
ABSTRACT: UAVs (Unmanned Aerial Vehicles) are nowadays being used more and more in Structural Health Monitoring
(SHM). Their versatility, speed, and manoeuvrability make them the ideal means to perform inspections autonomously and
remotely, instead of relying on visual inspections carried out by human operators. Since commercial drones have limited flight
times, the information collected in this short span must be maximised: to tackle the problem of gathering the maximum amount
of data in the shortest possible time, we propose a platform where a central controller coordinates multiple UAVs. We address 1)
the problem of generating points of interest, i.e., positions from which a sensor reading must be taken, given a 3D model of the
structure, 2) the problem of assigning the points to the drones and finding the optimal traversal order of such points, in order to
minimise the total flight time and make the best possible use of each drone's battery capacity. We decouple the two problems by
first generating points of interest, starting from the structure's virtual model, and then feeding those points to a central mission
planner that employs a linear programming formulation to find near-optimal trajectories for each agent, guaranteeing obstacle
avoidance. We also address the issue of robustness of the whole system against the failure of an aircraft. We evaluate our method
by applying it to the inspection of a virtual model of an existing building. We find that our approach yields good solutions in a
reasonably short time, justifying its use as a robust mission planning algorithm.

KEY WORDS: Autonomous vehicles; Formation control; Coverage problem; Robustness; Swarm robotics; UAVs.

1 INTRODUCTION
Recent technological advancements have made UAVs,
commonly referred to as drones, a powerful and relatively
cheap tool in a wide variety of fields, including agriculture [1],
forestry [2], parcel delivery [3] and architecture and civil
engineering [4, 5, 6, 7, 8]. Their success is due to their
versatility, ease of use and relatively low cost. They can host a
broad range of sensors, such as standard cameras, thermal
cameras, LiDAR sensors, and infrared devices. These are
particularly useful for SHM because they enable essential tasks
such as 3D model building [4], surface reconstruction and
analysis [5], thermal profiling [6], modal analysis [7] and even
some forms of contact inspection [8]. Given these capabilities,
drones will likely be adopted soon as essential tools for
inspection and monitoring tasks. They can be a reasonable
alternative to human inspectors that is cheaper, safer, more
time-effective, more repeatable and precise results. The
adoption of UAVs as standard inspection tools would also be a
significant step towards the automation of the SHM pipeline,
allowing frequent inspection measurements to be processed by
a computer and integrated into a broader framework, such as a
digital twin of the inspected structure.

The push for maximum automation comes with many
challenges: depending on the kind of inspection to be carried
out, where should the aircraft go? How do we coordinate a fleet
of UAVs? How do we minimise the total inspection time? What
level of robustness to failure of a drone should be guaranteed
to ensure a mission is completed? How do we ensure that no
collision occurs between the vehicles and the building in
question? We propose a system that addresses these issues by
separating the generation of the Points of Interest (POIs) from

that of the ideal trajectories. We start from a mesh model of a
given building, and we use it to determine the positions of the
POIs that are suitable to the task at hand (in this study, the
collection of partially overlapping images to create an accurate
texture of the building and analyse it in search of defects).
Then, we divide the POIs in clusters to ease the computational
burden of finding the optimal trajectories that reach every
point. Thanks to this sub-division, we generate a simplified
graph that abstractly represents the set of POIs, then we use it
to solve a Capacitated Vehicle Routing Problem (CVRP [9])
that features constraints designed to add robustness to the
solution. The solution of such a problem determines the
trajectories for every vehicle. If one of the drones fails during
the mission, an updated version of the same problem can be
solved to ensure the other ones complete the task.

The novel aspects of this approach are:
1) The coordinated control of a network of independent

UAVs.
2) The study of robustness of a solution concerning the

failure of one aircraft.
3) The adoption of a model of an existing building for

simulations. We consider one of the buildings at the
University of California campus, Los Angeles (see
Figure 2 and Figure 1).

In Section 2, we discuss the state of the art, in Section 3 we
describe the problem in detail, and in Section 4 we present
our approach to solving it. Results are presented and
commented in Section 5, whereas Section 6 contains our
concluding remarks.

An autonomous, multi-agent UAV platform for inspection of civil infrastructure

Michele Bolognini1, Lorenzo Fagiano1, Maria Pina Limongelli2

1Department of Electronics, Information and Bioeng., Politecnico di Milano, Piazza Leonardo da Vinci 32, Milano, Italy.
2Department of Architecture, Built Environment and Construction Eng., Politecnico di Milano, Piazza Leonardo da Vinci 32,

Milano, Italy.
email: michele.bolognini@polimi.it

2 STATE OF THE ART
The application of drones to the world of SHM and
constructions is a recent and growing research field. Literature
reviews [10] [11] show that they are often used to extend a
human operator's range of action, and in most cases, they are
employed to obtain pictures of parts of buildings that would be
difficult to reach otherwise, through regular RGB cameras.
This is enough to harness the power of computer vision and
image analysis techniques that can automatically detect surface
defects such as cracks in concrete and road pavement, spalling,
exposed rebars, loosened bolts and signs of moisture [12] [13]
[14]. Other niches are being explored too, like video-based
approaches to dynamical behaviour estimation through Digital
Image Correlation (DIC) [15] or cross-correlation [16].
Regardless of the inspection's final objective, most of these
approaches rely partially on human intervention. To reach full
autonomy, the first problem that must be tackled is
automatically generating POIs, i.e. points in space from which
sensor readings must be taken, starting from a model of the
structure. Both the type and the ideal pose of the sensors
relative to the building vary significantly depending on the type
of survey (building surface inspection, energy performance
inspection, mapping, …) [17], but for a given task or set of
tasks, it is possible to identify a region of 3D space where POIs
should lie. For the problem of coverage of 3D structures, the
authors of [18] and [19] developed iterative approaches to
maximise uniformity of coverage of the structure and minimise
the computational cost to generate a trajectory for the UAV,
while also accounting for camera orientation. The resulting
series of waypoints is then sent to a single drone to follow. In
[20] researchers adopt sub-modular path planning based on a
coarse estimation of scene geometry to obtain a single camera
trajectory, solving both the viewpoint generation problem and
the trajectory generation problem at once while guaranteeing
obstacle avoidance and respect of a user-defined time budget.
In another case [21], where photos are taken to run a Structure
from Motion (SfM) algorithm, points are distributed in space to
cause some overlap between consecutive images. Once the
field of view of the camera is known, the desired overlap
percentage can be chosen, and the POIs can be calculated. We
borrow from these approaches by generating our POIs at
suitable distances from the mesh model of the building we
consider.

Once the POIs are established, it is necessary to determine in
what order it is best to visit them, which usually means the
fastest. In the case of multiple robots, points must also be
distributed among them accordingly. Obstacles must also be
taken into account to ensure the trajectories are feasible. This
class of problem is typically addressed through graph search
methods: many formulations of the Traveling Salesman
Problem (TSP) and its variations exist [22], where nodes
describe the POIs in a graph and edges between such nodes
represent all the possible pair-wise routes and their lengths. A
series of nodes represents the solution, suitably characterised
through constraints in an optimisation problem depending on
the desired properties. The abstract nature of graph-based
representation makes it a handy and versatile tool. The
approaches that rely on it usually tailor it to suit their specific
needs [23], such as addressing communication constraints [24]
or planning particular trajectories for fixed-wing drones that

avoid certain regions of space [25]. The complexity of the
trajectory generation problem increases exponentially with
both the number of POIs and the number of vehicles
considered, due to the exponential growth of both the search
space and the number of Subtour Elimination Constraints
(SECs) [22]. Therefore some heuristics must be adopted to
solve even medium-sized instances in a reasonable amount of
time, and the guarantee of optimality is lost. In some of those
cases, theoretical lower bounds on solution quality can be
found [26]. Common generalisations of the TSP include its
multi-agent version (mTSP) and the Constrained Vehicle
Routing Problem (CVRP), where in addition to the features
described previously, each vehicle is also assigned a maximum
capacity, and each node of the graph represents a customer with
its capacity demand. In this framework, capacity refers to the
quantity of a certain good that the customers require, of which
each vehicle can transport a limited amount. The objective here
is to ensure that each vehicle has enough capacity to serve all
customers along its route. In our formulation, we exploit this
concept to ensure that each drone has enough battery life to visit
all of its trajectory points, adopting the same mathematical
expressions but a different interpretation.

The probability of at least one drone failing increases with
the number of deployed UAVs, and it is safe to address this
issue at the mission planning level. Discussions of robustness
and robust solutions to the CVRP are present in literature, but
they focus on different aspects. Robustness is ensured against
uncertainty on customer demand [27], on travel time [28] and
on service times or other parameters [29], but not with respect
to the failure of one of the vehicles. We study the effect of
additional constraints specifically designed to take care of this
issue and provide a strategy to determine what should happen
in case of failure.

We adopt clustering to simplify the overall problem,
breaking up the set of all POIs into smaller subsets. Clustering
is also a very well-known problem to which countless solutions
have been proposed in the literature [30]. Since we aim at
clustering together 3D points based on spatial proximity, we
adopt k-means clustering [31].

3 PROBLEM FORMULATION
We intend to solve a problem determined by a 3D mesh model
of the building to inspect, and a set of rules to generate the POIs
from such a model. The rules depend on the kind of inspection
and the type of sensor employed. Alternatively, one can provide
the POIs directly. Also, the number M of UAVs available for
the task should be specified. Both M and the number of points
n belong to ℕ. The objective is to establish which points should
be reached by which drone. In other words, we want to obtain
a number of trajectories t ≤ M, such that each POI belongs to
one trajectory only:

 𝑝𝑝𝑖𝑖 ∈ 𝒫𝒫 ⊂ ℝ3 𝑖𝑖 = 1, . . . ,𝑛𝑛 (1)

 𝑠𝑠𝑗𝑗 ⊂ 𝒫𝒫 |⋃ 𝑠𝑠𝑗𝑗𝑡𝑡
𝑗𝑗=1 = 𝒫𝒫 ∧

∧ 𝑠𝑠𝑖𝑖 ∩ 𝑠𝑠𝑗𝑗 = ∅

𝑗𝑗 = 1, . . . , 𝑡𝑡

𝑖𝑖, 𝑗𝑗 = 1, . . . , 𝑡𝑡; 𝑖𝑖 ≠ 𝑗𝑗,
(2)

where 𝑝𝑝𝑖𝑖 are the points of interest, 𝒫𝒫 is the set of all POIs and
𝑠𝑠𝑗𝑗 is the j-th trajectory. Statement (2) imposes that the set of all

trajectories is a partition of the set of POIs 𝒫𝒫: each trajectory is
a set of points belonging to 𝒫𝒫, they do not overlap and each
point is assigned to a trajectory.

The maximum trajectory length should be minimised so that
the task can be carried out in the least amount of time possible.
On the other hand, trajectories should also be computed in a
reasonable time, meaning a few minutes at most. These two
requirements are difficult to achieve (except for trivially small
problems) with an approach that seeks the global optimum,
because the complexity of the trajectory generation problem
increases exponentially with the number of points and vehicles,
as mentioned in the previous section. Therefore, to satisfy the
second requirement, we shall introduce some heuristics,
significantly reducing computational time at the cost of losing
the guarantee of global optimality. In addition, the length of
each trajectory must be compatible with the drones' maximum
flight time, meaning that it should be possible to follow it
entirely without stopping. Trajectories must also start and end
at a user-defined starting point 𝑝𝑝𝑠𝑠 ∈ ℝ3.

Finally, we want to ensure that the solution to the problem is
robust with respect to the possibility of failure of one of the
drones. This means that during the mission's execution, if one
of the aircraft suddenly fails, it must be possible to assign to
other UAVs the yet-not-visited POIs assigned to it, and still
conclude the mission. In other words, there must always be a
feasible solution to a new trajectory generation problem, based
on the points that were not visited yet at the moment of the
failure and with one less drone.

4 METHODOLOGY

 The Building Mesh
Assuming we are inspecting the outside surface of a building,

we start from a mesh model of its shell. We define a mesh
model as a pair of lists: one comprising 3D points belonging to
the structure, and another one containing subsets of indices of
said points that are coplanar, thus defining a polygon in space.
The set of surfaces in the list describes the building's external

surface and is expected to be closed, i.e. given a point, it is
always possible to know if it is inside, outside or on the surface.
We shall refer to the two lists as mesh vertices and mesh faces.

The mesh itself can either be exported from the CAD model of
a building through suitable software or defined manually,
provided its dimension correspond to those of the real object.
To streamline calculations and without loss of generality, we
use tri-meshes only, i.e. meshes whose faces are triangles.
Furthermore, for simplicity we ensure that the normal vector to
each face points towards the outside of the building. This
information is encoded in the order of the subset's points,
through the right-hand rule.

The first property of a good mesh is that it correctly
represents the building's shape because it will be used for
collision checks. To this end, it should also contain the fewest
faces possible, to ease the computational cost. In particular, we
will perform checks to verify if, given a pair of points in space,
the segment that connects them intersects the mesh. If it does,
the segment is not a feasible trajectory for a UAV. On the other
hand, the mesh components can be exploited in the generation
of POIs, as detailed in the next subsection. Therefore, we
choose to keep two meshes representing the same building. The
first has as few faces as possible and is exploited for collision
checking, while the second is obtained from the first by
recursively splitting in half every mesh face with a surface area
greater than a user-defined threshold, and it is used to
automatically generate the POIs.

If the building's CAD model is not available and the
inspection goal is its generation, then the mesh of an outer
bounding box might be used instead. It is also possible to add
further details to the mesh, for example, encoding the building
surface material in a face, which might be useful for some
inspection tasks.

Figure 1. The mesh of the considered building (West side).

Figure 2. The building (East side), at the University of
California campus, Los Angeles, considered in this study.

 Point Generation and Clustering
The generation procedure for the POIs depends on the kind

of inspection performed and the mounted sensors' specific
properties. We simulated the planning of a photograph
collection mission. To this end, the set of all points of interest
𝒫𝒫 ⊂ ℝ3 is obtained by selecting a point for each face of the
mesh. Each point is located at a certain distance 𝒹𝒹 from the
centre of the mesh face, along its normal. Consequently, all
POIs are equally distant from the building's surface, and they
are denser where the structure exhibits a more complex shape,
conveyed by a higher number of mesh faces. This method also
allows us to associate a direction to each point, representing the
sensor's desired orientation in that position. The natural choice
in our case is to take as orientation the vector opposite to the
face normal, to align the camera plane to the building's surface.
A check is also performed to ensure that the point is not inside
the building mesh.

Since the number of points of interest n can easily be in the
order of thousands, the trajectory generation problem cannot be
solved over the whole set in a reasonable time. We thus
introduce an heuristic, by dividing the set in an arbitrary
number of clusters k, based on their spatial proximity. We then
solve the problems of optimally traversing a cluster and
optimally assigning clusters to drones separately. To perform
the clustering step, we apply the k-means algorithm [31]. Such
algorithm partitions the set of all points into a pre-defined
number k of clusters. It ensures that each point belongs to the
cluster with the nearest centroid, thus grouping together close
points. This is a natural choice since we aim at minimising the
time it takes to traverse each cluster visiting all points, and we
can expect that in the global solution the optimal trajectory
would be composed of consecutive points that are close to each
other. We group the clusters in the set 𝒞𝒞 and add a special
cluster 𝑐𝑐0, only comprising the starting point 𝑝𝑝𝑠𝑠, which will be
instrumental to compute drone paths originating from and
ending at such a starting location:

𝑐𝑐𝑖𝑖 ∈ 𝒞𝒞 i = 1, …, k

𝑐𝑐0 ≜ {𝑝𝑝𝑠𝑠}.
(3)

Finally, for each cluster, a graph is obtained. Each node in
the graph represents a point in the cluster. Edges in the graph
represent an obstacle-free path between two points. A pair of
points is connected if they are sufficiently close, i.e. within a
user-defined radius 𝑟𝑟. This reduces the number of edges in the
graph without impacting the trajectory generation problem's
solution quality. If an obstacle lies between the POIs, a path
connecting them is found on an extended version of the same
set of points: to the regular POIs in the cluster, we add a set of
intermediate points, this time by calculating the normal to the
vertices of the mesh and taking the point at distance 𝑑𝑑 along its
direction. The normal of a vertex is the average of all the
normal of the faces that include such vertex. The path between
the two POIs is the series of obstacle-free paths that connects
them passing through intermediate points if such a path exists.

 The Constrained Vehicle Routing Problem
Once the clusters have been determined, we build an

undirected graph of clusters 𝒢𝒢, which we call the global graph:

𝒢𝒢 = (𝒱𝒱,ℰ,𝓌𝓌)

|𝒱𝒱| = |𝒞𝒞| = k +1 = K

ℰ ⊆ 𝒱𝒱 × 𝒱𝒱; |ℰ| = E

𝓌𝓌 ∶ 𝒱𝒱 ∪ ℰ ⟼ ℝ,

(4)

where 𝒱𝒱 is the set of its vertices or nodes, and ℰ is the set of
edges that connect them. One node represents the starting
position while the other k nodes represent one cluster each. 𝓌𝓌
is a function that assigns a real value to each node,
corresponding to the total length of the trajectory that optimally
traverses cluster (recall that in problem (6) each node
correspond to a cluster of points of the original path planning
problem), and to each edge, in which case it represents the
distance between two clusters. These weights are necessary to
ensure that the union of all the trajectories of the clusters that
will be assigned to a single drone will not be longer than the
maximum span that UAV can travel. In order to assign a weight
to each edge, we calculate the minimum distance between two
clusters:

𝓌𝓌�ℯ𝑖𝑖,𝑗𝑗� = 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚�𝑐𝑐𝑖𝑖 , 𝑐𝑐𝑗𝑗�

ℯ𝑖𝑖,𝑗𝑗𝜖𝜖ℰ; 𝑐𝑐𝑖𝑖,𝑗𝑗 ∈ 𝒞𝒞,
(5)

where 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚(𝑐𝑐𝑎𝑎, 𝑐𝑐𝑏𝑏) returns the minimum distance between
a pair of points such that one point belongs to 𝑐𝑐𝑎𝑎 and the other
to 𝑐𝑐𝑏𝑏. These points will be candidate entry and exit points for
the cluster, meaning that if both of the clusters will be assigned
to the same UAV, the aircraft will traverse cluster a leaving the
exit point last and begin crossing cluster b from the entry point.
At this point, though, the order of traversal between clusters has
not been established yet, therefore each cluster may contain
many candidates. We solve the problem of assigning the
clusters to the drones first, then, given the order of the clusters
for each vehicle, we optimise its trajectory inside each of the
single clusters separately. To solve the first problem, though,
we need to assign a weight 𝓌𝓌(𝑐𝑐𝑖𝑖) to each cluster, before
knowing exactly how the latter will be crossed. To assign a
traversing cost to each cluster we take the length of the shortest
Hamiltonian path between a randomly selected pair of
candidates as an estimate of the total length of the ideal
trajectory. The Hamiltonian path is defined as a path that visits
each node of a graph only once. To eventually determine the
actual travel distance of each drone, we solve solve the problem
again after determining the clusters' order, this time knowing
the actual entry and exit points.

We formulate the problem of routing the aircraft through the
clusters as a Constrained Vehicle Routing Problem (CVRP). Its
objective is to find the optimal set of routes for a fleet of
vehicles visit a given set of nodes. We introduce constraints to
account for the limited flight time of the drones, expressed as a
length (e.g. by assuming an average travel speed). We minimise
the objective function

min
𝑥𝑥

� � � 𝑙𝑙𝑖𝑖,𝑗𝑗𝑥𝑥𝑖𝑖,𝑗𝑗,𝑚𝑚

𝑀𝑀

𝑚𝑚 = 1

𝐾𝐾

𝑗𝑗 = 1

𝐾𝐾

𝑖𝑖 = 1

 (6)

where 𝑥𝑥𝑖𝑖,𝑗𝑗,𝑚𝑚 is a Boolean optimisation variable. Its value is one
if the edge connecting nodes i and j of the graph 𝒢𝒢 is assigned
to vehicle m. The value of 𝑙𝑙𝑖𝑖,𝑗𝑗 contains both the weight of the
edge ℯ𝑖𝑖,𝑗𝑗 and that of cluster j:

𝑙𝑙𝑖𝑖,𝑗𝑗 = 𝓌𝓌�ℯ𝑖𝑖,𝑗𝑗� + 𝓌𝓌�𝑐𝑐𝑗𝑗�. (7)

Note that (6) minimises the sum of trajectory lengths across all
UAVs. Another reasonable choice would be to minimise the
longest individual trajectory. We explore also this option and
compare it with the use of cost function (6) in our simulation
results (see Section 5). The following constraints are added:

� � 𝑥𝑥𝑖𝑖,𝑗𝑗,𝑚𝑚

𝑀𝑀

𝑚𝑚 = 1

 = 1
𝐾𝐾

𝑖𝑖 = 1

 𝑗𝑗 = 2, . . . ,𝐾𝐾 (8)

�𝑥𝑥𝑖𝑖,𝑝𝑝,𝑚𝑚
𝐾𝐾

𝑖𝑖 = 1

= � 𝑥𝑥𝑝𝑝,𝑗𝑗,𝑚𝑚
𝐾𝐾

𝑗𝑗 = 1

 𝑝𝑝 = 2, . . . ,𝐾𝐾;

𝑚𝑚 = 1, . . . ,𝑀𝑀

 (9)

� � 𝑙𝑙𝑖𝑖,𝑗𝑗𝑥𝑥𝑖𝑖,𝑗𝑗,𝑚𝑚

𝐾𝐾

𝑗𝑗 = 1

≤ 𝑄𝑄�
𝐾𝐾

𝑖𝑖 = 1

 𝑚𝑚 = 1, . . . ,𝑀𝑀. (10)

Eq. (8) ensures that for every cluster except the starting node,
only one vehicle enters it, while eq. (9) imposes that if a vehicle
enters a node, then the same vehicle must exit. Finally eq. (10)
limits the total length of the tour for each vehicle to a maximum
pre-defined capacity 𝑄𝑄� . At this point one should add Sub-tour
Elimination Constraints, in one of the forms that exist in the
literature [22]. These are necessary as they exclude from the set
of feasible solutions those that contain sub-tours, i.e. loops that
do not pass from the starting point. Since this would mean
adding at least hundreds of constraints, with the risk of
significantly increasing the solution time, we chose a different
approach to eliminate subtours from the solution: we solve the
problem once as stated and, if at least one subtour is present,
solve the problem again adding constraints to remove that
specific subtour from the feasible solutions. This approach is
applied by identifying the set 𝑁𝑁𝑠𝑠𝑠𝑠𝑠𝑠 ⊂ 𝒱𝒱 ∖ {𝑣𝑣0} of nodes
belonging to the subtour (𝑣𝑣0 is the node corresponding to the
starting cluster 𝑐𝑐0) and imposing that within that subset of
nodes at most |𝑁𝑁𝑠𝑠𝑠𝑠𝑠𝑠| − 1 edges are taken:

� � 𝑥𝑥𝑖𝑖,𝑗𝑗,𝑚𝑚 ≤
𝑗𝑗 ∈ 𝑁𝑁𝑠𝑠𝑠𝑠𝑠𝑠𝑖𝑖 ∈ 𝑁𝑁𝑠𝑠𝑠𝑠𝑠𝑠

 |𝑁𝑁𝑠𝑠𝑠𝑠𝑠𝑠| − 1 𝑚𝑚 = 1, . . . ,𝑀𝑀. (11)

The solution of this CVRP essentially assigns clusters to
drones and orders them. Once the ordering is known, the entry
and exit points to each cluster are also known. Therefore it is
possible to find the optimal trajectory by solving once again for
the shortest Hamiltonian path, as already anticipated. The final
result is a set of 𝑀𝑀 loop trajectories leaving from the starting
point 𝑝𝑝𝑠𝑠 and crossing all POIs.

 Robustness
To add robustness to the solution against the failure of a

single aircraft, we introduce new constraints. In principle, we
want to ensure that, should an UAV fail, the remaining ones
have enough combined capacity to cover the trajectory section
that the failed drone did not manage to cover. Let us then define
the residual capacity of drone 𝑚𝑚 as

𝑄𝑄𝑚𝑚∗ = 𝑄𝑄� − � � 𝑙𝑙𝑖𝑖,𝑗𝑗𝑥𝑥𝑖𝑖,𝑗𝑗,𝑚𝑚

𝐾𝐾

𝑗𝑗 = 1

𝐾𝐾

𝑖𝑖 = 1

 (12)

which represents the capacity left at the end of the planned
mission, assuming without loss of generality that the total
capacity 𝑄𝑄� is the same for all the aircraft. We shall then impose,
for each drone,

 � 𝑄𝑄𝑚𝑚∗
𝑀𝑀

𝑚𝑚 = 1
𝑚𝑚 ≠ 𝑝𝑝

≥ � � 𝑙𝑙𝑖𝑖,𝑗𝑗𝑥𝑥𝑖𝑖,𝑗𝑗,𝑝𝑝

𝐾𝐾

𝑗𝑗 = 1

𝐾𝐾

𝑖𝑖 = 1

 𝑝𝑝 = 1, . . . ,𝑀𝑀. (13)

If the assumption of equal maximum capacity across drones
holds, applying the definition of residual capacity (12) yields
𝑀𝑀 identical copies of the same constraint:

� � � 𝑙𝑙𝑖𝑖,𝑗𝑗𝑥𝑥𝑖𝑖,𝑗𝑗,𝑚𝑚

𝑀𝑀

𝑚𝑚 = 1

𝐾𝐾

𝑗𝑗 = 1

𝐾𝐾

𝑖𝑖 = 1

≤ (𝑀𝑀 − 1)𝑄𝑄� (14)

essentially asking that the sum of all residual capacities is at
least equal to 𝑄𝑄� . If a drone fails and stops following its
trajectory the same CVRP can be solved after imposing 𝑀𝑀 =
𝑀𝑀 − 1, removing the robustness constraints and updating the
graph by eliminating the nodes representing clusters that the
failed drone had previously visited entirely. In the worst-case
scenario, the UAV fails at the start of the mission, before
visiting any cluster, but the new problem still has lower
complexity than the original one, as reducing the number of
drones also decreases the number of optimisation variables. In
order to ensure that the second problem has at least a feasible
solution, though, it might be necessary to add more
conservative constraints on capacity. This is because the
residual capacity is distributed among multiple aircraft, instead
of a single one. On the other hand we know that in the worst-
case scenario, the UAVs left functioning can at least complete
the trajectory assigned to them in the first iteration and then
visit the nodes previously assigned to the failed drone. In that
case, we must also make sure that they have enough capacity to
travel back to the starting point. One way to solve this issue is
to take the maximum distance 𝐿𝐿 between the starting point and
a cluster, across all clusters, and add that to the minimum
residual capacity each drone must have. To this end we replace
𝑄𝑄� with 𝑄𝑄𝐿𝐿��� = 𝑄𝑄� − 𝐿𝐿 in the first formulation of the problem. This
way we ensure that

 𝑄𝑄𝑚𝑚∗ ≥ 𝐿𝐿 𝑚𝑚 = 1, . . . ,𝑀𝑀. (15)

and each drone can travel back to the starting point after
completing the new mission.

5 RESULTS
All simulations were run in Matlab, installed on Ubuntu 20,

on a machine with an i7-9750H 2.6 GHz processor.
Hamiltonian pathfinding instances were solved by adding a
temporary node to the considered graph with only two
connections, the chosen starting and ending point, and solving
the Traveling Salesman Problem (TSP) starting from the
temporary node through the LKH 3.0 heuristic [32]. CVRPs
were solved with IBM CPLEX solver for Matlab.

We considered a building from the University of California
Campus, in Los Angeles (see Figure 2), with mesh model
shown in Figure 1 and 1279 POIs. First of all, we analysed the
behaviour of total length of the trajectories, which is minimised
through the cost function, with respect to the number of
clusters. Figure 4 shows that the solution's quality is roughly
independent of the number of clusters from a certain point on.
This means there is no gain and more importantly, no loss in
increasing the number of clusters from this standpoint. It also
suggests that clustering still leaves globally near-optimal
solutions feasible in this framework. Attempting to solve the
intra-cluster trajectory planning problem first and the inter-
cluster drone assignment second is a faster approach, as it only
entails solving the TSP once but solving it without knowing the
optimal entry and exit points of each cluster yields worse
solutions, which also get worser as the number of clusters
increases. On the one hand, keeping the number of clusters 𝐾𝐾
low reduces the complexity of the CVRP, but on the other, it
makes the trajectory planning within the clusters more time
consuming, as the clusters contain more points. The
computational time required to solve the CVRP and the TSP
increases exponentially as the number of nodes in their graph
grows. Figure 3 illustrates this behaviour. The same can be
deduced from Figure 5, since the number of nodes per cluster
decreases as the number of cluster increases. Furthermore, a
high number of smaller clusters is beneficial for their
distribution among drones, because it allows the path planner
to better exploit the available capacity of each unit and to obtain
a more robust solution.

Solving the problem with an imposed number of drones, by
extending constraint (8) to apply to the starting node with the
desired number of vehicles, shows that the problem gets more
complex with respect to the number of vehicles 𝑀𝑀, as expected.
This is compatible with the observation that the number of

optimisation variables is 2𝐸𝐸𝐸𝐸. The total length also increases
with 𝑀𝑀, as the path length from the starting point to the first
and last clusters visited by each drone is non-negligible.

We also attempted minimising a different cost function, i.e.
the length of the longest among trajectories:

min
𝑥𝑥

max
𝑚𝑚

� � 𝑙𝑙𝑖𝑖,𝑗𝑗𝑥𝑥𝑖𝑖,𝑗𝑗,𝑚𝑚

𝐾𝐾

𝑗𝑗 = 1

𝐾𝐾

𝑖𝑖 = 1

 (16)

This yields solutions with much more evenly distributed
workloads, thus also minimising mission length (see Figure 8).
Unfortunately, for min-maxing to work, it is necessary to add a
threshold variable in the optimisation, transforming a Binary
Integer Linear Problem in a Mixed Integer Linear Problem,
which severely impacts the solution (see Figure 5). To decrease

6 8 10 12 14 16 18 20
Number of clusters

4000

4100

4200

4300

4400

4500

To
ta

l s
pa

n
[m

]

3 vehicles
4 vehicles
5 vehicles

Figure 4. Sum of the lengths of all trajectories as a function of
both the number of clusters and the number of drones.

6 8 10 12 14 16 18 20
Number of clusters

100

101

So
lu

tio
n

tim
e

[s
]

3 vehicles
4 vehicles
5 vehicles

Figure 6. Total of solution time of TSP problems, as a
function of both number of clusters and number of drones.

6 8 10 12 14 16 18 20
Number of clusters

10-2

10-1

100

101

So
lu

tio
n

tim
e

[s
]

3 vehicles
4 vehicles
5 vehicles

Figure 3. CVRP solution time as a function of both number of
clusters and number of drones. The y-scale is logarithmic.

6 8 10 12 14 16 18 20
Number of clusters

100

102

104

So
lu

tio
n

tim
e

[s
]

3 vehicles
4 vehicles
5 vehicles

Figure 5. CVRP solution times in min-max formulation. Note
how they rise much quicker with respect to the number of
clusters. Simulations with high number of clusters were not
carried out.

problem complexity, it is also useful to limit the number of arcs
in the graph by only connecting clusters whose distance is
below a certain threshold or completely separated by obstacles.

6 CONCLUSIONS AND FUTURE WORK
We provide a framework to coordinate multiple aircraft to

visit a set of points of interest related to a building, with the
goal of carrying out a given data-collection task. The presented
approach makes the problem tractable in reasonable time. The
cost we pay is losing the possibility of reaching the globally
theoretically optimal solution of the problem in the general
case, but we deem the quality of the solutions we obtain
reasonable. This result is obtained by clustering the points of
interest and solving the trajectory generation and point
assignment problems separately, making the approach more
scalable and reducing the computational time by several orders
of magnitude. Both problems are stated as integer optimisation
problems. Collision avoidance is ensured through space
discretisation and path planning over an undirected graph at a
local level. Robustness is addressed through a unique
formulation of the CVRP where some constraints are added.

While the solution time in this formulation is not low enough
for real-time use with a finite horizon control technique, we
deem it reasonable for a dynamic mission planner with
occasional on-line replanning. To impact such time, we are now
considering heuristic solvers for the CVRP problem, where a
feasible solution is built iteratively from a carefully selected
starting point to find a sufficiently good solution in a much
shorter time. We are also studying smart clustering
mechanisms, such as the one proposed in [26], where clusters
are identical, and they appear in an ordered and less connected
graph structure, thus allowing the solution of the local

trajectory generation problem to be found once and applied to
all clusters.

ACKNOWLEDGMENTS
The authors would like to acknowledge professor F. Amigoni

for his insight and fruitful discussions, which contributed to this
project's development.

BIBLIOGRAPHY

[1] U. R. Mogili and B. B. Deepak, “Review on Application

of Drone Systems in Precision Agriculture,” in
International Conference on Robotics and Smart
Manufacturing, Chennai, 2018.

[2] L. Tang and G. Shao, “Drone remote sensing for forestry
research and practices,” Journal of Forestry Research,
no. 26, pp. 791-797, 2015.

[3] K. Dorling, J. Heinrichs, G. G. Messier and S.
Magierowski, “Vehicle Routing Problems for Drone
Delivery,” IEEE Transactions on Systems, Man, and
Cybernetics: Systems, vol. 47, no. 1, pp. 70-85, 2017.

[4] C. Kim, H. Moon and W. Lee, “Data Management
Framework of Drone-Based 3D Model Reconstruction of
Distaster Site,” in International Archives of the

6 8 10 12 14 16 18 20
Number of clusters

2000

2500

3000

3500

M
ax

im
um

 sp
an

 [m
]

3 vehicles
4 vehicles
5 vehicles

6 8 10 12 14 16 18 20
Number of clusters

1000

1200

1400

1600

1800

2000

M
ax

im
um

 sp
an

 [m
]

3 vehicles
4 vehicles
5 vehicles

Figure 8. Maximum trajectory length as a function of number
of drones and clusters. Objective function (6) (Top) and (16)

(Bottom).

Figure 7. Solution of the problem with 3 drones, 14 clusters.

Photogrammetry, Remote Sensing and Spatial
Information Sciences, Prague, 2016.

[5] J. Seo, L. Duque and J. Wacker, “Drone-enabled bridge
inspection methodology and application,” Automation in
Construction, vol. 94, pp. 112-126, 2018.

[6] M. L. Mauriello and J. E. Froehlich, “Towards automated
thermal profiling of buildings at scale using unmanned
aerial vehicles and 3D-reconstruction,” in Proceedings of
the 2014 ACM International Joint Conference on
Pervasive and Ubiquitous Computing: Adjunct
Publication, 2014.

[7] V. Hoskere, J.-W. Park, H. Yoon and B. F. Spencer,
“Vision-Based Modal Survey of Civil Infrastructure
Using Unmanned Aerial Vehicles,” Journal of Structural
Engineering, vol. 145, no. 7, p. 04019062, 2019.

[8] B. B. Kocer, “Inspection-while-flying: An autonomous
contact-based nondestructive test using UAV-tools,”
Automation in Construction, no. 106, p. 102895, 2019.

[9] P. Toth and D. Vigo, The Vehicle Routing Problem,
Philadelphia: Society for Industrial and Applied
Mathematics, 2002.

[10] L. Duque, J. Seo and J. Wacker, “Synthesis of Unmanned
Aerial Vehicle Applications for Infrastructures,” Journal
of Performance of Constructed Facilities, vol. 32, no. 4,
p. 04018046, 2018.

[11] B. F. Spencer, V. Hoskere and Y. Narazaki, “Advances
in Computer Vision-Based Civil Infrastructure
Inspection and Monitoring,” Engineering, vol. 5, pp.
199-222, 2019.

[12] V. Hoskere, Y. Narazaki, T. A. Hoang and B. F. Spencer,
“Vision-based Structural Inspection using Multiscale
Deep Convolutional Neural Networks,” in Huixian
International Forum on Earthquake Engineering for
Young Researchers, Urbana-Champaign, 2017.

[13] G. Morgenthal and N. Hallermann, “Quality Assessment
of Unmanned Aerial Vehicle (UAV) Based Visual
Inspection of Structures,” Advances in Structural
Engineering, vol. 17, no. 3, pp. 289-302, 2014.

[14] Y.-J. Cha and W. Choi, “Autonomous Structural Visual
Inspection Using Region-Based Deep Learning for
Detecting Multiple Damage Types,” Computer-Aided
Civil and Infrastructure Engineering, no. 33, pp. 731-
747, 2018.

[15] M. Kalaitzakis, S. R. Kattil, N. Vitzilaios, D. Rizos and
M. Sutton, “Dynamic Structural Health Monitoring using
a DIC-enabled drone,” in International Conference on
Unmanned Aircraft Systems, Atlanta, 2019.

[16] H. Yoon, V. Hoskere, J.-W. Park and B. F. Spencer,
“Cross-Correlation-based structural system
identification using unmanned aerial vehicles,” Sensors,
vol. 17, no. 9, 2017.

[17] T. Rakha and A. Gorodetsky, “Review of Unmanned
Aerial System (UAS) applications in the build
environment: Towards automated building inspection
procedures using drones,” Automation in Construction,
vol. 93, pp. 252-264, 2018.

[18] K. Alexis, C. Papachristos, R. Siegwart and A. Tzes,
“Uniform Coverage Structural Inspection Path-Planning
for Micro Aerial Vehicles,” in IEEE International
Symposium on Intelligent Control, Sydney, 2015.

[19] A. Bircher, K. Alexis, M. Burri, P. Oettershagen, S.
Omari, T. Mantel and R. Siegwart, “Structural Inspection
Path Planning via Iterative Viewpoint Resampling with
Application to Aerial Robotics,” in IEEE International
Conference on Robotics and Automation, Seattle, 2015.

[20] M. Roberts, D. Dey, A. Truong, S. Sinha, S. Shah, A.
Kapoor, P. Hanrahan and N. Joshi, “Submodular
trajectory optimization for aerial 3d scanning,” in
Proceedings of the IEEE International Conference on
Computer Vision, 2017.

[21] S. Daftry, C. Hoppe and H. Bischof, “Building with
Drones: Accurate 3D Facade Reconstruction using
MAVs,” in Proceedings of the IEEE International
Conference on Robotics and Automation, Seattle, 2015.

[22] T. Bektas, “The multiple traveling salesman problem: an
overviewof formulations and solution procedures,”
Omega, vol. 34, pp. 209-219, 2006.

[23] B. L. Brumitt and A. Stentz, “GRAMMPS: A
Generalized Mission Planner for Multiple Mobile Robots
In Unstructured Environments,” in Proceedings ofthe
1998 IEEE International Conference on Robotics &
Automation, Leuven, 1998.

[24] E. I. Grotli and T. A. Johansen, “Path Planning for UAVs
Under Communication Constraints Using SPLAT! and
MILP,” Journal of Intelligent Robot Systems, vol. 65, pp.
265-282, 2011.

[25] H. Ergezer and K. Leblebicioglu, “3D Path Planning for
Multiple UAVs for Maximum Information Collection,”
Journal of Intelligent Robot Systems, vol. 73, pp. 737-
762, 2014.

[26] M. Salaris, A. Riva and F. Amigoni, Multirobot
Coverage of Linear Modular Environments, arXiv
preprint arXiv:2001.02906, 2020.

[27] I. Sungur, F. Ordóñez and M. Dessouky, “A robust
optimization approach for the capacitated vehicle routing
problem with demand uncertainty,” IIE Transactions,
vol. 40, no. 5, pp. 509-523, 2008.

[28] C. Lee, K. Lee and S. Park, “Robust vehicle routing
problem with deadlines and travel time/demand
uncertainty,” Journal of the Operational Research
Society, vol. 63, pp. 1294-1306, 2012.

[29] F. Ordóñez, “Robust Vehicle Routing,” INFORMS
TutORials in Operations Research, pp. 153-178, 2014.

[30] R. Xu and D. C. Wunsch, Clustering, John Wiley & Sons,
2008.

[31] A. Likas, N. Vlassis and J. J. Verbeek, “The global k-
means clustering algorithm,” Pattern Recognition, vol.
36, no. 2, pp. 451-461, 2003.

[32] K. Helsgaun, “An Extension of the Lin-Kernighan-
Helsgaun TSP Solver for Constrained Traveling
Salesman and Vehicle Routing Problems,” 2017.

	1 Introduction
	2 State of the Art
	3 Problem Formulation
	4 Methodology
	4.1 The Building Mesh
	4.2 Point Generation and Clustering
	4.3 The Constrained Vehicle Routing Problem
	4.4 Robustness

	5 Results
	6 Conclusions and Future Work
	ACKNOWLEDGMENTS
	Bibliography

