinect device. The gray tone Imin (= 0, i.e., black)
is associated to all the background pixels. They represent
points at a distance greater than or equal to dmax from the
IR-camera (corresponding to 435 mm for our example). The
gray tone Imax (= 255, i.e., white) is associated to all the
pixels representing points at a distance less than or equal
to dmin (corresponding to 375 mm for our case). All the
pixels that represent points with distance between dmin and
dmax have a gray tone that is linearly decreasing, while the
distance of the corresponding point to the optical center of
the device is increasing. Thanks to the linear gradient and
imposing no light except the ambient light, we can achieve
any depth map simulating a generic viewpoint, as the one
shown in Fig. 2(a), which reflects the acquisition conditions
of Fig. 1(b). Using LightWave, we are able to simulate per-
spective depth maps for any acquisition set up and with any
resolution needed.

2.2 Canonical Volumetric Reconstruction
Having the depth map and all the IR-camera parameters,

we can reconstruct a sampled version of the object surface
standing in front of the simulated Kinect device (as shown in
Fig. 2(b)). Knowing the depth map and the linear gradient
equation, the distance d of any 3D point which corresponds
to any pixel in the image can be estimated as:

d =
dmin − dmax

Imax − Imin
(I − Imax) + dmin, (1)

where I represents the gray tone of the pixel on the depth
map.

Assuming that the system is calibrated, both the intrinsic
and extrinsic parameters are known. Moreover, knowing the
distance of each point from the IR-camera optical center, the
3D coordinates (px, py, pz) of the point are easily evaluated:

pz = d
f√

(u− u0)2 + (v − v0)2 + f2
, (2)

px = pz
u− u0

f
, (3)
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Figure 3: (a) Elevation depth map and (b) volumet-
ric rendering obtained from the depth map.

py = pz
v − v0

f
, (4)

where (u, v) are the point coordinates on the image plane,
(u0, v0) are the principal point coordinates, and f is the focal
length.
Before doing the 3D reconstruction, the image is processed

in order to separate the background from the foreground
and to remove any outlier (pixels with gray tone greatly
different from those in the neighborhood). Moreover, using
LightWave, we obtain perspective depth maps, that are then
transformed in elevation depth maps in order to simulate a
system that is as close as possible to the real system. In an
elevation depth map the gray tone of each pixel represents
the distance of the corresponding 3D point to the IR camera
image plane, while in a perspective depth map the gray tone
of each pixel represents the distance of the corresponding
3D point to the IR camera optical center [14]. Knowing the
3D coordinates of each point on the acquired surface, it is
straightforward to compute the gray tone of each pixel in
function of the distance from the image plane, as shown in
Fig. 3(a). Each 3D estimated surface point is projected on
the image plane with a gray tone (del) equals to:

del = pz − f. (5)

A bicubic interpolation is then applied in order to minimize
artifacts due to quantization. Having this new calibrated
depth map, we are able to compute the 3D coordinates of
each pixel and to project each surface sample till the max-
imum extension of the considered space (the so called pro-
jection cylinder), as shown in Fig. 3(b). The volumetric
rendering is achieved working with voxels (in this case using
boxes of 2 mm side).

2.3 Volumetric Integration
We implement a multi-view acquisition setup to obtain a

complete description of the 3D object. Therefore, it is nec-
essary to merge the 3D information coming from different
depth maps taken from different viewpoints. We first re-
construct the scene seen by each device and then merge the
volumetric rendering achieved from any view. This volumet-
ric reconstruction is performed for all the available views by
assuming a regular grid for each of them (canonical space for
each view). Once the voxel space centered on each device is
obtained, applying the roto-translation matrix that brings
each view to a predefined reference view, it is possible to
intersect the different projection cylinders applying a logi-
cal AND between voxels. The result is a unique voxel set

(a) (b)

Figure 4: (a) Voxel surface and (b) sampled surface
of the volumetric rendering obtained from the depth
map.

that gradually incorporates information coming from all the
devices. In Table 1 the depth maps achieved with three
other configurations, in which the devices are turned by
H = +45◦, H = −45◦ and H = 180◦ respectively (using
the LightWave definition for angles), the volumetric render-
ing obtained with each of them, and the voxel set obtained
by increasing the number of views are shown. The resulting
voxel set compactly represents all the available information
about the object surface and its volume occupancy.

A morphological algorithm to extract the voxel surface
starting from the volumetric occupancy is proposed. There
are different possible methods to extract the object surface
having its volume voxel occupancy. For this application, we
find that the best method is to operate a dilation (⊕E) of
the object B by the structuring element E and to define the
surface β (approximation of the topological boundary of B)
as the difference between the result and the original object:

β(B) = (B ⊕ E)−B. (6)

The structuring element E is a 3 × 3 × 3 block of voxels
equal to 1 (full voxels). The centers of the surface voxels are
the available sampled set X for the surface representation
methods described in this paper. In Fig. 4 the surface vox-
els (a) and their centers (b) are represented. The sampled
set X is, in the proposed example, composed by the 56168
centers of the voxels obtained with the surface extraction
algorithm. The achieved sampling accuracy is sufficient for
the considered surface reconstruction algorithms.

3. MEDIAL AXIS APPROXIMATION
BY A SUBSET OF VORONOI VERTICES

In this Section we describe the idea behind two well known
algorithms for surface representation [2] [13]. Starting from
a dense point cloud of sample points, presumed to be on or
close to the object boundary, first the Voronoi diagram of
the scattered data points is computed and then the medial
axis is approximated by a subset of Voronoi vertices, called
poles. The medial axis (MA) and the medial axis transform
(MAT), introduced by Blum [4], are fundamental concepts
for surface reconstruction and they deserve to be explained
in detail.

3.1 Medial Axis and Medial Axis Transform
In 2D, the Medial Axis (MA) of a shape is a set of curves

defined as the locus of points that have at least two closest
points on the boundary of the shape [11]. In the 3D case, the
corresponding object is also called medial surface because,
in addition to curves, it can also contain surface patches.
Considering a 3D object B ⊂ R3 and its boundary β(B), the



Table 1: Volumetric Reconstruction using LightWave. Depth maps obtained with LightWave by rotating the
acquisition system of H degrees. Volumetric reconstruction obtained from a single depth map. Volumetric
reconstruction obtained downstream the merging.

Angle (H) Depth Map Projection Cylinder Volumetric Reconstruction

45◦

−45◦

180◦

medial surface of B (in this paper we use medial axis and
medial surface as synonyms because we consider only 3D
objects) is defined as the locus of centers of all the maximal
balls of B which touch β in, at least, two points. A ball of
radius r centered at x ∈ B is defined as:

Sr(x) = {y ∈ R3, d(x,y) ≤ r}, (7)

where d(x,y) is the Euclidean distance between two points
x and y in R3. A ball Sr(x) ⊂ B is maximal if it is not com-
pletely included in any other ball included in B [11]. The
medial axis transform MAT is defined as the function that
assigns to each medial axis point the radius value of its Max-
imal Ball. It is shown that the object B could be extracted
from MAT(B) as the union of all the Maximal Balls balls
[2]. The boundary of B can be calculated as the boundary of
the union of all the Maximal Balls (inverse MAT). MA has
another great advantage: an object and its inner MA have
the same topological structure and can continuously deform
to each other. Exact computation of both the MA and the
MAT is extremely difficult and slow in a three-dimensional
space [1], [6].

3.2 Surface Representation as Union of Balls
The internal edges and faces of the Voronoi diagram of

the scattered data is an approximation of the medial sur-
face of the shape [2]. Each Voronoi vertex is the center
of a circum-sphere of the Delaunay triangulation and the
connection of all the centers of the circum-spheres produces
the Voronoi diagram. Considering all the Voronoi vertexes
produces many balls with centers close to the surface, cor-
responding to flat “sliver” tetrahedra in the Delaunay trian-
gulation of X [2]. These balls may be (and almost always
are) present even when the data are completely noise-free, at
any finite sampling density. Their centers must be removed
with a heuristic clean-up step. Different algorithms based on
this approach use different methods for selecting the desired
subset of the Voronoi diagram. In particular, after the com-
putation of the Voronoi diagram of the scattered data points,
Amenta et al. retrieve the poles [1]. The poles of a sampled
surface point are the farthest vertex of its Voronoi cell in the

interior of β and the farthest vertex of its Voronoi cell on the
exterior of the boundary β. Connecting these interior poles
PI forms a good approximation to the MA and the union
of the inner polar balls forms a good approximation of the
object surface. Given a “good sample” from a smooth sur-
face, they demonstrate that the output is guaranteed to be
topologically correct and convergent to the original surface
as the sampling density increases. The required sampling
density varies locally, rigorously capturing the intuitive no-
tion that featureless area can be reconstructed from fewer
samples.

We implement the Amenta et al. algorithm [2] on the
synthetic object shown in Fig. 1(a) and the result is shown
in Fig. 5(a). Starting from the sampled 56168 points on
the surface, we compute the Voronoi diagram and we select
8338 poles (Fig. 5(b)).

3.3 Surface Representation as Implicit Surface
Generally, implicit reconstruction methods attempt to find

a smooth function f : R3 → R such that {x1, ...,xn} is
close to the zero set Z(f). Among the mesh-free approaches,
Samozino et al. algorithm [13] grabs our attention because
it approximates the surface as a zero level set of a function
defined as a linear combination of compactly supported ra-
dial basis functions (RBF), each one associated with a polar
ball computed using Amenta et al. approach [2].

The approximation problem is formulated as follows. Given
{pi}i=1,...,N a set of N points (called constraints) and N
scalar numbers F = {fi}i=1,...,N , find a function f : R3 → R
satisfying the approximation condition:

f∗ = argminfE(f), (8)

where E is the least square error:

E(f) =

N∑
i=1

(fi − f(pi))
2. (9)

In the RBF approach, the function f is defined from a
class of basis functions Φj : R3 × R3 → R, as a linear com-
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Figure 5: (a) Surface representation as union of
balls. (b) Selected poles.

bination:

f(x) =

m∑
j=1

αjΦj(x, cj), (10)

where {cj}j=1,...,m denotes a set of m center points and
{αj}j=1,...,m denotes a set of unknown weights to be solved
for.
The reconstruction problem boils down to determine the

vector α = [α1, ..., αm]T by computing the best least square
approximation of the function f with respect to the con-
straints {pi} (Eq. (9)). The minimization of E (Eq. (9))
implies solving the linear system of equations [13]:

GTGα = GT f , (11)

where G is a N ×m matrix defined as:

G = [Φ(pi, cj)]i=1,...,N,j=1,...,m (12)

and f is a N-elements vector defined as f = [f1, ..., fN ]T .
The size of the matrix to be inverted is m×m, where m is
the number of centers.
The set of points P, where the function value is specified a

priori (called constraints), includes the surface points where
the function f should vanish by definition, i.e., where all
the fi should be zero. To avoid the trivial solution α = 0,
during the minimization of E in Eq. (9), several interior con-
straints are added, where the function f does not vanish. For
each additional constraint point pk, we assign to f a signed
value fk. This value is the approximated signed distance be-
tween pk and the sampled surface. The N constraints {pi},
with {i = 1, ..., N} are, therefore, composed by the n data
points (surface points) and by the m additional off-surface
constraints, where the function f is specified.
In particular, in the Samozino et al. algorithm [13], the

additional m constraints are called centers and they are a
subset of the poles computed using the Amenta and Kolluri
approach [2]. Since each center cj is an inside pole, it has
as corresponding scalar value (fj) the radius of its corre-
sponding circum-sphere of the Delaunay triangulation (ri).
The algorithm of Samozino et al. [13] proceeds as follows:
given a 3D point set scattered on a surface, first its Delaunay
triangulation and the dual Voronoi diagram are computed.
Then the authors repeatedly refine a subset of the Voronoi
vertices. In the first stage, poles are extracted from the
Voronoi vertices and they are classified as inside or outside
(following the Amenta et al. approach [2]). In the second
stage, a user-defined number of m centers is selected, among
the set of poles. The selection is performed by filtering and

Figure 6: Surface representation as iso-surface of a
function defined as a linear combination of RBFs.

then clustering the set of poles. Poles are filtered in order to
adjust the level of detail to the budget of centers and they
are clustered in order to achieve a center distribution nicely
spread on the medial axis.

The reconstructed surface is required to be independent
from Euclidean transformations. The function Φ is thus
restricted to the set of radial functions:

Φ(x, ci) = ϕ(∥x− ci∥), (13)

where ∥.∥ denotes the Euclidean distance and ϕ : R+ → R.
In order to obtain a sparse matrix G, making the compu-
tational load tractable also for a great amount of sampled
surface points, compactly supported RBF are introduced by
Wendland [16]. Other compactly supported RBFs (CSRBF)
can be used for reconstruction [15]. The basis function, cen-
tered on ci, chosen in our implementation (defined in Eq.
(13)) is:

ϕ(ri) = (1− ri)
4
+(1 + 4ri), (14)

where the symbol + means:{
(w)+ = w if w > 0
(w)+ = 0 otherwise

, (15)

and ri = ∥x − ci∥. The use of compactly supported func-
tions fi leads to a sparse matrix GTG with about 90% zero
elements. Each term ei,j of the matrix GTG is computed as
a sum:

ei,j =

N∑
k=1

ϕi(∥pk − ci∥)ϕj(∥pk − cj∥). (16)

Therefore, for each constraint p, we need to find the list lp
of centers which contains p in their support. For each pair
of centers (ci, cj) contained in the list lp, we add a term for
p in the computation of ei,j .

We implement the algorithm in Matlab and, for the pur-
posed example (n=56168 surface points and m=8338 cen-
ters), the computation of GTG takes about 3 minutes, avoid-
ing any efficient research but making it exhaustively. The
obtained matrix is sparse: only 6% of its entries are dif-
ferent from zero. The zero level of the obtained function
f(x), computed from Eq. (8), is presented in Fig. 6 and
the computation time needed for 100× 100× 100 points is 1
minutes, greatly less than the time needed to represent the
balls in Fig. 5 (several minutes) because only the iso-surface
f(x) = 0 is represented and not all the balls.
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Figure 7: (a) Medial surface approximation with the
morphological skeleton. (b) Surface approximation
as union of balls associated to the morphological
skeleton.

4. IMPLEMENTED ALGORITHMS FOR
SURFACE REPRESENTATION

Thinking on applications that do not require high level
of accuracy or details in the reconstructed surface (thinking
on an avatar representation and not on a reconstruction of a
digital model for a mechanical artifact for example), we re-
visit the two described algorithms to approximate the object
surface.
The Voronoi-based methods do not work well if the sur-

face resolution is low, as with the 3D reconstructions using
a multi-Kinect system [12]. If the surface sampling is too
sparse, the Voronoi cells are neither narrow, nor orthogo-
nally oriented respect to the surface [1]. Therefore, the poles
selection is useless and the reconstruction fails. Considering
this limitation, we still focus on the medial surface concept,
but we look for a morphological approximation of it (instead
of that based on the Voronoi diagram).

4.1 The Morphological Skeleton
We approximate successfully the medial surface imple-

menting a 3D extension of the 2D morphological skeletoniza-
tion algorithm [7]. The morphological skeleton operator can
be expressed in terms of sequence of morphological opera-
tions of erosion and opening. Given the structuring element
E and indicating with ⊖k a sequence of k morphological ero-
sions and with ◦ a morphological opening, the morphological
skeleton of B (S(B)) can be expressed as:

S(B) = ∪K
k=1Sk(B), (17)

where:

Sk(B) = (B ⊖ kE)− ((B ⊖ kE) ◦ E). (18)

This procedure is iterated until B ⊖ KE is an empty set.
This algorithm, as well as its version in 2D, does not pro-
duce a connected skeleton even if the original object is con-
nected. The obtained morphological skeleton (shown in Fig.
7(a) for the reconstructed object at the right-bottom of Ta-
ble 1) does not preserve the topology of the original object,
as well as it is not maintained approximating the MA as
a set of poles of the Voronoi diagram. The main impor-
tant property is that the reconstructed surface maintains the
original object connectivity and this is true both for the pro-
posed and the Voronoi-based methods. Moreover the pro-
posed MA approximation is applicable independently from
the sampling accuracy of the available volumetric data, while
Voronoi based MAT approximation methods work well only
for a required sampling density [1]. Another great advantage
of our method is its low computational load that makes it

(a) (b)

Figure 8: (a) Morphological skeleton filtered im-
posing that each block has at least 20 element 26-
connected and (b) the 3074 (76% of the original)
corresponding balls.

greatly faster than any Voronoi based method. The compu-
tation of the 4043 morphological skeleton voxels extracted
with the proposed algorithm takes less than a second, greatly
less than the hour taken for extracting the poles from the
computed Voronoi diagram implementing the Amenta et al.
approach [2]. Both algorithms run on a PC under Windows
7 (64 bit), using a 1.60 + 1.60 GHz Intel Dual Core CPU.

4.2 Union of Balls
Starting from our very fast MA approximation as the mor-

phological skeleton, it is possible to represent the object sur-
face as union of balls. Each of the Sk(B) voxels can be con-
sidered as the center of a ball, with a radius that depends on
the step at which it is generated. Since we use as structuring
element a 3×3×3 block of voxels with origin at its center, to
each skeleton-voxel corresponds a sphere with center located
in the center of the voxel itself and with radius r equal to:

r = (k − 1

2
)l, (19)

where k indicates the step of the iterative algorithm in which
the skeleton voxel is generated, and l is the 3D space sam-
pling interval size expressed in millimeters. Fig. 7 (b) shows
the balls associated to the skeleton of Fig. 7(a) and it can
be observed that the obtained surface is homotopic with the
original object. In particular, we avoid the S0(B) morpho-
logical skeleton voxels because they are voxels belonging to
the surface of B and do not produce any sphere (as can be
noted from the subscript in the summation in Eq. (17)).

Each of these balls can be also easily interpreted in sta-
tistical terms as a Gaussian probability distribution, with
mean (µ) equal to the center of the sphere and standard de-
viation (σ) for each direction equal to one third of the ball
radius. As for a Gaussian distribution, the 99.7% of possi-
ble values are inside the interval µ ± 3σ, the union of the
spheres can be seen as the union of the iso-surfaces at 0.997
probability of each Gaussian distribution.

Comparing the results obtained with the Amenta et al. [2]
and the proposed representation as union of balls (Fig. 5(a)
and Fig. 7(b)) we can observe that both representations are
quite noisy: many balls with small radius and near to the
surface are present, even if we work with a noise free object
in this case. More refinements in the centers choice must
be done in order to obtain a more smooth and appreciable
result, incrementing the computational time and the num-
ber of machine operations. A simple method to reduce the
number of balls representing the object surface is to perform
a k-means clustering over the set of all the possible centers.



(Radius ≥ 5 mm) (Radius ≥ 7 mm) (Radius ≥ 9 mm)

Figure 9: Balls filtered according to the minimum
allowable radius.

(Nsec ≥ 50) (Nsec ≥ 100) (Nsec ≥ 250)

Figure 10: Balls filtered according to the minimum
allowable number of intersecting balls.

After the convergence of the clustering procedure, the cen-
troid of each cluster is replaced by the closest voxel within
its cluster. It guarantees that the final centers are located on
the original morphological skeleton (or Voronoi diagram).
Other approaches seem more interesting in our case. In or-

der to filter the resulting balls, we can compute the number
of 26-connected voxels that form a morphological skeleton
block and cut the blocks with less elements than a threshold.
We implement a morphological algorithm for counting how
many 26-connected blocks compose a 3D image and also for
counting by how many voxels each block is made. Starting
from a foreground voxel belonging to B (p0), the goal is to
find all the components connected to that voxel by following
the iterative procedure:

pk = (pk−1 ⊕ E) ∩B k = 1, 2, 3, ... (20)

The procedure terminates when pk = pk−1 and produces
the connected component Bi. Then the same iterative pro-
cedure starts again on another foreground voxel of B −
{∪i

j=1Bi} till no more foreground voxels remain. Fig. 8
shows the result imposing that each block must contain at
least 20 voxels that are 26-connected.
Moreover, this representation allows a hierarchical inter-

pretation: setting the minimum acceptable radius, we can
range from the most massive elements of the object repre-
sentation till a more detailed description, as summarized in
Fig. 9. In this case we have 4043 spheres with minimum
radius equal to 3 mm and maximum radius equal to 17 mm,
that is likely equal to the thickness of the hand palm. Fig.
9 shows that by increasing the minimum acceptable radius,
first the fingertips are missed and then only the palm re-
mains. Considering all the spheres with radius greater than
5 mm, 3633 spheres remain, with radius greater than 7 mm,
2301 spheres remain, and, with radius greater than 9 mm,
only 1673 spheres are left.
Another interesting way to study the hierarchy of the ob-

ject parts is to consider the number of balls that intersect
each skeleton ball: Fig. 10 represents the results setting
the minimum number of intersecting spheres allowed. The
spheres with more than 50 intersecting spheres are 2825,
with more than 100 intersecting spheres are 2208 and with
more than 250 spheres are 1455.
In order to obtain a MA that maintains the topology of the

original object, a postprocessing procedure can be applied:

Figure 11: Surface representation as zero level of
a function defined as linear combination of RBFs
associated to the morphological skeleton.

first the number of 26-connected elements of the skeleton
can be estimated and, eventually, filtered; then they can
be linked to each other following the path indicated by the
linked spheres.

4.3 Implicit Surface
Starting from the proposed approximation of the medial

surface using the morphological skeleton, also the Samozino
et al. algorithm [13] can be reviewed and it is possible to
represent the object surface as the zero level of a function
defined as linear combination of radial basis functions.

Data points are the centers of surface voxels and the m
centers are the centers of the morphological skeleton vox-
els (neglecting the voxels resulting from the first iteration).
Therefore the N constraints are the n = 56168 surface points
plus the m = 4043 voxels on the approximated medial sur-
face. We impose the function f to be zero at the surface
points and to be equal to the radius of the corresponding
maximal ball (ri) at the morphological skeleton voxels.

For the proposed example, the computation of GTG takes
31 s and only 1% of its entries are different from zero. The
computation time needed for 100 × 100 × 100 points of the
zero level of the function f(x), computed from Eq. (8) and
represented in Fig. 11, is less than 1 minute, greatly less
than the time needed to represent all the balls as in Fig.
7(b) (more than 5 minutes). In comparison to the algorithm
proposed by Samozino et al. [13], fewer centers are used.
This leads to a faster computation of the weights and a faster
evaluation of the functions. The effects of some noisy balls
can be seen on the tip of the thumb, for example. These balls
can be removed by applying one of the previously proposed
filtering methods.

The main difference with the Samozino et al. method is
that they compute the Delaunay triangulation and the dual
Voronoi diagram of the given 3D surface points. Then they
repeatedly refine a subset of the Voronoi vertices. In our al-
gorithm we apply the 3D morphological skeleton extraction
algorithm and, eventually, we filter the extracted voxels.

5. CONCLUSIONS
In this paper we propose a technique, based on morpho-

logical operators, to approximate the Medial Axis Transform
in terms of surface representations as the union of balls (Fig.
12(c)). This method can be applied independently from the
sampling accuracy of the available volumetric data, while



(a) (b)

(c) (d)

Figure 12: Surface representation as (c) union of
balls and as (d) zero level of a function defined as
linear combination of RBFs. Balls or RBFs are as-
sociated to the (b) morphological skeleton (m= 1835
voxels). (a) Surface (n=9822 voxels). The 3D object
is taken from [12].

Voronoi based MAT approximation methods work well only
for a required sampling density [1]. This important feature
suggests its use with a 3D reconstruction obtained with not
very accurate DIBR devices (as the multi-Kinect system im-
plemented in the ISPG laboratory [12]). We obtain a really
fast and reliable method to represent human body surface
for each frame. Another great advantage of our method is its
low computational load that makes it greatly faster than any
Voronoi based method. Moreover, by applying an easy post-
processing (filtering considering the number of 26-connected
elements for each block, or the radius, or the number of in-
tersecting spheres, or a combination of the previous), we
are able to reduce significatively the number of balls used
to represent the object and to extract its most important
components (in term of the metric used). This approach
allows us also to obtain a surface representation as an iso-
surface of a three-dimensional function (Fig. 12(d)). The
matrix GTG, for the example proposed in Fig. 12 (taken
from [12]), has only 1.49% of non null elements.
We believe that this light computational and fast algo-

rithm is attractive for the development of domestic and user
friendly applications.
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