
Dynamic Resource-aware Corner Detection for
Bio-inspired Vision Sensors

Sherif A.S. Mohamed∗, Jawad N. Yasin∗, Mohammad-hashem Haghbayan∗, Antonio Miele †, Jukka Heikkonen∗,
Hannu Tenhunen‡, and Juha Plosila∗

∗Department of Future Technologies, University of Turku, 20500 Turku, Finland
†Department of Industrial and Medical Electronics, Royal Institute of Technology (KTH), 16440 Kista, Sweden
‡Dipartimento di Elettronica, Informazione e Bioingegneria, Politecnico di Milano, 20133 Milano, Italy

Abstract—Event-based cameras are vision devices that trans-
mit only brightness changes with low latency and ultra-low power
consumption. Such characteristics make event-based cameras
attractive in the field of localization and object tracking in
resource-constrained systems. Since the number of generated
events in such cameras is huge, the selection and filtering of the
incoming events are beneficial from both increasing the accuracy
of the features and reducing the computational load. In this
paper, we present an algorithm to detect asynchronous corners
form a stream of events in real-time on embedded systems.
The algorithm is called the Three Layer Filtering-Harris or
TLF-Harris algorithm. The algorithm is based on an events’
filtering strategy whose purpose is 1) to increase the accuracy
by deliberately eliminating some incoming events, i.e., noise
and 2) to improve the real-time performance of the system,
i.e., preserving a constant throughput in terms of input events
per second, by discarding unnecessary events with a limited
accuracy loss. An approximation of the Harris algorithm, in
turn, is used to exploit its high-quality detection capability with
a low-complexity implementation to enable seamless real-time
performance on embedded computing platforms. The proposed
algorithm is capable of selecting the best corner candidate among
neighbors and achieves an average execution time savings of
59% compared with the conventional Harris score. Moreover, our
approach outperforms the competing methods, such as eFAST,
eHarris, and FA-Harris, in terms of real-time performance, and
surpasses Arc* in terms of accuracy.

I. INTRODUCTION

Different types of computer vision-based methods, such
as Visual Simultaneous Localization and Mapping (vSLAM),
Optical Flow (OF) estimation, obstacle avoidance, and ob-
ject tracking rely heavily on the quality of the extracted
corners and edges in images. Edges and corners are points
that have a unique position and can be easily detected in
a sequence of images [1]–[3]. Corners are one of the most
unique features in the image since they show strong changes
in all eight directions which makes them different and easy
to differentiate from the neighboring points. For example,
most of the vSLAM approaches in the state-of-the-art [4]–[7]
are based on analyzing images captured by traditional frame-
based cameras to obtain the translation and rotation between
two consecutive images. Traditional cameras or frame-based
cameras use CMOS sensors to generate grayscale or RGB
images at a fixed rate (e.g. 60 frames per second, or FPS) by
capturing the absolute intensity of all pixels simultaneously.

Fig. 1. Relation between the accuracy and the throughput vs. the timestamp
threshold.

Extracting consistent and robust corners is very challenging
from frame-based cameras since they are affected by motion
blur in highly dynamic scenes and they have blind spots,
i.e., the time between two consecutive frames. Moreover,
images captured by conventional cameras contain a lot of
redundant information that increases the computational com-
plexity dramatically. Thus, vision tasks based on such cameras
are unlikely to achieve real-time performance on low-cost
embedded systems due to the limited resources.

Newly emerged bio-inspired vision sensors, i.e., event-based
cameras, offer high potential to overcome the challenging task
of detecting high frequency and consistent corners in complex
scenarios, such as highly dynamic and low-illuminance envi-
ronments [1]. Event cameras trigger events by capturing only
brightness changes with a high temporal resolution, i.e., they
can trigger 10 million events per second in some scenarios.
Moreover, they have low power consumption in terms of
10 mW and they can operate in low lighting conditions
since they have high dynamic range, i.e., 140 dB [8]. These
attractive characteristics make event cameras an ideal solution
for applications that require to perform real-time vision-based
algorithms on resource-constrained systems, i.e., embedded
systems.

Two factors determine the quality in the processing of an
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approach based event cameras; the accuracy in the detection
of the corners, and the throughput, that we here measure in
terms of the number of events the system is able to process
per unit of time. Figure 1 shows the accuracy and throughput
vs. the timestamp threshold used to filter the event (0s =
we keep all the events, while 5s = the event is discarded
if another previous event occurred in the same position less
than 5 seconds before.). On one hand, it can be noticed that
both the low filtering rate of the events and over-filtering
negatively affects the accuracy. On the other hand, the number
of maintained events, i.e. not filtered away, determines the
computation load and performance of the processing system;
indeed if this number of events is too high, the system may
be not able to achieve the desired throughput requirement,
also considering that other applications may concurrently run
on the architectural platform and therefore compete for the
processing resources. As a conclusion, we may notice how the
events’ filtering may be a suitable knob for co-optimizing both
accuracy and throughput of systems based on event cameras.

We present, in this paper, a novel corner detection algorithm
which consists of three layers of filtering. The filtering process
considers both the type of the events, to improve the accuracy,
and the load they cause on the system, to preserve the desired
throughput, at the same time. More precisely, our contributions
in this paper is a novel three-layer-filtering, able to efficiently
maintain a real-time performance by reducing the event-stream
and selecting only the most meaningful and unique events
to be processed. The selection technique is based on the
characteristics of the incoming events and its relation to the
neighboring events in the local patch and the status of the
hardware parts (e.g. CPU), by monitoring the throughput of the
embedded system. Our method is able to run 11x faster than
eHarris and 2x faster than FA-Harris. Moreover, our method
performs favorably compared to other methods in the state-of-
the-art in terms of accuracy.

In Section 2, we highlight relevant works in the literature.
Afterword, we describe the proposed algorithm in Section 3.
In Section 4, we summarize the experimental setup and results.
Lastly, we draw our conclusion.

II. RELATED WORK

Corner detection is a core part of various computer vision
algorithms, such as pose and depth estimation, object tracking,
and obstacle avoidance. It is used to extract points of interest,
i.e., corners from a sequence of images. The reason for
using corners in many vision-based algorithms is that they
are invariant to brightness changes and motions changes,
i.e, orientation and translation. These characteristics make it
possible to robustly detect and easily distinguish corners points
from neighboring points under various circumstances. Corner
detection methods can be categorized into two main types: 1)
methods that use frame-based cameras and 2) methods based
on event cameras.

A. Intensity-based corner detection

These methods use the intensity value of each pixel in
images to detect corners. These images are captured using
a traditional camera, i.e., a frame-based camera which uses a
CMOS sensor to capture the absolute intensity of each pixel.
A simple method to detect corners in an intensity image is
by using correlation. However, this method is suboptimal and
computationally expensive. There are several methods that
have been presented in the past years to extract strong corners
from images. For instance, Harris [9] and SIFT [10] use
difference of Gaussian (DoG) to detect corners, SURF [11],
and FAST [12] uses a Bresenham circle of radius 3 around
each point, i.e., a circle of 16 pixels to extract corners with low
computational complicity. Generally, such methods present
various drawbacks since they are based on images captured
by frame-based cameras to detect corners. Such cameras
provide blurry images in high motion speed scenarios, which
negatively affects the quality of detected corners. Moreover,
the traditional camera transmits the absolute intensity for all
pixels in the sensor to generate images, and thus images might
contain a lot of redundant information which increases the
computational complexity dramatically.

Event-based methods use the characteristic of events to
extract corners from pre-generated event-frames, i.e., indirect
methods or directly from asynchronous events, i.e., direct
methods.
Indirect methods: They extract corners from event-frames
using traditional frame-based corner detectors, for example,
Harris [9]. Event-frames are generated by gathering events
in a fixed or dynamic fashion. In the fixed fashion, event-
frames can be generated in two different ways: 1) by gathering
events during a specific time period [13] or 2) by gathering a
certain number of events [14]. Another way is to dynamically
set the temporal window required to generate a frame. For
instance, in [15] the temporal window is based on the lifetime
of the event. In [16], authors presented an algorithm to set
the temporal window dynamically based on the amount of
the information in the scene, i.e., entropy and the camera
motion. In general, such methods present various drawbacks
based on the complexity of the environment and the motion
speed, such as generating blurry event-frames due to over-
accumulating events or generating noisy frames by under-
accumulating the sufficient amount of events to reconstruct
the scene. Moreover, generating event-frames omit one of
the inherent characteristics of event cameras, i.e., events are
triggered in an asynchronous manner.
Direct methods: They extract corners directly from a stream
of asynchronous events to exploit all characteristics of event
cameras. In [17], Vasco et al. proposed an algorithm to detect
asynchronous corners using an adaptation of the original Har-
ris score [9] on Surface Active Events (SAE). The algorithm
shows high-quality corner detection, however, it demands a
lot of computational resources to compute the gradients of
each incoming event. Scheerlinck et al. [18] used a high-pass
filter and a 3x3 convolution matrix, i.e., kernel to reconstruct
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Fig. 2. System overview of the proposed TLF-Harris detector. The three-layer filtering is represented in blue and the SAE data representations are in green.

the scene asynchronously upon the arrival of each incoming
event. To detect corners the authors used two Sobel kernels in
Sx and Sy to calculate the gradient in x and y-axis respectively.
Afterward, the Harris score is used to classify if the incoming
event is an actual corner.

In [19], the authors present an algorithm inspired by FAST
[12] to detect event-corners, also referred to as eFAST. In
this method, the event-corners are extracted by comparing
the timestamp of the latest events, i.e., pixels on the inner
and the outer circle which has a radius of 3 and 4 pixels
respectively. The algorithm searches for an arc of length equal
to 3-6 pixels on the inner circle and an arc of the length of 4-8
pixels on the outer circle to classify an incoming event as an
actual corner, i.e., event-corner. Arc is a segment of continuous
pixels that the most recent events from the rest pixels on the
circle. In [20], the authors used a similar technique (Arc) with
an event filter to detect corner corners 4.5x faster than the
eFAST. Both methods are shown to run faster than the Harris-
based method since the corner detection is based on pixel-wise
comparisons and avoiding expensive operations. However, the
accuracy of the detection of such methods is poor compared
with methods that use Harris. In conclusion, extracting events
directly from events is essential to exploit all attributes of
event cameras. However, there is a trade-off between the
real-time performance and the accuracy of corner detection.
Since event cameras can generate millions of events in a
second and processing each incoming event would increase
the computational complexity dramatically. On the other hand,
methods that rely on simple pixel-wise comparisons to achieve
real-time performance produce poor corners. Therefore, we
present our algorithm which consists of three-layer filtering to
achieve high accuracy and real-time performance on embedded
systems.

III. PROPOSED APPROACH

The proposed Three Layer Filtering-Harris algorithm,
shortly TLF-Harris, for corner detection, is depicted in Fig. 2.
Into the system, events are represented by means of the Surface
Active Events (SAE) model [19]. Each event taken from the
camera is processed by means of a filtering unit composed
of three steps, i.e., dynamic Timestamp-filter, Plus-filter, and
Lifetime-filter. The three-layer filtering reduces the number
of redundant events to improve real-time performance and
increase the accuracy by discarding outliers. The filtered events

are transmitted to a low-complexity corner selector unit, called
LC−Harris, which computes the score of the incoming event
to classify it as a corner or not a corner. The pipeline of the
four phases is executed in sequence continuously on the series
of input events, in which arrival frequency may vary during
the time. Then, the throughput is computed as the number of
input events the system is able to process per unit of time.

In the following subsections, we highlight the model of
the event camera and the SAE representation. Then, we
will provide a comprehensive description of each unit in the
proposed algorithm.

A. Event-Based Camera Model

DVS camera [21] is a bio-inspired, lightweight, and fast
vision sensor that has interesting attributes, such as low
latency, high output rate, HDR, robust to motion blur, and
low power consumption, making them ideal for embedded
systems and fast-moving micro-robotics. The event camera
generates a stream of events in an asynchronous manner
when each pixel’s brightness changes over a certain value,
i.e., brightness threshold. Each event contains four simple
information and to extract useful information from these events
they are typically converted to time-surface representation. An
event e = (u, v, pol, ts) contains the 2D position (u, v) of the
pixel, the polarity pol of the event showing the increase (+1)
or decrease (−1) in pixel brightness, and the timestamp ts of
the event. An event occurs when the brightness I of any pixel
of the sensor, measured in two subsequent time instants with
a small sampling resolution 4t, increases or decreases in a
logarithmic scale by the amount of the brightness threshold
C, typically adjusted between 15%∼50%. Formally, the event
is generated when the following inequality becomes true:

log(I((u, v), ts))− log(I((u, v), ts−4t)) ≥ pol ∗ C (1)

B. Surface Active Events

The elaboration on the incoming events is mainly performed
on the relations between each event with the neighbor ones and
on their occurrence times. To do this one common way is to
use the Spatio-temporal domain in a Surface Active Events
(SAE) representation [22]. The SAE can be considered as an
elevation map, which composed of three values. The location
of the event e(u, v) in the image and the timestamp ts. The
SAE is updated asynchronously when an event is triggered



Fig. 3. The local Surface Active Events (SAE) of size 9x9, the inner (red)
and outer (blue) circles of radius 3 and 4 pixels, respectively.

SAE : (ui, vi)→ tsi (2)

Figure 3 shows an example of SAE; in particular, for the
sake of simplicity, it depicts a local SAE, i.e., capturing the
information of a 9x9 sub-part of the image.

Within the proposed approach presented in Fig. 2, we
use different types of SAE to perform the various filtering
tasks and select strong corners based on the relation of the
incoming event and neighboring events. In particular, we use
four different types of SAEs: global, enhanced, corner, and
local-binary SAEs. The global (G-SAE) has the same size
as the DVS sensor, i.e., 240x180 and contains all incoming
events. The enhanced SAE (eSAE) accumulates events based
on the polarity of the incoming event: eSAE(+) is used to
accumulate events with positive polarities and SAE(−) is for
events with negative polarities. The corner SAE (C-SAE) is
updated by the Plus-filter and contains only the timestamp of
corner candidates. The local-binary SAE (LB-SAE) with a size
of 9x9 is used to calculate the gradient of the incoming event
and contains the most N recent neighboring events labeled as
1’s.

C. First-Layer Filter: Timestamp Filter

The main purpose of the first filter (called timestamp-filter)
is to discard redundant events and maintain a balanced compu-
tational load across different environmental conditions, due to
variations in the number of input events to be processed during
the time. Removing redundant events is not only beneficial
for improving real-time performance but also enhance the
quality of corner detection by removing outliers, see Figure 1.
For instance, a fast camera, object movement, or significant
brightness changes would generate more than one event on the
same pixel with different timestamps. Those triggered events
do not provide any useful information, however, processing
them would increase the computational load significantly as
they come within a short period of time.

Inspired by the [20], where the authors proposed a filter
to discard redundant events from the processing pipeline.

However, in this approach, the authors used a fixed threshold
value (0.05 seconds). As illustrated in Figure 4, the main
problem of using a fixed threshold is that a fixed threshold
is not suitable for all camera movement speeds and envi-
ronments. For instance, in fast camera a small threshold is
recommended since using a large threshold would discard real
events, i.e., inliers and thus degrade the extract performance.
Note in 4 at fast-motion the event stream curve is deformed by
increasing the threshold. On the other hand, in slow motion,
the curve still keeps a similar shape. Therefore, we propose a
dynamic Timestamp-filter to dynamically adjust the timestamp
threshold based on two parameters: 1) the movement speed of
the camera and objects in the environment, i.e., optical flow
and 2) the throughput of the system.

Algorithm 1 dynamic Timestamp filter
Input: G SAE, expected thr, OFj

Output: eSAE(+), eSAE(−)
1: eold.pol← G SAE(e.u, e.v)
2: if e.pol 6= eold.pol then
3: update eSAE(e.pol)
4: else
5: OFj ← batch(e.u, e.v)
6: if e.OF > θ then
7: tsnew = 0.01
8: else
9: thrapp ← get throughput()

10: if thrapp < threxp then
11: tsnew = tsold +K
12: else
13: tsnew = tsold −K
14: end if
15: end if
16: eold.ts← G SAE(e.u, e.v)
17: if e.ts > eold.ts+ tsnew then
18: update eSAE(e.pol)
19: end if
20: end if

The first filtering phase of the proposed technique, called

Fig. 4. The effect of various timestamp thresholds on the event stream. Slow
camera motion between second [0 - 30] and fast camera motion between
second [30 - 60].



timestamp filter, is explained in Algorithm 1. It contin-
uously monitors the status of throughput and determines
the timestamp threshold based on the performance profiling
(Lines 9-14). The timestamp threshold is used to update the
(eSAE(+), eSAE(−)) pair by filtering the events captured
from G SAE (Lines 17-19). This process happens by com-
paring the polarity of the incoming event from G SAE with
the polarity of the previous event on the same pixel. If the
polarity differs the eSAE is updated, otherwise the eSAE is
only updated if the timestamp of the incoming event is larger
than the summation of the previous event’s timestamp and the
filter threshold.

The filter gets a stream of asynchronous events from
the DVS camera, the required throughput, and monitors
the status of the CPU units to generate an enhanced SAE
(eSAE(+), eSAE(−)) (see Figure 2). The expected through-
put can be set to the desired value. In case the application is
under-performing, i.e., application throughput is less than the
desired throughput, filter increases the timestamp threshold by
a certain amount K (e.g., 5ms) until the application achieve
the desired throughput (Line 11). On the other hand, if the
application is over-performing, i.e., the throughput is more
than the desired throughput, the filter decreases the timestamp
threshold (Line 13). To avoid discarding real events in high-
speed cameras and objects moving in the scene, we divide
the sensor into 108 batches of size 20x20. For each batch,
we calculate the optical flow and obtain the optical flow of
the incoming event by checking in which batch the event
is located. If the event optical flow is more than a certain
threshold θ the timestamp filter value is set to (0.01 s)
regardless of the throughput of the system (Lines 5-7).

D. Second-Layer Filter: Plus-Filter

In order to reduce the number of events processed by the last
stage, i..e, LC Harris, we implement a second layer filtering
(called Plus-filter) filter inspired by the FAST [12]. As men-
tioned previously, the authors in [19] proposed an algorithm
to extract corners from a stream of events by searching for a
segment of continuous pixels of length [3-6] and [4-8] in two
circles of radius 3 and 4 pixels respectively. The main issue
of this approach is that it fails to detect corners with an angle
greater than 180◦. The authors in [20], tackled this issue by
presenting an algorithm that classifies an incoming event as a
corner if the arc or its complementary arc on the two circles is
between the threshold [3-6] for the small circle and [4-8] for
the big circle. Both elements use several branching to obtain
the length of the arc on the inner and the outer circles which
increases the execution time. Therefore, we propose a light
and fast spatial filter, i.e., Plus-filter to process only event-
corner candidates to the next step in the pipeline. The filter
extracts a local patch with size 7x7 around the incoming event
from the eSAE. First, we extract the oldest and newest events
on a circle of radius 3 pixels. Afterword, the 16 pixels on the
circle are labeled clockwise starting from the newest event
in ascending order. A set of four pixels γ = 2, 6, 10, 14 is
used to classify the incoming event is an actual event-corner

candidate or not. If three out of the four pixels are bigger or
smaller than the other pixel, the incoming event is considered
as an event-corner candidate, i.e., processed to the next phase.

E. Third-Layer Filter: Lifetime Filter
In order to tackle the effect of blurry event-corners (see

Figure 5.a), or in other words, reduce the number of event-
corners per intensity-corner. We implemented a third layer
filtering based on the concept of event lifetime [15], thus called
Lifetime filter. It is summarized in Algorithm 2. The lifetime
of an event is the time an event will take to shift by 1 pixel. The
mechanism of the filter is to discard event-corner candidates
that have timestamp lower than the lifetime of an existing
event-corner in the local patch, i.e., neighborhood. The filter
search for a neighbor, i.e., event-corner within a Manhattan
distance equal to 8 from the incoming event-corner candidate.
If the incoming event-corner candidate has timestamp higher
than the lifetime of the neighboring event-corner, the lifetime
is computed as

τ = max4 t subject to ‖ 4p ‖= 1 pixel (3)

where τ is the lifetime of the event, p is the 2D position
of the event, the displacement is denoted by ‖ 4p ‖ and
4t = SAE(p+4p)− SAE(p).

Finally, the event goes to the last stage (LC Harris unit) to
decide either it is a corner or not. Otherwise, it is removed
from the pipeline.

Algorithm 2 Lifetime filter
Input: event-corner candidate e = {u, v, pol, ts}

1: Check Local Patch CL SAE(e.u, e.v)
2: if found neighbour then
3: Check life time
4: if ts > life time then
5: Delete old life time
6: Calculate new life time
7: Update CL SAE
8: Process event
9: end if

10: discard event
11: else
12: Calculate life time
13: Update CL SAE
14: Process event
15: end if

F. Low-complex Harris Score
Most computer vision approaches use Harris corner detector

[9] to extract strong and consistent corners from traditional im-
ages. Since Harris detector is considered a high-performance
corner detection operator that is commonly used in most
computer vision algorithms. The Harris score R of each pixel
p(u, v) is calculated based on the approximated matrix M of
the local auto-correlation function:

M =

[ ∑
wG(p)I

2
u

∑
wG(p)IuIv∑

wG(p)IuIv
∑

wG(p)I
2
v

]
=

[
a b
c d

]
(4)



Where Iu and Iv are the horizontal and vertical gradients
respectively. The local patch around the pixel p(u, v) is
represented by w and G(p) denotes a Gaussian filter. Harris
used the eigenvalues λ1 and λ2 to compute the score as shown
in (4), where k is a constant and commonly set between 0.04
to 0.06. A point p(u, v) is considered as a corner point if both
λ1 and λ2 are large, in other words, the score R is bigger than
a certain threshold.

R = λ1λ2 − k ∗ (λ1 + λ2)
2 = (ac− b2)− k ∗ (a+ c)2 (5)

However, it is high performance demanding to compute the
eigenvalues for each incoming event; as a consequence, such
a technique is infeasible to run in real-time on embedded
systems. This situation is exacerbated by the fact that event
cameras can transmit more than 10 million events per second
in high motion speeds scenarios. Thus, reducing the compu-
tational complexity is essential to be able to use the Harris
detector for event camera on resource-constrained systems.

Therefore, in this work, in addition to the three-layer of
filtering to reduce the number of redundant events, we propose
an approximation of the Harris algorithm. A binary local patch,
that is a submatrix of the SAE around each incoming corner
candidate with a size of 9x9 is extracted. Only the most recent
N neighbors (N = 25) are included and labeled as 1s in the
local patch. The vertical and horizontal gradient is computed
from the local binary batch and then used to calculate the
Harris score:

R = a
′
∗ c

′
=
∑
|Ix| ∗

∑
|Iy| (6)

IV. EXPERIMENTAL EVALUATION

We evaluated the proposed corner detection algorithm by
running the algorithm on publicly available datasets of [24],
[25]. We carefully selected a number of subsets to ensure a fair
and comprehensive evaluation scheme. The selected subsets
composed of simple and complex scenes, including low and
high textured environments, and slow and fast motions. The
event camera generates few events per second when the camera
and objects are moving slowly. On the other hand, in highly
dynamic and complex scenes, the number of events per second
can reach up to 10 million. The datasets are recorded by a
DAVIS-240C [26], which contain many sequences of frame-
based, i.e., intensity images and asynchronous events at the
resolution of 240x180. Note that the intensity images are only
used to obtain the ground-truth for evaluation purposes. The
proposed algorithm has been implemented in software in C
language; the controller implemented in [27] has been inte-
grated into the software to measure the throughput. Moreover,
the message size was set to 10,000 events. The application
was run on an embedded system with an ARM Cortex-A57
CPU at 2GHz clock frequency.

A. Accuracy

We adopted a similar technique proposed in [20] to eval-
uate our method against different competitive methods. The
accuracy is calculated by TEC/(TEC+FEC), where True Event
Corners (TEC) are event-corners that fall inside the small
(inner) cylinder with a 3-pixel radius, and False Event Corners
(FEC) are event-corners that fall between the small cylinder
and the large cylinder (5 pixels radius). The two oblique
cylinders are constructed by computing the intensity-corners
using Harris [9] and then track corners over the captured
images using Kanade–Lucas–Tomasi KLT [28] to obtain the
tracking line for each corner. This line is then used as the
center of the two oblique cylinders.

Table II shows that our method favorably compared to
eFAST, Arc*, and FA-Harris. eFast and Arc* methods have
the lowest accuracy since they only perform a pixel-wise
comparison to detect corners.

B. Qualitative Evaluation

Figure 5 shows a qualitative comparison of different meth-
ods in the state-of-the-art. It shows that our method outper-
forms other algorithms in terms of the quality of corners and
the number of event-corners per intensity-corner. In Figure
5.c, most of the detected event-corners by the eFAST are
related to intensity-corners, however, the number of event-
corners per intensity-corners is high. The main issue of the
Arc* algorithm is that it mistakenly detects many false event-
corners. The eHarris method (see Figure 5.e) also shows high-
quality detection, however, it failed to detect the upper-right
corner of the rectangle.

(a) raw (b) Harris (c) eFAST

(d) Arc* (e) eHarris (f) Ours

Fig. 5. Qualitative comparison against different methods on the event camera
dataset (shapes 6dof ). Our method performs comparably to eHarris [17],
and produce high quality corners than eFAST [19] and Arc* [20]

In Table I, we reported the reduction rate of our algorithm
against different state-of-the-art methods. The reduction rate
is the number of detected event-corners divided by the total
amount of events and it defines the ability of a method to
discard unnecessary events from the system pipeline. The



TABLE I
COMPARISON OF DIFFERENT CORNER DETECTION APPROACHES ON REDUCTION PERCENTAGE[%].

Dataset eFAST [19] eHarris [17] Arc* [20] FA-Harris [23] Ours

low texture shapes 87.00 90.15 88.33 95.66 99.06
sun 98.73 95.51 96.88 99.46 99.63

high texture boxes 96.82 92.25 92.19 97.95 99.49
hdr poster 95.77 93.09 92.40 98.31 99.55

slow movement outdoors walking 97.91 95.19 95.53 99.06 99.61
office spiral 97.04 93.83 93.53 98.97 99.09

fast movement night run 96.51 94.50 97.33 99.30 99.84
bicycle 96.08 93.80 96.53 99.26 99.75

TABLE II
THE ACCURACY [%] OF DIFFERENT METHODS.

Method shapes boxes walking run office
eFAST [19] 56.40 48.59 51.09 55.9 54.59
eHarris [17] 57.01 49.26 69.26 62.26 61.3
Arc* [20] 55.38 49.01 52.41 53.41 51.21
FA-Harris [23] 57.66 49.66 65.32 49.66 63.66
Ours 63.20 53.27 72.1 68.7 69.62

results show that our algorithm is able to highly reduce the
number of event-corners and only detect high-quality event-
corners, thanks to the three-layer filtering and the Harris-based
selector.

C. Throughput Performance

One of the most important aspects of an application that
is targeted for embedded systems is real-time performance,
i.e., achieving the desired throughput under various conditions.
The report of the average throughput for different algorithms
is summarized in Figure 6. Our method is able to achieve the
desired throughput (throughput = 30) in different scenarios.
Other methods such as Arc∗, eFAST, and FA Harris are only
able to achieve close to the desired throughput in low-textured
and slow-motion speed scenarios (e.g., shapes and walking).
However, they failed to achieve the desired throughput in
a high-textured environment (e.g., boxes 6dof). The eHarris
method fails to achieve the desired throughput in all case
scenarios since it processes all incoming events and performs
expensive operations.

Fig. 6. The throughput performance of different methods.

D. LC Harris performance

Table III summarizes the execution time of our proposed
LC Harris compared with eHarris [17]. We evaluated both
algorithms on five different datasets which includes fast and
slow camera motion, static and dynamic environment, low-
textured and textured environment and day and night scenes.
Thanks to the approximation our algorithm is able to execute
faster than the eHarris algorithm in all scenarios. LC Harris
is able to achieve an average execution time savings of 59%
compared with eHarris.

TABLE III
THE AVERAGE EXECUTION TIME [NS] OF OUR ALGORITHM

LC HARRIS COMPARED WITH HARRIS ON DIFFERENT
DATASETS.

Method shapes boxes walking run office
Harris [9] 91 205 93 94 110
Ours 56 110 57 55 66

V. CONCLUSIONS

We have presented TLF-Harris, a fast and adaptive corner
detection method that detects high-quality corners based on
asynchronous events. We demonstrated that our approach
facilitates execution of vision tasks on low-cost resource-
constrained computing platforms that do not have sufficiently
powerful processing units to handle millions of events per
second on average. Our method is composed of a three-layer
filtering stage and a low-complexity Harris score. In the first
layer, we perform timestamp filtering, in which the filtering
threshold is determined based on the throughput feedback and
the optical flow of the event. In the second layer, an arc filter
is used to perform a pixel-wise comparison on the eSAE to
keep only corner candidates. The third filter, i.e., the lifetime
filter uses the C-SAE to measure the lifetime of the event
and avoid processing any incoming corner candidates in the
neighborhood until the old corner candidate fades, i.e., the
timestamp of the incoming event is later than the lifetime of
the old corner candidate. A low-complex Harris is proposed
to compute the score and decide whether the incoming event
is a corner or not. Our method is able to maintain the
desired throughput in various scenarios such as low-textured,
high-textured, and fast motion speed scenarios. Moreover,
our method performs favorably compared with state-of-the-art
methods in terms of accuracy.
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