
LESS-FM: Fine-tuning Signatures from a
Code-based Cryptographic Group Action

Alessandro Barenghi1, Jean-François Biasse2, Edoardo Persichetti3 and
Paolo Santini4

Politecnico di Milano1, University of South Florida2, Florida Atlantic University3,
Universitá Politecnica delle Marche4

Abstract. Code-based cryptographic schemes are highly regarded among
the quantum-safe alternatives to current standards. Yet, designing code-
based signatures using traditional methods has always been a challenging
task, and current proposals are still far from the target set by other post-
quantum primitives (e.g. lattice-based). In this paper, we revisit a recent
work using an innovative approach for signing, based on the hardness
of the code equivalence problem. We introduce some optimizations and
provide a security analysis for all variants considered. We then show that
the new parameters produce instances of practical interest.

1 Introduction

Digital signature schemes are a fundamental primitive in modern times. In fact,
such schemes offer a way to achieve authentication, one of the major crypto-
graphic goals, and an all-important task in the digital world. Since their incep-
tion, signature schemes have traditionally been designed using classical number
theory problems like integer factorization and computing discrete logarithms.
The latter is an instance of a cryptographic group action (also described by Cou-
veignes as a hard homogeneous space [10]). In the discrete logarithm setting, the
action is defined by the exponentiation of elements in a group of prime order.
Such an action satisfies a number of very good properties, due to which it was
naturally chosen to be the base of several fundamental cryptographic protocols;
besides signatures (DSA, ECDSA), it is worth mentioning at least El Gamal en-
cryption, and, most importantly, the Diffie-Hellman key exchange. All of these
schemes, however, will be obsolete once a quantum computer with sufficient com-
putational power and stability is able to run attacks such as Shor’s algorithm [19].
It is therefore a pressing issue to establish new algorithms for signature schemes,
as highlighted by NIST’s call for Post-Quantum Standardization [1].

Recently, cryptographic group actions came into the spotlight again, with sev-
eral improvements over the original work of Couveignes [10] and Stolbunov [20].
This enabled many improvements in the field of isogeny-based cryptography, in-
cluding primitives that were previously missing in the post-quantum scenario
such as static-static key exchange protocols.

Our Contribution In this paper, we build on the work of [9], where the LESS
signature scheme was proposed, based on the one-wayness of what is the first in-
stance of a code-based cryptographic group action [14]. The scheme relies entirely
on the hardness of finding isometries between linear codes, and thus represents a
new direction in code-based cryptography. Our main contribution, is to leverage
the cryptographic group action framework to introduce a number of significant
optimizations. More specifically, we present two techniques that can be applied
to the basic LESS protocol. The first is a generalization of the underlying iden-
tification scheme that makes use of multi-bit challenges, by changing the role of
the selected challenge bits. This results in a tradeoff, with a reduction in signa-
ture size, at the expense of an increase in public key size. The second technique,
instead, exploits the imbalance between the cost of different responses corre-
sponding to the chosen challenge bits. Choosing the challenge string to have
a fixed, low Hamming weight ends up in much shorter signatures, as well as
providing constant-time verification. We show that the two techniques can be
combined, providing a flexible and practical scheme. We give an explicit proof
for the EUF-CMA security property of the original LESS scheme, with minor
tweaks. This proof serves as a basis for the security of the variant schemes. Note
that the multi-bit variants rely on a new problem which we call Multiple Codes
Linear Equivalence (MCLE, Problem 2), and for which we give a tight reduction
to the Code Equivalence problem. Finally, we present multiple sets of parameters
for a concrete instantiation of our scheme, and make practical considerations,
including a comparison with the existing code-based alternatives.

The paper is organized as follows. We begin by recalling some useful back-
ground notions in Section 2. The LESS signature scheme, and the underlying
group action, are presented in Section 3. In Section 4, we describe the vari-
ous optimizations for the scheme. Finally, in Section 5, we briefly summarize
the different attacks techniques against the code equivalence problem, and then
provide a discussion on parameter choices, including the comparison with other
code-based signature schemes.

2 Background

We will use the following notation throughout the paper: a for scalars, A for
sets, a for vectors, A for matrices, a for functions, A for algorithms. We denote
with In the n×n identity matrix, with [a; b] the set of integers {a, a+ 1, . . . , b},
and with

$←− A the action of sampling uniformly at random from A. We denote
with Zq the ring of integers modulo q, and with Fq the finite field of order q.
The multiplicative group of Fq is indicated as F∗q . We denote with Aut(Fq) the
group of automorphisms of the field Fq. The sets of vectors and matrices with
elements in Zq (resp. Fq) are denoted by Znq and Zm×nq (resp. Fnq and Fm×nq).
We also write Znq,w (resp. Fnq,w) to indicate the set of vectors with components in
Zq (resp. Fq) with length n and Hamming weight w. We write GLk(q) for the set
of invertible k × k matrices with elements in Fq, or simply GLk when the finite

2

field is implicit. Let Sn be the set of permutations over n elements. For a vector
x = (x1, · · · , xn) ∈ Fnq and a permutation π ∈ Sn, we write the action of π on
x as π(x) = (xπ(1), · · · , xπ(n)). A permutation can equivalently be described as
an n× n matrix with exactly one 1 per row and column. Analogously, for linear
isometries, i.e. transformations µ = (v;π) ∈ F∗nq o Sn, we write the action on a
vector x as µ(x) = (v1xπ(1), · · · , vnxπ(n)). Then, we can also describe these in
matrix form as a product Q = DP where P is an n × n permutation matrix
and D = {dij} is an n× n diagonal matrix with entries in F∗q . We denote with
Mn the set of such matrices, usually known as monomial matrices.

2.1 Cryptographic Group Actions

At a high level, a group action is an operator involving a group, for which an
identity exists, and that satisfies the compatibility property, as follows.

Definition 1. Let X be a set and (G, ◦) be a group. A group action is a mapping

? : X ×G→ X
(x, g) → x ? g

such that, for all x ∈ X and g1, g2 ∈ G, it holds that (x ? g1) ? g2 = x ? (g1 ◦ g2).

A group action is usually called cryptographic if it satisfies some additional
properties that make it interesting in a cryptographic context. In the first place,
besides efficient sampling, computation, and membership testing, a cryptographic
group action should certainly be one-way, i.e. given randomly chosen x1, x2 ∈ X,
it should be hard to find g ∈ G such that x1?g = x2 (if such a g exists). Other de-
sirable properties include, for instance, pseudorandomness of the output, as well
as more traditional ones such as commutativity, transitivity etc. Due to space
constraints, we refer the reader to [2] for an extensive treatment of cryptographic
group actions and their properties.

2.2 Code Equivalence

An [n, k]-linear code C of length n and dimension k over Fq is a k-dimensional
vector subspace of Fnq . It can be represented by a matrix G ∈ Fk×nq , called gen-
erator matrix, whose rows form a basis for the vector space, i.e., C = {uG, u ∈
Fkq}. Alternatively, a linear code can be represented as the kernel of a matrix

H ∈ F(n−k)×n
q , known as parity-check matrix, i.e. C = {x ∈ Fnq : HxT = 0}.

For both representations, there exists a standard choice, called systematic form,
which corresponds, respectively, to G = (Ik | M) and H = (−MT | In−k).
Generator (resp. parity-check) matrices in systematic form are obtained by cal-
culating the row-reduced echelon form starting from any other generator (resp.
parity-check) matrix. We denote such a procedure by sf. The parity-check matrix
is important also as it is a generator for the dual code, defined as the set of words
that are orthogonal to the code, i.e. C⊥ = {y ∈ Fnq : ∀x ∈ C, x · yT = 0}.
A code C is called self-orthogonal or weakly self-dual if C ⊆ C⊥, and simply
self-dual if C = C⊥.

3

The concept of equivalence between two codes, in its most general formulation,
is defined as follows.

Definition 2 (Code Equivalence). We say that two linear codes C and C′ are
equivalent, and write C ∼ C′, if there exists a field automorphism α ∈ Aut(Fq)
and a linear isometry µ = (v;π) ∈ F∗nq o Sn that maps C into C′, i.e. such that
C′ = µ(α(C)) = {y ∈ Fnq : y = µ(α(x)), x ∈ C}.

Clearly, if C and C′ are two codes with generator matrices G and G′, respec-
tively, it holds that

C ∼ C′ ⇐⇒ ∃(S; (α,Q)) ∈ GLk o (Aut(Fq)×Mn) s.t. G′ = Sα(GQ).

The notion we just presented is usually known as semilinear equivalence
and it is the most generic. If the field automorphism is the trivial one (i.e.
α = id), then the notion is simply known as linear equivalence. If, furthermore,
the monomial matrix is a permutation (i.e. Q = DP with D = In), then the
notion is known as permutation equivalence. Note that, in this work, we always
work with prime fields Fq, and therefore the last two notions are the only ones
of interest to us. Finally, we state the following computational1 problem.

Problem 1 (Code Equivalence) Let G,G′ ∈ Fk×nq be two generator ma-
trices for two linearly equivalent codes C and C′. Find a field automorphism
α ∈ Aut(Fq) and two matrices S ∈ GLk and Q ∈ Mn such that G′ = Sα(GQ).

We normally refer, respectively, to semilinear, linear or permutation equiva-
lence problem, according to what is the notion of code equivalence considered.
Alternatively, we refer simply to the code equivalence problem where such dis-
tinction is not important.

3 Code-based Group Actions and Applications

We begin by describing the group action associated to code equivalence. To do
this we consider the set X ⊆ Fk×nq comprised of all full-rank k× n matrices, i.e.
the set of generator matrices of [n, k]-linear codes, and G = GLko(Aut(Fq)×Mn).
Note that this group is isomorphic to the group (GLk × (F∗q)n)o (Aut(Fq)× Sn)
if we decompose each monomial matrix Q ∈ Mn into the product D · P ∈
(F∗q)n oMn; then the group operation ◦ is defined as

((S,D); (α,P)) ◦ ((S′,D′); (α′,P ′)) = ((Sα(S′),D · α(D′P)); (αα′,PP ′)).

The group action is given by

? : X ×G → X
(G, (S; (α,Q)))→ Sα(GQ)

1 Note that this problem is traditionally formulated as a decisional problem in litera-
ture, yet for our purposes it is more natural to present here the search version.

4

It is easy to see that the action is well-formed, with the identity element being
(Ik; (id, In)). Furthermore, it possesses some essential properties that are of
cryptographic interest. First of all, the action satisfies all the basic requirements
such as efficient membership testing, sampling, computation etc., to which the
authors in [2] assign the nomenclature of effective. The action is also one-way,
based on the hardness of the code equivalence problem. In fact, given G and
Sα(GQ), it should be infeasible to recover S, α and Q in polynomial time, else
this would provide a solver for the problem. Unfortunately, our group action does
not satisfy some useful additional properties (as formalized in [2]). For instance,
it is not transitive, meaning that it is not possible to connect every element of X
(i.e. every generator matrix) via a group element. Most importantly, the action is
not commutative, which is a considerable obstacle in the design of cryptographic
protocols. Nevertheless, it is possible to employ the group action for this purpose
successfully, as we will see. Note that the above formulation includes some trivial
instances, e.g. those such that Q = D · In, in which case the action returns just
a different generator matrix for the same code. Thus, in practice, it makes sense
to consider a simplified version of the group action, where X contains only the
(full-rank) generator matrices in systematic form, and G = Aut(Fq)×Mn.

The work of [9] introduces a 3-pass identification scheme, with soundness
error 1/2, which defines a zero-knowledge proof of knowledge of an isometry
between codes, and is based precisely on code equivalence. The authors suggest
that such a scheme can be turned into a signature scheme by applying the Fiat-
Shamir transformation, without however providing full details. We give here an
explicit description of such a scheme, with the addition of some minor tweaks2.

Setup Input parameters q, n, k, λ ∈ N, then set t = λ. Choose matrix G ∈ Fk×nq

and hash function H : {0, 1}∗ → {0, 1}λ. Set Q0 = In and G0 = sf(G).

Private Key Monomial matrix Q1 ∈ Mn.

Public Key Generator matrix G1 = sf(GQ1).

SIGNER VERIFIER

For i = 0 . . . t− 1, choose Q̃i
$←− Mn

and set G̃i = sf(GQ̃i).

Set h = H(G̃0, . . . , G̃t−1,m).
Parse h = h0, . . . ht−1, for hi ∈ {0, 1}.
For i = 0 . . . t−1, compute µi = Q−1

hi
Q̃i.

Set σ = (µ0, . . . µt−1, h).
(m,σ)−−−−→

Parse h = h0, . . . ht−1, for hi ∈ {0, 1}.
For i = 0 . . . t− 1, compute Ĝi = sf(Ghiµi).

Accept if H(Ĝ0, . . . , Ĝt−1,m) = h.

Table 1: The LESS Signature Scheme.

2 For example the original scheme did not use public keys in systematic form.

5

It is immediate to verify the correctness of the scheme, which follows from
the argument given in [9, Section 4]. In particular, when hi = 0, we have µi = Q̃i

and so Ĝi = sf(G0µi) = sf(GQ̃i) = G̃i; on the other hand, when hi = 1, we

have µi = Q−11 Q̃i and so again Ĝi = sf(G1µi) = sf(GQ1Q
−1
1 Q̃i) = G̃i.

A proof of EUF-CMA security for LESS is given in Appendix B.

4 Optimizations

In this section we discuss possible strategies for optimization. We start by notic-
ing that, for the original LESS scheme (Table 1), we have the following features:

- the public key size is k(n− k) dlog2(q)e bits;
- the number of rounds t is equal to the desired security level λ;
- consequently, the average signature size in bits is given by

t

(
1 +

lSeed + n dlog2(n)e+ n dlog2(q)e
2

)
,

where lSeed is the binary length of seed used as randomness. Note that, when
using permutations instead of monomial transformations, the signature size
gets reduced as the factor n dlog2(q)e is removed.

4.1 Multi-bit Challenges

A first natural observation is that signature size can be reduced by decreasing
the number of rounds that are necessary to reach the desired preimage security
level. This, obviously, requires the soundness error in the underlying ZK identi-
fication scheme to decrease proportionally. Such a scenario can be realized, for
instance, by increasing the number of challenge bits in each round, as described
in Seasign [11]. Each challenge bit becomes an `-bit challenge string, which can
be interpreted as an integer between 0 and 2`−1, i.e. as an element of Z2` , using
the well-known correspondence Z`2 = Z2` . Accordingly, the scheme is modified
to feature r = 2` independent public keys; each challenge string is then used to
select one of the keys, for which a response is produced (using the corresponding
private key). To keep notation simple, we exploit the bijection mentioned above,
and interchangeably use the same symbol to denote an `-bit string (as part of a
hash output) or an integer in [0; 2`− 1] (for example, when used as an index). A
pictorial representation of this variant is given in Table 2, below, where we call
the scheme LESS-M (for Multi-bit).

Note that this variant is more natural than what it may seem at a first glance.
In fact, the original LESS signature scheme of Table 1 can be seen as a particular
case of the LESS-M scheme, where ` = 1 and Q0 = In. The main difference is
in the security notion underlying the scheme. The security assumption in this
case becomes the following.

6

Setup Input parameters q, n, k, `, λ ∈ N, then set r = 2` and t = λ/`. Choose

matrix G ∈ Fk×nq and hash function H : {0, 1}∗ → {0, 1}λ.

Private Key Monomial matrices Q0 . . .Qr−1 ∈ Mn.

Public Key Generator matrices G0 . . .Gr−1, where Gi = sf(GQi) for i = 0 . . . r − 1.

SIGNER VERIFIER

For i = 0 . . . t− 1, choose Q̃i
$←− Mn

and set G̃i = sf(GQ̃i).

Set h = H(G̃0, . . . , G̃t−1,m).

Parse h = h0, . . . ht−1, for hi ∈ Z`2.

For i = 0 . . . t−1, compute µi = Q−1
hi

Q̃i.

Set σ = (µ0, . . . µt−1, h).
(m,σ)−−−−→

Parse h = h0, . . . ht−1, for hi ∈ Z`2.

For i = 0 . . . t− 1, compute Ĝi = sf(Ghiµi).

Accept if H(Ĝ0, . . . , Ĝt−1,m) = h.

Table 2: The LESS-M Signature Scheme.

Problem 2 (Multiple Codes Linear Equivalence) Consider a collection of
linearly equivalent [n, k]-linear codes C0 . . .Cr−1, admitting generator matrices
G0, . . . ,Gr−1 of the form S0GQ0, . . . ,Sr−1GQr−1. Find matrices S∗ ∈ GLk
and Q∗ ∈ Mn such that Gj′ = S∗GjQ

∗, for some j 6= j′.

This problem is still hard, and directly connected to the hardness of the linear
code equivalence problem. A reduction is given in Appendix C.

4.2 Fixed-weight Challenges

In this variant, the key intuition is that different responses, corresponding to dif-
ferent challenge bits, have a very unbalanced impact on the size of the signature.
In particular, for the original LESS (Table 1), in the case hi = 0 the response
µi consists of the purely random monomial matrix Q̃i, and therefore the signer
can transmit just the seed used to generate such random object. This, of course,
is much more compact than the monomial matrix Q−11 Q̃i which needs to be
transmitted, in full, when hi = 1. It makes sense, therefore, to try and minimize
the amount of bits hi that are equal to 1, in the challenge string h output by H.

This idea is not entirely new in the context of identification and signature
schemes. In fact, as reported in [17], the suggestion to use a fixed-weight challenge
vector is already present in the original Fiat-Shamir work [15]. More recently,
some signature schemes appeared that also make use of a similar approach, albeit
in a different context. For instance, Picnic, which earned much praise during the
NIST post-quantum standardization process [1], uses a pre-processing stage and
a cut-and-choose procedure to achieve the desired security level. This technique
was later revisited and generalized by Beullens [8], who presents an application
to multivariate schemes, as well as PKP. In all cases, it is evident how picking the
challenge vector from a carefully crafted distribution beats the simple parallel
repetition of the protocol.

7

In our case, a natural way to implement this idea is to switch the output
distribution of H, to return a vector of fixed Hamming weight. In other words,
we need to pick H to be a weight-restricted hash function, whose range is the
set Zt2,ω. The modified protocol is described in Table 3 below, where we call the
scheme LESS-F (for Fixed-weight).

Setup Input parameters q, n, k, λ, t, ω ∈ N. Choose matrix G ∈ Fk×nq and w.r.
hash function H : {0, 1}∗ → Zt2,ω. Set Q0 = In and G0 = sf(G).

Private Key Monomial matrix Q1 ∈ Mn.

Public Key Generator matrix G1 = sf(GQ1).

SIGNER VERIFIER

For i = 0 . . . t− 1, choose Q̃i
$←− Mn

and set G̃i = sf(GQ̃i).

Set h = H(G̃0, . . . , G̃t−1,m).
Parse h = h0, . . . ht−1, for hi ∈ {0, 1}.
For i = 0 . . . t−1, compute µi = Q−1

hi
Q̃i.

Set σ = (µ0, . . . µt−1, h).
(m,σ)−−−−→

Parse h = h0, . . . ht−1, for hi ∈ {0, 1}.
For i = 0 . . . t− 1, compute Ĝi = sf(Ghiµi).

Accept if H(Ĝ0, . . . , Ĝt−1,m) = h.

Table 3: The LESS-F Signature Scheme.

A necessary condition to avoid losing security during the process is that
the final preimage security level of the protocol remain equal to the original
goal of 2−λ. This was naturally obtained via parallel repetition. In our case,
simply constraining the challenge vector to a target Hamming weight would be
guaranteed to lose security bits. Indeed, this happens even in the most basic
scenario, i.e. if we restrict to the expected value ω = t/2; for instance, when
λ = 128, sampling h among the vectors of weight 64 only leads to approximately
124 preimage security bits. To understand this, recall that preimage security
corresponds, essentially, to the difficulty of guessing the entire challenge vector.
In the case of parallel repetition, since each instance is independent from the
others, this is equivalent to correctly picking the challenge in each round, which
leads to a probability of εt, where ε is the soundness error (in our case 1/2).
However, if the challenge is sampled among vectors of fixed Hamming weight,
the difficulty of guessing is the reciprocal of∣∣∣Zt2,ω∣∣∣ =

(
t

ω

)
.

From this, it follows that, in order to safely switch to constrained-weight
challenge vectors, it is necessary to ensure that log2

(
t
ω

)
≥ λ. This leads to

an increase in the overall length of the challenge vector, yet yields consistently
smaller signatures.

8

4.3 Combining the Approaches

In this section we explain how to combine the approaches illustrated in the
previous sections. The result is depicted in Table 4, below, where we call the
scheme LESS-FM (as it is a combination of the two techniques).

Setup Input parameters q, n, k, `, λ, t, ω ∈ N, then set r = 2`. Choose matrix

G ∈ Fk×nq and w.r. hash function H : {0, 1}∗ → Zt2`,ω.

Set Q0 = In and G0 = sf(G).

Private Key Monomial matrices Q1 . . .Qr−1 ∈ Mn.

Public Key Generator matrices G1 . . .Gr−1, where Gi = sf(GQi) for i = 1 . . . r − 1.

SIGNER VERIFIER

For i = 0 . . . t− 1, choose Q̃i
$←− Mn

and set G̃i = sf(GQ̃i).

Set h = H(G̃0, . . . , G̃t−1,m).

Parse h = h0, . . . ht−1, for hi ∈ {0, 1}`.
For i = 0 . . . t−1, compute µi = Q−1

hi
Q̃i.

Set σ = (µ0, . . . µt−1, h).
(m,σ)−−−−→

Parse h = h0, . . . ht−1, for hi ∈ {0, 1}`.
For i = 0 . . . t− 1, compute Ĝi = sf(Ghiµi).

Accept if H(Ĝ0, . . . , Ĝt−1,m) = h.

Table 4: The LESS-FM Signature Scheme.

This formulation is the most generic, as it includes the previous ones as
particular cases. The quantity to consider for preimage security is∣∣∣Zt2`,ω∣∣∣ =

(
t

ω

)
(2` − 1)ω.

Optimal parameter choices for all variants will be discussed in the next section.

5 Concrete parameter sets and Implementation strategies

Before selecting parameters, we present a brief summary of the complexities
of the main known techniques to solve code equivalence; the interested reader
can find all the details of the security analysis in the Supplementary Material,
included at the end of this manuscript.

Note that the algorithms to solve the code equivalence problem essentially do
not change with the equivalence type. One could then think that the two prob-
lems are equally hard; yet, this is not true. Indeed, the permutation equivalence
is actually easy in general, and only hard for some specific instances, such as for
(weakly) self-dual codes. On the other hand, for the linear equivalence problem,
no polynomial-time solver is currently known when q is large enough, and thus
this is a much harder problem in this scenario.

9

Type Algorithm Complexity Notes

Permutation

Leon [16] O
(
CISD(q, n, k, dGV) · 2 ln (Nw)

) Preferable with small
finite fields and large
hulls.

Beullens [7] O

(
2L·CISD(q,n,k,w)

Nw(1−2L log2(1−L/Nw))

) Preferable with large fi-
nite fields and hulls.
May fail when L is too
small.

SSA [18] O
(
n3 + n2qh logn

) Efficient with small,
non-trivial hulls.

BOS [4]

{
O
(
n2.373CWGI(n)

)
if h = 0

O
(
n2.373+h+1CWGI(n)

)
if h > 0

Efficient with trivial
hulls

Linear

Leon [16] O
(
CISD(q, n, k, dGV) · 2 ln (Nw)

) Preferable with small
finite fields and large
hulls.

Beullens [7] O

(
2L·CISD(q,n,k,w)

Nw(1−2L log2(1−L/Nw))

) Preferable with large fi-
nite fields and hulls.
May fail when L is too
small.

SSA [18]

{
O
(
n3 + n2qh logn

)
if q < 5

O
(
n3 + n2qk logn

)
if q ≥ 5

Efficient if q < 5 and
the hull is trivial.

Table 5: Summary of techniques to solve the code equivalence problem

Selecting optimal parameters for LESS-FM involves a multi-target optimiza-
tion where the considered figures of merit are: i) the desired security level, ii)
the size of the keypair and of the transmitted signature message, and iii) the
computational load required. In this work, we propose parameter sets which are
targeted to a computational effort of 2128 classical gates, as is standard in litera-
ture. This will also facilitate a comparison with other existing signature schemes.
Nevertheless, we also ensured that our parameters achieve at least 64 quantum
security bits, according to the best known quantum algorithm techniques, an
analysis of which is also reported in the Supplementary Material.

Version Type Num. of Rounds |pk| |σ|

-

Perm λ k(n− k)Q λ
(
1 + λ+nN

2

)
Mono λ k(n− k)Q λ

(
1 + λ+nN+nQ

2

)
M

Perm dλ
`
e (2` − 1)k(n− k)Q dλ

r
e
(
2`+ nN

2

)
Mono dλ

`
e (2` − 1)k(n− k)Q dλ

r
e
(
2r + nN+nQ

2

)
F

Perm t s.t.
(
t
ω

)
> 2λ k(n− k)Q t+ (t− ω)λ+ ωnN

Mono t s.t.
(
t
ω

)
> 2λ k(n− k)Q t+ (t− ω)λ+ ωn (N +Q)

FM

Perm t s.t.
(
t
ω

)
(2` − 1)ω > 2λ (2` − 1)k(n− k)Q `t+ (t− ω)λ+ ωnN

Mono t s.t.
(
t
ω

)
(2` − 1)ω > 2λ (2` − 1)k(n− k)Q `t+ (t− ω)λ+ ωn (N +Q)

Table 6: Overview of the number of rounds and public key/signature sizes in bits as a
function of the LESS variant parameters, with N = dlog2(n)e and Q = dlog2(q)e.

10

Table 6 gives a synthetic view of public key and signature sizes as a function
of the LESS variant parameters. To achieve the reported storage complexity, the
LESS keypairs are stored representing the field elements of Fq as Q = dlog2(q)e
integers, and linearizing on the storage the non-trivial portion of the Gi ma-
trices of the public keys performing bitpacking. This yields a public key size of
(2` − 1)k(n − k)Q (considering one can always set Q0 = In and G0 = sf(G)).
Concerning the storage of the monomial matrices composing the private key,
they can be represented as an length-n vector of pairs storing the index of the
permuted element, and the value of the multiplicative coefficient on Fq of the said
element. Note that, while a compact representation of the permutation alone is
possible over dlog2(n!)e bits, this saves a relatively small amount of space (about
4.5% when minimizing both the public key and signature, where such an effect is
most evident), at the cost of performing the relatively demanding computation
of permutation unranking, to bring the permutation in a usable representation.
Finally, as noted, we achieve a significant reduction in signature size by sending
the seeds employed to generate the ephemeral random monomial matrices Q̃i

instead of the monomial matrices themselves. We also note that, from a com-
putational standpoint, it is more efficient to store the inverses of the monomial
matrices in the private key, moving their computation to the key generation pro-
cess. This results in an overall improvement in the computation time in all the
cases where long-term keys for the signatures are employed.

Optimization LESS Type n k q ` t ω pk sig pk + sig

Criterion (kB) (kB) (kB)

Min. pk size F Mono 198 94 251 1 283 28 9.77 15.2 24.97

Min. sig size FM Perm 235 108 251 4 66 19 205.74 5.25 210.99

Min. pk + sig size F Perm 230 115 127 1 233 31 11.57 10.39 21.96

Beullens [7] - Mono 250 125 53 1 128 - 11 28 39

Table 7: Parameter sets for LESS-FM, for a security level of λ = 128 classical bits.

Table 7 reports the result of the optimization of the LESS-FM parameters
when targeting the minimization of i) the public key size, ii) the signature size
or iii) the sum of the aforementioned quantities. The rationale behind these cri-
teria is to highlight the flexibility of LESS-FM in application scenarios where i)
the space for public key storage is constrained (e.g. microcontrollers with tight
Flash memory limits), ii) digital certificates, which employ a concatenation of
public keys and signatures, and iii) application scenarios where a large amount
of signed messages are exchanged between two endpoints employing long-term
keypairs. Despite our conservative quantification of the computational effort re-
quired by the most effective cryptanalytic approaches, LESS can be instantiated
with parameters pushing the size of the public key below 10 kB, or keep the sum
of the public key and signature below 22 kB.

11

Scheme
Security pk sig pk + sig Security

Level (kB) (kB) (kB) Assumption

Stern [13] 80 18.48 113.5 131.98 Low-weight Hamming

Veron [13] 80 18.52 109.05 127.57 Low-weight Hamming

CVE [13] 80 5.31 66.44 71.75 Low-weight Hamming

Wave [12] 128 3205 1.04 3206.04 High-weight Hamming

cRVDC [6] 125 0.15 22.48 22.63 Low-weight Rank

Durandal - I [3] 128 15.24 4.06 19.3 Low-weight Rank

Durandal - II [3] 128 18.60 5.01 23.61 Low-weight Rank

LESS-F min. pk size 128 9.77 15.2 24.97 Linear Equivalence

LESS-FM min. sig size 128 205.74 5.25 210.99 Perm Equivalence

LESS-F min. pk + sig size 128 11.57 10.39 21.96 Perm Equivalence

Table 8: A comparison of public keys and signature sizes with alternative code-based
signature schemes

Our balanced optimization criterion, combined with the use of fixed-weight
challenges allows us to reduce to less than half the signature size, with respect to
the parameter sets proposed by Beullens in [7], while retaining the same public
key size. Finally, we are able, at the cost of a larger public key size, to achieve
a minimum signature size of 5.25 kB, reducing the signature size by close to 3×
with respect to the other parameter sets.

Table 8 reports a comparison of the data sizes achieved by LESS variants
with other code-based signature schemes. Considering the algorithms employing
Fiat-Shamir, we see that LESS consistently outperforms the traditional schemes
based on the Hamming metric (such as Stern, Veron and CVE), even when com-
pared to 80-bit security versions, while its characteristics are orthogonal to those
of cRVDC (which is rank-based). Indeed, despite a much larger public key, LESS
achieves more compact signatures, and therefore compares favourably in scenar-
ios ii) and iii). Finally, we consider two recent signature algorithms (namely,
Wave and Durandal). We observe that LESS also provides favourable figures
with respect to Wave, as it features a public key which is smaller by two or-
ders of magnitude, albeit at the cost of an increase of an order of magnitude in
signature size. This provides a practical advantage in scenarios where a public
key/signature pair is transferred at each communication, such as in the TLS
authentication phase, which transmits X.509 certificates. In this regard, the per-
formance of LESS is very similar to that of Durandal, which is an adaptation
of the Schnorr’s paradigm to the rank metric. It is then worth noting that the
closest competition for LESS, in terms of performance, is represented by rank
metric schemes, an area which is somewhat further away from traditional coding
theory (while strongly related to multivariate cryptography), and, in the case of
Durandal, relying on younger, ad-hoc computational assumptions.

12

References

[1] https://csrc.nist.gov/Projects/Post-Quantum-Cryptography. 2017.
[2] N. Alamati et al. “Cryptographic Group Actions and Applications”. In: ASI-

ACRYPT. Springer. 2020, pp. 411–439.
[3] N. Aragon et al. “Durandal: A Rank Metric Based Signature Scheme”. In: Ad-

vances in Cryptology – EUROCRYPT 2019. Ed. by Y. Ishai and V. Rijmen.
Cham: Springer International Publishing, 2019, pp. 728–758.

[4] M. Bardet, A. Otmani, and M. Saeed-Taha. “Permutation Code Equivalence is
Not Harder Than Graph Isomorphism When Hulls Are Trivial”. In: IEEE ISIT
2019. July 2019, pp. 2464–2468.

[5] M. Bellare and G. Neven. “Multi-signatures in the plain public-key model and a
general forking lemma”. In: CCS. 2006, pp. 390–399.

[6] E. Bellini et al. “Improved Veron Identification and Signature Schemes in the
Rank Metric”. In: ISIT. Paris, France, 2019, pp. 1872–1876.

[7] W. Beullens. Not enough LESS: An improved algorithm for solving Code Equiv-
alence Problems over Fq. Cryptology ePrint Archive, Report 2020/801.

[8] W. Beullens. “Sigma protocols for MQ, PKP and SIS, and fishy signature schemes”.
In: Annual International Conference on the Theory and Applications of Crypto-
graphic Techniques. Springer. 2020, pp. 183–211.

[9] J.-F. Biasse et al. “LESS is More: Code-Based Signatures Without Syndromes”.
In: AFRICACRYPT. Ed. by A. Nitaj and A. Youssef. Springer, 2020, pp. 45–65.

[10] J. M. Couveignes. “Hard Homogeneous Spaces.” In: IACR Cryptol. ePrint Arch.
2006 (2006), p. 291.

[11] L. De Feo and S. D. Galbraith. “SeaSign: Compact isogeny signatures from class
group actions”. In: EUROCRYPT. Springer. 2019, pp. 759–789.

[12] T. Debris-Alazard, N. Sendrier, and J.-P. Tillich. “Wave: A new family of trap-
door one-way preimage sampleable functions based on codes”. In: ASIACRYPT.
Springer. 2019, pp. 21–51.

[13] S. M. El Yousfi Alaoui et al. “Code-Based Identification and Signature Schemes
in Software”. In: Security Engineering and Intelligence Informatics. Ed. by A.
Cuzzocrea et al. Springer Berlin Heidelberg, 2013, pp. 122–136.

[14] T. Feulner. “The automorphism groups of linear codes and canonical representa-
tives of their semilinear isometry classes.” In: Adv. Math. Commun. 3.4 (2009),
pp. 363–383.

[15] A. Fiat and A. Shamir. “How to prove yourself: Practical solutions to identifica-
tion and signature problems”. In: CRYPTO. Springer. 1986, pp. 186–194.

[16] J. Leon. “Computing automorphism groups of error-correcting codes”. In: IEEE
Transactions on Information Theory 28.3 (May 1982), pp. 496–511.

[17] R. Ransom. Constant-time verification for cut-and-choose-based signatures. Cryp-
tology ePrint Archive, Report 2020/1184. 2020.

[18] N. Sendrier. “The Support Splitting Algorithm”. In: Information Theory, IEEE
Transactions on (Aug. 2000), pp. 1193–1203.

[19] P. Shor. “Polynomial-Time Algorithms for Prime Factorization and Discrete Log-
arithms on a Quantum Computer”. In: SIAM Journal on Computing 26.5 (1997),
pp. 1484–1509.

[20] A. Stolbunov. “Constructing public-key cryptographic schemes based on class
group action on a set of isogenous elliptic curves”. In: Advances in Mathematics
of Communications 4.2 (2010), p. 215.

13

A Standard Definitions for Signature Schemes

Definition 3. A Digital Signature Scheme, or simply Signature Scheme (SS),
is a 6-tuple (K,M,S,KeyGen,Sign,Ver) defined as follows.

– K = Ksign × Kver is the key space, containing pairs of private/public keys
(sgk, vk), respectively the signing key and the verification key.

– M and S are, respectively, the message space and the signature space.
– KeyGen is a probabilistic key-generation algorithm that takes as input a se-

curity parameter λ and outputs a keypair (sgk, vk) ∈ K.
– Sign is a (possibly probabilistic) private signing algorithm that receives as

input a signing key sgk ∈ Ksign and a message m ∈ M and returns a signature
σ ∈ S.

– Ver is the (deterministic) public verification algorithm that receives as input
a verification key vk ∈ Kver, a message m ∈ M and a signature σ ∈ S and
outputs 1, if the signature is recognized as valid, or 0 otherwise.

Intuitively, a signature scheme is secure if a forger has only a negligible prob-
ability of producing a valid signature without knowing the private key. Among
the several models described in literature, the one which is usually considered the
most desirable, is the chosen-message attack model, in which an attacker is al-
lowed access to an arbitrary number of message/signature pairs of his choosing,
via so-called signing queries. The resulting security notion is known as Exis-
tential Unforgeability under Chosen-Message Attacks (EUF-CMA), and can be
formalized as follows.

Definition 4. An adversary A for SS in the EUF-CMA attack model is a
polynomial-time algorithm playing the following attack game:

1. Query a key generation oracle to obtain a verification key vk. The corre-
sponding signing key sgk is kept private and is unknown to A.

2. Perform a polynomial number of signing queries. In each signing query, A
chooses a message m and submits it to a signing oracle. The oracle replies
with σ = Signsgk(m).

3. Output a pair (m∗, σ∗).

The adversary succeeds if Vervk(m
∗, σ∗) = 1 and m∗ had not been queried before.

We say that a signature scheme is EUF-CMA secure if the probability of success
of any adversary A is negligible in the security parameter.

B Proof of EUF-CMA Security

In here, we show that the LESS signature scheme is EUF-CMA secure. We begin
with the following trivial result.

Lemma 1. Let Mn be the set of monomial matrices as defined in Section 2.

Then for any A ∈ Mn and B
$←− Mn, A−1B is uniformly distributed over Mn.

14

The main result is given below.

Theorem 1. The LESS signature scheme described in Table 1 is existentially
unforgeable under adaptive chosen-message attacks, in the random oracle model,
under the hardness of the linear code equivalence problem.

Proof. LetA be a polynomial-time EUF-CMA adversary for the signature scheme,
as defined in Definition 4. A takes as input a verification key vk, then performs
a polynomial number of signing queries, say qs, and a polynomial number of
random oracle queries, say qr. Eventually, A outputs a forgery (m∗, σ∗), with a
certain probability of success p. We now show how to construct an adversary A′
that is able to solve the linear code equivalence problem. A′ will interact with A
and use it as a subroutine, playing the role of the challenger in the EUF-CMA
game and simulating correct executions of the LESS protocol, without obviously
having access to the private key.

To begin with, A′ is given an instance (G,G′ = SGQ) of Problem 1, which
he sets up as public key in the simulated LESS protocol. A′ will answer signing
queries and random oracle queries as described below; to ensure consistency of
the simulation, the queries will be tracked with the help of a table T, initially
empty, where the calls to the random oracle will be stored as they are answered,
in the form of pairs (input, output).

Setup. Set G0 = G and G1 = G′.

Random Oracle Queries. In a random oracle query, A submits an input x of
the form (Ĝ0, . . . , Ĝt−1,m) and expects to receive a λ-bit string h. A′ proceeds
as follows:

1. Look up x in T. If (x, h) ∈ T for some h, return h and halt.
2. Generate uniformly at random a λ-bit string h.
3. Add (x, h) to T.
4. Return h.

Signing Queries. In a signing query, A submits a message m and expects to
receive a valid signature σ for it. A′ proceeds as follows:

1. Generate uniformly at random a λ-bit string h.
2. Generate uniformly at random matrices Q̂0, . . . , Q̂t−1.

3. Set µi = Q̂i.
4. Return signature σ = (µ0, . . . µt−1, h).

After that, A′ adjusts his registry of queries by recording the query corre-
sponding to h in table T. More specifically, A′ will parse h = h0, . . . ht−1, where
hi ∈ {0, 1}, then compute Ĝi = sf(Ghi

µi) and finally set h to be the response

to the random oracle query with input (Ĝ0, . . . , Ĝt−1,m). Note that, due to
Lemma 1, signatures produced in this way are indistinguishable from authentic
signatures, since they follow the exact same distribution.

15

The simulation halts if, during a signing query, the input to the random
oracle had already been queried before, in which case the signing query outputs
⊥ instead. Note that this can only happen with negligible probability; more
precisely, the probability is at most q′/Kt, where q′ = qs+qr is the total number
of queries performed, and K is an upper bound on the probability of finding a
collision, i.e. sampling two monomial matrices that lead to linearly equivalent
codes (see Proposition 1 of Appendix D)3.

Once A has finished performing queries, it will output a forgery (m∗, σ∗),
where σ∗ = (µ∗0, . . . µ

∗
t−1, h

∗
0, . . . h

∗
t−1), that successfully passes verification. At

this point, A′ rewinds his tape and plays the simulation again, in the exact
same way, except that one of the random oracle queries is answered differently.
By the Forking Lemma (see [5]), A will now output, with non-negligible prob-
ability, a forgery (m′, σ′), where σ′ = (µ′0, . . . µ

′
t−1, h

′
0, . . . h

′
t−1), for the same

message m′ = m∗ and the same random oracle input (Ĝ0, . . . , Ĝt−1,m), such
that σ′ 6= σ∗. Let j be the index such that h′j 6= h∗j ; then sf(Gh′j

µ′j) = sf(Gh∗j
µ∗j),

which means that the monomial matrix µ∗jµ
−1
j is a solution to the linear code

equivalence problem as desired. ut

C Reduction for the MCLE Problem

In this section, we show that the Multiple Codes Linear Equivalence Problem
(Problem 2) reduces tightly to the Linear Equivalence Problem (Problem 1).

Theorem 2. Given an algorithm to solve Problem 2, that runs in time T and
succeeds with probability ε, it is possible to solve Problem 1, in time approximately
equal to T +O(rn3), with probability of success equal to ε/2.

Proof. Let A be an adversary for Problem 2. We now show how to construct an
adversary A′ that is able to solve the linear code equivalence problem. A′ will
interact with A and use it as a subroutine. To begin, A′ is given an instance
(G,G′ = SGQ) of Problem 1. It will then proceed to generate r = 2` equivalent
codes, in the following way. First, A′ samples uniformly at random matrices
S0, . . . ,Sr−1 and Q0, . . . ,Qr−1. Then, it computes half of the codes starting
from G, and half starting from G′; wlog, we can imagine that Gi is generated
as SiGQi when i ∈ [0; r/2 − 1], and as SiGQi when i ∈ [r/2; r − 1] (and then
reordered). It is clear that this computation can be done in polynomial time, at
most O(rn3), and that there is no way to distinguish how an individual matrix
was generated (i.e. from G rather than G′). At this point A′ runs A on input
G0, . . . ,Gr−1, and A will output, with probability ε, a response (S∗,Q∗) such
that Gj′ = S∗GjQ

∗. Now, if one of the two matrices was of the first type, and
the other of the second type, A′ is able to win. For instance, if Gj = SjGQj and

Gj′ = Sj′G
′Qj′ , then it must be Q∗ = Q−1j QQj′ , which immediately reveals4

Q. Since this happens with probability 1/2, we get the thesis. ut
3 If two monomials Q and Q′ are such that the codes generated by GQ and GQ′

are equivalent, then there exists S ∈ GLk such that G = SGQ′Q−1, implying that
QQ′−1 is an automorphism for the code generated by G.

4 If needed, S can then be found in polynomial time also.

16

D The Automorphism Group of a Random Code

We now derive an estimate on the size of the automorphism group of a random
linear code, and use it to derive an upper bound on the probability that applying
a random monomial (or permutation) returns an equivalent code. We anticipate
the main result, and then proceed by proving it.

Proposition 1. Let C ⊆ Fnq be a random linear code with dimension k. Let

dGV denote the GV distance of C, and NdGV
=
⌈(

n
dGV

)
(q − 1)dGV −2qk−n+1

⌉
.

Let d⊥GV be the GV distance of C⊥, and N⊥dGV
=
⌈(

n
d⊥GV

)
(q − 1)d

⊥
GV −2q−k+1

⌉
.

The probability that π
$←− Sn is in the permutations automorphism group of C,

i.e., π(C) = C, is not greater than

(q − 1) min

{
NdGV

!(
n

dGV !

) , N⊥dGV
!(

n
d⊥GV !

)} ,
while the probability that µ

$←− Mn is in the monomials automorphism group of
C, i.e., µ(C) = C, is not greater than

min

{
NdGV

!(q − 1)−dGV +1(
n

dGV !

) ,
N⊥dGV

!(q − 1)−d
⊥
GV +1(

n
d⊥GV !

) }
.

D.1 Proof for the Permutations Automorphism Group

To derive a bound on the size of the automorphism group of a code, we will
consider the action of permutations on the set of minimum weight codewords.
To this end, we first derive some preliminary results.

Lemma 2. Let a, b ∈ Fnq with the same Hamming weight d and same en-
tries multisets. Let MorSn

(a, b) = {π ∈ Sn | π(a) = b}. Then, the cardinality
of MorSn

(a, b) is not greater than w!(n− w)!.

Proof. Let E = {i ∈ [0;n − 1] | ai = 0}. For a permutation π, we can have
π(i) = j if and only if ai = bj . Let mx, for x ∈ Fq, be the number of entries
with value equal to x in both a and b; since a and b have Hamming weight w,
it holds that m0 = n− w and

∑
x∈F∗q

mx = w. Then, we have

|MorSn
(a, b)| =

∏
x∈Fq

mx! = (n− w)!
∏
x∈F∗q

mx!.

It is immediately seen that
∏
x∈Fq∗ mx! ≤

(∑
x∈F∗q

mx

)
! = w!, so that as an

upper bound on the size of MorSn
(a, b) we can use (n− w!)w!. ut

17

Lemma 3. Let A ⊆ Fnq , with cardinality M , such that all the contained vectors
have Hamming weight w. Let AutSn

(A) = {π ∈ Sn | π(a) ∈ A, ∀a ∈ A}; then,
the size of AutSn(A) is not greater than M !w!(n− w)!.

Proof. If π ∈ AutSn(A), then for each a ∈ A, either π(a) = a or there exists
a′ ∈ A, a′ 6= a, such that π(a) = a′. Let us define some order for the elements of
A and write A =

{
a1,a2, · · · ,aM

}
. For each π ∈ AutSn

(A), there exists one and
only one bijection f : {1, · · · ,M} 7→ {1, · · · ,M} such that f(i) = j if and only if
π(ai) = aj . On the contrary, for a fixed bijection f , we may have more than one
valid permutation, i.e., a permutation that places i in position j if and only if
f(i) = j. It is easily seen that, for a bijection f , the set of all valid permutations

is obtained as follows Aut
(f)
Sn

(A) =
⋂M
i=1 MorSn

(
ai,af(i)

)
. Each bijection f can

be seen as an element of the symmetric group on M elements (which we denote
as SM), so that the number of possible bijections is given by M !. Notice that, if

π ∈ Aut
(f)
Sn

(A), then it is also in AutSn(A): hence, AutSn(A) corresponds to the

union of all sets Aut
(f)
Sn

(A), that is

AutSn
(A) =

⋃
f∈SM

Aut
(f)
Sn

(A) =
⋃
f∈SM

(
M⋂
i=1

MorSn

(
ai,af(i)

))
.

We are now able to derive an upper bound on the size of AutSn(A), as follows

|AutSn
(A)| =

∣∣∣∣∣∣
⋃
f∈SM

(
M⋂
i=1

MorSn

(
ai,af(i)

))∣∣∣∣∣∣ ≤ |SM | ·
∣∣∣∣∣
M⋂
i=1

MorSn

(
ai,af(i)

)∣∣∣∣∣
= M ! ·

∣∣∣∣∣
M⋂
i=1

MorSn

(
ai,af(i)

)∣∣∣∣∣ ≤M !w!(n− w!),

where the last inequality comes from Lemma 2. ut

Using the previous results, we prove the following theorem.

Theorem 3. Let C ⊆ Fnq be a linear code with minimum distance d. Let Tq(c) ={
bc | b ∈ F∗q

}
, and let V ⊂ Fq be the set of Nd codewords such that

i) if c ∈ C has weight d, then Tq(c) and V have only one element in common;
ii) all codewords in V have weight d.

Let AutSn(C) be the permutations automorphism group of C. Then, the cardinality
of AutSn(C) is not greater than (Nd)!(q − 1)d!(n− d)!.

Proof. Without loss of generality, we can define V such that all of its codewords
have the first entry that is equal to 1. Now, let π ∈ AutSn

(C); then, π must map
the set of codewords of C with weight d into itself. Since this set is obtained as
Vq =

⋃
c∈V Tq(c), we have that the image of Vq under the permutation π is equal

to itself. Hence, for each c ∈ C with weight d, there must be c′ ∈ V such that

18

π(c) ∈ Tq(c′). Note that this also guarantees that, for each ĉ ∈ Tq(c), one also
has π(ĉ) ∈ Tq(c′). To put it differently, for each c ∈ V there must exist i) another
codeword c′ ∈ V , and ii) a non null element b ∈ F∗q , such that π(c) = bc′. Hence,
we have

AutSn
(Vq) =

⋃
f∈SNd

⋃
b∈F∗q

(
Nd⋂
i=1

MorSn

(
ci, bcf(i)

))
.

This allows us to derive a bound on the size of AutSn
(Vq), using the union bound

for two times

|AutSn
(V)| =

∣∣∣∣∣∣
⋃

f∈SNd

⋃
b∈F∗q

(
Nd⋂
i=1

MorSn

(
ci, bcf(i)

))∣∣∣∣∣∣
≤ |SNd

| ·
∣∣F∗q∣∣ ·

∣∣∣∣∣
Nd⋂
i=1

MorSn

(
ci, bcf(i)

)∣∣∣∣∣ ≤ Nd!(q − 1)d!(n− d)!.

Finally, we consider that if π ∈ AutSn
(C), then it must necessarily be π ∈

AutSn
(Vq): hence, it must be AutSn

(C) ⊆ AutSn
(Vq). So, we can use the bound

on the cardinality of AutSn(Vq) as an upper bound for the size of AutSn(C). ut

The above results allow to prove the bound on the permutations automorphism
group stated in Proposition 1. To estimate the minimum distance of a code,
we use the well known Gilbert-Varshamov bound, and estimate the number of
weight w codewords (without counting scalar multiples) as

⌈(
n
w

)
(q − 1)w−2qk−n+1

⌉
.

We then divide the upper bound on the size of the automorphism group resulting
from Lemma 3 by the cardinality of Sn (that is, n!). Finally, we consider that
the automorphism group of a code coincides with that of its dual: we repeat the
reasoning for the dual code and, take the minimum between the two obtained
probabilities (i.e., the one for the code and that for its dual).

D.2 Proof for the Monomials Automorphism Group

We now generalize the results in the previous section to the case of monomials.

Lemma 4. Let a, b ∈ Fnq with the same Hamming weight d and same en-
tries multisets. Let MorMn(a, b) = {µ ∈ Mn | µ(a) = b}. Then, the cardinality
of MorMn

(a, b) is equal to w!(n− w)!(q − 1)n−w.

Proof. We reason on the characteristics that a monomial µ ∈ Mn must have, in
order to guarantee that the image of a is b. To this end, we write µ = πov, with
π ∈ Sn and v ∈ F∗nq . Let E(a) be the set of positions pointing at null entries in

a, and let Ē(a) be that of indexes pointing an non-null entries in a; the same
notation is employed for b. To have µ(a) = b, the following conditions must be
verified:

19

i) π (E(a)) = E(b);
ii) if i ∈ E, then vi can have whichever value;

iii) π
(
Ē(a)

)
= Ē(b);

iv) if π(i) = j, then vi = a−1i bj .

The number of permutations satisfying conditions i) and iii) is given by w!(n−
w)!, while that of vectors satisfying ii) and iv) corresponds to (q − 1)n−w. ut

Lemma 5. Let A ⊆ Fnq , with cardinality M , such that all the contained vectors
have Hamming weight w. Let AutSn(A) = {π ∈ Sn | π(a) ∈ A, ∀a ∈ A}; then,
the size of AutMn(A) is not greater than M !w!(n− w)!(q − 1)n−w.

Proof. We reason as in the proof of Proposition 3. If µ ∈ AutMn
(A), then for each

a ∈ A, either µ(a) = a or there exists a′ ∈ A, a′ 6= a, such that µ(a) = a′. We
write again A =

{
a1,a2, · · · ,aM

}
, and consider that for each µ ∈ AutMn

(A),
there exists one and only one bijection f : {1, · · · ,M} 7→ {1, · · · ,M} such that

f(i) = j if and only if µ(ai) = aj . Let Aut
(f)
Mn

(A) =
⋂M
i=1 MorMn

(
ai,af(i)

)
, and

consider that

AutMn
(A) =

⋃
f∈SM

Aut
(f)
Mn

(A) =
⋃
f∈SM

(
M⋂
i=1

MorMn

(
ai,af(i)

))
.

Using the union bound, we find that the cardinality of AutMn
(A) cannot be

greater than M !
∣∣MorMn

(ai,af(i))
∣∣, and we finally rely on Lemma 4 to bound

the cardinality of MorMn
(ai,af(i)). ut

Finally, we adapt Theorem 3 to the case of monomials.

Theorem 4. Let C ⊆ Fnq be a linear code with minimum distance d. Let Tq(c) ={
bc | b ∈ F∗q

}
, and let V ⊂ Fq be the set of Nd codewords such that

i) if c ∈ C has weight d, then Tq(c) and V have only one element in common;
ii) all codewords in V have weight d.

Let AutMn
(C) be the monomials automorphism group of C. Then, the cardinality

of AutMn
(C) is not greater than (Nd)!(q − 1)d!(n− d)!.

Proof. As in the proof of Theorem 3, we define V such that all of its codewords
have the first entry that is equal to 1, and Vq =

⋃
c∈V Tq(c). If µ(Vq) = Vq, then

for each c ∈ V there must exist i) another codeword c′ ∈ V , and ii) a non null
element b ∈ F∗q , such that π(c) = bc′. Then, we have

AutMn
(Vq) =

⋃
f∈SNd

⋃
b∈F∗q

(
Nd⋂
i=1

MorMn

(
ci, bcf(i)

))
.

Using twice the union bound, we find that an upper bound on the size of
AutMn

(Vq) is given by Nd!(q − 1)w!(n − w)!(q − 1)n−w. Again, the proof is
completed by noticing that AutMn (C) ⊆ AutMn (Vq). ut

20

