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Abstract
The overarching goal of this work is to present new theoretical and practical tools to
implement robust − t−probing security. In this work, a low‐latency multiplication gadget
that is secure against probing attacks that exploit logic glitches in the circuit is presented.
The gadget is the first of its kind to present a 1‐cycle input‐to‐output latency while
belonging to the class of probing security by optimized composition gadgets [6]. In
particular, the authors show that it is possible to construct robust‐t‐strong‐non‐interferent
gadgets without compromising on latency with a moderate increase in area. The authors
provide a theoretical proof for the robustness of the gadget and show that, for t ≤ 4, the
amount of randomness required can even be reduced without compromising on
robustness.
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1 | INTRODUCTION

In this work, we address the problem of protecting hardware
implementations against side channel attacks. State‐of‐the‐art
countermeasures are typically based on masking [1] but
creating a masked implementation is not trivial at all, especially
when we consider adversarial scenarios such as probing attacks
[2] or, more recently, glitch‐extended probing attacks [3, 4].
The non‐linear modules of cryptographic circuits are the most
intricate to protect against such attacks. For this reason, the
most studied case is the secure implementation of the logic
AND, which over the years has never ceased to stimulate
research since its inception [2].

In the following, we say that a gadget is t−probing
secure when, given t probes, it is impossible to derive in-
formation about the secret values encoded in the masks/
shares. One of the main problems addressed in t−probing
security is composability, that is, determining, given two
t−probing secure gadgets, if their functional composition is
still t−probing secure. It is common understanding that this
depends on the amount of refreshing, a procedure that aims
to break higher order dependencies and bring back the se-
cret's shares into a uniformly random state, after a series of
operations that might have invalidated uniformity [5].

One school of thought, identified as probing security by
optimized composition [6], exploits inner gadget properties to
determine whether their composition is t−probing secure. One
of them is strong‐non‐interference (t−SNI, [7]) which requires
that the number of input shares derivable from a certain set of
probes depends only on the number of internal positions
present in that set (whenever that set's size is less or equal to t).
Demonstrating that a gadget is in the first place t−SNI might
require lengthy proofs or automatic tools [8, 9], but once it has
been done, composition can be studied with simpler, although
not trivial rules. This kind of scenario is called optimized
because, in principle, it could lead to gadgets with an overall
minimized refreshing effort. This is, however, easier said than
done as, even recently, some gadgets that were thought to be
t−probing secure have been shown to be vulnerable to higher
order attacks [10]. Trivial composability tries, instead, to
identify inner gadget properties that could make reasoning
about composition even more trivial, in the sense that it suf-
fices for certain gadgets to ensure at least probe‐isolating‐non‐
interference [6] to be able to compose them.

An additional problem is protecting the gadget from circuit
glitches. One way to address this is threshold implementations
(TI) [11] that ensure that all logic cones of a primitive depend
only on a proper subset of the shares. Besides the overall
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correctness constraints, this means ensuring that, (i) if a gad-
get's input is fed with shares (computed from the secret) whose
distribution is uniform, its outputs must be uniform as well
and (ii) each output share can be computed using only a proper
subset of the input shares.

The current research trend tries to address t−probing se-
curity and glitches as a single challenge instead of different,
seemingly orthogonal problems. The robust probing model is
probably the most important conceptual evolution with respect
to the original t−probing security model [3, 4]. In this attack
model, glitches are seen as extended probes that constitute
additional observation points of the input values of a given
cone of logic. With this model, one can prove that some
gadgets are not only t−SNI in the conventional sense but can
be made robust−t−SNI by adding a register layer at the out-
puts (see e.g., [3]) trading off latency with security. On the side
of trivial composability, stricter conditions on a gadget, like
the t‐PINI condition [6, 12], have been identified to ensure
robustness in the presence of glitches.

It is currently understood that the minimal input‐shares‐
to‐output latency of circuits with optimized compos-
ability (e.g., the glitch‐robust t−SNI multiplication presented
in [3]) requires two cycles. In this work, we reduce it to one
cycle at the cost of some extra randomness by adopting a
different temporal scheme for producing refresh random bits.
In fact, we will provide a class of 1‐cycle‐latency multiplica-
tion gadgets that are robust−t−SNI. In particular, in Prop-
osition 1, we prove our construction for CMS gadgets to be
robust−t−SNI, showing, therefore, for arbitrary t, the exis-
tence of such gadgets with one cycle latency using (in total)
2 ⋅ s2 random bits, where s¼ t þ 1 is the number of shares.
Besides, we show how to lower this bound to sðs − 1Þ and s2
for the practically most relevant cases s¼ 2; 3 and s¼ 4; 5,
respectively, by simply removing some randomness and
proving it robust−t−SNI with MASKVERIF [13].1

The paper is organized as follows: Section 2 summarizes
the current state of the art for robust probing security pointing
out a few problems with the current approaches. Section 3
presents the main construction proposed in this work, high-
lighting a few optimized schemes. Section 4 suggests potential
applications of the new gadget. Section 5 presents some final
comments and indicates some future work.

2 | STATE OF THE ART

Recall that a function f is t‐non‐interferent (t−NI) if, when
given a total of o outputs and i internal probes, oþ i ≤ t im-
plies a dependency on at most iþ o input shares. The function
f is strongly t‐non‐interferent (t−SNI) if it even implies a
dependency on at most i input shares [7]. When considering
glitches, probes are extended to model information that might
be captured with glitches. In particular, they allow the attacker

to observe all the inputs of a gadget that connect to a probed
output wire, because this is what has been observed in real‐
world scenarios [14]. When considering such kind of probes,
we talk about robust − t−probing security instead of conven-
tional t−probing security.

In this work, we address the problem of robust−t−probing
security in the context of optimized composability. Chrono-
logically, the original efforts considered a hybrid of the Ishai–
Sahai–Wagner scheme [2] with TI, culminating in the
Consolidated Masking Scheme (CMS) [15]. While the results
were important in terms of decrease of randomness needed (in
CMS with t þ 1 shares, one needs ðt þ 1Þ2 refresh values), it
was shown recently that this cannot be extended past t > 2
(without even considering robust t−probing security [10]).
Later proposals for a t−probing secure multiplication
addressed a reduction in terms of refresh values [16, 17] (with a
lower bound identified in [18]) but, after the considerations
made in [10], it is not clear how much past t > 1 these can be
made robust‐t‐probing secure. Besides, all the proposed gad-
gets suffer from an increased latency (two cycles) because they
need an additional register after the compression stage to be
guaranteed robust−t−SNI.

Recent efforts put into improving CMS masking without
increasing the latency have been proposed [19]. Figure 1
shows a solution for the case for t ¼ 3; s¼ 4 as proposed by
the authors in Ref. [19]. Note that the authors elaborate this
scheme starting from the first CMS proposed in Ref. [15],
changing the order of products aibj and introducing addi-
tional random bits qi to protect the shares; however, as we
now show, this gadget is not robust‐3‐strong‐non‐interferent
(SNI). In fact, consider the three probes marked in green
P1; P2 and P3: probes P2 and P3 are the only internal probes so
all three probes should convey information about up to two
shares. P1 allows us to get ða1b2 þ r0 þ r1; a1b0þ r1 þ r2 þ q0;
a3b0 þ r2 þ r3 þ q1; a3b2 þ r3 þ r4Þ, whereas the two internal
probes P2 and P3 allow us to get ða2b3; r0; r15Þ and
ða1b0; r1; r2; q0Þ, respectively. In principle, the information on
the secrets derived from P1 (e.g., a1b2) is covered by at least two
random bits (e.g., a1b2 is covered with r0 and r1); however, it is
possible to unmask a1b2 from P1 adding r0 and r1 recovered
from P2 and P3, respectively. Then, three shares of b are exposed
(b2 from P1, b3 from P2 and b0 from P3) with only two internal
probes.

3 | A PROVABLY ROBUST‐t‐SNI, 1‐
CYCLE‐LATENCY CMS‐LIKE SCHEME

The problem with the scheme in Figure 1 is that internal
extended probes give access to each random bit used in the
refresh layer (yellow section). To overcome this leak, one
can sum and save into a register these pairs of random bits
so as to avoid that a single probe (such as e.g., P3) has
access to both intermediate products and individual refresh
random bits. Note that, from the point of view of the
input‐to‐output latency, the gadget is still one cycle as this
sum could be pre‐computed before receiving the shares a

1
See https://github.com/vzaccaria/maskverif.docker for the MASKVERIF scripts for
reproducing the results.

2 - MOLTENI ET AL.

https://github.com/vzaccaria/maskverif.docker


and b. For the above gadget, we would have the following
expressions:

c0¼ ½a1b2 þ ½r0 þ r1�� þ ½a1b0 þ ½r1 þ r2� þ q0� þ

þ ½a3b0 þ ½r2 þ r3� þ q1� þ ½a3b2 þ ½r3 þ r4��

c1¼ ½a1b3 þ ½r4 þ r5�� þ ½a1b1 þ ½r5 þ r6� þ q1� þ

þ ½a3b1 þ ½r6 þ r7� þ q2� þ ½a3b3 þ ½r7 þ r8��

c2¼ ½a0b1 þ ½r8 þ r9�� þ ½a0b0 þ ½r9 þ r10� þ q2� þ

þ ½a2b0 þ ½r10 þ r11� þ q3� þ ½a2b1 þ ½r11 þ r12��

c3¼ ½a0b3 þ ½r12 þ r13�� þ ½a0b2 þ ½r13 þ r14� þ q3� þ

þ ½a2b2 þ ½r14 þ r15� þ q0� þ ½a2b3 þ ½r15 þ r0��

ð1Þ

where square brackets indicate registered values (see Table 1),
with additional red colour when they refer to the registered
sum of refresh random bits; one can verify with MASKVERIF [13]
that the above gadget is in fact robust‐3‐SNI. Note that
Equation (1) describes the scheme in Figure 1 with some added
registers (red brackets). This strategy is not entirely new as it
has been used, to the best of our knowledge, only recently [6]
in the field of trivial composability. However, we will show
that also optimized composability might benefit from such
strategy, as it is possible to generalize this idea to derive a
sufficient condition for a gadget being 1‐cycle robust−t−SNI,
whose general cone structure is shown in Figure 2.

Note that the shares ai and bj are organized as in the
original CMS scheme [15], and the random bits are summed up
and registered before using them in the refresh layer.

Proposition 1 Given 2s2 independent random bits
ðqijÞ0≤i;j≤t and ðrijÞ0≤i;j≤t the following AND‐gadget is
robust−t−SNI:

ci ≔
X

0≤j≤t
½ai ⋅ bj þ ½ri;j þ ri;jþ1 þ qi;j þ qiþ1;j�� ð2Þ

where ris ≔ ri0; qsi ≔ q0i for 0 ≤ i ≤ t and s≔ tþ 1.
Proof. For the meaning of mathematical symbols, see Ta-

ble 1. Setting oi;j ≔ ai ⋅ bj þ si;j with si;j ≔ ri;j þ ri;jþ1 þ qi;jþ
qiþ1;j for 0 ≤ i; j ≤ t, the extended output probes are
γi ≔ foi;j∣0 ≤ j ≤ tg for 0 ≤ i ≤ t, and the maximal extended
inner probes are αi;j ≔ fri;j; ri;jþ1; qi;j; qiþ1;jg and βi;j ≔ fai⋅
bj; si;jg for 0 ≤ i; j ≤ t.

An attacker gets to pick at most t extended probes, let us
say a set Γ of output probes of type γj , a set A of inner probes

F I GURE 1 1‐cycle latency Consolidated Masking Scheme derived
gadget proposed in [19]. Green discs represent the three extended probes
that make it not robust‐3‐strong‐non‐interferent. The black thick line
indicates the register layer. The expressions to compute the outputs are
those in Equation (1) except that the values in red brackets are not sampled
in an additional register, that is, only those values in the black brackets are
sampled

TABLE 1 Meaning of some mathematical symbols employed in the
text

Symbol Meaning

½⋅� Value saved into a register

≔ Mathematical definition

| ⋅ | Set cardinality

〈vi∣i ∈ I〉 Vector space generated by the vectors ðviÞi∈I

x¼ ymodV x equals y modulo the subspace V , i.e.:

x¼ yþ v for some v ∈ V

F I GURE 2 A cone of the proposed robust − t − SNI CMS structure
that has still 1‐cycle latency. Green discs represent the possible probes used in
Proposition 1. The black thick lines indicate register layers

MOLTENI ET AL. - 3



of type αi;j and a set B of inner probes of type βi;j , s.t.
jΓj þ jAj þ jBj ≤ t.

Setting I ≔ fi ∣ αi;j ∈ A or βi;j ∈ Bg and
J ≔ fj ∣ αi;j ∈ A or βi;j ∈ Bg, we claim that the attacker can
simulate all those probes knowing just the inputs ai for i ∈ I and
bj for j ∈ J , where clearly jIj ≤ jAj þ jBj and jJ j ≤ jAj þ jBj
(jAj þ jBj is the number of the chosen inner probes). All the
information derivable from the extended probes Γ, A and B can
be expressed using elements of 〈Γ;A;B〉, which can be seen as
sums of standard probes derived from the extended ones. As the
image of the uniform distribution under a linear map is the
uniform distribution on its image, an element of 〈Γ;A;B〉 has a
uniform distribution and is independent of all inputs ai and bj
unless it is already contained in 〈ai ⋅ bj ∣ 0 ≤ i; j ≤ t〉. Hence, the
above claim can be expressed as follows:

〈Γ;A;B〉 ∩ 〈ai ⋅ bj ∣ 0 ≤ i; j ≤ t〉 ⊆ 〈ai ⋅ bj ∣ i ∈ I ; j ∈ J〉.
All standard probes are linear combinations of the linearly

independent values ai ⋅ bj, ri;j and qi;j for 0 ≤ i; j ≤ t, that is,
elements of the vector space 〈ai ⋅ bj; ri;j; qi;j j 0 ≤ i; j ≤ t〉.
Applying to the probes the modulo operation w.r.t. the vector
subspace 〈ai ⋅ bj; ri;j ∣ 0 ≤ i; j ≤ t〉, the probes have values qi;j ,
respectively. qi;j þ qiþ1;j ; for each j, the values qi;j þ qiþ1;j span
a t‐dimensional subspace of the ðt þ 1Þ‐dimensional space
generated by the qi;j with 0 ≤ i ≤ t, so

P
0≤i≤tðqi;j þ qiþ1;jÞ ¼ 0

is the only non‐trivial linear dependency of the values
qi;j þ qiþ1;j for fixed j. Then, for any j, with
R≔ 〈ai ⋅ bj; ri;j ∣ 0 ≤ i; j ≤ t〉

X

i∈I
si;j ¼ 0 mod R ⇒ I ¼∅ or I ¼ f0;…; tg: ð3Þ

Analogously, applying to the probes the modulo operation
w.r.t. the vector spaceQ≔ 〈ai ⋅ bj; qi;j ∣ 0 ≤ i; j ≤ t〉, for fixed j,
the only non‐trivial linear dependency of the values ri;j þ ri;jþ1
is
P

0≤j≤tðri;j þ ri;jþ1Þ ¼ 0. Then, for any i,

X

j∈J
si;j ¼ 0 mod Q ⇒ J ¼∅ or J ¼ f0;…; tg: ð4Þ

Now take σ ∈ 〈Γ;A;B〉 ∩ 〈ai ⋅ bj ∣ 0 ≤ i; j ≤ t〉. We have
to show σ ∈ 〈ai ⋅ bj ∣ i ∈ I ; j ∈ J〉. If σ involves a summand
containing the term ai ⋅ bj, this term stems either from the
inner probe βi;j ∈ B—implying i ∈ I and j ∈ J (confirming
our claim)—or from the summand oi;j ∈ γi ∈ Γ. As
oi;j ¼ si;j mod 〈ai ⋅ bj ∣ 0 ≤ i; j ≤ t〉, assuming βi;j ∉ B implies,
using Equation (3), that σ involves either (a) t þ 1 terms si';j
(with 0 ≤ i0 ≤ t) obtainable from t þ 1 standard probes or (b)
a summand qi0;j for some 0 ≤ i0 ≤ t. The latter case (b) im-
plies that αi0;j or αi0−1;j is probed, and hence j ∈ J (confirming
our claim). The former case (a) requires at least t more
probes (as no extended probe involves terms si;j for more
than one i) contradicting the original assumption that
jΓj þ jAj þ jBj ≤ t.

Analogously, given the implication of Equation (4), σ
involves either (a) t þ 1 terms si';j (with 0 ≤ j0 ≤ t) obtainable
from tþ 1 standard probes or (b) a summand ri;j0 for some
0 ≤ j0 ≤ t. The latter case (b) implies that αi;j0 or αi;j0−1 is
probed, and hence i ∈ I (confirming our claim). For the
former case (a), by just probing γi, an attacker can get all the
terms si;j0 . However, we previously showed that for each term
si;j0 contained in a summand of σ is necessarily j0 ∈ J ,
implying J ¼ f0;…; tg. This contradicts that the attacker can
choose at most t probes because for each inner probe at most
one element is added to J . □

The placement of the products ai ⋅ bj in the output cones ci
as well as the presence of randomness in Equation (2) is
essential to guarantee that the proposed construction is
robust − t − SNI. Indeed, a different placement can break
(robust) strong non‐interference for s big enough. In fact, as-
sume that an attacker chooses n extended output probes
γ1;…; γn placed on adjacent cones, and 4ðn − 1Þ inner probes
α1;i; αi;1; αn;i; αi;n for 1 ≤ i ≤ n. The probes γ1;…; γn give
access to all values oi;j for 1 ≤ i; j ≤ n, whose sum is

P

1≤i;j≤n
ai ⋅ bj þ

P

1≤i;j≤n
ri;j þ ri;jþ1
� �

þ
P

1≤i;j≤n
qi;j þ qiþ1;j
� �

¼
P

1≤i;j≤n
ai ⋅ bj þ

P

1≤i≤n
ri;1 þ ri;nþ1
� �

þ
P

1≤j≤n
q1;j þ qnþ1;j
� �

:

The inner probes allow us to derive ri;1 ∈ αi;1, ri;nþ1 ∈ αi;n,
q1;i ∈ α1;i and qnþ1;i ∈ αn;i, effectively exposing the first
summand

P
1≤i;j≤n ai ⋅ bj of the equation above; thus,

4ðn − 1Þ þ n probes allow us to derive n2 different products
ai ⋅ bj. The arrangement of the ai ⋅ bj in Equation (2) is such
that even knowing these n2 products do not break strong non‐
interference as the attacker only obtains n different shares ai
and bj (1 ≤ i; j ≤ n). But already for s¼ 12 and n¼ 3, a
different placement of the products ai ⋅ bj can expose more
than 4ðn − 1Þ shares of either secret, making it not robust
strong‐interferent.

3.1 | Saving randomness for t ≤ 4

For t ≤ 4, the scheme presented in Proposition 1 can be
simplified by removing the random bits ri;j without
compromising security. This decreases the number of
involved random bits from 2 ⋅ s2 to s2 (see Figure 3 for this
construction). In particular, as one can verify with MASK-

VERIF, robust−t−probing security can be ensured with just
the qi;j :

ci ¼
X

0≤j≤t
½aibj þ ½qi;j þ qiþ1;j�� ð5Þ

for 0 ≤ i; j ≤ t; t ≤ 4. However, for t ≥ 5, this particular scheme
breaks because, with a specific choice of three external probes
on adjacent ci and two internal probes, an attacker is able to
recover three shares of a. For example, if the attacker places
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five probes (see Figure 3's green dots) on γi; γiþ1; γiþ2; αi;0 and
αiþ2;0 then they are able to derive three shares of a, with only
two internal probes. This attack is possible for any t ≥ 5.

For t ≤ 2, one can additionally remove the random bits qi;i,
deriving for t ¼ 1 the following scheme with only two random
bits instead of s2 ¼ 4:

c0¼ ½a0b0 þ q1;0� þ ½a0b1 þ q0;1�

c1¼ ½a1b0 þ q1;0� þ ½a1b1 þ q0;1�
ð6Þ

Similarly, for t ¼ 2, one obtains the following construction
with only six random bits instead of s2 ¼ 9:

c0¼ ½a0b0 þ q1;0� þ ½a0b1 þ q0;1� þ ½a0b2 þ ½q0;2 þ q1;2��

c1¼ ½a1b0 þ ½q1;0 þ q2;0�� þ ½a1b1 þ q2;1� þ ½a1b2 þ q1;2�

c2¼ ½a2b0 þ q2;0� þ ½a2b1 þ ½q2;1 þ q0;1�� þ ½a2b2 þ q0;2�

ð7Þ

Both schemes are robust−t−SNI (for t ¼ 1 and t¼ 2
respectively), as one can verify with MASKVERIF.

4 | APPLICATIONS

Our proposed structure allows us to obtain an input‐share‐
to‐output‐share latency of one cycle while still being robust−t
−SNI, at the expense of increased randomness. A t−SNI
gadget could be made robust−t−SNI with reasonable latency
by replacing all t−SNI ANDs with our proposed gadget, all
t−NI ANDs with DOM ANDs, and all t−SNI refresh gadgets
with the robust−t−SNI refresh gadgets from Ref. [6]. Indeed,
compared to the DOM [20] and the HPC2 [6] gadgets, which
both need sðs − 1Þ=2 random bits, our gadgets require 2�
randomness for s¼ 2; 3, about 2.5� for s¼ 4; 5 and more

than 4� for s > 5. However, our solution requires only 1‐cycle
latency instead of at least two cycles of latency that charac-
terizes the current DOM and HPC2; it is thus clearly a matter
of trade off between latency and randomness. Another appli-
cation could be to lower the latency of an HPC2‐based con-
struction by ‘kickstarting’ the S‐boxes: after 1, 2, 3 rsp. 4 cycles,
one can obtain with HPC2 gadget values of algebraic degrees
1, 2, 3 rsp. 5 in the input bits due to their asymmetric latency of
1 rsp. 2 in their inputs. Replacing just all HPC2 gadgets in the
first layer with our gadget can save one cycle latency, as the
achievable algebraic degrees are then 2, 3, 5 rsp. 8. This can be
done, for example, for the optimized PRESENT S‐box of fig.
6b of [6] to regain the better latency of the DOM‐based
construction. If additionally all S‐box inputs that are added
to the PRESENT S‐Box outputs are refreshed before with a
robust mask refresh, the resulting circuit becomes robust
probing secure for, we believe, a moderate increase in area.

5 | CONCLUSIONS

In this work, we have derived a new robust−t−SNI con-
struction for multiplying two secrets in a robust strongly
non‐interferent way. The novel construction has 1‐cycle
input‐to‐output latency and, for low security degrees t, the
randomness complexity is comparable with conventional, 2‐
cycle‐latency approaches. As a future work, we plan to
study the use of the proposed gadget in the S‐boxes of
known cryptographic algorithms as well as the randomness
requirements for higher t. In particular, preliminary work
shows that a scheme that involves 42 randoms for t ¼ 5 is
possible, but we believe this not to be the lowest bound
achievable.
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