
High-Level Synthesis Techniques for
Algorithm-Level Obfuscation

Christian Pilato, Donatella Sciuto, Francesco Regazzoni, Siddharth Garg,
Ramesh Karri

Abstract Intellectual Property (IP) theft is one of themajor concerns for the economy
of semiconductor companies, costing billions of dollars every year. To make unau-
thorized IP copies, an attacker must reverse engineer and replicate the functionality
of the given chip design.While existing IP protection techniques aim at manipulating
HDL descriptions to thwart the reverse engineering process, they focus on the given
implementation and fail in hiding all details of the the chip functionality. We pro-
pose a comprehensive solution to address this problem during high-level synthesis
in order to apply obfuscation at the algorithm level. Our solution includes several
key-based transformations that are applied during component generation to make
reverse engineering harder during chip fabrication, while the key is later provided
to the circuit to unlock the functionality. We show that our method is a promising
approach to obfuscate large-scale designs despite the obfuscation overhead.

1 Introduction

The design flow for producing an Integrated Circuit (IC) is shown in Fig. 1. It is
composed of several phases, ranging from the design of the components to the phys-

Christian Pilato
Politecnico di Milano, Italy e-mail: christian.pilato@polimi.it

Donatella Sciuto
Politecnico di Milano, Italy e-mail: donatella.sciuto@polimi.it

Francesco Regazzoni
ALaRI Institute, Università della Svizzera italiana, Switzerland e-mail: regazzoni@alari.ch

Siddharth Garg
New York University, USA e-mail: siddharth.garg@nyu.edu

Ramesh Karri
New York University, USA e-mail: rkarry@nyu.edu

1

christian.pilato@polimi.it
donatella.sciuto@polimi.it
regazzoni@alari.ch
siddharth.garg@nyu.edu
rkarry@nyu.edu

2 C. Pilato, D. Sciuto, F. Regazzoni, S. Garg, R. Karri

Untrusted
Foundry

Trusted Design House
Specification

High-Level
Description RTL Design

H
ig

h-
Le

ve
l

Sy
nt

he
si

s

Gate-Level
Design

Ph
ys

ic
al

 S
yn

th
es

is

Layout

M
an

uf
ac

tu
ri

ng

Lo
gi

c
Sy

nt
he

si
s

chip

Fig. 1 IC design flow.

ical implementation on the target technology and the fabrication of the device on
silicon. While the design phases only require access to commercial CAD tools, fab-
rication requires expensive infrastructures to function. For example, TSMC expect
to invest more than 20 billions of dollars for 3nm foundries [23]. Many semiconduc-
tor companies cannot afford the increasing cost of IC manufacturing [10]. As the
technology scales, more and more companies are becoming fab-less, outsourcing
the IC fabrication to third-party foundries [11]. While this process allows for a cost
reduction, it creates security threats in the semiconductor supply chain: an attacker
that has access the design files can reverse engineer the functionality and steal the
Intellectual Property (IP) [9]. Since these ICs often implement proprietary optimized
designs, this malicious process can cause significant economic harm to the design
houses. While IC watermarking is able to determine the real ownership of an IC
during litigation, this is a passive method that requires to identify the illegal copy
and enter into a legal dispute [1].

Semiconductor design houses are thus showing an increasing interest for anti-
reverse engineering techniques for untrusted foundries. For example, split manufac-
turing divides computing resources and interconnections, with the two parts fabri-
cated in different foundries. This process is based on the assumption that collusion
between the two foundries is unlikely. However, designing for split manufacturing is
complex and expensive.Obfuscation and logic locking have been extensively investi-
gated for this purpose as well [29]. The designer adds additional inputs and modules
to the design to hide the correct functionality (obfuscation), while a locking key (un-
known to the foundry and written later in a tamper-proof memory) activates the IC
(logic locking). These methods are usually applied on the gate-level netlist [25, 30].
With the increasing complexity of ICs, designers are migrating to high-level synthe-
sis (HLS) to automate the design process [17].While security features can be applied
at any design steps, more robust solutions can be applied in the early stages, i.e.,
during HLS [18, 20, 22]. For example, the Stripped-Functionality Logic Locking
approach (SFLL) [33] has been recently extended to HLS [34]. However, a holistic
solution that brings together HLS and obfuscation is still missing.

In this chapter, we discuss a possible approach to rise the abstraction level of
register transfer level (RTL) obfuscation by embracing a security-aware HLS flow
to generate obfuscated designs by construction. We propose an approach based on
algorithm-level obfuscation, which aims at developing anti-reverse engineering
techniques based on the characteristics of the algorithm during the different HLS

High-Level Synthesis Techniques for Algorithm-Level Obfuscation 3

steps. The approach we present starts from a high-level description of the function-
ality in C language, and use HLS methods to produce the corresponding obfuscated
RTL description. This is achieved by obfuscating the HLS results or the generated
RTL description. For doing this, HLS algorithms are extended to obfuscate the
most sensitive details of an algorithm. After compiler analysis, the information that
comes from the specification (e.g., constant values, loop bounds) and the informa-
tion generated by HLS (e.g., control states, used and unused datapath resources,
execution latency) are obfuscated. It is possible to obfuscate complex functions as
part of a comprehensive HLS-based obfuscation design flow. As a proof-of-concept,
the obfuscation techniques are implemented in Bambu [19], an open-source HLS
framework and applied the resulting flow to benchmarks that are much larger than
the ones commonly used for gate-level obfuscation.

1.1 Contributions

Complete HLS solutions for obfuscating an IC are unavailable. However, this is a
promising approach to target complex designs, while protecting the semantics of
an IC more efficiently. The obfuscation techniques discussed in this chapter are
imposing constraints on both the compiler front-end and the HLS engine to expose
the elements to obfuscate instead of spreading them inside the design. Working at
the HLS level allows to remove the sensitive algorithmic information and combine
it with the locking key. The main contributions of the proposed approach are:

• The attack scenario consists in the untrusted foundry as the adversary in an
oracle-less threat model for low-volume customers (Section 4);

• The approach embraces a set of obfuscation techniques that address the different
elements of an algorithm to protect (Section 5.1);

• The techniques are integrated in a HLS-based design flow for algorithmic obfus-
cation that starts directly from C code (Section 5.2);

• Different solutions to manage the locking key are presented (Section 5.3).

The approach is evaluated by applying it to common HLS benchmarks, showing
promising results for high-level obfuscation similar to program obfuscation.

1.2 Roadmap

After introducing logic locking (Section 2) and presenting the model of the compo-
nents that we aim at protecting (Section 3), we introduce our threat model (Section 4.
Then, we present our approach for algorithm-level obfuscation, showing how it is
implemented in a HLS flow (Section 5). In Section 6, we evaluate the area and
performance overhead for the obfuscation techniques and present a validation of the
obfuscated designs.

4 C. Pilato, D. Sciuto, F. Regazzoni, S. Garg, R. Karri

key-dependent
logic

fabricated chip

tamper-proof
memory

lo!ing key

Fig. 2 Logic locking requires an additional input to deliver the locking key to the IC.

2 Background on Logic Locking

IC counterfeiting is a critical issue for fabless companies since they may lose billions
of dollars for IP theft and overselling [9]. Addressing the problem, several IP protec-
tion techniques have been proposed at different stages of the design process [24]. To
protect the intellectual property of an IC, the designer has to leverage intrinsic hard-
ware properties of the device with Physical Unclonable Functions (PUFs) [16] or to
modify the manufacturing process to separate the fabrication of the interconnections
from the rest of the chip [12]. However, the process requires a 2.5D integration
technology. Furthermore, these solutions require an intimate knowledge of the target
technology and the back-end tool-chain.

Different solutions have been proposed for adding a “signature” to verify the
ownership of an ICduring litigation (watermarking) [3, 21].Most of these approaches
operate on the gate-level netlist or during layout generation [5, 13, 14], aiming at
embedding a unique “signature”. Also in this case, approaches have been proposed
to raise the abstraction level for IP watermarking and operate during the component
generation [1, 18, 26]. However, these methods are passive and cannot be used to
prevent an illegal IC copy.

Logic locking is a well-known technique to thwart a potential attacker that wants
to reverse engineer and copy the IC design. To do so, it hides the IC functionality
against reverse engineering by using extra logic controlled by a key known only to the
designers [25, 29, 28]. High-level transformations have been already proposed but
only to obfuscate DSP circuits [15]. To thwart attacks aiming at recovering the key,
severalmethods have been proposed to improve logic locking at the gate level [30, 33]
or to raise the abstraction level and perform obfuscation during HLS [34], aiming at
removing semantic information like in program obfuscation [32].

SAT-based attacks can extract these keys [31, 28]. In [22], the authors propose
RTL hardening techniques by adding extra connections among the functional units.
While this approach is more powerful than gate-level methods, constant values
and branches are challenging to obfuscate since the design is already optimized. For
instance, interconnections between resources andmultiplexers have been sized based
on the given precision. However, this reveals information on their range. Since we
operate at a higher level of abstraction, it masks sensitive details of the algorithm by
hiding sensitive constants and encrypting them during the front-end with a limited

High-Level Synthesis Techniques for Algorithm-Level Obfuscation 5

Traditional High-Level Synthesis Flow

Binding

S!eduling

Controller
Synthesis

Code
Generation

Ba"-end

RTL
Design

Compiler
Front-end

HLS
engine

C code

Test-Ben!
Testben!

Generation

IR Analysis

IR
Optimization

IR µ-ar!

Fig. 3 Classic HLS flow.

overhead. Key management is another aspect of algorithmic obfuscation. Many
companies are proposing solutions to store keys in tamper-proof memories (e.g.,
one-time-programmable memories) off-chip. These approaches are complementing
the approach we present here wherein the keys are stored in on-chip tamper-proof
and non-volatile memories.

3 Design Model and High-Level Synthesis

The approach we present generates RTL components with logic locking using HLS.
The accelerator model couples a controller and a datapath, as in the Finite-State
Machine with Data path (FSMD) model [6]. The controller is a finite state machine
(FSM) that determines which operations execute in each clock cycle based on the
evaluation of certain data-dependent conditions. Based on the set of operations to
execute in each given clock cycle, the controller sends the proper control signals to
trigger the functional units, the registers, and the interconnections in the datapath
to drive the data values and perform the computation. Both parts are required to
replicate the IC’s functionality.

High-level synthesis (HLS) is a design methodology that allows designers to
automatically derive an RTL design from its high-level description. The classic
HLS flow is shown in Figure 3, assuming the input functionality is specified in C
language. The HLS tool leverages state-of-the-art compilers (e.g., GCC or LLVM)
to parse the input code, apply compiler optimizations (like loop transformations),
and extract a language-independent intermediate representation (IR) [17]. The core
HLS steps manipulate this IR as follows. Scheduling determines the operations to
execute in each clock cycle based on data dependencies and the available hardware
resources (e.g., functional units and memories). During module binding, operations
scheduled in different clock cycles are analyzed for potential resource sharing to
reduce area occupation. Data values crossing the clock boundaries are assigned to
registers (register binding) [27]. In interconnection binding, the different resources
(functional units, registers and memories) are interconnected and multiplexers are

6 C. Pilato, D. Sciuto, F. Regazzoni, S. Garg, R. Karri

added to correctly drive the signals when multiple data sources share the same target
port. Ultimately, all resources are analyzed to derive the control signals needed in
each clock cycles and the FSM controller is accordingly generated during controller
synthesis. The output is an RTL design in Verilog or VHDL ready for logic synthesis.

4 Threat Model: The Untrusted Foundry

4.1 Untrusted Foundry’s Objective

The main goal of the rogue in the untrusted foundry is to reverse engineer and
replicate the target IC. For doing this, adversaries aim at recovering the correct
sequence of states executed by the controller (execution traces) corresponding to
given input sequences, along with the corresponding signals provided to the datapath
(operations to execute, registers, and interconnections) in each given clock cycle.
Once the entire design is recovered, the foundry can reproduce the component, thus
misappropriating the IP. In case of designs protected with logic locking, this reverse-
engineering process requires to identify also the correct locking key to obtain a
working IC copy. So, the attacker aims at determining the design alternatives based
on the values of the key bits, eventually ruling out implausible key values, i.e., values
for which the design becomes clearly wrong.

4.2 Foundry’s Capabilities

The semiconductor design houses use logic synthesis and physical design tools on
the HLS results to obtain the GDSII file (i.e., the layout) of the IC to fabricate.
The layout is then provided to the untrusted foundry for fabrication. However, the
rogue in the untrusted foundry can access the GDSII file also to reverse engineer
the functionality, attempting to break logic locking. To do so, we assume that the
foundry can reverse engineer the types of modules used in the design (i.e., registers,
functional units, interconnection elements) and can identify the operations executed
by each functional unit (i.e., arithmetic, relational, and logic operations). The foundry
can also perform simulations with different input and locking key values to extract
information from the circuit that can help rule out implausible key values. However,
the untrusted foundry does not have access to the correct key or a functioning
unlocked IC (oracle-less attacks).

High-Level Synthesis Techniques for Algorithm-Level Obfuscation 7

4.3 Target of the Attacks

The oracle-less attacks considered in this chapter are common in low-volume cus-
tomers who build sensitive designs (e.g. US DoD). These designs are typical targets
for attacks from untrusted foundries under pressure from their government to acquire
proprietary cutting-edge technology. Until recently, IBMwasmaintaining the trusted
foundry for the US government. Once it got acquired by Global Foundries (owned by
a entity outside US), there is no trusted US foundry anymore, demanding effective
methods for IC protection.

5 High-Level Synthesis Techniques for Algorithm Obfuscation

To protect the semantic and, in turn, the intellectual property (IP) of an algorithm
via obfuscation, it is necessary to protect the following elements:

• constant values contains proprietary information (e.g., coefficients) or reveals
details of the algorithm (e.g., loop bounds).

• data-flow describes how many and which operations are executed in each clock
cycle together with their dependencies (i.e., which values are elaborated. This
information is represented by the scheduled Data-Flow Graph (DFG).

• control-flow represents the sequence of FSM states traversed during the execution
for the given inputs. It represents protocol implementations in control-dominated
applications.

The elementsmust be obfuscated also to prevent further logic-level optimizations that
can reveal proprietary information. For example, constant values are propagated to
simplify the logic. Also, all elements must be obfuscated because they are connected
and leaking information on one set of elements can aid recover details on the others.
For example, multiplications by a constant that is power of two is often converted into
shift operations that are more hardware-friendly. The optimization results can leak
information both on the original operation (i.e., the multiplication) and the constant
value (i.e., the power-of-two value).

The obfuscation techniques that we consider follow the same principles as in
program obfuscation [4]. The real functionality is hidden with the creation of opaque
variables or opaque predicates. A variable is opaque if it has some property (e.g.,
a value) that is known during obfuscation but is difficult for the attacker to deduce.
Similarly, a predicate is opaque if its outcome is known only during obfuscation. To
create opaque variables and predicates, expressions are combined with the locking
key bits values that are known during obfuscation, but unknown to the attacker.

8 C. Pilato, D. Sciuto, F. Regazzoni, S. Garg, R. Karri

a = b + 8;

datapath
b 8

a

+

datapath

HLS
b const

a

+

+
enc

K

obfuscation

Fig. 4 Design modifications to implement constant obfuscation during RTL generation.

5.1 Obfuscation Techniques

In this section, the techniques proposed to obfuscate the elements discussed above
is presented. All these elements require specific bits for obfuscation.

5.1.1 Constant obfuscation

Constant values are an essential part of the IP specification and may disclose sen-
sitive information about the implemented algorithm. Consider a component with
proprietary coefficients that realizes a specific digital filter. Such coefficients include
also the number of taps in the filter. Without having this information, it is possible to
replicate the type of component, but it is almost impossible to match the exact same
filter function. Also, HLS tools optimize the datapath based on the data bit-width to
reduce the IC cost [8, 17]. However, using the minimum number of bits to represent
a constant leaks information about its range.

To enable constant obfuscation, sensitive constants in the datapath are replaced
with opaque variables as shown in Fig. 4. The variable associated with a constant +8
is obtained by combining a value encoded in the circuit +4

8
with the locking key bits

 8 as:
+
?

8
= +48 ⊕ 8 (1)

where +4
8
is the obfuscated value that will be stored in the RTL micro-architecture,

while 8 is a �-bit signal that represents the part of the working key dedicated to
obfuscating the constant +8 . The encoded value associated with each constant +8 of
the input algorithm is obfuscated as

+48 = +8 ⊕ 8 (2)

Clearly, the correct value is re-obtained only when the correct key is provided.
Instead, if a wrong key is provided, the resulting value will be different from the
one contained in the initial specification, but an attacker cannot determine this. Even
when the constant represents a loop bound, the exact number of execution clock
cycles for complex specifications is unknown to the attacker.

The number of bits� to implement all the constants of the function is pre-defined.
The use of a pre-defined number of bits for all constants (regardless of their real
size) hides the real bit-width of the specific constant, thwarting the identification

High-Level Synthesis Techniques for Algorithm-Level Obfuscation 9

ALGORITHM 1: Algorithm to create DFG variants.
Procedure CreateDFGvariant(���8 , :8)

Data: ���8 is the DFG of the basic block ��8 ; :8 represents the key bits assigned to ��8

Result: +���8 is the set of DFG variants associated with ��8

+ 0A80=CB ← ∅
+ ← ComputeKeyVariants(:8)
foreach E ∈ + do

38BCE ← ComputeDistance(E, :8) // compute distance between E and :8
���∗8 ← CopyDFG(���8) // create a copy of the current DFG
$% ← ClusterOperations(���∗8)
foreach >? ∈ $% do

>? 9 ← GetOperation(>?, 38BCE) // return an operation at distance 38BCE
mod 2;DBC4AB
SwapOperationTypes(>?, >? 9) // statistically swap the types of the two
operations

end
foreach 34? ∈ ���∗8 do

34? 9 ← GetDependence(3, 38BCE) // return a dependence at distance 38BCE
RearrangeDependence(34?, 34? 9) // statistically reorganize the dependences

end
+ 0A80=CB ← + 0A80=CB ∪ ���∗8

end
return �;;>20C8>=

of the correct range. However, extracting the constants from the circuit may rule
out subsequent logic optimizations (e.g., constant propagation and logic trimming),
increasing the obfuscation cost.

Example. Consider a constant +8 = 10 to be stored using 5 bits (5’b01010). The same
value can be obfuscated as an 8-bit value as+ 4

8
= 5’b01010111 or+ 4

8
= 5’b11001101

based on locking keys 8 = 5’b01011101 and 8 = 5’b00100111, respectively. �

This example also shows that the same constant +8 is encoded in different ways
(resulting in different +4

8
values) based on the specific value of the locking key. This

prevents the attacker from breaking the obfuscation and recovering the constant by
comparing different versions of the design.

This step can be applied at any steps of the design flow. However, it is applied
at the beginning, right after the compiler phase, to avoid constant-related HLS
transformations and optimizations.

5.1.2 Data-flow obfuscation

To hide the arithmetic operations performed in the datapath, several DFG variations
for each basic block are created. The DFG variations are based on the results of
the HLS engine. Indeed, each basic block is schedule to determine the minimal
number of functional units and registers to perform the computation, along with the
latency (i.e., number of clock cycles), to perform the corresponding computation.
Algorithm 1 shows how this information is used as constraints for creating the set
+0A80=CB of DFG variations starting from a valid schedule ���8 and the :8 key
bits assigned to the basic block 18 . The number of key bits assigned to the basic
block 18 is proportional to the number of operations in 18 . In this way, a large
number of variants is created only for more data-intensive basic blocks, while small

10 C. Pilato, D. Sciuto, F. Regazzoni, S. Garg, R. Karri

-

-+

-

-+

* -

+

-+

+ *

+ *

* +

- + * -

+ * -

Merging
Variants

Op
Variant

Dep
Variant

1 2

3

Original BB DFG BB DFG Variant

K = 1’b1 K = 1’b0

Red multiplexers
depend also on the key bit K

Fig. 5 Generation of DFG variants for operation obfuscation.

basic blocks (with less sensitive operations) are left untouched. First, the 2�8−1 key
variants are computed, beginning from the given key bits :8 . These key values will
be associated with each DFG variant (ComputeKeyVariants) and values have the
same number of bits as :8 but different values to distinguish the variants from the
correct functionality. Then, for each variant, the Hamming distance between the
corresponding key value and the obfuscation key bits :8 (ComputeDistance) is
computed. A copy of the current schedule (CopyDFG) is produced, the operations
are topologically ordered and then clustered based on the operation types. For each
operation, the distance values are used as parameters for selecting the operations
to alter and determining a reciprocal one in an alternative cluster GetOperation).
Once the operations are selected, the two types are swapped with probability 0.5
(SwapOperationTypes). The algorithm proceeds to change DFG dependences in a
similar way (RearrangeDependences). The set of resulting DFGs are merged to-
gether to create a single datapath micro-architecture, where multiplexers are inserted
to drive the signals and implement one of the variants based on the values of the key
bits.

Fig. 5 shows the application of this algorithm to a simple example. Starting
from a DFG, pairs of different operations are selected for swapping their operand
(step 1 in Fig. 5). For every DFG edge, an alternative edge is selected and the
dependencies to return a credible DFG (step 2 in Fig. 5) are restructured. Finally,
the architectures corresponding to each variant are recombined into a single data
path microarchitecture, restructuring the interconnections using extra multiplexers

High-Level Synthesis Techniques for Algorithm-Level Obfuscation 11

if (a > b) {
 // BB2
}
else {
 // BB3
}

controller datapath
a b

test

>
if (test)
 next_state = ST_bb2_1
else
 next_state = ST_bb3_1

controller

if (test ^ K)
 next_state = ST_bb2_1
else
 next_state = ST_bb3_1

controller

if (test ^ K)
 next_state = ST_bb3_1
else
 next_state = ST_bb2_1

HLS

obfuscation

K = 1’b1K = 1’b0

bran! reordering
for semantic equivalence

Fig. 6 Obfuscation of control branches. Different versions are obtained by combining the test with
the assigned key bit, thwarting identification of the correct true and false blocks.

and control signals (step 3 in Fig. 5). In each clock cycle, the functionality to execute
is selected through a combination of key bits (to select the variant) and scheduling
information (to select the operations).

5.1.3 Control-flow obfuscation

Each branch in the CFG corresponds to a branch also in the corresponding controller
FSM to determine the next state to execute. The target state depends upon the
outcome (either true or false) of a predicate evaluation. The predicate is computed in
the datapath (e.g., an arithmetic comparison or a Boolean operation) but is evaluated
in next-state function of the controller. The identification of the correct condition
(i.e., true and false) is thwarted and, in turn, the corresponding target state is also
thwarted by assigning a key bit 9 to each branch 9 and changing the corresponding
test in the controller to be of the form:

test ⊕ 9 == 1′11 (3)

To maintain the semantic equivalence of the branch, the two branches are reordered
based on the value of the key bit 9 . For instance, the true and false blocks are
swapped when 9 = 1 because the xor operation inverts the value of the variable
test. This transformation corresponds to the creation of an opaque predicate because
the result of the xor is known during obfuscation because it is known the value of
the key bit. On the contrary, the attacker cannot determine which is the actual
true (false) block without knowing the value of the key bit. Fig. 6 shows this
transformation on a simple example.

Example. Consider the if-then statement in the black box shown in Fig. 6. When a
is greater b, the control transfers to BB2, otherwise it transfers to BB3. After performing
traditional HLS, we obtain the controller and data path shown in the red boxes of
Fig. 6. Based on the results of the test, the next state is the first state of BB2 or BB3. An
attacker can determine which part of the algorithm executes when the condition is true.
Conversely, our obfuscation technique can yield alternative versions of the controller
(shown in the blue boxes in Fig. 6). The two resulting tests are perfectly equivalent, but

12 C. Pilato, D. Sciuto, F. Regazzoni, S. Garg, R. Karri

High-Level Synthesis Flow with Algorithm-Level Obfuscation

Binding

S!eduling

Controller
Synthesis

Code
Generation

RTL
Design

C code

Test-Ben!

Key
Management

IR Analysis

IR
Optimization

IR

µ-ar!

Testben!
Generationworking key

Data and
Control Flow
Obfuscation

Key
partitioning

Constant
Obfuscation

Lo"ing
key

Fig. 7 HLS flow extended with key-based obfuscation.

the target state in case of true (false) result is different based on the key bit. So, the
attacker cannot determine which is the real true block without knowing the correct
value of the key bit. �

The same transformation applies to the test conditions of the for/while loops
because the front-end compiler translates them into an identical form. One can
obfuscate also complex branch constructs (e.g,. switch) by using more key bits.

5.2 Obfuscation Approach

Since the components generated with HLS require a strict interaction between dat-
apath and the controller, an implementation of the approach should necessary be
comprehensive, embracing all HLS steps to automatically implement the obfusca-
tion transformations presented in Section 5. Such a comprehensive solution has been
implemented extending the traditional HLS flow (see Section 3), making reverse
engineering and hence the IP theft more difficult. This enhanced flow is shown in
Fig. 7 and starts from the C code of the component to generate and the locking key
 , which is generated by the designer to activate the IC after fabrication. The final
output is a locked RTL design (with an extra input for providing the key) ready for
logic synthesis and physical design.

5.2.1 Compiler Front-end

The input C code is processed with the compiler front-end to general the internal in-
termediate representation (IR). Then, common compiler transformations, including
function inlining and loop optimizations, are applied to the IR to prepare it for HLS.
Constant propagation is instead disabled so that the information can be obfuscated.

The IR generated and optimized during the HLS front-end is processed to de-
termine the number of key bits needed to obfuscate the different elements of the
algorithm. For this, the call graph is extracted to figure out the list and hierarchy

High-Level Synthesis Techniques for Algorithm-Level Obfuscation 13

of functions to synthesize [17]. Other information consists of the number of basic
blocks1 and the resulting Control Flow Graph (CFG). A fixed number � of key bits
is assigned to obfuscate each constant, �8 key bits to obfuscate the scheduled DFG of
each basic block 18 , and one bit to obfuscate each control branch. By combining this
information with the IR details, it is determined the number of bits of the internal
obfuscation key, , called working key, needed to obfuscate the algorithm:

, = #D<8 5 + #D<2>=BC ∗ � +
��∑
8=0

�8 (4)

where #D<8 5 and #D<2>=BC are the number of branches and constants, respectively.
� is the number of key bits assigned to implement each constant and �8 is the number
of key bits assigned to the basic block ��8 . So, the size of the working key, depends
on the complexity of the algorithm to protect and is usually larger than the locking
key provided by the designer. Section 5.3 describes how to generate the working
key starting from the input locking key .

5.2.2 HLS Engine

In the mid-level phase, we perform the traditional HLS steps, extended with the
obfuscation techniques. First, the constants are extracted and obfuscated (see Sec-
tion 5.1.1) to prevent HLS transformations and optimizations based on their bit-
widths and values. For example, multiplications by constants are usually simplified
to obtain more efficient hardware [2]. However, this may reveal sensitive information
that cannot remove after HLS. The resulting IR is input to the HLS steps to create
the datapath and the controller of each sub-function.

For creating the datapath, after scheduling each basic block, several variants are
created with the goal of thwarting the identification of the arithmetic operations
and dependencies (see Section 5.1.2). Since �8 obfuscation bits are used for the
basic block 18 , the corresponding key value is assigned to the correct version and
the other 2�8 − 1 values to the variants. In the resulting datapath microarchitecture,
extra connections between functional units and registers are added to implement the
functionality of the different variants, and multiplexers to activate the execution of
the variant associated with the value of the corresponding key portion.

For creating the controller, the FSM associated with each scheduled module is
determined and each control branch is obfuscated (see Section 5.1.3). In case of a
conditional jump, the result of the condition evaluation performed in the datapath is
masked with a key bit. The next-state functions of the controller are thus masked with
key bits to obfuscate the correct transitions while maintaining logical but incorrect
execution flows in case of wrong locking keys.

1 a basic block is a sequence of instructions with a single entry point and a single exit point.

14 C. Pilato, D. Sciuto, F. Regazzoni, S. Garg, R. Karri

KK-1 KK-2 K2 K1 K0…

KK-1 KK-2 K2 K1 K0…KW-1 KW-2 KK+2 KK+1 KK…

Locking key
(K bits)

Working key
(W bits)

Fig. 8 Key management when working key is larger than the locking key (, >). the locking
key is repeated to create the working key.

At the end of the HLS steps, the module of each function is created by combining
the corresponding datapath and controller. The hierarchy of the modules as in the
traditional HLS flow is also created.

5.2.3 Back-end

This step generates the RTL description and the logic for key management of the
obfuscated design. The component will feature an additional input port to load the
locking key from the system, while the working key used for obfuscation is stored
internally and derived from the input locking key. The strategy to manage locking
and working keys are described in Section 5.3.

5.3 Key Management

5.3.1 Storing the locking key

The locking key is the only extra input used to lock the circuit, as shown in Fig. 2. This
key is given to our obfuscation approach for applying the obfuscation techniques but
not to the foundry. Instead, it is stored in a tamper-proof memory (e.g., EEPROM,
eFuses or Non-Volatile Memory [7]) after IC fabrication [25, 22]. The number
of locking key bits that one can deliver to the IC may be fixed and limited by
the technology. On the contrary, the number of key bits needed by an algorithm
for obfuscation (working key) depends on the number and size of the basic blocks,
number of control branches, and number of constants) and the obfuscation techniques
that are applied.

5.3.2 Generating the working key

When the number of working key bits is smaller than the number of available locking
key bits, there is a one-to-one correspondence between the working and locking key
bits, which are thus directly connected. This situation is ideal because each key bit is
unique and there is no additional overhead for key management. However, this is not

High-Level Synthesis Techniques for Algorithm-Level Obfuscation 15

KK-1 KK-2 K2 K1 K0…

…KW-1 KW-2 …

AES key

NVM
(encrypted bits)

sys rst AES core

K2 K1 K0KK-1 KK-2KK+2 KK+1 KK

plain text

cipher text

AESWorking key

Locking key

Encrypted bits Off-line encryption of the key bits

Fig. 9 Key management when working key is much larger than the locking key (, >>). The
key is generated at power up and AES decrypts the values in the non-volatile memory.

always possible, and cases where exist more working key bits than available locking
key bits needs to be considered. When it is needed to derive many working key bits
from a smaller number of locking key bits, one solution entails reusing the locking
key bits as many times as needed to generate the working key, as shown in Fig. 8.
In this situation, each key bit has a maximum fan-out of 5 = d,/ e, which may
leak information to break the logic locking. Indeed, the attacker can use correlation
analysis to extract information about each single key bit. If the attacker can extract
the value of one working key bit, the corresponding locking key bit and, in turn, all
its replicas are extracted. This may compromise the security of the generated IC for
large values of 5 , i.e., when the number of working key bits is much larger than the
number of available key bits.

For this case, an alternative solution is shown in Fig. 9. The locking key is used by
an AES cryptographic core to encrypt the working key at design time. The resulting
cipher-text is stored in a Non-Volatile Memory (NVM) that is added to the IC. At
power-up, the NVM values are decrypted using the given locking key and placed
into the working-key registers. So, the correct working key is loaded only when
the correct locking key is placed into the IC and used for decryption. This solution
does not introduce any performance overhead for deriving the working key since this
process is performed only at power-up, when the system is not operational. Also,
since this solution leverages the security guarantees of AES, we can use a 256-bit
locking key, which is a reasonable size for existing technologies, to secure a large
number of working key bits.

6 Experimental Evaluation

The obfuscation approach is validated by extending Bambu, an open-source HLS
framework [19]. Since Bambu has a modular organization, the obfuscation tech-

16 C. Pilato, D. Sciuto, F. Regazzoni, S. Garg, R. Karri

niques is implemented as additional steps in the HLS flow. The resulting version of
the tool is called LockBambu.

6.1 Experimental Setup

LockBambu is used to generate obfuscated circuits on five HLS benchmarks from a
range of application domains: gsm is a linear predictive coding analysis for telecom-
munication. adpcm is an algorithm for adaptive differential pulse code modulation,
sobel is an image-processing algorithm. backprop is a method for training neural
networks, and viterbi is a dynamic programming method for computing proba-
bilities on a Hidden Markov model. These algorithms represent applications that a
designer may want to obfuscate because of proprietary implementations. Table 1
shows the characteristics of the benchmarks.

Table 1 Characteristics of the benchmarks.

Benchmark # C lines # Const # BB # CJMP W (bits)

gsm 110 4 88 4 484
adpcm 412 5 100 5 565
sobel 65 2 11 2 110

backprop 264 12 123 11 887
viterbi 144 117 98 9 4,145

For each benchmark, Table 1 reports the number of constants (# Const), basic
blocks (# BB), and control branches (# CJMP) following the compiler optimizations.
Together with the number of lines of C code (# C lines), they capture the algorithm
complexity. The bit-width of each obfuscated constant is set to 32 bits (i.e., � = 32),
while the original constants range between 8 (char values) and 32 bits (int values).
One bit is assigned to each control branch. Finally, four bits are assigned to each
basic block to generate up to 16 DFG variants (i.e., �8 = 4 for all basic blocks) Table
1 reports the working key bits required for each algorithm (W). The resulting number
of working key bits shows that constant obfuscation requires a large number of bits.
For example, viterbi and gsm have more or less the same number of basic blocks
and control branches but the former has many more constants, requiring 10× more
key bits than the latter. These benchmarks are bigger than those commonly used
for logic obfuscation. Working at a higher abstraction allows us to obfuscate larger
circuits.

For each benchmark, 256-bit locking keys are generated and the effects of the
obfuscation technique are evaluated in terms of obfuscation potency (how much is
the attacker confused?) and obfuscation cost (what is the obfuscation overhead?). To
evaluate the obfuscation techniques, the baseline designs (generated with Bambu)
are comparedwith the corresponding obfuscated ones (generatedwithLockBambu).

High-Level Synthesis Techniques for Algorithm-Level Obfuscation 17

Bambu generates RTL testbenches to validate the circuit for a series of input values
through RTL simulations. These executions are compared against the respective
executions of the input specification in software. In LockBambu, these testbenches
are extended to specify different locking keys as input to verify the execution for
each of them. Simulations are performed with Mentor ModelSim SE 10.3 and are
instrumented to report if the execution provides the same results as the baseline
design (to evaluate obfuscation potency) and the number of cycles (to evaluate
to evaluate obfuscation cost in terms of performance overhead). The baseline and
obfuscated versions of the circuits are synthesized using Synopsys Design Compiler
J-2014.09-SP2 targeting the Synopsys SAED 32nm Generic Library at 500 MHz (to
evaluate obfuscation cost in terms of area overhead).

6.2 Evaluation of Obfuscation Potency

For each benchmark, 100 random keys are generated. The first key is used as input for
LockBambu (locking key), while the others are used to test for security evaluation.
First, the generated circuits are simulated with the correct locking key corroborating
that the circuits produce the same results as in the baseline version. All other keys
result in wrong results and this assures that the attacker cannot turn on the circuit
with another key. The obfuscation potency (i.e., how much attacker is confused) is
quantified using the “output corruptibility” of each locked circuit, computed as the
Hamming distance with respect to the output of the baseline circuit [31]. The ideal
obfuscation procedure should provide an output corruptibility of 50% to avoid any
bias in the output bits that can leak information on the key values. When combined,
the three obfuscation techniques produce an average HD of 62.2% over the five
benchmarks, which is a good result. Also, designs can leak information through
variations in the execution latency (timing channels). However, incorrect locking keys
impact the performance only when they modify the loop bounds. Other constants
have no effect, while data path obfuscationworks on a valid schedule without altering
the total number of cycles. It is difficult for an attacker to tell whether a circuit is
behaving properly or not. While the alternative DFGs are conceptually similar to
the creation of the Super CDFG [22], SAT-based attacks are much harder to apply
because the oracle chip is unavailable in the untrusted foundry threat model and
the complexity of the circuits demands novel methods to apply these attacks on
large sequential circuits composed of datapath and controller. Moreover, in case of
constants, the information is fully cut out from the circuit, and one cannot recover it
without the correct locking key. In conclusion, the circuits generated by LockBambu
have a higher security level than previous obfuscation techniques operating at the
logic level.

18 C. Pilato, D. Sciuto, F. Regazzoni, S. Garg, R. Karri

+1% +0% +2% +0% +1%+4% +6% +5%
+11%

+20%+18%
+23%

+11%

+31%
+25%

baseline
branches

constants
DFG variants

no
rm

al
iz

ed
 a

re
a

ov
er

he
ad

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0
1.1
1.2
1.3
1.4

benchmark

gsm adpcm sobel backprop viterbi

Fig. 10 Area overhead of obfuscation techniques.

6.3 Evaluation of Obfuscation Cost

To evaluate the cost of each obfuscation technique, LockBambu is modified to selec-
tively apply the methods through command-line options. Since these transformations
are orthogonal, different versions of the circuits are generated for each of them.

RTL simulations are performed to check the performance overhead concerning
the circuit latency (in clock cycles). When the correct key is applied, there is no
performance overhead on the generated designs concerning the baseline versions.
However, the target frequency is decreased by 8% on average when we apply data-
flow obfuscation because of the more additional multiplexers. Also, the drop off in
frequency is proportional to the number of key bits assigned to each basic block
because creating more variants requires more multiplexers. Obfuscating the control
branches has a negligible impact on the frequency (less than 1%). Representing the
constants by a pre-defined number of bits � increases the size of multiplexers and
reduces logic optimizations. However, the impact the critical path is minimal (around
4%). When all obfuscations are applied, the target frequency is decreased by less
than 10% on average that can be reduced to 6% on average with more aggressive
logic synthesis optimizations.

Logic synthesis is carried out to evaluate the area overhead of the various obfus-
cation techniques. Fig. 10 shows the results, where each value is normalized against
the area of the respective baseline version (obtained with the original version of
Bambu). The results indicate that obfuscating the control flow has practically no
area impact. This technique only adds a few exclusive-or gates to the controller.
Obfuscating constants increases the area by 10% on average since it creates larger
multiplexers and prevents logic-level optimizations. Data-flow obfuscation has the
most impact, increasing the area by around 21% on average. This area overhead is
mainly due to the additional multiplexers to connect functional units and registers.
This obfuscation is appropriate for benchmarks where the computational part has

High-Level Synthesis Techniques for Algorithm-Level Obfuscation 19

simple functional units (e.g., shifters and Boolean operations) or has many basic
blocks. backprop is the benchmark with more basic blocks and has the largest over-
head (>30%). Similarly to the frequency, the area overhead is proportional to the
number of key bits assigned to the basic blocks. When all obfuscation techniques are
applied together, the overhead adds up, resulting in a total overhead between 20%
and 45%. It is worth noting that memory controllers to access the external memory
are responsible for a significant portion of the circuit area, but they are not obfuscated
because their implementation is generic does not contain any algorithm-dependent
part. This significantly reduces the impact of obfuscation on the final design.

In the basic approach of replicating the key bits, there is no performance or area
overhead. The signals are coming from the tamper-proof memory where the locking
key is stored and directly connects to the points where one uses the working key. For
the AES-based solution, there are two contributions to the area overhead: one part is
theAES decryptionmodule, and the other one is theNVMused to store the encrypted
key bits and the flip-flops to save the decrypted values. The first contribution is fixed
and depends on the AES implementation. The second contribution is proportional
to the number of working key bits. The key decryption is performed only once at
power-up and there is no performance overhead once the chip is ready to use.

7 Conclusion

In this chapter, we present approach for implementing obfuscation during high-level
synthesis that is able to hide the algorithm semantics to the attacker and thwart
reverse engineering of the corresponding physical design. The presented approach
starts from a C-level description of the algorithm and creates a version of the
corresponding RTL component by masking all relevant algorithm portions through
opaque predicates that are based on an input locking key. In particular, techniques for
obfuscating constant values, arithmetic operations, and control branches have been
presented. These techniques have been implemented within Bambu, a state-of-the-
art, open-source HLS tool. This combination allowed us to obtain a comprehensive
solution for obfuscation during HLS that has been validated on a set of representative
benchmarks. These techniques do not incur performance overhead and each of them
has a maximum area overhead of around 30% (20% on average).

Acknowledgments

R. Karri is supported in part by NSF (A#: 1526405) and CCS-AD. S. Garg is
supported in part by an NSF CAREER Award (A#: 1553419). S. Garg and R. Karri
are both with the NYU Center for Cybersecurity (cyber.nyu.edu) and supported in
part by Boeing Corp.

20 C. Pilato, D. Sciuto, F. Regazzoni, S. Garg, R. Karri

References

1. Abdel-Hamid, A.T., Tahar, S., Aboulhamid, E.M.: IP watermarking techniques: Survey and
comparison. In: Proceedings of the IEEE International Workshop on System-on-Chip for
Real-Time Applications (IWSOC), pp. 60–65 (2003)

2. Boullis, N., Tisserand, A.: Some optimizations of hardwaremultiplication by constantmatrices.
IEEE Transactions on Computers 54(10), 1271–1282 (2005)

3. Charbon, E.: Hierarchical watermarking in IC design. In: Proceedings of the IEEE Custom
Integrated Circuits Conference (CICC), pp. 295–298 (1998)

4. Collberg, C., Thomborson, C., Low, D.: A taxonomy of obfuscating transformations. Tech.
Rep. 148, Department of Computer Science, The University of Auckland, New Zealand (1997)

5. Cui, A., Chang, C.H., Tahar, S., Abdel-Hamidothers, A.T.: A robust FSMwatermarking scheme
for IP protection of sequential circuit design. IEEE Transactions on Computer-Aided Design
of Integrated Circuits and Systems 30(5), 678–690 (2011)

6. De Micheli, G.: Synthesis and Optimization of Digital Circuits. McGraw-Hill (1994)
7. Forte, D., Bhunia, D., Tehranipoor, M.: Hardware Protection Through Obfuscation. Springer

Publishing Company, Incorporated (2017)
8. Gal, B.L., Andriamisaina, C., Casseau, E.: Bit-width aware high-level synthesis for digital

signal processing systems. In: Proceedings of the IEEE International SOCConference (SOCC),
pp. 175–178 (2006)

9. Guin, U., Huang, K., DiMase, D., Carulli, J.M., Tehranipoor, M., Makris, Y.: Counterfeit
Integrated Circuits: A rising threat in the global semiconductor supply chain. Proceedings of
the IEEE 102(8), 1207–1228 (2014)

10. Heck, S., Kaza, S., Pinner, D.: Creating value in the semiconductor industry. McKinsey on
Semiconductors pp. 5–144 (2011)

11. Hurtarte, J.,Wolsheimer, E., Tafoya, L.: Understanding Fabless IC Technology. Elsevier (2007)
12. Imeson, F., Emtenan, A., Garg, S., Tripunitara, M.: Securing computer hardware using 3D

integrated circuit (IC) technology and split manufacturing for obfuscation. In: Proceedings of
the USENIX Conference on Security (SEC), pp. 495–510 (2013)

13. Kahng, A.B., Lach, J., Mangione-Smith, W., Mantik, S., Markov, I.L., Potkonjak, M., Tucker,
P., Wang, H., Wolfe, G.: Constraint-based watermarking techniques for design IP protection.
IEEE Trans. Comput. Aid. Des. 20(10), 1236–1252 (2001). DOI 10.1109/43.952740

14. Kahng, A.B., Mantik, S., Markov, I.L., Potkonjak, M., Tucker, P., Wang, H., Wolfe, G.: Robust
IP watermarking methodologies for physical design. pp. 782–787. ACM (1998)

15. Lao, Y., Parhi, K.K.: Obfuscating DSP circuits via high-level transformations. IEEE Transac-
tions on Very Large Scale Integration (VLSI) Systems 23(5), 819–830 (2015)

16. der Leest, V.V., Tuyls, P.: Anti-counterfeiting with hardware intrinsic security. In: Proceedings
of the Design, Automation & Test in Europe Conference (DATE), pp. 1137–1142 (2013)

17. Nane, R., Sima, V., Pilato, C., Choi, J., Fort, B., Canis, A., Chen, Y.T., Hsiao, H., Brown,
S., Ferrandi, F., Anderson, J., Bertels, K.: A Survey and Evaluation of FPGA High-Level
Synthesis Tools. IEEE Transactions on Computer-Aided Design of Integrated Circuits and
Systems 35(10) (2016)

18. Pilato, C., Basu, K., Shayan, M., Regazzoni, F., Karri, R.: High-level synthesis of benevolent
trojans. In: Proceedings of the Design, Automation & Test in Europe Conference (DATE), pp.
1124–1129 (2019)

19. Pilato, C., Ferrandi, F.: Bambu: A modular framework for the high level synthesis of memory-
intensive applications. In: Proceedings of the International Conference on Field programmable
Logic and Applications (FPL), pp. 1–4 (2013)

20. Pilato, C., Garg, S., Wu, K., Karri, R., Regazzoni, F.: Securing hardware accelerators: A new
challenge for high-level synthesis 10(3), 77–80 (2018)

21. Qu, G., Potkonjak, M.: Intellectual property protection in VLSI designs: theory and practice.
Kluwer Academic (2003)

22. Rajendran, J., Ali, A., Sinanoglu, O., Karri, R.: Belling the CAD: Toward security-centric
electronic system design. IEEE Transactions on Computer-Aided Design of Integrated Circuits
and Systems 34(11), 1756–1769 (2015)

High-Level Synthesis Techniques for Algorithm-Level Obfuscation 21

23. Reuters Semiconductors: TSMC says latest chip plant will cost around $20 bln.
Available at: https://www.reuters.com/article/tsmc-investment/tsmc-says-latest-chip-plant-
will-cost-around-20-bln-idUSL3N1O737Z (2017)

24. Rostami, M., Koushanfar, F., Karri, R.: A primer on hardware security: Models, methods, and
metrics. Proceedings of the IEEE 102(8), 1283–1295 (2014)

25. Roy, J.A., Koushanfar, F.,Markov, I.L.: Ending Piracy of Integrated Circuits. Computer 43(10),
30–38 (2010)

26. Sengupta,A., Roy,D.:Antipiracy-aware ip chipset design for ce devices:A robustwatermarking
approach [hardware matters]. IEEE Consumer Electronics Magazine 6(2), 118–124 (2017)

27. Stok, L.: Data path synthesis. Integration VLSI Journal 18(1), 1–71 (1994)
28. Subramanyan, P., Ray, S., Malik, S.: Evaluating the security of logic encryption algorithms. In:

Proceedings of the IEEE International Symposium on Hardware Oriented Security and Trust
(HOST), pp. 137–143 (2015)

29. Vijayakumar, A., Patil, V.C., Holcomb, D.E., Paar, C., Kundu, S.: Physical design obfusca-
tion of hardware: A comprehensive investigation of device and logic-level techniques. IEEE
Transactions on Information Forensics and Security 12(1), 64–77 (2017)

30. Xie, Y., Srivastava, A.: Anti-SAT: Mitigating SAT attack on logic locking. IEEE Transactions
on Computer-Aided Design of Integrated Circuits and Systems 38(2), 199–207 (2019)

31. Xie, Y., Srivastava, A.: Anti-SAT: Mitigating SAT attack on logic locking. IEEE Transactions
on Computer-Aided Design of Integrated Circuits and Systems 38(2), 199–207 (2019)

32. Xu, H., Zhou, Y., Kang, Y., Lyu, M.R.: On secure and usable program obfuscation: A survey.
In: ArXiv (2017)

33. Yang, F., Tang, M., Sinanoglu, O.: Stripped Functionality Logic Locking with Hamming
Distance Based Restore Unit (SFLL-hd) – unlocked. IEEE Transactions on Information
Forensics and Security pp. 1–9 (2019)

34. Yasin, M., Zhao, C., Rajendran, J.J.: SFLL-HLS: Stripped-functionality logic locking meets
high-level synthesis. In: Proceeding of the IEEE/ACM International Conference on Computer-
Aided Design (ICCAD), pp. 1–4 (2019)

	High-Level Synthesis Techniques for Algorithm-Level Obfuscation
	Christian Pilato, Donatella Sciuto, Francesco Regazzoni, Siddharth Garg, Ramesh Karri
	Introduction
	Contributions
	Roadmap

	Background on Logic Locking
	Design Model and High-Level Synthesis
	Threat Model: The Untrusted Foundry
	Untrusted Foundry's Objective
	Foundry's Capabilities
	Target of the Attacks

	High-Level Synthesis Techniques for Algorithm Obfuscation
	Obfuscation Techniques
	Obfuscation Approach
	Key Management

	Experimental Evaluation
	Experimental Setup
	Evaluation of Obfuscation Potency
	Evaluation of Obfuscation Cost

	Conclusion
	Acknowledgments
	References
	References

