
ABSTRACT: UAVs (Unmanned Aerial Vehicles) are nowadays being used more and more in Structural Health Monitoring 
(SHM). Their versatility, speed, and manoeuvrability make them the ideal means to perform inspections autonomously and 
remotely, instead of relying on visual inspections carried out by human operators. Since commercial drones have limited flight 
times, the information collected in this short span must be maximised: to tackle the problem of gathering the maximum amount 
of data in the shortest possible time, we propose a platform where a central controller coordinates multiple UAVs. We address 1) 
the problem of generating points of interest, i.e., positions from which a sensor reading must be taken, given a 3D model of the 
structure, 2) the problem of assigning the points to the drones and finding the optimal traversal order of such points, in order to 
minimise the total flight time and make the best possible use of each drone's battery capacity. We decouple the two problems by 
first generating points of interest, starting from the structure's virtual model, and then feeding those points to a central mission 
planner that employs a linear programming formulation to find near-optimal trajectories for each agent, guaranteeing obstacle 
avoidance. We also address the issue of robustness of the whole system against the failure of an aircraft. We evaluate our method 
by applying it to the inspection of a virtual model of an existing building. We find that our approach yields good solutions in a 
reasonably short time, justifying its use as a robust mission planning algorithm. 

KEY WORDS: Autonomous vehicles; Formation control; Coverage problem; Robustness; Swarm robotics; UAVs. 

1 INTRODUCTION 
Recent technological advancements have made UAVs, 
commonly referred to as drones, a powerful and relatively 
cheap tool in a wide variety of fields, including agriculture [1], 
forestry [2], parcel delivery [3] and architecture and civil 
engineering [4, 5, 6, 7, 8]. Their success is due to their 
versatility, ease of use and relatively low cost. They can host a 
broad range of sensors, such as standard cameras, thermal 
cameras, LiDAR sensors, and infrared devices. These are 
particularly useful for SHM because they enable essential tasks 
such as 3D model building [4], surface reconstruction and 
analysis [5], thermal profiling [6], modal analysis [7] and even 
some forms of contact inspection [8].  Given these capabilities, 
drones will likely be adopted soon as essential tools for 
inspection and monitoring tasks. They can be a reasonable 
alternative to human inspectors that is cheaper, safer, more 
time-effective, more repeatable and precise results. The 
adoption of UAVs as standard inspection tools would also be a 
significant step towards the automation of the SHM pipeline, 
allowing frequent inspection measurements to be processed by 
a computer and integrated into a broader framework, such as a 
digital twin of the inspected structure. 

The push for maximum automation comes with many 
challenges: depending on the kind of inspection to be carried 
out, where should the aircraft go? How do we coordinate a fleet 
of UAVs? How do we minimise the total inspection time? What 
level of robustness to failure of a drone should be guaranteed 
to ensure a mission is completed? How do we ensure that no 
collision occurs between the vehicles and the building in 
question? We propose a system that addresses these issues by 
separating the generation of the Points of Interest (POIs) from 

that of the ideal trajectories. We start from a mesh model of a 
given building, and we use it to determine the positions of the 
POIs that are suitable to the task at hand (in this study, the 
collection of partially overlapping images to create an accurate 
texture of the building and analyse it in search of defects). 
Then, we divide the POIs in clusters to ease the computational 
burden of finding the optimal trajectories that reach every 
point. Thanks to this sub-division, we generate a simplified 
graph that abstractly represents the set of POIs, then we use it 
to solve a Capacitated Vehicle Routing Problem (CVRP [9]) 
that features constraints designed to add robustness to the 
solution. The solution of such a problem determines the 
trajectories for every vehicle. If one of the drones fails during 
the mission, an updated version of the same problem can be 
solved to ensure the other ones complete the task. 

The novel aspects of this approach are: 
1) The coordinated control of a network of independent 

UAVs. 
2) The study of robustness of a solution concerning the 

failure of one aircraft. 
3) The adoption of a model of an existing building for 

simulations. We consider one of the buildings at the 
University of California campus, Los Angeles (see 
Figure 2 and Figure 1). 

In Section 2, we discuss the state of the art, in Section 3 we 
describe the problem in detail, and in Section 4 we present 
our approach to solving it. Results are presented and 
commented in Section 5, whereas Section 6 contains our 
concluding remarks. 
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2 STATE OF THE ART 
The application of drones to the world of SHM and 
constructions is a recent and growing research field. Literature 
reviews [10] [11] show that they are often used to extend a 
human operator's range of action, and in most cases, they are 
employed to obtain pictures of parts of buildings that would be 
difficult to reach otherwise, through regular RGB cameras. 
This is enough to harness the power of computer vision and 
image analysis techniques that can automatically detect surface 
defects such as cracks in concrete and road pavement, spalling, 
exposed rebars, loosened bolts and signs of moisture [12] [13] 
[14]. Other niches are being explored too, like video-based 
approaches to dynamical behaviour estimation through Digital 
Image Correlation (DIC) [15] or cross-correlation [16]. 
Regardless of the inspection's final objective, most of these 
approaches rely partially on human intervention. To reach full 
autonomy, the first problem that must be tackled is 
automatically generating POIs, i.e. points in space from which 
sensor readings must be taken, starting from a model of the 
structure. Both the type and the ideal pose of the sensors 
relative to the building vary significantly depending on the type 
of survey (building surface inspection, energy performance 
inspection, mapping, …) [17],  but for a given task or set of 
tasks, it is possible to identify a region of 3D space where POIs 
should lie. For the problem of coverage of 3D structures, the 
authors of [18] and [19] developed iterative approaches to 
maximise uniformity of coverage of the structure and minimise 
the computational cost to generate a trajectory for the UAV, 
while also accounting for camera orientation. The resulting 
series of waypoints is then sent to a single drone to follow. In 
[20] researchers adopt sub-modular path planning based on a 
coarse estimation of scene geometry to obtain a single camera 
trajectory, solving both the viewpoint generation problem and 
the trajectory generation problem at once while guaranteeing 
obstacle avoidance and respect of a user-defined time budget. 
In another case [21], where photos are taken to run a Structure 
from Motion (SfM) algorithm, points are distributed in space to 
cause some overlap between consecutive images. Once the 
field of view of the camera is known, the desired overlap 
percentage can be chosen, and the POIs can be calculated. We 
borrow from these approaches by generating our POIs at 
suitable distances from the mesh model of the building we 
consider. 

Once the POIs are established, it is necessary to determine in 
what order it is best to visit them, which usually means the 
fastest. In the case of multiple robots, points must also be 
distributed among them accordingly. Obstacles must also be 
taken into account to ensure the trajectories are feasible. This 
class of problem is typically addressed through graph search 
methods: many formulations of the Traveling Salesman 
Problem (TSP) and its variations exist [22], where nodes 
describe the POIs in a graph and edges between such nodes 
represent all the possible pair-wise routes and their lengths. A 
series of nodes represents the solution, suitably characterised 
through constraints in an optimisation problem depending on 
the desired properties. The abstract nature of graph-based 
representation makes it a handy and versatile tool. The 
approaches that rely on it usually tailor it to suit their specific 
needs [23], such as addressing communication constraints [24] 
or planning particular trajectories for fixed-wing drones that 

avoid certain regions of space [25]. The complexity of the 
trajectory generation problem increases exponentially with 
both the number of POIs and the number of vehicles 
considered, due to the exponential growth of both the search 
space and the number of Subtour Elimination Constraints 
(SECs) [22]. Therefore some heuristics must be adopted to 
solve even medium-sized instances in a reasonable amount of 
time, and the guarantee of optimality is lost. In some of those 
cases, theoretical lower bounds on solution quality can be 
found [26]. Common generalisations of the TSP include its 
multi-agent version (mTSP) and the Constrained Vehicle 
Routing Problem (CVRP), where in addition to the features 
described previously, each vehicle is also assigned a maximum 
capacity, and each node of the graph represents a customer with 
its capacity demand. In this framework, capacity refers to the 
quantity of a certain good that the customers require, of which 
each vehicle can transport a limited amount. The objective here 
is to ensure that each vehicle has enough capacity to serve all 
customers along its route. In our formulation, we exploit this 
concept to ensure that each drone has enough battery life to visit 
all of its trajectory points, adopting the same mathematical 
expressions but a different interpretation. 

The probability of at least one drone failing increases with 
the number of deployed UAVs, and it is safe to address this 
issue at the mission planning level. Discussions of robustness 
and robust solutions to the CVRP are present in literature, but 
they focus on different aspects. Robustness is ensured against 
uncertainty on customer demand [27], on travel time [28] and 
on service times or other parameters [29], but not with respect 
to the failure of one of the vehicles. We study the effect of 
additional constraints specifically designed to take care of this 
issue and provide a strategy to determine what should happen 
in case of failure. 

We adopt clustering to simplify the overall problem, 
breaking up the set of all POIs into smaller subsets. Clustering 
is also a very well-known problem to which countless solutions 
have been proposed in the literature [30]. Since we aim at 
clustering together 3D points based on spatial proximity, we 
adopt k-means clustering [31]. 

3 PROBLEM FORMULATION 
We intend to solve a  problem determined by a 3D mesh model 
of the building to inspect, and a set of rules to generate the POIs 
from such a model. The rules depend on the kind of inspection 
and the type of sensor employed. Alternatively, one can provide 
the POIs directly. Also, the number M of UAVs available for 
the task should be specified. Both M and the number of points 
n belong to ℕ. The objective is to establish which points should 
be reached by which drone. In other words, we want to obtain 
a number of trajectories t ≤ M, such that each POI belongs to 
one trajectory only: 

 𝑝𝑝𝑖𝑖 ∈ 𝒫𝒫 ⊂  ℝ3  𝑖𝑖 = 1, . . . ,𝑛𝑛 (1) 

 𝑠𝑠𝑗𝑗 ⊂ 𝒫𝒫 |⋃ 𝑠𝑠𝑗𝑗𝑡𝑡
𝑗𝑗=1 = 𝒫𝒫 ∧

∧  𝑠𝑠𝑖𝑖 ∩ 𝑠𝑠𝑗𝑗 = ∅  

𝑗𝑗 = 1, . . . , 𝑡𝑡 

𝑖𝑖, 𝑗𝑗 = 1, . . . , 𝑡𝑡;  𝑖𝑖 ≠ 𝑗𝑗, 
(2) 

where 𝑝𝑝𝑖𝑖  are the points of interest, 𝒫𝒫 is the set of all POIs and 
𝑠𝑠𝑗𝑗 is the j-th trajectory. Statement (2) imposes that the set of all 



trajectories is a partition of the set of POIs 𝒫𝒫: each trajectory is 
a set of points belonging to 𝒫𝒫, they do not overlap and each 
point is assigned to a trajectory. 

The maximum trajectory length should be minimised so that 
the task can be carried out in the least amount of time possible. 
On the other hand, trajectories should also be computed in a 
reasonable time, meaning a few minutes at most. These two 
requirements are difficult to achieve (except for trivially small 
problems) with an approach that seeks the global optimum, 
because the complexity of the trajectory generation problem 
increases exponentially with the number of points and vehicles, 
as mentioned in the previous section. Therefore, to satisfy the 
second requirement, we shall introduce some heuristics, 
significantly reducing computational time at the cost of losing 
the guarantee of global optimality. In addition, the length of 
each trajectory must be compatible with the drones' maximum 
flight time, meaning that it should be possible to follow it 
entirely without stopping. Trajectories must also start and end 
at a user-defined starting point 𝑝𝑝𝑠𝑠 ∈  ℝ3. 

Finally, we want to ensure that the solution to the problem is 
robust with respect to the possibility of failure of one of the 
drones. This means that during the mission's execution, if one 
of the aircraft suddenly fails, it must be possible to assign to 
other UAVs the yet-not-visited POIs assigned to it, and still 
conclude the mission. In other words, there must always be a 
feasible solution to a new trajectory generation problem, based 
on the points that were not visited yet at the moment of the 
failure and with one less drone. 

4 METHODOLOGY 

 The Building Mesh 
Assuming we are inspecting the outside surface of a building, 

we start from a mesh model of its shell. We define a mesh 
model as a pair of lists: one comprising 3D points belonging to 
the structure, and another one containing subsets of indices of 
said points that are coplanar, thus defining a polygon in space. 
The set of surfaces in the list describes the building's external 

surface and is expected to be closed, i.e. given a point, it is 
always possible to know if it is inside, outside or on the surface. 
We shall refer to the two lists as mesh vertices and mesh faces. 

The mesh itself can either be exported from the CAD model of 
a building through suitable software or defined manually, 
provided its dimension correspond to those of the real object. 
To streamline calculations and without loss of generality, we 
use tri-meshes only, i.e. meshes whose faces are triangles. 
Furthermore, for simplicity we ensure that the normal vector to 
each face points towards the outside of the building. This 
information is encoded in the order of the subset's points, 
through the right-hand rule. 

The first property of a good mesh is that it correctly 
represents the building's shape because it will be used for 
collision checks. To this end, it should also contain the fewest 
faces possible, to ease the computational cost. In particular, we 
will perform checks to verify if, given a pair of points in space, 
the segment that connects them intersects the mesh. If it does, 
the segment is not a feasible trajectory for a UAV. On the other 
hand, the mesh components can be exploited in the generation 
of POIs, as detailed in the next subsection. Therefore, we 
choose to keep two meshes representing the same building. The 
first has as few faces as possible and is exploited for collision 
checking, while the second is obtained from the first by 
recursively splitting in half every mesh face with a surface area 
greater than a user-defined threshold, and it is used to 
automatically generate the POIs. 

If the building's CAD model is not available and the 
inspection goal is its generation, then the mesh of an outer 
bounding box might be used instead. It is also possible to add 
further details to the mesh, for example, encoding the building 
surface material in a face, which might be useful for some 
inspection tasks. 

Figure 1. The mesh of the considered building (West side). 

Figure 2. The building (East side), at the University of 
California campus, Los Angeles, considered in this study. 



 Point Generation and Clustering 
The generation procedure for the POIs depends on the kind 

of inspection performed and the mounted sensors' specific 
properties. We simulated the planning of a photograph 
collection mission. To this end, the set of all points of interest 
𝒫𝒫 ⊂  ℝ3 is obtained by selecting a point for each face of the 
mesh. Each point is located at a certain distance 𝒹𝒹 from the 
centre of the mesh face, along its normal. Consequently, all 
POIs are equally distant from the building's surface, and they 
are denser where the structure exhibits a more complex shape, 
conveyed by a higher number of mesh faces. This method also 
allows us to associate a direction to each point, representing the 
sensor's desired orientation in that position. The natural choice 
in our case is to take as orientation the vector opposite to the 
face normal, to align the camera plane to the building's surface. 
A check is also performed to ensure that the point is not inside 
the building mesh. 

Since the number of points of interest n can easily be in the 
order of thousands, the trajectory generation problem cannot be 
solved over the whole set in a reasonable time. We thus 
introduce an heuristic, by dividing the set in an arbitrary 
number of clusters k, based on their spatial proximity. We then 
solve the problems of optimally traversing a cluster and 
optimally assigning clusters to drones separately. To perform 
the clustering step, we apply the k-means algorithm [31]. Such 
algorithm partitions the set of all points into a pre-defined 
number k of clusters. It ensures that each point belongs to the 
cluster with the nearest centroid, thus grouping together close 
points. This is a natural choice since we aim at minimising the 
time it takes to traverse each cluster visiting all points, and we 
can expect that in the global solution the optimal trajectory 
would be composed of consecutive points that are close to each 
other. We group the clusters in the set 𝒞𝒞 and add a special 
cluster 𝑐𝑐0, only comprising the starting point 𝑝𝑝𝑠𝑠, which will be 
instrumental to compute drone paths originating from and 
ending at such a starting location: 

 
𝑐𝑐𝑖𝑖 ∈ 𝒞𝒞          i = 1, …, k 

𝑐𝑐0  ≜  {𝑝𝑝𝑠𝑠}. 
(3) 

Finally, for each cluster, a graph is obtained. Each node in 
the graph represents a point in the cluster. Edges in the graph 
represent an obstacle-free path between two points. A pair of 
points is connected if they are sufficiently close, i.e. within a 
user-defined radius 𝑟𝑟. This reduces the number of edges in the 
graph without impacting the trajectory generation problem's 
solution quality. If an obstacle lies between the POIs, a path 
connecting them is found on an extended version of the same 
set of points: to the regular POIs in the cluster, we add a set of 
intermediate points, this time by calculating the normal to the 
vertices of the mesh and taking the point at distance 𝑑𝑑 along its 
direction. The normal of a vertex is the average of all the 
normal of the faces that include such vertex. The path between 
the two POIs is the series of obstacle-free paths that connects 
them passing through intermediate points if such a path exists. 

 The Constrained Vehicle Routing Problem 
Once the clusters have been determined, we build an 

undirected graph of clusters 𝒢𝒢, which we call the global graph: 

 
𝒢𝒢 = (𝒱𝒱,ℰ,𝓌𝓌) 

|𝒱𝒱|  =  |𝒞𝒞|  = k +1 = K 

ℰ ⊆ 𝒱𝒱 × 𝒱𝒱;         |ℰ|   =  E  

𝓌𝓌 ∶  𝒱𝒱 ∪ ℰ ⟼  ℝ,  

(4) 

where 𝒱𝒱 is the set of its vertices or nodes, and ℰ is the set of 
edges that connect them. One node represents the starting 
position while the other k nodes represent one cluster each. 𝓌𝓌 
is a function that assigns a real value to each node, 
corresponding to the total length of the trajectory that optimally 
traverses cluster (recall that in problem (6) each node 
correspond to a cluster of points of the original path planning 
problem), and to each edge, in which case it represents the 
distance between two clusters. These weights are necessary to 
ensure that the union of all the trajectories of the clusters that 
will be assigned to a single drone will not be longer than the 
maximum span that UAV can travel. In order to assign a weight 
to each edge, we calculate the minimum distance between two 
clusters: 

 
𝓌𝓌�ℯ𝑖𝑖,𝑗𝑗� = 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚�𝑐𝑐𝑖𝑖 , 𝑐𝑐𝑗𝑗� 

ℯ𝑖𝑖,𝑗𝑗𝜖𝜖ℰ;         𝑐𝑐𝑖𝑖,𝑗𝑗 ∈ 𝒞𝒞,  
(5) 

where 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚(𝑐𝑐𝑎𝑎, 𝑐𝑐𝑏𝑏) returns the minimum distance between 
a pair of points such that one point belongs to 𝑐𝑐𝑎𝑎 and the other 
to 𝑐𝑐𝑏𝑏. These points will be candidate entry and exit points for 
the cluster, meaning that if both of the clusters will be assigned 
to the same UAV, the aircraft will traverse cluster a leaving the 
exit point last and begin crossing cluster b from the entry point. 
At this point, though, the order of traversal between clusters has 
not been established yet, therefore each cluster may contain 
many candidates. We solve the problem of assigning the 
clusters to the drones first, then, given the order of the clusters 
for each vehicle, we optimise its trajectory inside each of the 
single clusters separately. To solve the first problem, though, 
we need to assign a weight 𝓌𝓌(𝑐𝑐𝑖𝑖) to each cluster, before 
knowing exactly how the latter will be crossed. To assign a 
traversing cost to each cluster we take the length of the shortest 
Hamiltonian path between a randomly selected pair of 
candidates as an estimate of the total length of the ideal 
trajectory. The Hamiltonian path is defined as a path that visits 
each node of a graph only once. To eventually determine the 
actual travel distance of each drone, we solve solve the problem 
again after determining the clusters' order, this time knowing 
the actual entry and exit points. 

We formulate the problem of routing the aircraft through the 
clusters as a Constrained Vehicle Routing Problem (CVRP). Its 
objective is to find the optimal set of routes for a fleet of 
vehicles visit a given set of nodes. We introduce constraints to 
account for the limited flight time of the drones, expressed as a 
length (e.g. by assuming an average travel speed). We minimise 
the objective function 

 

min
𝑥𝑥

� � � 𝑙𝑙𝑖𝑖,𝑗𝑗𝑥𝑥𝑖𝑖,𝑗𝑗,𝑚𝑚

𝑀𝑀

𝑚𝑚 = 1

𝐾𝐾

𝑗𝑗 = 1

𝐾𝐾

𝑖𝑖 = 1

 (6) 



where 𝑥𝑥𝑖𝑖,𝑗𝑗,𝑚𝑚 is a Boolean optimisation variable. Its value is one 
if the edge connecting nodes i and j of the graph 𝒢𝒢 is assigned 
to vehicle m. The value of 𝑙𝑙𝑖𝑖,𝑗𝑗 contains both the weight of the 
edge ℯ𝑖𝑖,𝑗𝑗 and that of cluster j: 

 
𝑙𝑙𝑖𝑖,𝑗𝑗  =  𝓌𝓌�ℯ𝑖𝑖,𝑗𝑗�  +  𝓌𝓌�𝑐𝑐𝑗𝑗�. (7) 

Note that (6) minimises the sum of trajectory lengths across all 
UAVs. Another reasonable choice would be to minimise the 
longest individual trajectory. We explore also this option and 
compare it with the use of cost function (6) in our simulation 
results (see Section 5). The following constraints are added: 

 

� � 𝑥𝑥𝑖𝑖,𝑗𝑗,𝑚𝑚

𝑀𝑀

𝑚𝑚 = 1

 =  1
𝐾𝐾

𝑖𝑖 = 1

 𝑗𝑗 =  2, . . . ,𝐾𝐾 (8) 

 
�𝑥𝑥𝑖𝑖,𝑝𝑝,𝑚𝑚 
𝐾𝐾

𝑖𝑖 = 1

=  � 𝑥𝑥𝑝𝑝,𝑗𝑗,𝑚𝑚 
𝐾𝐾

𝑗𝑗 = 1

  𝑝𝑝 =  2, . . . ,𝐾𝐾; 

𝑚𝑚 =  1, . . . ,𝑀𝑀 

 (9) 

� � 𝑙𝑙𝑖𝑖,𝑗𝑗𝑥𝑥𝑖𝑖,𝑗𝑗,𝑚𝑚

𝐾𝐾

𝑗𝑗 = 1

≤ 𝑄𝑄�
𝐾𝐾

𝑖𝑖 = 1

    𝑚𝑚 =  1, . . . ,𝑀𝑀. (10) 

Eq. (8) ensures that for every cluster except the starting node, 
only one vehicle enters it, while eq. (9) imposes that if a vehicle 
enters a node, then the same vehicle must exit. Finally eq. (10) 
limits the total length of the tour for each vehicle to a maximum 
pre-defined capacity 𝑄𝑄� . At this point one should add Sub-tour 
Elimination Constraints, in one of the forms that exist in the 
literature [22]. These are necessary as they exclude from the set 
of feasible solutions those that contain sub-tours, i.e. loops that 
do not pass from the starting point. Since this would mean 
adding at least hundreds of constraints, with the risk of 
significantly increasing the solution time, we chose a different 
approach to eliminate subtours from the solution: we solve the 
problem once as stated and, if at least one subtour is present, 
solve the problem again adding constraints to remove that 
specific subtour from the feasible solutions. This approach is 
applied by identifying the set 𝑁𝑁𝑠𝑠𝑠𝑠𝑠𝑠 ⊂ 𝒱𝒱 ∖ {𝑣𝑣0} of nodes 
belonging to the subtour (𝑣𝑣0 is the node corresponding to the 
starting cluster 𝑐𝑐0) and imposing that within that subset of 
nodes at most |𝑁𝑁𝑠𝑠𝑠𝑠𝑠𝑠|  −  1 edges are taken: 

� � 𝑥𝑥𝑖𝑖,𝑗𝑗,𝑚𝑚  ≤
𝑗𝑗 ∈ 𝑁𝑁𝑠𝑠𝑠𝑠𝑠𝑠𝑖𝑖 ∈ 𝑁𝑁𝑠𝑠𝑠𝑠𝑠𝑠 

 |𝑁𝑁𝑠𝑠𝑠𝑠𝑠𝑠| − 1 𝑚𝑚 = 1, . . . ,𝑀𝑀. (11) 

The solution of this CVRP essentially assigns clusters to 
drones and orders them. Once the ordering is known, the entry 
and exit points to each cluster are also known. Therefore it is 
possible to find the optimal trajectory by solving once again for 
the shortest Hamiltonian path, as already anticipated. The final 
result is a set of 𝑀𝑀 loop trajectories leaving from the starting 
point 𝑝𝑝𝑠𝑠 and crossing all POIs. 

 Robustness 
To add robustness to the solution against the failure of a 

single aircraft, we introduce new constraints. In principle, we 
want to ensure that, should an UAV fail, the remaining ones 
have enough combined capacity to cover the trajectory section 
that the failed drone did not manage to cover. Let us then define 
the residual capacity of drone 𝑚𝑚 as 

 

𝑄𝑄𝑚𝑚∗ = 𝑄𝑄�  −  � � 𝑙𝑙𝑖𝑖,𝑗𝑗𝑥𝑥𝑖𝑖,𝑗𝑗,𝑚𝑚

𝐾𝐾

𝑗𝑗 = 1

𝐾𝐾

𝑖𝑖 = 1

 (12) 

which represents the capacity left at the end of the planned 
mission, assuming without loss of generality that the total 
capacity 𝑄𝑄�  is the same for all the aircraft. We shall then impose, 
for each drone, 

 � 𝑄𝑄𝑚𝑚∗
𝑀𝑀

𝑚𝑚 = 1
𝑚𝑚 ≠ 𝑝𝑝

≥  � � 𝑙𝑙𝑖𝑖,𝑗𝑗𝑥𝑥𝑖𝑖,𝑗𝑗,𝑝𝑝

𝐾𝐾

𝑗𝑗 = 1

𝐾𝐾

𝑖𝑖 = 1

 𝑝𝑝 = 1, . . . ,𝑀𝑀. (13) 

If the assumption of equal maximum capacity across drones 
holds, applying the definition of residual capacity (12) yields 
𝑀𝑀 identical copies of the same constraint: 

 
� � � 𝑙𝑙𝑖𝑖,𝑗𝑗𝑥𝑥𝑖𝑖,𝑗𝑗,𝑚𝑚

𝑀𝑀

𝑚𝑚 = 1

𝐾𝐾

𝑗𝑗 = 1

𝐾𝐾

𝑖𝑖 = 1

≤ (𝑀𝑀 − 1)𝑄𝑄�  (14) 

essentially asking that the sum of all residual capacities is at 
least equal to 𝑄𝑄� . If a drone fails and stops following its 
trajectory the same CVRP can be solved after imposing 𝑀𝑀 =
𝑀𝑀 − 1, removing the robustness constraints and updating the 
graph by eliminating the nodes representing clusters that the 
failed drone had previously visited entirely. In the worst-case 
scenario, the UAV fails at the start of the mission, before 
visiting any cluster, but the new problem still has lower 
complexity than the original one, as reducing the number of 
drones also decreases the number of optimisation variables.  In 
order to ensure that the second problem has at least a feasible 
solution, though, it might be necessary to add more 
conservative constraints on capacity. This is because the 
residual capacity is distributed among multiple aircraft, instead 
of a single one. On the other hand we know that in the worst-
case scenario, the UAVs left functioning can at least complete 
the trajectory assigned to them in the first iteration and then 
visit the nodes previously assigned to the failed drone. In that 
case, we must also make sure that they have enough capacity to 
travel back to the starting point. One way to solve this issue is 
to take the maximum distance 𝐿𝐿 between the starting point and 
a cluster, across all clusters, and add that to the minimum 
residual capacity each drone must have. To this end we replace 
𝑄𝑄�  with 𝑄𝑄𝐿𝐿��� = 𝑄𝑄� − 𝐿𝐿 in the first formulation of the problem. This 
way we ensure that 

 𝑄𝑄𝑚𝑚∗  ≥  𝐿𝐿 𝑚𝑚 = 1, . . . ,𝑀𝑀. (15) 

and each drone can travel back to the starting point after 
completing the new mission. 



 

5 RESULTS 
All simulations were run in Matlab, installed on Ubuntu 20, 

on a machine with an i7-9750H 2.6 GHz processor. 
Hamiltonian pathfinding instances were solved by adding a 
temporary node to the considered graph with only two 
connections, the chosen starting and ending point, and solving 
the Traveling Salesman Problem (TSP) starting from the 
temporary node through the LKH 3.0 heuristic [32]. CVRPs 
were solved with IBM CPLEX solver for Matlab.  

We considered a building from the University of California 
Campus, in Los Angeles (see Figure 2), with mesh model 
shown in Figure 1 and 1279 POIs. First of all, we analysed the 
behaviour of total length of the trajectories, which is minimised 
through the cost function, with respect to the number of 
clusters. Figure 4 shows that the solution's quality is roughly 
independent of the number of clusters from a certain point on. 
This means there is no gain and more importantly, no loss in 
increasing the number of clusters from this standpoint. It also 
suggests that clustering still leaves globally near-optimal 
solutions feasible in this framework. Attempting to solve the 
intra-cluster trajectory planning problem first and the inter-
cluster drone assignment second is a faster approach, as it only 
entails solving the TSP once but solving it without knowing the 
optimal entry and exit points of each cluster yields worse 
solutions, which also get worser as the number of clusters 
increases. On the one hand, keeping the number of clusters 𝐾𝐾 
low reduces the complexity of the CVRP, but on the other, it 
makes the trajectory planning within the clusters more time 
consuming, as the clusters contain more points. The 
computational time required to solve the CVRP and the TSP 
increases exponentially as the number of nodes in their graph 
grows. Figure 3 illustrates this behaviour. The same can be 
deduced from Figure 5, since the number of nodes per cluster 
decreases as the number of cluster increases. Furthermore, a 
high number of smaller clusters is beneficial for their 
distribution among drones, because it allows the path planner 
to better exploit the available capacity of each unit and to obtain 
a more robust solution. 

Solving the problem with an imposed number of drones, by 
extending constraint (8) to apply to the starting node with the 
desired number of vehicles, shows that the problem gets more 
complex with respect to the number of vehicles 𝑀𝑀, as expected. 
This is compatible with the observation that the number of 

optimisation variables is 2𝐸𝐸𝐸𝐸. The total length also increases 
with 𝑀𝑀, as the path length from the starting point to the first 
and last clusters visited by each drone is non-negligible. 

We also attempted minimising a different cost function, i.e. 
the length of the longest among trajectories: 

 

min
𝑥𝑥

max
𝑚𝑚

� � 𝑙𝑙𝑖𝑖,𝑗𝑗𝑥𝑥𝑖𝑖,𝑗𝑗,𝑚𝑚

𝐾𝐾

𝑗𝑗 = 1

𝐾𝐾

𝑖𝑖 = 1

 (16) 

This yields solutions with much more evenly distributed 
workloads, thus also minimising mission length (see Figure 8). 
Unfortunately, for min-maxing to work, it is necessary to add a 
threshold variable in the optimisation, transforming a Binary 
Integer Linear Problem in a Mixed Integer Linear Problem, 
which severely impacts the solution (see Figure 5). To decrease 
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Figure 4. Sum of the lengths of all trajectories as a function of 
both the number of clusters and the number of drones. 
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Figure 6. Total of solution time of TSP problems, as a 
function of both number of clusters and number of drones.  
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Figure 3. CVRP solution time as a function of both number of 
clusters and number of drones. The y-scale is logarithmic. 
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Figure 5. CVRP solution times in min-max formulation. Note 
how they rise much quicker with respect to the number of 
clusters. Simulations with high number of clusters were not 
carried out. 



problem complexity, it is also useful to limit the number of arcs 
in the graph by only connecting clusters whose distance is 
below a certain threshold or completely separated by obstacles. 

6 CONCLUSIONS AND FUTURE WORK 
We provide a framework to coordinate multiple aircraft to 

visit a set of points of interest related to a building, with the 
goal of carrying out a given data-collection task. The presented 
approach makes the problem tractable in reasonable time. The 
cost we pay is losing the possibility of reaching the globally 
theoretically optimal solution of the problem in the general 
case, but we deem the quality of the solutions we obtain 
reasonable. This result is obtained by clustering the points of 
interest and solving the trajectory generation and point 
assignment problems separately, making the approach more 
scalable and reducing the computational time by several orders 
of magnitude. Both problems are stated as integer optimisation 
problems. Collision avoidance is ensured through space 
discretisation and path planning over an undirected graph at a 
local level. Robustness is addressed through a unique 
formulation of the CVRP where some constraints are added. 

While the solution time in this formulation is not low enough 
for real-time use with a finite horizon control technique, we 
deem it reasonable for a dynamic mission planner with 
occasional on-line replanning. To impact such time, we are now 
considering heuristic solvers for the CVRP problem, where a 
feasible solution is built iteratively from a carefully selected 
starting point to find a sufficiently good solution in a much 
shorter time. We are also studying smart clustering 
mechanisms, such as the one proposed in [26], where clusters 
are identical, and they appear in an ordered and less connected 
graph structure, thus allowing the solution of the local 

trajectory generation problem to be found once and applied to 
all clusters. 
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