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Abstract. We first phrase a boundary-value problem for a dense, steady, fully-developed, gravitational 
flow of identical inelastic spheres over in inclined bumpy base in the absence of sidewalls. We then obtain 
approximate analytical solutions for the profiles of the solid volume fraction, the strength of the velocity 
fluctuations, and the mean velocity of the flow. We compare these with those obtained in numerical solutions 
of the exact equations. 

1 Introduction 
Flows of granular materials down inclines occur often in 
Nature and in industry. Consequently, it is important to 
be able to describe and predict them. Because such flow 
take place under the influence of gravity, they typically 
involve solid volume fractions greater than 0.30. In this 
sense, they are dense. Classical dense flow kinetic 
theory (e.g., [1]) has the capability of describing such 
flows (e.g,, [2]), provided that the volume fraction does 
not exceed about 0.49. Above this, the predictions for 
the properties of inclined flow fail, and alternatives must 
be employed.  
 One such alternative is a nonlocal extension [3] of 
the µ-I rheology [4, 5] that has been applied to dense, 
inclined flows [6]. Another is an extension of the kinetic 
theory that takes into account, in a phenomenological 
way, the existence of velocity correlations [7, 8, 9]. In 
fact, the two approaches have much in common [10, 11]. 
 Here, we employ the latter to phrase a boundary-
value problem for a dense, steady, fully-developed, 
gravitational flow of identical inelastic spheres over an 
inclined bumpy base in the absence of sidewalls. We 
then obtain approximate analytical solutions for the 
profiles of the solid volume fraction, the strength of the 
velocity fluctuations, and the mean velocity of the flow.  

2 Model  
We consider a steady, dense, fully-developed flow of 
identical, frictional, inelastic spheres of mass m, mate-
rial density  diameter d, with coefficient of restitu-
tion, e, and sliding friction, µ. The flow is driven by 
gravity over a rigid, bumpy bed, inclined at an angle of 
f,  in the absence of sidewalls. The bed is composed of 
spheres, identical to those of the flow, randomly affixed 
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to a plane with an average distance of s  between their 
edges.  

The x-axis is in the direction of flow, the y-axis is 
normal to the flow, directed upward from the base, and 
g is the gravitational acceleration. Primes denote deriv-
atives with respect to y. The solid volume fraction is 
n, the flow velocity is u, and the measure of the strength 
of the velocity fluctuations, T, is one third their mean-
squared value. We employ extended kinetic theory to 
phrase a boundary-value problem for the variations of 
these fields across the flow and obtain approximate, an-
alytical solutions for them that we compare to numerical 
solutions of the exact equations. 
 
2.1 Momentum balance 
 
The component of the momentum balance along the 
flow governs the variation of the shear stress S: 
 
  (1) 
 
While the component of the momentum balance normal 
to the flow governs the variation of the pressure P: 
 
  (2) 
When integrated together,  
 

   (3) 

 
The flows are assumed to be so dense that n is greater 

than 0.49 everywhere within the flow. Then, in the ex-
pressions for the stress, we retain only terms that result 
from collisional transfer of momentum and ignore those 
that result from transport. Then, [1] 

  

ρs ,

′S = −ρsνg sinφ;

′P = −ρsνg cosφ.

S
P
= tanφ.
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  (4) 
 

where 
 

  (5)  

 
in which the critical volume fraction, nc, at which the col-
lisional interactions become singular, is given by [12] 
 
  (6) 
 
and 
 

     (7) 

where [1] 
 

  (8) 

 
The dependance of the shear stress on the volume frac-
tion may be eliminated in favor of a dependance on the 
pressure: 
 

   (9) 

 
2.2 Energy balance 
 
The balance of  fluctuation energy in the flow relates the 
gradient of the energy flux, Q, the working of the shear 
stress, and the rate of collisional dissipation, G: 
 
  (10) 
 
Upon retaining only the collisional transfers, [1] 
 

  (11) 

where 
 

  (12) 

 
or 
 

   (13) 

 
and [1] 
 

  (14) 

 

where  is the effective restitution [12] 
and L is the correlation length [12] 
 

      (15) 

 
with 
 

 (16) 

 
With Eqs. (9), (13), and (14), the energy equation be-
comes 
 

  

  (17) 
 
When written in terms of the fluctuation velocity, 

 this is 

  

  (18) 
 
 
2.3 Boundary conditions 
 
At the free surface, we assume that and make 
the rough approximation that   At the rigid, 
bumpy base, the flow momentum balance gives the slip 
velocity, [13] 
 

  (19) 

 
where the slip coefficient, F, is given by 
 

  

  (20) 
 
in which q  is the bumpiness of the boundary, defined in 
terms of the diameter of the boundary spheres and the 
average separation of their edges by 

  
The energy balance at the base relates the energy flux, 

the rate of working of the shear stress through the slip 
velocity, and the rate of collisional dissipation, D: [13] 
 
  (21) 
where 
 
 

P = 2ρsν(1+ e)GT ,

G = 5.69ν
νc − 0.49
νc −ν

,

νc = 0.58+ (0.64− 0.58)e
−4.5µ ;

S = 8Ĵ
5π 1/2

dρsν(1+ e)GT
1/2 ′u ,

Ĵ = 1
2
+ π
4

(3e−1)(1+ e)
24− (1− e)(11− e)

.

S = 4 Ĵ
5π 1/2

d P
T 1/2

′u .

− ′Q + S ′u − Γ = 0.

Q = − 4M̂
π 1/2

dρsν(1+ e)GT
1/2 ′T ,

M̂ = 1
2
+ 9π
8
(2e−1)(1+ e)
16− 7(1− e)

,

Q = − 2M̂
π 1/2

Pd
T 1/2

′T ;

Γ = 12
π 1/2

1− ε 2( ) ρsνGT
3/2

L
= 6
π 1/2

(1− ε ) PT
1/2

L
,

ε = e− 3/ 2( )µe−3µ

L
d
= f d ′u

T 1/2
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1/2
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⎦
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1/2
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π 1/2

(1− ε ) PT
1/2

L
.

w = T 1/2 ,

′′w + ′P
P
w′ − π 1/2
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⎞
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w
d 2

= 0.
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⎞
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Q = Su − D,
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   (22) 

 
with 
 

  (23) 

 
Using 
 

  (24) 

 
the energy balance at the base may then be written as 
 

  (25) 

3 Approximate analytical solutions 
We make lengths dimensionless by d, velocities by 

 stress by , and prescribe the mass holdup: 

   (26) 

 
To obtain the solution for w, we assume that the pres-

sure vanishes at the top of the flow and approximate the 
integration of the normal momentum balance and the di-
mensionless pressure by 

   (27) 

where  is the depth-averaged volume fraction, and 

  (28) 

respectively. Then 

  (29) 

Next, we replace the varying volume fraction in the 
expression for the correlation length by it average value 
M/h, where h is to be determined. Then, 

  (30) 

With these, the Eq. (18) for w becomes 

  (31) 

where 

  (32) 

We introduce the dimensionless distance   
from the top of the flow and denote a derivative with 
respect to it by an overdot. Then, Eq. (31) becomes 

  (33) 

Solutions to this are , where I0 
and K0 are modified Bessel functions of order zero. Be-
cause K0(0) is infinite, we discard it. At 

 so  and 

   (34) 

With Eq. (34), we consider the boundary condition 
(25),  We use the identity   
to obtain 
  
  (35) 
 
We regard this as a nonliner equation for h and use the 
Matlab function fsolve to determine h as a function of 
M and the other known parameters. Fig. (1) shows h as 
a function of M for the parameters indicated. 
 

 
 

Fig. 1 Dimensionless flow height versus dimensionless mass 
hold-up for e = 0.80, µ = 0.10, f = 0.29 (16.6o), and q = p/5. 

 
The introduction of the correlation length and its de-

pendence on volume fraction permits the extended ki-
netic theory to predict the observed differences in height 
at a given inclination (e.g., [14]), in contrast to the single 
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height at a given angle of inclination predicted by the 
classical kinetic theory [2]. 

For the determination of the average flow velocity, 
Eq. (31) for S may first be expressed as a differential 
equation for   
 

  (36) 

 
With Eq. (34), this may be integrated to  
 

 

  (37) 
 
where 1F2 is the generalized hypergeometric function 
with indicated arguments, evaluated in Matlab using 
hypergeom(1/2, [1, 3/2], k2(h-y)2/4), for example. 

Finally, an approximate determination of n(y) may be 
obtained by giving up the assumption thaat the pressure 
at the top of the flow, Ph, is not zero and choosing its 
value so that n = 0.49  there. Then, upon replacing n  by 
its depth-averaged value in the dimensionless form of 
Eq. (2) and integrating, 

 

 (38) 

 
where . Upon using Eqs (27) and (28) in 
this, 
 

 (39) 

 
so, 
 

  (40) 
 
Then, if n(h) = 0.49,  
 
  (41) 
 
with  

The expressions for the profiles of w, u, and n  are 
all parameterized in terms of w0. To obtain an estimate 
of it, we evaluate Eq. (39) at y =0, using Eq. (41): 

 

 (42) 

 

In this, we make the rough approximation that   
 

 (43) 

 
This determination of w0 completes the solutions. 

4 Comparisons and conclusions 
In Fig. 1, we show profiles predicted for n , w, and u by 
the aproximate analytical solutions and by the numerical 
integration of the system of differential equations and 
boundary conditions using the Matlab code bvp4c. The 
agreement is generally good, with the greatest error at 
the rigid base. This error is associated with the 
approximation made to determine w0. 
 

 
 

Fig. 2 Dimensionless flow height versus volume fraction, n, 
dimensionless fluctuation velocity, w, and mean velocity, u, 
for M = 13 and the parameter values of Fig. 1. The dashed 
curves are the numerical integrations of the differential 
equation; the solid curves are the approximate analytical 
solutions. 

 
These results are encouraging and support an attempt 

to improve upon them. 
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1
I0(κ h)

⎧
⎨
⎪

⎩⎪

× h1F2
1
2
;1, 3
2
;κ

2h2

4
⎛
⎝⎜

⎞
⎠⎟
− (h− y)1F2

1
2
;1, 3
2
;κ

2(h− y)2

4
⎛
⎝⎜

⎞
⎠⎟

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

⎫
⎬
⎪

⎭⎪
,

ν

P( y)− P0 = −cosφ ν(ξ )dξ
0

y

∫ ! −ν ycosφ

P0 = Ph +ν h

2(1+ e)5.69ν
νc − 0.49
νc −ν

w2 !
Ph
ν

+ (h− y)cosφ;

ν( y) = Ph /ν + (h− y)cosφ⎡⎣ ⎤⎦νc
  / 2(1+ e)5.69(νc − 0.49)w2( y)+ Ph /ν + (h− y)cosφ⎡⎣ ⎤⎦

Ph = 2(1+ e)5.69wh
2(0.49)ν ,

wh
2 = w0

2 / [I0(κ h)]
2

2(1+ e)5.69 ν0
νc − 0.49
νc −ν0

− 0.49
[I0(κ h)]

2

⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪
w0
2 = hcosφ.

ν0 = ν :

M
h

νc − 0.49
νc − M / h

− 0.49
[I0(κ h)]

2

⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪
w0
2 = hcosφ
2(1+ e)5.69

.

0.5 0.55 0.6
0

5

10

15

20

y

0 0.5
w

0 5
u

4

EPJ Web of Conferences 249, 03039 (2021) https://doi.org/10.1051/epjconf/202124903039
Powders and Grains 2021


