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Abstract

Objective.—The ability to monitor anesthetic states using automated approaches is expected to 

reduce inaccurate drug dosing and side-effects. Commercially available anesthetic state monitors 

perform poorly when ketamine is administered as an anesthetic-analgesic adjunct. Poor 

performance is likely because the models underlying these monitors are not optimized for the 

electroencephalogram (EEG) oscillations that are unique to the co-administration of ketamine.

Approach.—In this work, we designed two k-nearest neighbors algorithms for anesthetic state 

prediction.

Main results.—The first algorithm was trained only on sevoflurane EEG data, making it 

sevoflurane-specific. This algorithm enabled discrimination of the sevoflurane general anesthesia 

(GA) state from sedated and awake states (true positive rate = 0.87, [95% CI, 0.76, 0.97]). 

However, it did not enable discrimination of the sevoflurane-plus-ketamine GA state from sedated 

and awake states (true positive rate = 0.43, [0.19, 0.67]). In our second algorithm, we implemented 

a cross drug training paradigm by including both sevoflurane and sevoflurane-plus-ketamine EEG 

data in our training set. This algorithm enabled discrimination of the sevoflurane-plus-ketamine 

GA state from sedated and awake states (true positive rate = 0.91, [0.84, 0.98]).
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Significance.—Instead of a one-algorithm-fits-all-drugs approach to anesthetic state monitoring, 

our results suggest that drug-specific models are necessary to improve the performance of 

automated anesthetic state monitors.
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1. Introduction

General anesthesia (GA) is a drug-induced reversible state of unconsciousness, amnesia, 

analgesia, immobility, and stability of autonomic, cardiovascular, respiratory, and 

thermoregulatory systems [1]. Anesthetic drugs are routinely administered empirically based 

on pharmacokinetic and pharmacodynamic principles, and physiological variables such as 

changes in heart rate or blood pressure [2]. However, since the 1990s, anesthetic states have 

also been tracked using indices (0–100) computed from the electroencephalogram (EEG) 

and displayed on anesthetic state monitoring devices [3]. With the induction of general 

anesthesia, these indices usually change from high values that indicate the awake state to 

lower values that indicate anesthetic states [3]. The algorithms and EEG-derived features 

that are used to calculate these indices are largely proprietary [4, 5]. Thus, their assumptions 

and oversights are inaccessible to clinicians for real-time decision making, and their 

reliability has been called into question in numerous clinical scenarios [5–9].

Clinicians routinely administer the combination of a hypnotic anesthetic drug such 

sevoflurane or propofol, to maintain unconsciousness, and ketamine, for analgesia, as part of 

a balanced general anesthetic technique [10]. Index-based anesthetic state monitoring 

devices typically function as designed in representative patients receiving sevoflurane or 

propofol [4, 5]. However, during the balanced GA state with ketamine, index-based 

anesthetic monitoring devices do not typically function as designed (i.e. high indices that 

indicate the patient is awake are outputted) [4–6]. We note that neurophysiological 

oscillations associated with sevoflurane or propofol GA include alpha (8–12 Hz) and slow-

delta (0.1–4 Hz) oscillations [1, 10–13]. During sevoflurane (propofol)-plus-ketamine 

general anesthesia, the alpha and slow-delta oscillations are reduced in power, and there is 

an increase in beta oscillation power [14, 15]. Thus, we conjecture that the poor performance 

of commercially available index-based anesthetic monitoring devices arises from the models 

underlying these algorithms catering to the unique EEG dynamics of sevoflurane or 

propofol: a ‘one-algorithm-fits-all-drugs’ paradigm for monitoring anesthetic states. This 

conjecture is supported by scientific literature [5–9]. For example, Hans et al showed that an 

infusion of ketamine in patients receiving propofol anesthesia is associated with an increase 

in BIS indices [6].

In this work, we developed two EEG-based automated anesthetic state prediction systems 

using the k-nearest neighbors (KNN) algorithm to classify the awake, sedated, and 

sevoflurane GA anesthetic states. The first algorithm was trained only on sevoflurane EEG 

data, making it sevoflurane-specific. In the second algorithm, we implemented a cross drug 

training paradigm by including both sevoflurane and sevoflurane-plus-ketamine EEG data in 
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our training set. While the algorithms underlying commercially available index-based 

anesthetic monitoring systems are proprietary, our results show that their poor performance 

on sevoflurane-plus-ketamine may be due to a one-algorithm-fits-all-drugs training 

paradigm for monitoring anesthetic states.

2. Materials and methods

2.1. Volunteer selection and experimental protocol

This research study was reviewed by and received ethical clearance from the Partners 

Human Research Committee and was conducted at the Massachusetts General Hospital 

(NCT03503578). Details of the study design have previously been reported [12]. We 

obtained written informed consent from a total of 12 healthy volunteers (7 males; 5 

females). Criteria for inclusion were normal body weight and habitus (BMI 30), age between 

18 and 50, non-smoker, and American Society of Anesthesiologist physical status class 1. 

Volunteers were excluded if they had any chronic health conditions, were on any non-

prescription medications expected to affect the central nervous system function or had 

allergies to any medications required for safe conduct of the study. Volunteers also 

underwent medical examination including a standardized pre-anesthesia assessment, a urine 

toxicology screen, and urine pregnancy testing. Mean weight was 69.9 kg (SD, ± 11.7) and 

mean BMI was 24.1 kg m−2 (±3.0). Subject ages ranged from 20–34 years with a mean age 

of 25 (±4.8). Each volunteer underwent both sevoflurane-induced general anesthesia and 

sevoflurane-plus-ketamine-induced general anesthesia, but on separate study days, ranging 

2–7 days apart. A schematic of our study is provided in figure 1.

We administered sevoflurane using the Dräger Fabius Tiro (Telford, PA, USA) machine. 

Sevoflurane was administered via a tight-fitting face-mask. For the sevoflurane GA visit, we 

increased the end-tidal sevoflurane concentration in a stepwise fashion from baseline 

(awake) to 1.1% (sedated), 2.1% (GA), and 2.8% (GA). Each concentration was maintained 

for 15 min. For the sevoflurane-plus-ketamine GA visit, after the baseline (awake) state, we 

increased the sevoflurane end-tidal concentration to 2.1% (GA) and maintained it for 15 

min. Next, we administered a bolus of ketamine (0.75 mg kg−1) while maintaining the 

sevoflurane concentration for an additional 30 min (GA). Two board-certified 

anesthesiologists were present during all study procedures.

We recorded high-density EG signals using the Waveguard system with a standard EEG cap 

(64 channels, ANT Neuro, Netherlands) and electrode impedances of <5 kΩ. The mean 

recording durations for the sevoflurane and sevoflurane-plus-ketamine visits were 88.21 min 

(± 4.73) and 87.94 min (± 9.13) respectively. Thus, anesthetic duration on both study visits 

were approximately the same. EEG data were down-sampled to an EEG sampling frequency 

of 250 Hz and spline-interpolated (for corrupted channels) using ASA-Lab software (ANT 

Neuro, Netherlands). A standard nearest-neighbor Laplacian reference was applied. EEG 

features were obtained from five frontal electrodes [16]. We used the median of each feature 

across the five electrodes for downstream analyses.
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2.2. Algorithm selection

An initial feature set of 100 time-domain, spectraldomain, and entropy-domain features were 

analyzed to determine the machine learning algorithm best suited to distinguish anesthetic 

states in our study. The spectral-domain EEG dynamics were statistical features of the 

distribution of a band-passed EEG epoch’s spectral power. We considered a wide array of 

frequency bands: slow (0.1–2 Hz), delta (2.1–4 Hz), slow-delta (0.1–4 Hz), theta (4.1–8 Hz), 

alpha (8.1–12 Hz), low-beta (12.5–15 Hz), high-beta (15.1–30 Hz), and total (0.1–30 Hz). 

The time-domain EEG dynamics were statistical features of the distribution of a raw EEG 

epoch. The entropy-domain EEG dynamics were entropic features of the distribution of a 

band-passed epoch’s spectral power, the distribution of the raw EEG, and other entropy 

measures that have proven informative in the context of EEG analysis. These include 

permutation entropy [17], Shannon entropy [18],Ŕenyi entropy [19], sample entropy [20], 

approximate entropy [21], and the Higuchi fractal dimension [22].

Following an exhaustive analysis of feature sub-sets of this original 100-feature set, 

algorithms, and hyperparameters, the KNN algorithm, endowed with the city-block metric, 

outperformed all other multiclass classification algorithms within the Matlab® Classification 

Learner toolbox (decision trees, nearest neighbor classifiers, and ensemble classifiers). For a 

given query point q, KNN finds the k data points in its training set closest to q, where 

distance is measured by its endowed metric [18]. It then uses the classifications of these 

points to find the most probable class. The city-block metric—also known as the ℓ1 metric— 

emphasizes small component-wise differences in data [18]. To find the optimal 

hyperparameter choice k for our KNN models, we performed a grid-search and found the 

optimum value to be k = 6. This optimization occurred before any testing, and there was no 

further inner loop to vary k when testing on different subjects.

2.3. Training data and prediction classes

All models were trained on the five-minute EEG epochs. For the sevoflurane visit, we 

selected EEG epochs 10 min after the sevoflurane concentration reached the desired steady-

state concentrations of 1.1, 2.1, and 2.8%. For the sevoflurane-plus-ketamine visit, the EEG 

epochs were selected 10 min after sevoflurane reached the desired steady-state concentration 

of 2.1% and 2 min after the ketamine bolus was administered. We selected five-minute EEG 

epochs during baseline 10 min after the start of each visit’s recording. We selected the last 5 

min EEG epochs of each subjects’ recording as emergence epochs. Each 5 min segment was 

then partitioned into seventy-five 4 s epochs. We combined similar anesthetic states for 

model training: awake (pre- and post-anesthesia), sedation (1.1% sevoflurane), and GA 

(2.1% sevoflurane and 2.8% sevoflurane). We justify the grouping of broad anesthetic-states 

for our prediction systems in Appendix A.

2.4. Feature selection

In general, the KNN algorithm performs best when data from each class exist in mutually 

exclusive clusters that can be separated by hyperplanes in the feature space [23]. We defined 

this separation of clusters as linear separation. Linear separation of our classes would give a 

Bayes error close to zero such that data can be optimally separated with few disconnected 

components [23]. From our original 100-feature space, we extracted two sets of features. 
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The first set contained the 17 features that linearly separated our a priori defined anesthetic 

states for the sevoflurane visit. The second set contained the 14 features that linearly 

separated our a priori defined states for the sevoflurane-plus-ketamine visit. We selected the 

8 features that overlapped both lists as our feature set (table 1). We visually inspected each 

of these eight features to ensure that the linear separation of our classes was preserved across 

both study visits. A moving window of 40 s was applied to all spectral features. A moving 

window of 1 min was applied to all time and entropy features. In appendix B, we use a 

different feature space—the union of the two aforementioned sets of features—for validation 

testing. Thus, this alternative feature space is the set of features that linearly separate a priori 
defined anesthetic state classes in either the sevoflurane visit or the sevoflurane-plus-

ketamine visit.

The multitaper approach for spectral analysis was used to obtain spectral features [24]. The 

multitaper parameters were as follows: window length T = 4 s with no overlap, time-

bandwidth product TW = 3, number of tapers K = 5, and spectral resolution = 1.5 Hz. 

Spectral features were normalized, at the subject level, by the baseline median slow power 

(0.1–2 Hz).

The instantaneous frequency (IFE) was extracted from the raw EEG signal by computing the 

numerical derivative of its Hilbert transform [25]. To derive the IFE mean of a given 4 s 

epoch, we computed the average instantaneous frequency across each value in that 4 s epoch 

[25]. Similarly, to find the IFE kurtosis, we computed the kurtosis of instantaneous 

frequency across that 4 s epoch [25]. The Hjorth mobility parameter is the square root of the 

ratio between the variance of the first derivative of the raw EEG and the variance of its 

amplitude [26]. This provides a normalized average slope and can be viewed as another 

estimate of the mean frequency of the EEG [26].

Permutation entropy is an entropic measure of the monotonicity of a signal [17]. For 

example, a predictable signal that is monotonically non-decreasing (or non-increasing) will 

have a permutation entropy of 0. Conversely, an irregular, non-monotone signal like an EEG 

will have a large, positive permutation entropy [17]. We used an amplitude sampling length 

of 4 and a permutation length of 5 when computing the permutation entropy of an EEG 

epoch. The Higuchi fractal dimension measures the fractal dimension of irregular time-series 

data like raw EEG signals [22]. The Higuchi fractal dimension ranges from 1 to 2 in EEG 

analysis, where a fractal dimension of 1 indicates regularity in a signal and a fractal 

dimension of 2 indicates extreme complexity [22]. For example, a signal filtered using a 

Butterworth low pass filter will have a Higuchi fractal dimension close to 1. Conversely, 

randomly generated data with a large noise component will have a Higuchi fractal dimension 

close to 2. We used a maximum number of sub-channels of 3 when computing the Higuchi 

fractal dimension.

2.5. Hidden Markov model filtering

In isolation, KNN classifies each epoch independently from its preceding epochs. However, 

earlier predictions could provide important insight into what states are likely or unlikely. A 

noisy epoch could be correctly classified if prior predictions imply an unchanging anesthetic 

state. The hidden Markov model (HMM) decoding algorithm allows a model to incorporate 
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the contextual information associated with prior predictions [27, 28]. HMMs are a class of 

probabilistic models that attempt to uncover the ‘true’ state from a sequence of observed 

ones [27, 28]. In the context of this work, hidden states were the true anesthetic states 

associated with a given drug-class or drug-class combination, while observed states were the 

‘noisy’ predictions made by the algorithm [27, 28]. The HMM decoding algorithm finds the 

most probable sequence of hidden states using the transition and emission matrices. The 

transition matrix describes the probability of transitioning from one state to another and is 

extracted from the true anesthetic states given by the labeled training data. The emission 

matrix describes the probability distribution of stages assigned by KNN as a function of the 

underlying hidden state and is derived by counting the pairs of correct predictions of KNN 

for each epoch in the full-length data of the subjects in the training set. We applied the 

HMM decoding algorithm to our models’ predictions.

2.6. Experimental design and cross-validation

We created an experimental design consisting of two models that were tested on data from 

both the study visits. All models were trained on the clean five-minute epochs referenced in 

section 2.3 and tested on the full-length EEG recordings. Table 2 summarizes our models 

and their respective training and testing sets.

Model 1a, the sevoflurane-specific model, was trained and tested on data from the 

sevoflurane visit only. Model 1b, our cross-test model, was trained on data from the 

sevoflurane visit but tested on data from the sevoflurane-plus-ketamine visit. Hence, through 

model 1b, we investigated how a sevoflurane-specific model performed when applied to a 

different drug-class combination than that which is in its training set.

In model 2, we expanded the training dataset to include the 5 min epochs from both the 

sevoflurane and the sevoflurane-plus-ketamine visits in order to study the effect of a broader 

training set on model performance in sevoflurane-plus-ketamine GA. Model 2a was tested 

on data from the sevoflurane visit and model 2b was tested on data from the sevoflurane-

plus-ketamine visit.

We implemented a leave-one-subject-out cross-validation (figure 2), which ensured that 

models were tested on ‘unseen’ subjects [18]. We trained each model on N − 1 subjects and 

tested on the remaining subject. This process was repeated until each subject was tested 

once, resulting in N iterations of training and testing [18].

2.7. Performance metric and statistical analysis

The GA-specific F1 score was used to measure the performance of our models [18, 29]. The 

GA-specific (either sevoflurane or sevoflurane-plus-ketamine) F1 score was defined to be 

the harmonic mean of GA specificity (true-negative rate) and GA sensitivity (true-positive 

rate). To measure whether performance differed significantly across testing sets, we 

compared the GA-specific F1 score associated with the sevoflurane visit to the GA-specific 

F1 score associated with the sevoflurane-plus-ketamine visit. For statistical inference, we 

performed ANOVA testing with post-hoc comparisons for all model pairs using the Tukey-

Kramer Honest Significance Test (Matlab, Natick, MA, USA). Threshold for statistical 

significance, p < 0.05.

Kashkooli et al. Page 6

J Neural Eng. Author manuscript; available in PMC 2020 November 04.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



3. Results

Our sevoflurane-specific model exhibited a GA-specific F1 score of 0.84, [95% CI, 0.77, 

0.92] when tested on sevoflurane GA (model 1a). Our sevoflurane-specific model exhibited 

a GA-specific F1 score of to 0.66, [0.49, 0.83] when tested on sevoflurane-plus-ketamine 

GA (model 1b). This decrease in performance was due to misclassifications of sevoflurane-

plus-ketamine GA epochs as awake and sedated states. Our cross drug model, exhibited a 

GA-specific F1 score of 0.91, [0.87, 0.94] when tested on sevoflurane GA (model 2a). In 

contrast to our sevoflurane-specific model (model 1b), our cross drug model (model 2) 

exhibited a GA-specific F1 score of 0.94, [0.91, 0.96] when tested on sevoflurane-plus-

ketamine GA (model 2b). These data are summarized in table 3, and the average confusion 

matrices for all four models are provided in figure 3. The improvement associated with 

predicting sevoflurane-plus-ketamine GA-specific F1 score in our cross-drug training 

paradigm of 0.27, [0.08, 0.47] met our threshold for statistical significance (p = 0.002).

The results in figure 3 illustrate that the decreased performance of the cross-test model 

(model 1b) is due to misclassifications of sevoflurane-plus-ketamine GA as either awake or 

sedation. In the cross drug model tested on sevoflurane-plus-ketamine (model 2b), this 

misclassification is largely corrected, with only 1% of sevoflurane-plus-ketamine being 

classified as sedation as opposed to 36.4% in model 1b. All models obtained high 

performance (awake-specific F1 score ⩾0.84) during the awake state.

In appendix B, we present the results of the same experiment performed on a different 

feature space. This feature space consists of EEG dynamics that linearly separate a priori 
defined anesthetic state classes in either the sevoflurane visit or the sevoflurane-plus-

ketamine visit. We found that the performance of models 1a and 2a decreased sharply when 

trained on this new feature set. This result emphasizes the importance of feature selection.

4. Discussion

4.1. The role of drug-specificity in anesthetic state prediction

In this work, we showed that an anesthetic state prediction system that was trained on 

sevoflurane GA epochs (sevoflurane-specific) was able to discriminate sevoflurane GA 

epochs from sedated and awake states. However, this system poorly discriminated 

sevoflurane-plus-ketamine GA epochs from sedated and awake epochs. This result is 

consistent with the performance of commercially available anesthetic state prediction 

systems [5–9, 29]. For example, the BIS (Medtronic, Minneapolis, Minnesota) has been 

observed to increase significantly in patients receiving sevoflurane (propofol) -plus-ketamine 

GA compared to patients receiving sevoflurane (propofol) GA [6, 9]. In this work, we 

showed that the inclusion of sevoflurane-plus-ketamine GA epochs in an anesthetic state 

prediction system’s training set mitigated the poor discrimination of sevoflurane-plus-

ketamine GA epochs from sedation and awake epochs. This improvement was feature-

independent, as we employed a uniform set of eight features across both of the models 

tested.
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Neural oscillations are the most prominent feature of the EEG [1, 10, 12, 13]. Each 

anesthetic drug class produces distinct oscillations that can be related to the circuit 

mechanisms of drug action [1, 10, 12, 13]. A growing body of evidence suggests that 

anesthetic-induced neural oscillations can be used to infer anesthetic states [1, 3]. 

Sevoflurane can be titrated to achieve a sedated state. During the sevoflurane sedated state, 

the frontal EEG shows increased beta oscillation (~13–23 Hz) power and an increase in 

slow-delta oscillation (0.1–4 Hz) power [11, 14]. During the sevoflurane GA state, the EEG 

instead shows increased alpha (8–12 Hz), theta (4–8 Hz), and slow-delta oscillation power 

[11, 12, 14]. However, during sevoflurane-plus-ketamine GA, the alpha oscillations typically 

associated with sevoflurane GA are reduced in power, and there is an increase in beta 

oscillation power [10]. This finding is also conserved for propofol-plus-ketamine anesthesia 

[15]. Thus, beta oscillations are synonymous with the awake state, sevoflurane sedation and 

sevoflurane-plus-ketamine GA [10, 11]. We conjecture that current EEG-based anesthetic 

state prediction systems routinely misclassify sevoflurane (propofol) -plus-ketamine GA 

states as sedation or awake states because they ascribe high sedation/awake states prediction 

weights to beta oscillations.

Schuller et al recently showed that BIS (Medtronic, Minneapolis, Minnesota) indices 

decreased to levels that are consistent with GA in awake and cognitively intact volunteers 

that received only muscle relaxants to achieve surgical paralysis [8]. Similarly, in 2018, 

Scheuler et al showed that index assignments given by three other monitors—NeuroSENSE 

(NeuroWave Systems), BIS (Medtronic) and Entropy (GE Healthcare)— were unreliable 

with ketamine [30]. These findings are consistent with our conjecture that EEG-based 

anesthetic state prediction systems ascribe high sedation/awake states prediction weights to 

beta oscillations. During the awake state, normal muscle activity contaminates the EEG in 

beta frequency ranges [3]. However, during surgical paralysis in awake and cognitively 

intact humans, there is an absence of spontaneous muscle activity and by proxy beta 

oscillation [3]. The absence of beta oscillations in awake and cognitively intact patients that 

received a muscle relaxant resulted in indices that were consistent with GA suggesting that 

the BIS algorithm ascribes high ‘awake’ prediction weights to EEG beta oscillations [3]. 

This finding is particularly important given that current indices may imprecisely suggest 

unconsciousness in patients that have been pharmacologically paralyzed but remain 

conscious [3]. Thus, given the limitations inherent to current index-based anesthetic state 

monitoring strategies, principled strategies that significantly improve upon the one-

algorithm-fits-all-drugs approach to anesthetic state monitoring are necessary.

4.2. Study limitations

We have previously shown that the EEG dynamics of the anesthetized brain changes 

systematically as a function of age [31, 32] and perhaps, critical illness. Thus, limitations of 

our study include the small sample size and relatively uniform study population (i.e. young 

and healthy). Future studies that account for age differences and patient comorbidities are 

necessary for generalizability. However, our results provide context to explain why the 

reliability of index-based anesthetic monitoring devices have been called into question in 

numerous clinical scenarios. Also, we studied a limited set of EEG features. Therefore, a 
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more expansive feature set or with feature-independent models may result in improved 

performance.

5. Conclusion

We conclude that a principled approach to automated anesthetic state targeting is feasible. 

However, instead of a one-algorithm-fits-all-drugs approach, we suggest that indices should 

be constructed to account for patient age, anesthetic drug or drug-class combinations, and 

perhaps, comorbidities.
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Appendix A:: Preliminary work

We also attempted this problem with a 5-class training paradigm. The model in this section 

was a KNN algorithm, trained on each unique anesthetic state during the sevoflurane visit: 

pre-anesthesia (awake), 1.1% sevoflurane (sedation), 2.1% sevoflurane (GA), 2.8% 

sevoflurane (GA) and post-anesthesia (awake). We trained our algorithm on the features 

listed in table 1 that linearly separated our a priori state classes during the sevoflurane visit. 

The confusion matrix detailing the performance of model A1 is provided in figure A1. 

Model A1 discriminated sedation with accuracy comparable to that of models in the 

literature [29]. However, model A1 often confused the baseline and emergence stages. 

Similarly, model A1 often confused different states of sevoflurane-induced GA (2.1% 

sevoflurane and 2.8% sevoflurane).
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Figure A1. 
The average confusion matrix of model A1. Baseline is often confused with emergence. 

2.1% sevoflurane is often confused with 2.8% sevoflurane. (Sevo. = Sevoflurane, Anes. = 

Anesthesia).

Appendix B:: Validation testing on an alternative feature set

In this appendix, we present the results of models trained on an alternative feature space–the 

union of tables B1 and B2 rather than the intersection. Thus, our feature set in this appendix 

is the set of features that linearly separate a priori defined state classes in either the 

sevoflurane visit or the sevoflurane-plus-ketamine visit (table B3). We applied the same 

KNN algorithm (city-block metric, k = 6) so that any differences in model performance are 

only a result of different feature spaces. Differences in performance across models are 

provided in table B4.
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Table B1.

Features that linearly separate states during the sevoflurane visit. (RMS = root mean square).

Domain Feature

Spectral Mean power of slow (0.1–2 Hz)
Mean power of theta (4.1–8 Hz)
Mean power of alpha (8.1–11.9 Hz)
Mean power of low-beta (12–15 Hz)
Mean power of high-beta (15.1–20 Hz)
RMS of slow power (0.1–2 Hz)
RMS of theta power (4.1–8 Hz)
RMS of alpha power (8.1–11.9 Hz)
RMS of low-beta power (12.5–15 Hz)
RMS of high-beta power (15.1–20 Hz)

Time Kurtosis of EEG
Mean instantaneous frequency
Kurtosis of instantaneous frequency
Hjorth mobility

Entropy Permutation entropy
Higuchi fractal dimension
Sample entropy

Total 17

Table B2.

Features that linearly separate anesthetic states during the sevoflurane-plus-ketamine visit.

Domain Feature

Spectral Mean power of slow band (0.1–2 Hz)
Mean power of theta (4.1–8 Hz)
Mean power of low-beta (12.5–15 Hz)
Mean power of all-bands (0–30 Hz)
SD of slow power (0.1–2 Hz)
SD of theta power (4.1–8 Hz)
SD of low-beta power (12.5–15 Hz)
SD of total power (0–30 Hz)

Time Mean instantaneous frequency
Kurtosis of instantaneous frequency
Hjorth mobility

Entropy Permutation entropy
Higuchi fractal dimension
Renyi entropy

Total 14

Table B3.

The superset of the union of features which linearly separated our a priori defined anesthetic 

state classes during the sevoflurane visit and the sevoflurane-plus-ketamine visit. For 

consistency, this table includes the root mean square (RMS) and Standard Deviation for each 

band, making it a superset of the union of tables B1 and B2. (SD = standard deviation, RMS 

= root mean square).

Domain Feature

Spectral Mean, standard deviation, and root-mean square of slow-delta power (0–2 Hz)
Mean, standard deviation, and root-mean square of theta power (4.1–8 Hz)
Mean, standard deviation, and root-mean square of alpha power (8.1–11.8 Hz)
Mean, standard deviation, and root-mean square of low-beta power (12–15 Hz)
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Domain Feature

Mean, standard deviation, and root-mean square of high-beta power (15.1–20 Hz)
Mean, standard deviation, and root-mean square of total power (0–30 Hz)

Time Kurtosis of EEG
Hjorth mobility
Mean of instantaneous frequency
Kurtosis of instantaneous frequency

Entropy Permutation entropy
Higuchi fractal dimension
Renyi entropy
Sample entropy

Total 26

Table B4.

Comparison of two feature selection methods using the KNN algorithm with HMM-filtered 

predictions, tested on full-length data. (SD = standard deviation).

Trained using features from the intersection 
from tables 1 and 2

Trained using features from the union of from 
tables 1 and 2

GA performance (± SD) GA performance (± SD)

Model 1a 0.865 (0.187) 0.695 (0.401)

Model 1b 0.598 (0.350) 0.629 (0.324)

Model 2a 0.934 (0.061) 0.794 (0.373)

Model 2b 0.946 (0.058) 0.920 (0.081)
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Figure 1. 
Study schematic depicting the concentrations and durations of anesthetic-drugs delivered 

during (A) sevoflurane study visit and (B) sevoflurane-plus-ketamine study visit. Note that 

the ‘sedated’ state does not occur during the sevoflurane-plus-ketamine visit and the 

duration of sevoflurane administration in both the visit was approximately similar (i.e. 45 

min).
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Figure 2. 
Schematic of model training.

Kashkooli et al. Page 16

J Neural Eng. Author manuscript; available in PMC 2020 November 04.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 3. 
The average confusion matrices of models 1 and 2. Model 1b predicted 57.4% of 

sevoflurane-plus-ketamine GA epochs as awake or sedated. Model 2b predicted only 8.9% 

of sevoflurane-plus-ketamine GA epochs as awake or sedated. Integrity on the sevoflurane 

drug-class is maintained through the broader training set. (Sevo. = Sevoflurane, Sevo + Ket 

= sevoflurane-plus-ketamine).
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Figure 4. 
A comparison of the predictions of model 1b (cross-test model) and model 2b (cross drug 

model), the end-tidal sevoflurane concentration during the sevoflurane-plus-ketamine visit, 

and the spectrogram during the sevoflurane-plus-ketamine visit for an illustrative subject.
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Table 1.

Feature space of variables that linearly separate our anesthetic state classes for both sevoflurane and 

sevoflurane-plus-ketamine visits.

Domain Features

Spectral Mean power of slow (0.1–2 Hz)
Mean power of theta (4.1–8 Hz)
Mean power of low-beta (12.5–15 Hz)

Time Mean instantaneous frequency
Kurtosis of instantaneous frequency
Hjorth mobility

Entropy Permutation entropy
Higuchi fractal dimension

Total 8
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Table 2.

Experimental design consisting of four models with varying training and testing sets. Sevo. indicates 

sevoflurane.

Training set Testing set

Model 1a Sevo. visit Sevo. visit

Model 1b Sevo. visit Sevo.-plus-ketamine visit

Model 2a Both visits Sevo. visit

Model 2b Both visits Sevo.-plus-ketamine visit
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