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Abstract13

Most water reservoir operators make use of forecasts to inform their decisions and en-14

hance water systems flexibility and resilience by anticipating hydrological extremes. Yet,15

despite numerous candidate hydro-meteorological variables and forecast horizons may16

potentially be beneficial to operations, the best information set for a given problem is17

often not evident. Additionally, in multi-purpose systems characterized by multiple de-18

mands with varying vulnerabilities and temporal scales, this information set might change19

according to the objective tradeoff. In this work, we contribute a novel method to learn20

the optimal policy representation (i.e., policy input set) by combining a feature selec-21

tion routine with a multi-objective Direct Policy Search framework in order to retrieve22

the best policy input set online (i.e., while learning the policy) and dynamically with the23

objective trade-off. The selected policy search routine is the Neuro-Evolutionary Multi-24

Objective Direct Policy Search (NEMODPS) which generates flexible policy shapes adap-25

tive to online changes in the input set. This approach is demonstrated on the case study26

of Lake Como (Italy), where the operating objectives are highly heterogeneous in their27

dynamics (fast and slow) and vulnerabilities (wet and dry extremes). We show how vary-28

ing objectives, and tradeoffs therein, benefit from a different policy representation, ul-29

timately yielding remarkable results in terms of conflict mitigation between different users.30

More informed policies, moreover, show higher robustness when re-evaluated across a suite31

of different hydrological conditions.32

1 Introduction33

Water reservoirs have long been fundamental components of coupled human-water34

systems worldwide, providing communities with green and affordable electricity, water35

supply for agricultural and urban consumption, and flood protection. Yet, lately, new36

concerns are arising regarding the reliability of water systems as climate change increases37

the likelihood of extreme events, and economic development exacerbates water demands38

and conflicts (Fletcher et al., 2019; Herman et al., 2020). One way of increasing resilience39

and reliability of water systems is to build more, larger, infrastructures, however, this40

hard path to capacity expansion is costly and often yields unintended cross-sectoral ex-41

ternalities (Gleick , 2003). An alternative, soft-path towards resilience advocates the im-42

provement of the operating rules used to control the existing water infrastructures to en-43

hance their capability to anticipate weather extremes, and timely prepare for them.44

Traditionally, the operating policy of water reservoirs was conditioned upon very45

limited information systems comprising reservoir storage and a cyclostationary time in-46

dex (Hejazi et al., 2008). More recently, Turner et al. (2019) showed that most water47

system operators across the US make use of streamflow forecasts to further improve op-48

erations. The employed forecast horizon is however reservoir-specific, and, when official49

guidelines are absent, operators seem to rely on their expert judgment to identify their50

forecast horizon of choice. In the water resources literature, few studies have tackled the51

issue of the optimal selection of streamflow forecast horizon for a single-objective reser-52

voir operated for water supply (Anghileri et al., 2016), hydropower (Hamlet et al., 2002;53

Block , 2011; Xu et al., 2014), or for a generic concave objective function (Zhao et al.,54

2014, Zhao et al., 2019). Additionally, the breath of information sources that was demon-55

strated to be valuable to inform reservoir operations is by no means limited to stream-56

flow forecasts, but includes the previous period’s inflow (Gal , 1979; Maidment and Chow ,57

1981), available hydrological observations (Denaro et al., 2017), traditional (Hejazi and58

Cai , 2011) or basin-specific (Zaniolo et al. 2018, Zaniolo et al., 2019) drought indexes,59

measures of snow abundance (Desreumaux et al., 2014; Giuliani et al., 2016a), shifts in60

hydrological regimes (Turner and Galelli , 2016), teleconnection indices (Libisch-Lehner61

et al., 2019), and sea surface temperature measured in appropriate locations (Giuliani62

et al., 2019; Zaniolo et al., 2021a).63
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While these studies are a great demonstration of the potential of using unconven-64

tional policy representations in policy design, none of them attempts at automatizing65

representation learning in a portable framework. Additionally, no attention has been given66

to a major challenge to learning an optimal policy representation, i.e., the coexistence67

of multiple operating objectives. In fact, previous studies either consider systems oper-68

ated for a single purpose (i.e., reservoirs operated just for hydropower), or specify only69

one policy representation for the entire tradeoff space. In multi-purpose water reservoir70

systems, however, common operating targets, e.g., flood protection and water supply, can71

be vastly heterogeneous in their dynamics and vulnerabilities. Flood events are gener-72

ally caused by the onset of fast and intense wet meteorological extreme events, while wa-73

ter supply failures are the result of a prolonged period of water shortage caused by slow-74

developing dry hydrological extremes, i.e., droughts. In these systems, defining an ap-75

propriate policy representation becomes more intricate. On the one hand, a flood-conservative76

policy benefits from a short lead time look-ahead information that conveys peak inflow77

magnitude and timing, on the other, a water supply-prone policy seeks predictors that78

are relevant for the onset of a prolonged water shortage to timely activate hedging strate-79

gies. The tradeoff space between these two opposite solutions is populated by an ensem-80

ble of policies diversely balancing opposite control targets. Such behavior is shown for81

a fixed policy representation via sensitivity analysis to policy inputs for alternative trade-82

offs (Quinn et al., 2017; Doering et al., 2021).83

In this work, for the first time, we hypothesize and quantitatively demonstrate that84

in Multi-Objective (MO) problems different objective tradeoffs require different infor-85

mation, and selection of policy representation should be tradeoff-specific. Our results demon-86

strate that one policy input set is inadequate to represent the entire space of different87

control behaviors that may emerge for alternative tradeoffs.88

Part of the reason why a tradeoff dynamic selection was never performed is that89

traditional policy search routines only support static and prespecified input sets, thereby90

not allowing the evolution of a population with heterogeneous input sets. In this work,91

we propose a novel technique to automatically learn a Pareto front of optimal policies92

and their representations for a multipurpose water system. The method is applicable to93

large and heterogeneous datasets of candidate policy inputs, from meteorological and hy-94

drological forecasts with disparate horizons, to observational data. The framework, namely95

SINEPS, Selection of Information for NeuroEvolutionary Policy Search, combines au-96

tomatic feature selection with NEMODPS (NeuroEvolutionary Multi-Objective Direct97

Policy Search, Zaniolo et al. (2021b)), a policy search routine that can accomodate changes98

in the policy input set. SINEPS starts with a simple operating policy and a minimal pol-99

icy representation and gradually includes new inputs to the policy representations while100

automatically adjusting the policy processing capacity. For every Pareto efficient pol-101

icy, the selected input is the one that explains most of the information gap between the102

policy itself, and an ideal, deterministic, Perfect Operating Policy, designed under the103

assumption of perfect knowledge of future disturbance.104

This framework is tested on the real-world case study of the multi-purpose Lake105

Como, operated to meet two conflicting and heterogeneous objectives of flood protec-106

tion and water supply, mainly for irrigation. The flood objective is characterized by fast107

dynamics and vulnerability towards wet extremes, while irrigation supply is character-108

ized by a slow dynamic and vulnerability towards dry extremes. In this paper, the dataset109

of candidate policy inputs is composed of perfect streamflow forecasts at different lead110

times.111

1.1 Literature review on policy representation learning112

The problem of learning a policy representation is not unique to water resources113

management, on the contrary, it is widely addressed in the control community, finding114
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applications in diverse fields, from spatial path scheduling (Whiteson et al., 2005), stock115

index trading (Si et al., 2017), to virtually any autonomous robot control task (e.g., Hachiya116

and Sugiyama, 2010; Lesort et al., 2018). In this section, we propose a literature review117

on policy representation learning that goes beyond the existing experience in dam pol-118

icy design in order to present and discuss the wider background and challenges the in-119

spired the design of SINEPS, and motivate its algorithmic choices.120

When designing an operating policy for a given system, defining the policy repre-121

sentation corresponds to selecting its input set. Such problem is generally tackled by pair-122

ing Feature Extraction with Policy Search (Liu et al., 2015; Lesort et al., 2018). Feature123

Extraction refer to a family of techniques that transform an original dataset into a more124

compact, while still highly informative dataset (Cunningham, 2008). Policy Search meth-125

ods aim at learning an optimal operating policy for a system (e.g., a release policy from126

a reservoir) with respect to its objective functions (e.g., flood and water supply). In the127

proposed taxonomy, we identify a priori, a posteriori, and online approaches to pairing128

feature extraction and policy search for learning a policy and its representation.129

In the first a priori approach, the feature extraction step is antecedent and inde-130

pendent from the policy search step. First, the feature extraction routine reduces the131

dimensionality of the dataset of candidate features for example extracting few relevant132

features from the dataset, removing irrelevant ones, or generating new features by ap-133

propriately combining existing ones. The reduced dataset represents the selected pol-134

icy representation, and is used for policy search. The dimension reduction is generally135

achieved via i) data compression techniques, e.g., autoencoders (e.g., Morimoto et al.,136

2008), or Principal Component Analysis (Nouri and Littman, 2010), that map the ini-137

tial dataset into a lower dimensional latent space that retains most of its information con-138

tent, ii) using a target control sequence to identify relevant policy drivers (Kroon and139

Whiteson, 2009; Giuliani et al., 2015; Denaro et al., 2017), or, iii) via expert-based fea-140

ture selection (e.g., Akrour et al., 2012) or extraction (e.g., Sturtevant and White, 2006;141

Giuliani and Castelletti , 2019) to design a problem-specific representation. In general,142

a priori approach to policy representation is advisable whenever there is sufficient knowl-143

edge of the task to confidently devise an appropriate feature set. This very low compu-144

tationally demanding approach, in fact, does not offer any guarantees on the optimal-145

ity of the chosen representation (Lesort et al., 2018).146

The a posteriori approach evaluates the suitability of a policy representation by147

assessing the performance of the policy conditioned upon it. Multiple policies are designed148

with alternative input sets, and the desired representation is identified as the one gen-149

erating the best performing policy. In principle, the entire combinatorial space of fea-150

tures subsets could be exhaustively explored, yielding to an optimal solution albeit re-151

sulting computationally intractable for non-trivial datasets (see, e.g., Gaudel and Sebag ,152

2010). Alternatively, for modest datasets, hill-climbing approaches incrementally add fea-153

tures to the representation retaining the most successful ones (Wright et al., 2012; Zhang ,154

2009; Tan et al., 2013). Finally, an initial a priori reduction can be applied to select a155

limited number of candidate representations that are then exhaustively compared a pos-156

teriori (Giuliani et al., 2016a; Castelletti et al., 2016). In general, a posteriori feature157

representation is significantly more computationally burdensome than the a priori coun-158

terpart. Yet, an exhaustive a posteriori search can be performed with virtually no pre-159

existing knowledge of the task, and guarantees the optimality of the derived feature rep-160

resentation. Both a priori, and a posteriori approaches in general rely on heavy expert-161

based manual engineering in defining potentially appropriate policies representations to162

implement or test (Bengio et al., 2013).163

The third, online approach, interleaves feature extraction phases throughout the164

policy search process, using progressively refined feature representations to support pol-165

icy learning. Representations are updated during the search via supervised learning, by166

extracting features that approximate the state space (Curran et al., 2016; Alvernaz and167
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Togelius, 2017), state-transition space (Assael et al., 2015; Van Hoof et al., 2016), or the168

reward trajectory (Munk et al., 2016; Oh et al., 2017) of the policy learned thus far (for169

a comprehensive review, see Lesort et al., 2018). The adjusted representation is then em-170

ployed to refine policy search in a feedback loop between the two routines. Computa-171

tionally, online approaches are more expensive than a priori, but less than a posteriori172

methods, while handling significantly larger datasets of candidate information.173

1.2 SINEPS174

In this work, we present a novel method for online dynamic policy representation175

called SINEPS, Selection of Information for NeuroEvolutionary Policy Search. It requires176

the selection of i) a feature extraction method, ii) a policy search routine, and iii) a strat-177

egy to interface the two.178

1. Feature extraction method: Several online policy representation routines em-179

ploy Feature extraction techniques that reduce the dimensionality of the repre-180

sentation by projecting the initial feature space into a lower dimensional latent181

space that preserves information content. However, such an approach does not guar-182

antee that any candidate feature is actually excluded from the problem formula-183

tion (Loscalzo et al., 2015) . As a result, while the operating policy can actually184

benefit from a lower-dimensional representation, the actual problem size remains185

unchanged. In an operational setting, this implies that the entire dataset of ini-186

tial features must be retrieved continuously. Alternatively, Feature Selection meth-187

ods are a subset of the feature extraction techniques that reduces the dataset size188

by identifying a subset of the initial features. Some authors suggest the use of fea-189

ture selection routines, rather than information encoders, for representation learn-190

ing, in order to effectively restrict the number of candidate variables included in191

the problem formulation (e.g., Loscalzo et al., 2015). The representation obtained192

through variable selection, moreover, highlights relevant policy drivers, is easily193

interpretable, and can thus generate insights on the task at hand. Within Feature194

Selection techniques, the iterative online framework can accommodate simple correlation-195

based variable filtering (i.e., the variables that are most correlated with the tar-196

get are selected), as well as non-linear model-based selection routines (e.g., IIS,197

Castelletti et al., 2010). Here, we use a correlation-based filtering approach, where198

the correlation is measured in Symmetric Uncertainty (SU, Blum and Langley ,199

1997). SU is a normalized version of the Mutual Information metric (MI, Shan-200

non, 1948) that quantifies the degree of similarity between two variables, or, more201

specifically, the amount of information that can be obtained on one variable by202

observing the other. Entropy-based techniques like SU are model-free and gen-203

eralizable to any modeling context, as they do not require to assume any functional204

relationship between the variables (MacKay , 2003), contrary to simpler metrics205

such as correlation coefficients that assume a linear dependence. The use of SU206

is supported in the information theoretic literature and was demonstrated to out-207

perform several other feature selection methods on a suite of 15 benchmark fea-208

ture selection problems (Zhang and Chen, 2021).209

Note that SU is employed as a screening tool that allows to detect promising pol-210

icy representations by identifying candidate variables with high information con-211

tent across different objectives. This is intended to avoid an exhaustive approach212

that would test every possible candidate representation in policy search, which would213

be computationally untractable. The policy search step, described below, evolves214

policies with different representations to generate a Pareto front of optimal poli-215

cies and applies further selection pressure onto alternative policy representations216

thereby further refining the representation selection in a policy search context.217

2. Policy Search Method: Direct Policy Search (DPS) is emerging as one of the218

most effective, and widely applied methods to design optimal operating policies219
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for multi-purpose reservoir operations, given its multi-objective nature, flexibil-220

ity in problem and objective formulation, and data-driven nature that allows to221

use trajectories of non-modeled information in policy design (Giuliani et al., 2016b).222

DPS defines the operating policy within a prespecified class of functions and solves223

a problem of optimal functional parameterization with respect to the problem’s224

objectives (Zatarain et al., 2017; Quinn et al., 2018; Giuliani et al., 2019; Quinn225

et al., 2019). Flexible universal approximators such as Neural Networks (NNs) are226

generally employed to parameterize the operating policy in order not to restrict227

the parametrical search to a small functional subspace that may not contain skill-228

ful solutions (Giuliani et al., 2014, Giuliani et al., 2018). The architecture of a229

NN employed for policy design includes as many input nodes as the number of fea-230

tures in the policy representation, and as many output nodes as the decisions to231

be taken on the system, e.g., reservoir release decisions. Finally, the internal NN232

complexity, i.e., number of hidden nodes, connections, and layers, is crucial to de-233

termine the network processing capability and training requirements. The a pri-234

ori definition of the optimal network complexity for a given problem would require235

a perfect knowledge of the operational task, which is in general unavailable. There-236

fore, in practical application, the network architecture is selected by the modeler237

via few manual trials and errors balancing the network approximation capacity,238

training costs, and overfitting tendency. Given its rigid, prespecified, policy struc-239

ture, DPS techniques do not support dynamic changes in the dimensionality of240

the policy feature representation.241

A promising alternative that obviates to policy rigidity is represented by NeuroEvo-242

lution (NE), a set of techniques that employs evolutionary algorithms to evolve243

neural networks in terms of their architectures and parameters. These techniques244

generally begin with a population of simple networks and progressively build more245

sophisticated ones by applying new architectural elements (nodes and connections).246

The evolutionary competition ultimately determines the optimal network complex-247

ity. By pairing NE with DPS, it is possible to derive policy search routines that248

support online changes in policy architecture. Popular NE algorithms (e.g., NEAT249

Stanley and Miikkulainen, 2002) are, however, strictly applicable to single-objectives250

problems. The here employed NeuroEvolutionary Multi-Objective Direct Policy251

Search (NEMODPS), is the first NE routine specifically designed to solve MO prob-252

lems in one algorithmic iteration (Zaniolo et al., 2021b). NEMODPS is here em-253

ployed for the first time to jointly evolve policies with different feature represen-254

tations. In general, not all the policy representations identified in the feature se-255

lection step will survive the evolution pressure, thus refining the selection of op-256

timal representations via policy competition. NEMODPS will be briefly introduced257

in Section 2.2 of the Methods. The reader is referred to Zaniolo et al. (2021b) for258

a more detailed analysis of NEMODPS, and its benchmarking against traditional259

DPS in terms of performance and computational costs.260

3. Interfacing strategy: in many applications, the selection of relevant features is261

performed via supervised learning using as target the state, state-transition, state-262

value spaces, or the cost trajectory produced by the policy learned thus far (for263

a review, see Lesort et al., 2018). Cost-based selection is generally recognized as264

more effective in identifying task-oriented policy representations (Loscalzo et al.,265

2015), however, in multi-objective problems, the coexistence of multiple cost sig-266

nals complicates the cost-based selection process. In SINEPS, we propose a novel267

interfacing strategy that is both task-tailored, and suitable for MO problems. In268

particular, we use as reference a deterministic Perfect Operating Policy (POP) that269

assumes full knowledge of future system disturbance. For a given state, we con-270

trast the actions extracted from the POP to those extracted from the policy un-271

der design. We assume that the difference in actions is due to the information gap272

in the policies representations, and thus surrogates the information that the de-273

signed policy would require to meet the POP performance. The trajectory of ac-274
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tion residuals is used as an interfacing strategy, and employed as target for fea-275

ture selection. Such target can be considered task-relevant, as it is a proxy of the276

policy information deficiency for a given task. Additionally, it can be applied to277

MO problems by contrasting each Pareto efficient policy with the corresponding278

perfect counterpart supporting a tradeoff dynamic feature selection.279

To summarize, SINEPS combines feature selection, neuroevolution and an original in-280

terfacing strategy. The choices made in the selection and development of the building281

tools of SINEPS target the overarching goal of designing the first multi-objective fea-282

ture representation learning routine that automatically specifies an optimal policy rep-283

resentations for each tradeoff.284

This paper is organized as follows. The next section presents the methods of this work,285

by presenting the methodological Framework 2.1, and expanding on the key concepts and286

tools employed in the methodology, including NEMODPS 2.2. Section 3 is dedicated to287

the presentation of the case study and experimental settings. Results are discussed in288

Section 4, and in the following Section 5 we draw conclusions and introduce some dis-289

cussion points.290

2 Methods291

In this work, we consider a water reservoir system modeled as a discrete-time, pe-292

riodic, non-linear, stochastic process defined by a state variable st (reservoir storage),293

a control variable ut representing the release decision from the dam gates, stochastic dis-294

turbances εt+1 (net reservoir inflow), and a state-transition function f(·): st+1 = f(st, rt+1, εt+1)295

where the effective release rt+1 coincides with the release decision ut corrected, where296

appropriate, with a non-linear release function Rt(st, ut, εt+1) determining the minimum297

and maximum releases feasible for the time interval [t, t+1) to respect physical and le-298

gal constraints. The operating policy π determines the release decision from the water299

reservoir ut = π(·) at each time step t over the simulation horizon H. The objective300

of this work is to design the optimal operating policy and relative representation for this301

system by solving a minimization problem formulated as follows:302

min
π,It,ζ(θ)

J(π, s0, ε
H
1 ) (1)

where we search the minimum of the multidimensional objective function J, here303

interpreted as cost, with respect to the closed loop operating policy π, its representa-304

tion It, functional class ζ and relative parameterization θ. In particular, the operating305

policy π is conditioned upon basic information (i.e., the reservoir storage st a time in-306

dex dt), and an additional vector of information It searched within the dataset of can-307

didate information as in π = π(st, dt, It). Among the available policy search methods,308

parametric approaches define π within a class of functions ζ, and search its optimal pa-309

rameterization θ. The employed NEMODPS technique supports the conjunct search of310

the optimal functional class ζ and relative parameters as in ζ(θ).311

In general, in MO problems, conflicts occur between different operating objectives,312

and the solution is constituted by a set of non-dominated (or Pareto optimal) solutions313

P∗ = {π∗|@π ≺ π∗}, which maps onto the Pareto front F∗ = {J(π∗,x0, ε
H
1 )|π∗ ∈314

P∗}. For a more complete problem formulation please refer to the Detailed Problem For-315

mulation section of the Supplementary Information.316

2.1 Framework317

In this section, we present the flowchart of the proposed SINEPS framework em-318

ployed to approach Problem 1, reported in Figure 1 and organized in numbered blocks.319
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Policy search
Evolve population architecture and 

parameters via NEMODPS

Compute Residuals
between the Perfect Control Policy 
and the Pareto optimal individuals

Initialize population
Basic architecture and random weights

Feature selection
to identify the most informative 

candidate input for each trajectory of 
residuals

Update efficient population 
add new input node to efficient 

population

Termination
R ≠ 1  &  πR ⊁ πR-1

Minimal policy 
input set

Initial population with 
minimal architecture

Evolved efficient population

t

e

yes
πPOP

Dataset of 
candidate 
policy inputs

no

Most informative 
input for each Pareto 
efficient policy  

Efficient population with a new 
input node, R=R+1

Trajectory of residuals for 
each Pareto efficient policy

J1

J2

πR-1

R = 1

0

1

2

3

4

𝑒! 𝐼!

Figure 1. SINEPS flowchart. By looping through the building blocks of this flowchart, the

procedure complexifies the initial population in terms of feature representation and policy archi-

tecture.
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0: The procedure begins in round R1, with the initialization of a population of sim-320

ple neural networks, a minimal architecture, and random weights. At this stage, the pol-321

icy representation is also minimal, comprising a cyclostationary time index dt and the322

reservoir storage st, namely, πR1 = πR1(dt, st).323

1: This population is the input to the Policy Search building block that employs324

NEMODPS. For a given input set, NEMODPS evolves policies’ architecture and param-325

eters in a MO problem (more details in the dedicated Subsection 2.2). The output of this326

step is an ensemble of Pareto efficient operating policies, each specified with a tailored327

architecture, resulting in an architecturally heterogeneous population.328

2: In the first round, the flowchart proceeds to the building block named Compute329

Residuals. In this step, we contrast the operating decisions produced by each Pareto ef-330

ficient policy with the decisions given by a Perfect Operating Policy (POP) extracting331

the trajectories of decision residuals et, i.e., the difference in the decisions selected by332

the minimally informed policy under design πR1, and the perfectly informed policy πPOP .333

The calculated residuals are assumed to be due to their information gap (more details334

in the dedicated Section 2.3).335

3: In the Feature Selection step, we search the dataset of candidate policy inputs336

D to identify the most informative feature for πR1. For this purpose, we compute the337

SU metric between each vector of residual trajectory in et, i.e., the policys information338

gap, and the candidate policy input dataset D. SU quantifies the amount of informa-339

tion shared between et and each candidate input, allowing to identify the most promis-340

ing feature representation by selecting the feature that explains most of the policy in-341

formation gap. SU is defined in [0,1] and can be computed for two variables X and Y342

as:343

SU(X,Y ) = 2 ∗ MI(X,Y )

H(X) +H(Y )
= 2 ∗ H(X) +H(Y )−H(X,Y )

H(X) +H(Y )
(2)

Where H(X) and H(Y) are the entropy of the variable X and Y, and H(X,Y) is their344

joint entropy.345

Because the trajectory of residuals is computed independently for each efficient pol-346

icy, the inputs selected are policy-specific, and may vary across the tradeoff space.347

4: Each efficient policy is then updated by including the selected feature in the in-348

put set, with a single input-output connection and a randomly initialized weight. The349

population of policies is now heterogeneous in its feature representation. Such popula-350

tion will now enter round R2 of SINEPS, with an update representation that includes351

the tailored information It, π
R2 = πR2(dt, st, It). In step 1 of the second round R2, this352

population is further evolved via NEMODPS. Individuals will appropriately complex-353

ify their architecture by genetic evolution to adapt to the newly inserted input, and learn354

how to make use of its information content. Neuro-evolutionary competition will further355

filter feature representation, causing only the fittest representations to survive in the ef-356

ficient policies of round R2. Note that this framework performs a joint optimization of357

the policy inputs and architecture which cannot be decoupled. In particular, the input358

layer contains the information that a policy can access, while the policy structure gov-359

erns how this information is used and translated into a control decision. Therefore, on360

the one hand, a policy with an inadequate input layer wont be able to make good con-361

trol decisions because poorly informed, no matter how well the policy structure can trans-362

late input into decisions. Similarly, when a new input is added to an existing policy, the363

structural optimization is necessary for the policy to learn how to use the input, i.e., to364

build the structural elements (connection, nodes), that will enable it to appropriately365

use it to make more informed control decisions. Without a structural optimization, the366

new input would be unused.367
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SINEPS proceeds analogously until the Termination check is positive, namely when368

the efficient Pareto set at Round R does not significantly dominate the Pareto set in the369

previous round: π∗R ⊀ π∗R−1. More details on the termination criterion are presented370

in Section 2.4. Upon termination, we retain as efficient solutions the Pareto set gener-371

ated at the previous round R−1, as it achieves virtually the same performance as round372

R with a simpler representation.373

2.2 NEMODPS374

In this section, we give an overview of the main components of NEMODPS, the375

policy search routine employed in this study. NEMODPS builds on a recent Reinforce-376

ment Learning branch called Neuro-Evolution (NE) (Stanley and Miikkulainen, 2003;377

Floreano et al., 2008), which employs Evolutionary Algorithms to optimize neural net-378

work architectures and parameters. NEMODPS algorithm is inspired by NEAT (Stan-379

ley and Miikkulainen, 2002), and the subsequent literature of NEAT improvements tar-380

geting complex control problems, vast decision spaces, and noisy environments. Addi-381

tionally, NEMODPS contains original strategies to address the specific complexities of382

multi-objective optimization problems, which make NEMODPS the first multi-objective383

NE algorithm. An in-depth explanation of NEMODPS can be found in Zaniolo, 2021,384

but here we discuss the main algorthmic components.385

Key elements of NEMODPS are (1) a process of evolutionary complexification, (2)386

the use of parametrical and topological operators, and (3) an architecture-based com-387

petition scheme that sustains solution diversity and avoids premature convergence.388

1. Evolutionary complexification: NEMODPS begins with a population of uni-389

form simple networks, i.e., neural networks composed of just input and output lay-390

ers, fully connected, with randomly initialized connection weights. As the evolu-391

tion proceeds, neural architectures gradually complexify by including more archi-392

tectural elements (nodes and connections) in the network’s hidden layer, which393

connects inputs to outputs. These elements are randomly generated by topolog-394

ical evolutionary operators and selected by evolutionary pressure.395

2. Parametrical and topological operators: EAs use evolutionary operators such396

as mutation and crossover to recombine existing individual parameters to gener-397

ate new individuals. NE evolves individual architectures along with their param-398

eters, and therefore it includes both parametrical, and topological mutation and399

crossover. In particular, the topological mutation operator performs a random-400

ized addition of a node (sigmoidal or Gaussian) or a connection to an individual.401

Topological crossover assigns the offspring a mix of the parents’ architectures. NEMODPS402

coordinates the topological and parametrical search in a dual timescale: paramet-403

rical mutation and crossover takes place every generation, while topological vari-404

ations happen on a slower timescale, every few generations, to allow the compe-405

tition scheme to protect solution diversity.406

3. Competition scheme: at every generation, the population is divided into species407

of individuals with similar topologies. Species compete among each other for their408

ability to reproduce, so that a larger offspring is assigned to well performing ones.409

A fitness sharing mechanism penalizes numerous species preventing them from tak-410

ing over the entire population causing loss of topological diversity and premature411

convergence. NEMODPS generalizes the fitness sharing strategy for MO problems,412

rewarding species with Pareto efficient individuals, and penalizing species whose413

individuals are located in crowded region of the objectives space in order to en-414

courage the exploration of the entire tradeoff space.415
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2.3 Extraction of optimal decision from a Perfect Operating Policy416

Following Giuliani et al. (2015), the Perfect Operating Policy πPOP is designed by417

solving Problem 1 under the hypothesis of deterministic knowledge of the trajectory εH1418

of external drivers over the entire evaluation horizon H at any given time step, πPOP =419

πPOP (st, t, ε
H
1 ) and can be solved via various open loop deterministic control methods420

(examples can be found in, e.g., Dobson et al., 2019; Macian-Sorribes and Pulido-Velazquez ,421

2020). Here, we solve the problem with Deterministic Dynamic Programming (DDP).422

Such a deterministic policy can be considered the optimal reference for improving a ba-423

sic policy design, but cannot be realistically implemented in a real-world system (e.g.,424

Denaro et al., 2017). In order to obtain the trajectory of decision residuals et, we com-425

pare the decisions extracted from the πPOP with those extracted from the efficient pol-426

icy πR at a given round R, referring to the same state trajectory produced by the sim-427

ulation of πR. The difference in decisions extracted by the policy under design πR, and428

the perfectly informed policy πPOP , is assumed to be due to their information gap. In429

a MO problem, πR and πPOP are constituted by a set of Pareto efficient policies, there-430

fore, each πR policy is associated with the POP solution that displays the most similar431

tradeoff.432

2.4 Termination criterion433

SINEPS terminates at round R > 1 when the efficient Pareto set at Round R does434

not significantly dominate the Pareto set in the previous round: πR � πR−1, accord-435

ing to an appropriate metric. Several metrics could in principle be used to express dom-436

inance in a Pareto sense. Here, as suggested in Giuliani et al. (2015), we use the hyper-437

volume indicator (HV ), which captures both the convergence of the Pareto front under438

examination F to the optimal one F∗, as well as the representation of the full extent of439

tradeoffs in the objective space. The hypervolume metric allows set-to-set evaluations,440

measuring the volume of objective space Y dominated (�) by the considered approxi-441

mate set. HV assumes values between 0 to 1, where Pareto fronts with higher HV are442

considered better. For this study, we consider the search terminated when the HV in-443

crease from round R-1 to round R is lower than 5%. Policies in round R are character-444

ized by an increased complexity in the input layer, that however doesn’t yield a signif-445

icant performance increase. Therefore, round R is discarded, and the policies produced446

at round R-1 are considered final.447

3 Case Study and Data448

We consider the case study of Lake Como, a multipurpose regulated lake located449

in the southern Alpine belt, Italy (Fig. 2). The main tributary, and only emissary of the450

lake is the Adda river, whose sublacual reach originates in the southeastern branch of451

Lake Como, crosses the Po valley, and eventually serves as a tributary to the Po river452

downstream. In its course, part of its waters are withdrawn to irrigate four agricultural453

districts. The southwestern branch of Lake Como constitutes a dead end, and exposes454

the city of Como to flooding events. The Lake Como basin hydrological regime is snow-455

rainfall dominated, characterized by scarce winter and summer inflows, a large snowmelt456

peak in late spring, and a secondary rainfall peak in autumn.457

The lake regulation has two conflicting aims of supplying water to downstream users458

by storing spring snowmelt peak, and minimizing flood risk on the lake shores by main-459

taining the lake level as low as possible, therefore, J in eq. 1 is a bidimensional vector.460

On the basis of previous works (e.g., Castelletti et al., 2010), these two objectives are461

defined as:462
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LAKE 
COMO

LAKE COMO 
BASIN

CITY OF 
COMO

IRRIGATION 
DISTRICTS

Figure 2. On the left, Lombardy region is highlighted in a map of Italy. On the right, a phys-

ical map of Lombardy, comprising Lake Como basin, in red, Lake Como, the city of Como, and

the irrigation district downstream the lake.

Flood days: the average number of annual flood days, defined as days in which the
lake level ht is above the flood threshold h̄ = 1.24 m, i.e.,

Jflood =
1

Ny

H−1∑
t=0

gfloodt+1 ; gfloodt+1 =

{
1 if ht+1 ≥ h̄
0 if ht+1 < h̄

(3)

where Ny is the number of years in the simulation horizon.463

Water supply deficit: the daily average squared water deficit with respect to the
daily downstream demand wt, subject to the minimum flow constraint qMEF = 5 m3/s
to guarantee environmental stakes. Downstream demand is mainly driven by irrigation
and is highest during the crop growing season of spring and summer. The quadratic for-
mulation is selected with the aim of penalizing severe deficits in a single time step, while
allowing for more frequent, small shortages. i.e.,

J irr =
1

H

H−1∑
t=0

(max(wt − (rt+1 − qMEF ), 0))2 (4)

The release decision is conditioned on an annual cyclostationary time index, and464

thus the decision at the end of the time horizon is no different than during the equiv-465

alent period of all previous years. For this application, we used Lake Como inflow data466

for a 10 year optimization horizon from 1997 to 2006 included. This time span contains467

a diverse range of hydrological conditions, including average and extreme years, from the468

2005 record drought to the late 2000 high inflow pulses. Optimal policies are then tested469

on three validation chunks: an extended 20-years validation from 1977-1996, a combi-470

nation of extreme dry years (1949, 1962, 1990, 1994, 2007), and wet years (1951, 1960,471

1977, 2008, 2014) selected by searching the driest and wettest years from the available472

historical record of inflows to Lake Como (1947-2014), discarding the calibration years.473

The set of candidate policy inputs employed in this analysis includes perfect fore-474

casts of the lake inflow computed over the historical timeseries at different lead times,475

ranging from one day to over 6 months (Table 1). The forecasts are of two types: i) Cu-476

mulated inflows, which represent the cumulative inflows over a given lead time, and ii)477

Inflow Anomaly, which corresponds to the anomalies in inflow with respect to the inflow478

cyclostationary mean, cumulated over a given lead time. As argued in the introduction,479
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the aim of this methodological contribution is to demonstrate that the optimal policy480

representation varies with the objective tradeoff, and, therefore, one single policy rep-481

resentation is inadequate to represent the entire tradeoff space. The risk of using real482

forecasts in order to prove this concept is that the forecast bias may introduce noise and483

errors, and ultimately alter the information selection. Therefore, as per previous works484

(Zhao et al., 2011; Denaro et al., 2017), we made the modeling choice of using perfect485

forecasts with the aim of searching the optimal policy representation for the system, given486

its hydrology, physical characteristics, and objectives, and without being biased by er-487

rors in forecast products.488

Lead time
Feature name

Cumulated inflow Inflow Anomaly

1 C1 A1
2 C2 A2
3 C3 A3
5 C4 A5
7 C7 A7
14 C14 A14
21 C21 A21
28 C28 A28
51 C51 A51
62 C62 A62
75 C75 A75
90 C90 A90
120 C120 A120
145 C145 A145
200 C200 A200

Table 1. Dataset of candidate policy inputs comprising perfect inflow forecasts in terms of

cumulated inflows and anomalies at various lead times.

3.1 Experimental Settings489

SINEPS was run for 20 independently initialized and randomized seeds, In each490

seed, the termination criterion (described in Section 2.4) is met at the 4th round, which491

is responsible for no tangible advancement in the Pareto front, (lower than 5%), there-492

fore, we retain as efficient solutions those generated at round 3. At each round, NEMODPS493

is run for a Number of Function Evaluations (NFE) equal to 600 thousands, with pop-494

ulations of 600 individuals. When new policy inputs are selected in step 4 of the meth-495

ods, these are connected to the previously optimized policy architectures with an input-496

output connection. This set of individuals constitutes the initial population of the new497

round of NEMODPS optimization, in step 1 of round R2.498

4 Results499

4.1 Feature selection and policy design500

Figure 3 reports the Pareto fronts resulting from 3 optimization rounds of SINEPS501

with respect to the two objectives of Water supply deficit (vertical axis) and Flood days502

(horizontal axis), both to be minimized as indicated by the arrows. The black square in503

the bottom left corner of the graph represents the ideal performance of the POP. In ac-504

cordance to other studies on the same water system, we find that the conflicts between505

water supply and flood objectives in Lake Como disappear under the assumption of per-506

–13–



A
cc

ep
te

d
 A

rt
ic

le

This article is protected by copyright. All rights reserved.  

 

 

 

 

 

 

 

manuscript submitted to Water Resources Research

fect knowledge of future inflow (Denaro et al., 2017). An operating policy with full fore-507

sight is able to guarantee a sufficient flood pool to buffer the peak inflow and avoid over-508

flow when physically possible, while storing in the lake any excess of water to be used509

for irrigation purposes during the dry season. Therefore, the deterministic solution of510

this MO problem does not yield a Pareto front of efficient solutions, but collapses to a511

single optimal point into the objective space. However, in the absence of a perfect fu-512

ture foresight, we expect that the addition of tailored information can reduce conflicts513

between water users.514

The first round of NEMODPS optimization, conditioned upon basic information515

only, produces the Pareto front of white circles that lays in the top right portion of the516

objective space in Figure 3a, showing a sharp conflict between the two operating objec-517

tives. Additionally, a concavity can be recognized in the central region of the Pareto front,518

for values of the Flood objective between 20 to 80. Concave regions of the front are usu-519

ally regarded as disadvantageous tradeoffs, as one objectives degrades more than pro-520

portionally to the second objective’s improvement. The normalized HV indicator (panel521

b) relative to round R1 scores 0.142, indicating a large space for improvement between522

POP and R1.523

Prior to the second NEMODPS optimization round, a feature selection routine iden-524

tifies the most suitable variables to inform the operating policies via a two-step selec-525

tion process. First, promising features are identified based on their correlation, measured526

in SU, with the policy error trajectory, representative of its information gap (Figure 1,527

box 3). Figure S2 of the Supplementary Information shows examples of error trajecto-528

ries against the forecast anomaly lead time that scores the highest SU for different ob-529

jective tradeoffs. Second, a population comprising all the promising features is evolved530

via NEMODPS, and the fittest representations prevail through evolutionary competi-531

tion (Figure 1, box 1 for R>1). In particular, only a subset of the policy representations532

preselected via SU is likely to survive the evolutionary selection pressure, meanwhile new533

individuals are generated by recombining existing ones and enabling well-performing rep-534

resentations to survive in future generations and establish in the final Pareto front. Fig-535

ure S1 of the Supplementary Information reports the intermediate results of the two-fold536

Feature Selection process, highlighting that evolutionary competition is key to identify537

a contained and relevant feature set for policy representation.538

The result of the second NEMODPS optimization round are represented in Fig-539

ure 3a with colored triangles. The more informed policies significantly outperform R1,540

scoring an over 3-fold increase in the HV metric. The color of the triangle corresponds541

to the new feature added to the policy representation, and divides the R2 front in two,542

around its middle and in correspondence to the persisting concavity in the Pareto front.543

The analysis of the selected information may uncover unexpected results: flood-inclined544

policies do not select short term predictions of fast inflow peaks, but long forecasts lead545

times (75 days). Vice versa, water supply-inclined policies select, in comparison, slightly546

shorter lead times (62 days) instead of preferring season-long look-ahead. This behav-547

ior can be explained from the point of view of conflict mitigation. A minimally-represented548

flood-inclined policy has, in fact, already developed a solid strategy to prevent floods when549

physically possible, namely, keeping a low lake level for the most part of the year to al-550

ways count on a buffer pool to accommodate incoming inflow peaks. This strategy is valid551

from a lakeshore protection perspective, yet, comes at a remarkable price in terms of wa-552

ter supply. Such policy, therefore, does not require any additional information on up-553

coming inflow peaks, as the lake is virtually always ready to buffer them. On the con-554

trary, it can significantly benefit from a longer term information on how to improve ir-555

rigation while still remaining strongly flood risk-adverse, thereby alleviating water sup-556

ply deficit downstream, and mitigating conflicts between water users. In fact, by com-557

paring flood conservative policies of R1 and R2 (left region of the Pareto fronts), we no-558

tice that the added information has the effect of improving the policies in the direction559
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Figure 3. Panel (a): Performance obtained by different Lake Como operating policies with

respect to the two cost objectives of water supply deficit (vertical axis) and Flood days (hor-

izontal axis). The black square indicates the ideal performance of the POP, white circles the

performance of efficient policies designed at round R1, triangles refer to policies at round R2, and

diamonds at round R3. For rounds R2 and R3, the shape color is associated with the informa-

tion added to the feature representation. Panel (b) shows the improvements in the Hypervolume

indicator across different rounds, normalized to the value of hypervolume scored by POP.
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of a significantly lower irrigation deficit, at no cost for the flood objective. The long lead560

time information selected by flood oriented policies is thus employed to minimize objec-561

tives conflicts, rather than further improve the flood objective. The other half of the Pareto562

front selects a shorter lead time, which allows policies to move both in the direction of563

a reduced flood and irrigation damage. Overall, however, this first round of information564

selection produces the largest improvement in the reduction of the water supply deficit565

by employing forecast with a long lead time (2 months or more). This selection is co-566

herent with the multi-seasonal nature of the water supply operations in a snow-dominated567

system like the one considered in this study. In particular, the reservoir is used to cre-568

ate the seasonal storage by impounding the spring snowmelt-driven inflow peak and dis-569

tribute it throughout the irrigation season, from spring to autumn, when water supply570

demand is highest. Forecast lead times of 2+ months are thus used to plan summer ir-571

rigation and inform the implementation of effective hedging rules when natural water572

availability does not meet demand. Lastly, policies select the anomaly in cumulated flow573

(A75, A62), rather than the flow cumulation, as it is a better indication of whether the574

system is entering a dry season and hedging strategies should be activated.575

The third optimization round includes a second additional information in the pol-576

icy input set generating further improvement in the HV indicator. The Pareto front of577

round R3 not only dominates the fronts of the previous rounds, but also resolves their578

concavity generating a fully convex front, where it is possible to identify a knee. Con-579

trary to the previous round, the front shift between R2 and R3 is mainly horizontal, i.e.,580

contributing to a Flood objective improvement rather than an water supply improve-581

ment. Accordingly, the policy inputs selected in this round have a much shorter lead time,582

between 1 and 4 weeks. The solutions that at this round select the longer lead time, 4583

weeks, are those showing a diagonal improvement that unfolds in both objective direc-584

tions. We note that the by using perfect forecasts to inform the policies, the results shown585

in our work are upper bounds of what could be achievable with real forecasts in the sys-586

tem. For a demonstrative comparison of the performance using real forecasts instead of587

perfect forecasts, refer to section S4 of the SI.588

It is worth noting that the optimal representations always select the anomaly in589

flow cumulation, over the flow cumulation. Cumulation time-series are analogous to their590

anomalies except for an additive cyclostationary, term which corresponds to the annual591

climatology and expresses the standard hydrological seasonality. However, the policy min-592

imal representation πR1 = πR1(dt, st) already contains a cyclostationary time index593

dt, which encapsules the climatology. As a consequence, it seems rational for the pol-594

icy to prefer the selection of an anomaly information over a partially redundant cumu-595

lative information. Additionally, it is common for medium-to-long term forecasts prod-596

ucts to produce forecast anomalies rather than cumulation (Crochemore et al., 2020).597

4.2 The role of information for conflict mitigation598

In Figure 4 we explore how added information is employed by progressively informed599

policies for a given tradeoff. This analysis focuses on the solutions located along the lilac600

vertical line in panel (a), corresponding to an average of 6.3 flood days a year. This trade-601

off was chosen in order to compare the 4 Pareto fronts only in terms of the water sup-602

ply objective, for a given flood performance. A common cyclostationary behavior emerges603

for different policy representations in panel (b). The lake recharges in May, in correspon-604

dence to the onset of the irrigation season, reaches a level peak around late June, fol-605

lowed by an emptying phase lasting for the entire irrigation season until September/October,606

when abundant rains cause a new level increase. In the POP, perfect future foresight in-607

forms the policy on the exact onset of inflow peaks, allowing to timely generate an ad-608

equate flood pool to contain them, while keeping, on average, a high lake level that en-609

sures water availability to supply downstream irrigation demand. Whenever the full tra-610

jectory of future disturbance is not available, policies have to be more conservative to-611
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Figure 4. Cyclostationary behavior of efficient policies across different optimization rounds.

The investigated policies are aligned along the lilac line in the Pareto front of panel (a) and yield

an average number of flood days equal to 6.3, and different values with respect to the water

supply objective. In panel (b), their cyclostationary behavior is shown, and contrasted with the

Perfect Operating Policy.
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wards flood events, thereby keeping a lower lake level to buffer possible incoming inflow612

peaks, at the expense irrigation availability. This behavior is sharper in the minimally613

informed round R1 (red line), while more informed policies can confidently maintain a614

fuller lake during the summer, resulting in a smaller water deficit downstream, without615

damaging the flood objective. Cyclostationary behaviors outside the irrigation season616

are fairly divergent, however, the system’s winter downstream demand is almost negli-617

gible with respect to summer demand, thereby not contributing significantly to the wa-618

ter supply objective performance.619
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Figure 5. Conflict mitigation. Panels (a), (b), and (c) report the range of lake levels yielded

by all the Pareto efficient policies designed at the given optimization round across different

tradeoffs. The optimal trajectory is reported in every panel in black for reference. The average

round-specific release range is quantified in the barplot of panel (d), while the lake level range is

shown in panel (e).

In Figure 5, we analyze how a refinement in policy representation operationally mod-620

ifies lake regulation towards conflict mitigation. The shaded area in panels (a), (b), and621

(c) delimits the ensemble of lake level trajectories associated to the set of Pareto efficient622

policies produced in a given round, while the central colored bold line represents the av-623

erage behavior. The optimal POP trajectory is reported in black for reference. The wide-624

ness of the shaded area indicates the range of variability in operations spanned by the625
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efficient policies, where a thick area indicates that different tradeoffs are associated with626

diverse operations, and a narrow area suggests similar operations even across opposite627

tradeoffs. The plots show a visible narrowing in the operational variability from the first628

round to the following ones. Operationally, this translates into a mitigated conflict be-629

tween water users, as different interests tend to converge towards a common efficient pol-630

icy. This convergence is quantified in the barplots showing the average daily range in lev-631

els (panel e) and releases (panel d) associated to different policies in the Pareto set re-632

sulting from a given round. The addition of information in the policy representation shows633

a consistent reduction in release variability. Level variability significantly drops from round634

R1, where Lake Como is operated at an average difference of more than 53 cm for dif-635

ferent tradeoffs, to about 35 cm in round R2. R3 shows a slight increase in variability636

that is however below 2 cm, and can be considered negligible.637

0 50 100 150 200
400

600

800

1000

1200

Validation: 1977-1996

0 0.2 0.4 0.6 0.8 1
1500

2000

2500

Validation: dry years

0 100 200 300
0

50

100
Validation: wet years

R1 R2 R3 POP
0

0.5

1
Hypervolume: 1977-1996

0.29

0.50 0.55

1

R1 R2 R3 POP
0

0.5

1
Hypervolume: dry years

0.41

0.58 0.55

1

R1 R2 R3 POP
0

0.5

1
Hypervolume: wet years

0.62
0.73 0.78

1

W
at

er
 su

pp
ly 

de
fic

it 
[(m

3 /s
)2 ]

Flood control [days/year]

(a1) (a2)

(b1)

(c1)

(b2)

(c2)

Figure 6. Validation of optimal policies for the three rounds of SINEPS for a 20-year eval-

uation horizon (panel a1 and a2), and two 5-year evaluation horizons composed of extreme dry

(panels b1 and b2) and wet years (panels c1 and c2).

4.3 Policy validation in uncertain hydrological conditions638

Figure 6 shows the re-evaluation of the optimal policies on three inflow trajecto-639

ries, an extended 20-years horizon 1977-1996 (panel a1), an extreme dry (panel b1), and640

extreme wet horizon (panels c1). Panels a2, b2, and c2 report the value of the HV in-641
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dicator computed for the different Rounds for the corresponding validation period. The642

POP performance is reported for reference is each panel colored in black. The most in-643

formed round R3 outperforms the other two in the 1977-1996 and wet-years datasets,644

as quantified by the HV indicator and evident by the Pareto front of optimal validation645

policies, which is composed by R3 solutions except for sporadic instances of R2 solutions646

in panel c1. In the dry years dataset, one R2 solution achieve slightly lower water sup-647

ply deficit compared to R3, but with a fairly negligible difference, under 3%. This anal-648

ysis shows that the performance improvement resulting from an enhanced information649

set persists in validation proving the robustness of the information selection technique650

across highly diverse hydrological conditions.651

5 Conclusions652

In the past, reservoir operating rules were conditioned upon basic information sys-653

tems comprising time index and reservoir storage (Hejazi et al., 2008). However, the po-654

tential of enhancing the performance of water system operations using information on655

current or future water availability has long been recognized by researchers and prac-656

titioners alike. Despite many features can contribute to operations to some extent, it is657

in general unclear what is the most effective information set to condition a given water658

system, for a given tradeoff.659

Moreover, previous studies have generally overlooked how defining one single pol-660

icy representation to characterize the entire tradeoff space of multi-purpose systems can661

be insufficient. The coexistence of fast and slow process dynamics, and different vulner-662

abilities requires the search of a tradeoff-tailored policy representation. In this work, we663

demonstrate for the first time that one input set is inadequate to inform the entire Pareto664

front of efficient policies that constitutes the solution to a multi-objective problem. In665

fact, when the policy search routine is allowed to evolve heterogeneous input sets, the666

selected optimal policy representation will vary Pareto-dynamically with the tradeoff.667

In this work, we propose SINEPS, a novel framework for automatic, tradeoff-dynamic668

feature representation and policy learning. SINEPS starts with a population of minimal669

policies and gradually complexifies their feature representation by selecting variables that670

surrogate the policy information deficit, measured by comparison to a Perfect Operat-671

ing Policy. Policies’ architectures are adjusted accordingly, in order to accomodate new672

inputs and support more complex behaviors. We apply SINEPS to the case study of Lake673

Como, characterized by conflicting heterogeneous objectives, and we use a dataset of de-674

terministic inflow forecasts at different lead times as candidate policy inputs.675

Results show that different objective tradeoffs benefit from different information676

sets with unexpected, but insightful, outcomes. Flood-conservative policies select fore-677

casts with long lead times, thereby improving water supply performance without increas-678

ing flood failures. water supply-inclined policies select, in comparison, shorter lead times679

achieving better flood and water supply results. Not only we notice a trend in the in-680

formation selected for different tradeoffs, but also across subsequent selection rounds.681

The first forecast included in the representation at the second round counts on a over682

2 months-ahead lead time, and produces the largest improvement in the direction of a683

lower water supply deficit, and only partially, flood mitigation. In round three, lead times684

are shorter than a month, enhancing primarily flood mitigation skills. Overall, the search685

for a tradeoff-specific feature representation demonstrates the potential to significantly686

enhance the water system overall reliability, resilience towards both dry and wet extremes,687

while reducing conflicts across conflicting water uses.688

Lastly, it is important to note that policy representation in water resources man-689

agement should not be considered a static concept, but should dynamically adapt in re-690

sponse to variations in the ever-evolving boundary conditions that coupled human-natural691

systems are exposed to. In particular, the optimal policy representation could change692
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in response to variations in socio-economic drivers e.g., a water user experiencing unprece-693

dented and more frequent failures; climatic drivers, i.e., an increased likelihood of one694

of more class of extreme event; and physical drivers, e.g., when a new water user or in-695

frastructure is included in the system. When one or more of these drivers change, the696

previous policy representation may not be adequate to represent the new system con-697

ditions and should be updated accordingly. The SINEPS framework can be run frequently698

to monitor and adapt to such changes with a rolling calibration horizon that includes699

new observations as they become available. A critical challenge yet to address is to de-700

termine when and how to timely update the feature representation by means of appro-701

priate triggers.702

Data availability statement703

The data used in this work are freely available upon request from Consorzio del-704

lAdda at https://addaconsorzio.it/.705
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