A RTl C L E W) Check for updates

Low-latency time-of-flight non-line-of-sight
imaging at 5 frames per second
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Non-Line-Of-Sight (NLOS) imaging aims at recovering the 3D geometry of objects that are
hidden from the direct line of sight. One major challenge with this technique is the weak
available multibounce signal limiting scene size, capture speed, and reconstruction quality. To
overcome this obstacle, we introduce a multipixel time-of-flight non-line-of-sight imaging
method combining specifically designed Single Photon Avalanche Diode (SPAD) array
detectors with a fast reconstruction algorithm that captures and reconstructs live low-latency
videos of non-line-of-sight scenes with natural non-retroreflective objects. We develop a
model of the signal-to-noise-ratio of non-line-of-sight imaging and use it to devise a method
that reconstructs the scene such that signal-to-noise-ratio, motion blur, angular resolution,
and depth resolution are all independent of scene depth suggesting that reconstruction of
very large scenes may be possible.
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he ability to image around corners using diffuse relay

surfaces has attracted significant interest in the research

community after its first analysis! and demonstration?. It
offers applications in many spaces such as autonomous vehicle
navigation, collision avoidance, disaster response, infrastructure
inspection, military and law enforcement operations, mining, and
construction. While other methods have been investigated as
well3-6, robust 3D reconstructions of near room-sized scenes have
only been demonstrated using methods that rely on photon Time
of Flight (ToF). In ToF methods a short laser pulse is focused on a
point x;, on the diffuse relay surface from where the light scatters
in many directions. Some photons travel to objects hidden from
the direct line of sight and get reflected back to the relay surface.
A fast photodetector images a patch x. on the relay surface
recording the time of arrival of photons reflected off x.. Scanning
the relay surface point x, with the laser provides sufficient
information for 3D reconstruction of the hidden scene’. Recently,
ToF NLOS imaging at 1.43km standoff distance has been
presented® which underlines the practical applicability of this
technique in the future.

Scene reconstruction is possible using a variety of methods
seel for a thorough review. While fast algorithms have been
demonstrated!>-17, these methods require the wall to be scanned
in a confocal measurement with a single-pixel sensor that is
focused on the same point as the scanned laser resulting in a very
low light efficiency due to the small fraction of the relay wall
observed by the pixel. To a lesser degree, this method also suffers
from the signal contamination from the directly reflected first
bounce light. It also requires a fast scan of the surface providing
challenges to hardware design. The low light levels and compar-
ably noisy signals of confocal data have so far resulted in capture
times of minutes!>1© or tens of seconds!® for general scenes which
is not acceptable in most applications. The only live ToF NLOS
reconstructions to date!>10 reconstruct retroreflective surfaces
that for the specific scenes and using this specialized confocal
scanning capture technique provide signals at least 10,000 times
higher than diffuse surfaces in the demonstrated geometries and
therefore are not indicative of NLOS performance in many real
scenes. Supplementary Figure 1 in this work provides a visual
comparison between the diffuse and retroreflective objects. The
much higher signal levels of retroreflective surfaces have also been
discussed in Fig. 1 of the Supplementary Materials to!®.

Several other works have tackled inference and capture speed,
but none of these report visible light imaging results of diffuse
objects via diffuse relay surfaces with low latency both in terms of
light acquisition and reconstruction. Gariepy et al.!? track a target
30 cm high, 10 cm wide, and 4 cm thick at a distance of roughly
one meter from the relay wall. While live reconstruction is pos-
sible with the deep neural network presented by Chen et al.2%, the
method is only demonstrated on synthetic datasets and experi-
mental data with a confocal scan configuration that requires long
acquisition times. A passive approach using a conventional
camera exploits shadows cast by edges to provide a real-time
angular image around a corner?, but does not provide 3D
reconstructions. Similarly, the approach® also uses a conventional
camera and exploits indirect reflections to see around a corner;
however, the scene consists of an active monitor, and is not
passive. Furthermore, no 3D images are provided. Maeda et. al.?!
study NLOS imaging of thermal objects in the infrared spectral
range. At these longer wavelengths, many man-made surfaces are
flat enough to appear specular, acting like mirrors. Computa-
tional reconstruction is not required enabling low latency videos
of thermal emitters. A suitable thermal emitter is a human body,
but any scene with variations in surface temperature should

9-13.
b

provide contrast in this wavelength range. Compared to the
active, visible light, time of flight imaging scenarios we consider
here, the methodology, capabilities, and application range are all
quite different. We state our problem as reconstruction via a relay
surface that is diffuse (i.e., nearly Lambertian) for the wavelength
used. Other approaches that investigate NLOS imaging at dif-
ferent wavelengths include Scheiner et al.?2 who use a Doppler
radar to detect and track objects in real-time, but without pro-
viding full 3D reconstructions.

Single-Photon Avalanche Diodes (SPADs) have been used
successfully as light detector for NLOS imaging, as they are
capable of acquiring individual photons with the necessary time
resolution!7-18:23 A central aspect of ToF NLOS is the fact that
the light reflected off diffuse objects in the hidden scene returns to
the whole relay wall. This aspect and its consequences are
explained in detail in the Methods section. The main consequence
is that the acquisition time is inversely proportional to the
number of SPAD pixels used, meaning that, for example, 10
pixels allow for 10 times faster capture time at the same recon-
struction quality. Alternatively, when using many SPAD pixels,
the laser power can be reduced by the number of pixels, because
the light is being harnessed more efficiently. It is therefore highly
beneficial for NLOS imaging to use SPAD array detectors with
many pixels along with reconstruction algorithms capable of
utilizing their data. In a nutshell, the following analogy between
the NLOS imaging and conventional cameras can be drawn: it is
very inefficient to acquire an image by point-scanning the scene
with a single pixel. Almost all cameras in use today are array
detectors, which capture light for all pixels simultaneously, and
don’t disregard the light that reflects off the other pixels’ positions
in the scene, as a point detector would do. The same holds for the
NLOS imaging setup, all light returning to the relay wall should
be harnessed, which then allows for drastically reduced laser
power, or alternatively, less noisy reconstructions. Beamforming
approaches could potentially be of interest for NLOS imaging, but
most likely eventually will also make use of array detectors to
capture all the light that returns to the relay wall?4. Increasing the
number of sensor pixels to simultaneously collect light from a
larger fraction of the relay surface results in an increase in the
captured signal that is proportional to the number of pixels used.
However, obtaining a NLOS reconstruction from this non-
confocal type of data is more challenging than a reconstruction
from confocal data and past algorithms have required run times
in the tens of seconds to minutes range for a single frame. While
there are commercial SPAD array sensors, existing arrays are
poorly suited for NLOS imaging due to their low time resolution,
small pixel size, the way data are read out one frame at a time,
and the lack of fast gating capability.

It has been speculated that reconstructed scene sizes are limited
to a few meters in diameter and objects further from the relay
surface would be much harder to reconstruct based on the strong
distance dependence of the returned signal strength!415.

In this work, we use specifically designed fast-gated NLOS
SPAD array detectors alongside our novel reconstruction algo-
rithm designed using the phasor field framework to overcome the
deficits in Signal-to-Noise-Ratio (SNR) of NLOS imaging and
enable live, low latency NLOS video with depth independent SNR
and motion blur. This results in a constant observable motion
speed, angular, and depth resolution, and a constant SNR
throughout the reconstructed scene. Our proposed real-time
NLOS video processing pipeline is illustrated in Fig. 1. The system
then can be scaled in the future to use more pixels for further
light efficiency that may be used to reconstruct larger scenes at
higher resolutions or with larger stand-off distances.
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Fig. 1 Real-time NLOS virtual image processing pipeline. The imaging system sends the virtual Phasor Field (PF) signal to the visible wall and captures the
signal returning from the hidden scene back to the wall. The massive raw photon stream is recorded by the SPAD (Single-Photon Avalanche Diode) array.
Raw photons from all channels are virtually remapped into a complete aperture. Then the remapped data is transformed into the frequency domain (Fourier
Domain Histogram, FDH) and propagated by the fast Rayleigh Sommerfeld Diffraction (RSD) algorithm. Last, temporal frame averaging yields constant

SNR throughout the entire reconstructed volume, and the result is displayed.

Results

SNR considerations. Real-time NLOS videos necessarily con-
strain the light acquisition period for each frame, which means
that the SNR of the data and subsequently the reconstructions
have a certain value. Allowing for a longer acquisition period for
stationary scenes inevitably increases the SNR, see the Methods
section for a theoretical discussion and also Supplementary Fig. 8.
The challenge of real-time NLOS imaging, therefore, is to capture
as much light as possible during a given short time frame, and
SPAD arrays with many pixels solve this problem.

Let us examine the behavior of the NLOS signal as a function
of object distance in the scene. Past work states that the signal
from a small, fixed-size patch in the hidden scene collected from
an individual pair of co-located laser and detector positions x,, X,
near the center of the relay surface falls off as 1/r* for the shortest
distance r between relay surface and object. However, for the
cumulative signal from a complete NLOS measurement compris-
ing a set of x, and x, this is only true for very large r and does not
hold at close distances that apply for most reconstructions. At
such close distances, the falloff is smaller than 1/r4. An intuitive
explanation is this: imagine an infinitely large planar light source
(in our case the relay wall illuminated by the laser) that emits a
fixed light intensity into one direction. Everywhere in the
corresponding half space, we can measure the same intensity,
which does not decrease with distance. Otherwise, the total
energy would change. A point object very close to a finite relay
wall approximately fits this scenario, so the intensity loss from the
relay wall to the object is almost negligible. Only the falloff from
the object back to the wall has to be taken into account, which
follows 1/r%. A detailed mathematical analysis of the falloff is
provided in Supplementary Note 2. Furthermore, the reduction in
resolution at large distances makes considering a patch of fixed

size misleading as the patch simply drops below the resolution
limit. Finally, existing investigations consider only the drop in
collected signal and ignore the change of noise as a function of .
In most conventional optical imaging systems, noise is considered
for a fixed angular resolution where the scene area corresponding
to an image pixel increases with distance along with the imaging
system resolution. For example, in a conventional camera, noise is
added to the image by the camera sensor, after image formation
has been performed using a lens. By contrast, in an NLOS
imaging system, Poisson and sensor noise occur in the
measurement before the application of the image formation
(i.e., reconstruction) operator. This noise is then propagated
through the reconstruction operator which essentially mimics the
operation of the imaging lens. As a consequence, the noise in a
NLOS reconstruction is different from the noise in a line-of-sight
image. In particular, it depends on distance r. A detailed
derivation of the SNR is also provided in Supplementary Note 3.

Signal acquisition. To improve the light efficiency of our setup we
use two 16 by 1 pixel fast gated SPAD arrays that were designed
specifically for NLOS imaging?® to image light from a line of patches
on the relay surface. A custom-designed SPAD array is necessary
because there are no commercial silicon SPAD arrays available yet
which simultaneously fulfill all the requirements for good NLOS
image reconstructions. Specifically, this array combines a high time
resolution of about 50 ps Full Width at Half Maximum (FWHM)
with the capability to independently read out each pixel individually
to not miss any photon detection and the capability to gate the
sensor, ie., to have it inactive during the period in which the first
bounce off the wall occurs. This is crucial for NLOS imaging to
prevent this brightest return from overshadowing the subsequent
dimmer signals from the hidden scene.
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Fig. 2 Virtual aperture remapping operation. a Green points are the physically scanned illumination positions and black points are the SPAD array's
sensing positions. Data acquired by the SPAD array are remapped into a full virtual aperture; note the highlighted physical and virtual light paths. b Five
reconstructions of letters from five separate SPAD pixels and one reconstruction using virtually remapped data from five SPAD pixels. c) Absolute
difference between physical and virtual light paths depending on the position on the virtual, full grid for the hidden scene voxel location x, =(2 m,0,0). The
relay wall parameters are the ones used in this paper; as the absolute path difference for all points is on the order of the system’s temporal resolution, the

approximation is valid.

In principle, one could scan the relay surface in a continuous
grid and use a Phasor Field!”:1826:27 or filtered backprojection?
method to perform the reconstruction on the data acquired by
SPAD arrays. While there are three different methods to
implement a Phasor Field reconstruction, namely simple
numerical integration in the primal domain, a backprojection-
based solver also in the primal domain, and a diffraction imaging
Fourier domain solver based the Rayleigh-Sommerfeld Diffrac-
tion (RSD) operator!8-Figure S.11the first two options, as well as
conventional filtered backprojection are not able to reconstruct
the scene fast enough for creating real-time videos. The
diffraction-based method, can be implemented efficiently (seel”
for a detailed explanation), but requires single-pixel nonconfocal
sensors and a dense laser scan!”. A fix to this is presented in the
Methods section where we show that it is possible to remap data
captured with a sparse laser scanning pattern and a small SPAD
array such that it is equivalent to data captured with a dense laser
scan pattern and a single SPAD. This remapping operation makes
it possible to simultaneously reduce the demands on the scanner
resulting in a higher frame rate, and increase the number of
captured pixels increasing the signal strength. The remapping
scheme is illustrated in Fig. 2. Throughout this paper, we will only

use Phasor Field reconstruction implemented as fast RSD for the
real-time reconstructions, and primal domain Phasor field
reconstruction and conventional backprojection for the SNR
comparisons.

NLOS 4D blur kernel. Let us now examine the application of our
capture method and noise model to the reconstruction of large
dynamic scenes. It has been shown that motion of the relay
surface and thus the virtual camera and physical imaging system
can be compensated?8. We therefore assume that only the motion
of objects within the hidden scene can prevent accurate recon-
struction. Furthermore, we will assume a maximum object
velocity we seek to be able to image.

The spatial resolution of an NLOS image can be described by a
three-dimensional Point Spread Function (PSF) PSF(x, y, z). The
widths Ax, Ay, Az of the PSF along each dimension indicate the
resolution of the reconstruction in the different dimensions. It has
been shown!® that the achievable NLOS imaging resolution
decreases proportionally with distance. The Phasor Field
reconstruction PSF, calculated here by Rayleigh Sommerfeld
Diffraction (RSD)!7, matches this increase approximately
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Fig. 3 NLOS SNR. a Simulated SNR of Phasor Field reconstruction
implemented as fast Rayleigh Sommerfeld Diffraction (RSD) and
conventional backprojection (BP) reconstruction of a square target of 1.5m
width, no ambient light, without and with depth-dependent averaging
(avg.). b Real data as well as simulated results with the ambient light level
seen by the current system with room lights on. ¢ Reconstructions from real
(top) and simulated data (bottom) at different depths. All SNR curves have
been normalized to a value of 1at 1 m to only show the falloff with distance;
the absolute values are parameter dependent. d Central depth slice of RSD
PSF at different depths. The target size is shown as white squares. e Pixel
size in conventional photography.

following the Rayleigh criterion resulting in a constant angular
resolution. This is shown using simulated PSFs in Fig. 3d. As a
consequence, the Phasor Field reconstructions are automatically
filtered with a depth-dependent low-pass filter that matches the
achievable image resolution. This improves the SNR at larger
distances compared to other methods.

It is beneficial to express the PSF in spherical coordinates:
PSE(¢, 6, r) with widths A¢, A, Ar which are largely independent
of location in the scene. To incorporate moving objects, we
assume that motion blur will only be noticeable when the object
in question moves by about the size of the PSF in a given frame. If
the motion is smaller the motion blur kernel will be negligible to
the PSF and will not significantly affect the reconstruction. This
means that for a given maximum object velocity v, the required
exposure time is proportional to A¢/vg, AB/vg, Ar/v, and increases
linearly with distance r. Consequently, we can safely average
scene voxels at distances far from the relay wall over longer times
without expecting visible motion blur. Objects far away from the
camera appear to be moving slower. This is not unique to NLOS
reconstructions but is the feature of any video. In NLOS
reconstructions; however, the depth is known and we therefore
have the option to choose a depth-dependent frame averaging in

the reconstruction to take advantage of this effect. We create a
reconstruction in which the frame rate is depth dependent. The
details of our depth-dependent frame averaging method are
described in the Methods section.

SNR of large scenes. We use simulated and real captured data to
evaluate the SNR of a Phasor Field reconstruction that includes:
a) the depth-dependent intensity; b) depth-dependent noise that
is the result of passing Poisson and ambient light noise through
the reconstruction operator (see Supplementary Note 3 for the
details of the noise model); ¢) the depth-dependent frame aver-
aging along with the depth-dependent band filtering inherent to
the Phasor Field algorithm (see Fig. 3). In all cases, we placed a
planar diffuse white patch (1.5m x 1.5m) in the hidden scene at
different depths and collected 100 repeated measurements in the
real experiment (depths from 1m to 3.5m) and 20000 mea-
surements in the simulated case (depths up to 500 m). Each
dataset was processed and reconstructed individually; Fig. 3c
shows exemplary reconstructions. All individual reconstruction
results are used to evaluate the SNR defined as the mean over the
standard deviation at different depths by calculating the sample
mean and sample standard deviation over multiple noisy recon-
structions. Figure 3a, b show the SNR of the reconstruction at
different depths for simulated and real data. For more detailed
plots please see Supplementary Note 3.

As we can see in Fig. 3a, the SNR of backprojection (BP)
decreases rapidly for large distances, whereas the SNR of the
Phasor Field RSD reconstruction decreases slower compared to
BP because of the inherent spatial averaging which compensates
the SNR loss. Lastly, after applying the optimal depth-dependent
frame averaging introduced above we find that the SNR of RSD
stays constant approximately up to the distance where the target
becomes smaller than the resolution limit of our imaging system.
The fact that the resolution decreases with distance is not unique
to NLOS imaging, but also occurs in conventional imaging, see
Fig. 3d,e.

Live video results. Finally, we are ready to present NLOS videos
that are both acquired and reconstructed live using the proposed
method. To demonstrate real-world capabilities we implemented
the optimized pipeline of our proposed method (Fig. 1) and
designed a hardware system with two SPAD arrays. See the
Methods section for implementation details and hardware spe-
cifications. Figure 4 shows several frames of a dynamically
moving complex NLOS scene captured and reconstructed live
using our system. Our imaging system scans the relay wall with a
sparse scan pattern with 190x22 sampling points. The scanning
rate is 5 frames per second (fps), hence, the exposure time per
frame is 0.2 s. The remapped complete virtual aperture has size
1.9m x 1.9 m with 190x190 virtual sampling points. The Phasor
Field virtual wavelength is set to 8 cm. Our NLOS imaging system
captures data, reconstructs the dynamic hidden scene, and dis-
plays the result to the user live. The computational pipeline is
acquisition-bound and easily supports a throughput of 5 fps with
a latency of 1 second. The target SNR was set to be equal to the
SNR at distance zo = 1 m. Hence, at the largest depth z,, = 3m
of our reconstruction we average three frames. The maximum
motion velocity is given by the 200 ms exposure time and the 8
cm spatial resolution and is about 0.4 m per second, which is
sufficient to capture normal human movements. Figure 4a shows
the ground truth of the dynamic hidden scene and reconstructed
NLOS frames are shown in Fig. 4b. Figure 4c shows the result
after the depth-dependent frame averaging has been applied.
More video frame results can be found in the Supplementary
Results section. Additionally, readers are encouraged to view the
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Frame #1 Frame #12 Frame #17 Frame #23

Frame #25 Frame #42

Frame #66

Frame #90

Fig. 4 Live video: “NLOS letterbox". Eight sample frames from a 20 s real-time video. The person takes four letters (N, L, O, S) out of a box. The first row
shows ground truth images of the hidden scene. The second row shows reconstructed virtual frames using RSD. The third row shows reconstructed virtual

frames after applying depth-dependent frame averaging.

full live NLOS videos in the Supplementary Video file, which
shows the effectiveness of our reconstruction method in various
scenarios including hidden mirrors and ambient light.

The authors affirm that persons appearing in Fig. 4 and
Supplemental Videos have provided informed consent for
publication of the images.

Discussion

We have shown that the capabilities of NLOS imaging systems
can be substantially increased with the combinations of purpo-
sefully designed SPAD arrays and array-specific fast reconstruc-
tion algorithms. Using a total of only 28 pixels we reconstruct live
NLOS videos of non-retroreflective objects. We also show that
scene size and object distance do not represent an insurmoun-
table problem for NLOS imaging. While we believe that this is a
major step forward in the demonstration of the capability of
NLOS imaging and towards the actual deployment of NLOS
imaging systems in real-world applications, such as robot navi-
gation, disaster response, and many others, there are still
opportunities for future work. CMOS SPAD array technology
allows for the fabrication of kilopixel and recently even megapixel
arrays at low cost?®. We expect that future NLOS imaging systems
will further improve capabilities by adding more pixels to
improve SNR, speed, and stand-off distance, as well as increase
the relay wall size to improve reconstruction resolution.

Methods

Principle of NLOS imaging and its consequences. This section discusses the
fundamental principle of NLOS imaging and its consequences on acquisition time
and used laser power. In ToF NLOS imaging, a short laser pulse is sent towards a
wall. Light from an illuminated spot on the relay surface scatters spherically in all
directions. Some photons hit the objects in the hidden scene and are the origin of
secondary spherical waves. After another reflection off of the relay wall, very few
photons reach the detector and the roundtrip travel time of the photons, from the
laser through the scene and back to the detector, is recorded. In this publication, we
use Single-Photon Avalanche Diodes (SPADs) as detectors, arrays of which have
become more and more available recently. A very illustrative animation of the
NLOS imaging process can be found here3’. The crucial step is how the light
returns from the hidden scene objects to the relay wall: in the case of diffuse scene
objects, the returning light fronts hit the full surface of the relay wall. This
immediately makes it clear that it is beneficial to have a detector that covers the
whole area to capture as many photons as possible. High-quality reconstructions
require fine time resolution, e.g., 100 ps translate to about 3 cm in space, and the
wall needs to be sampled with a spatial resolution on roughly the same scale, i.e.,
for the given time resolution a few centimeters. For this reason, it is optimal to have

one SPAD pixel look at an area of about 3 cm x 3 cm in the considered case, and all
pixels combined cover the full visible area. This way, ignoring detector parameters
such as sensor chip fill factor and focusing on geometry for now, the most photon
efficient capture is realized. By contrast, if only one SPAD pixel looks at one point
on the wall, a huge fraction of returning photons is lost. This has immediate
consequences on the laser power. The power levels used so far are far from being
eye-safe, which is a major concern. However, there is a direct relation between
photon capture efficiency and used laser power, which will be described mathe-
matically in the following. Please see Supplementary Note 3 for a detailed
description of the underlying stochastics.

Due to Helmholtz reciprocity, we can scan a single-pixel SPAD throughout the
wall and have a fixed laser position, or equivalently scan the laser and look at a
stationary point with the SPAD, under the assumption that the laser beam area and
the wall area covered by the single-pixel SPAD are of the same size. For this
discussion, we proceed with a fixed laser and a scanning SPAD. The laser is pulsed,
and for simplicity assume that the laser photon rate A is constant during each pulse.
Let the expected value of photons emitted during pulse time At be A = AAt. L is the
number of repeated laser pulses, and depending on the fixed laser repetition rate
(not to be mistaken with the pulse duration), it obviously takes a certain fixed time
to generate these L pulses. Let us assume that the recorded temporal histograms
have a bin width of At. For a stationary SPAD pixel always looking at the same
point on the wall, depending on the geometrical distances and scene reflectance all
lumped into the attenuation factor y(t), we expect

Ager(t) = y(OLA (&)

photons in one specific time bin t. Ay (f) can be zero if there are no objects at the
scene voxels that had a round trip time ¢. A stationary SPAD pixel does not provide
the required spatial information needed to provide 3D reconstructions, so we need
to scan it across the wall. The rest of the argument is therefore straightforward: if
we scan Q points on the wall with one individual SPAD, the exposure time for one
point will be reduced by the factor Q, meaning that the expected number of
photons in one-time bin reduces to

Agult) = éy(t)LA . @

However, if we use a SPAD array that simultaneously captures the histograms at all
Q relay wall positions, we are back at the original expected photon number (1),
because each pixel now is illuminated for the total time needed to send the L pulses.
We are now capturing the light more efficiently by looking at all points
simultaneously instead of just one point. Taking a closer look at (1), we see that
reducing the laser photon rate in the array scenario by Q makes us arrive at exactly
the same number of photons as in the point scanning scenario (2):

A 1
Ager(t) = )’(t)La = 6y(t)LA . 3)

As a consequence, there’s an inverse proportionality between the photon rate A
and therefore the laser power, and the number of SPAD pixels. Using Q SPAD
pixels allows for reducing the laser power by Q while still maintaining the same
Signal-to-Noise Ratio (SNR) in the measured histograms. If the SPAD array chip
fill factor is not 100%, but say only 10%, the light efficiency is reduced by a factor of
10. But let’s assume that in the future SPAD arrays with 10,000 pixels will be
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available, so we still can reduce the laser power by a factor of 1000. We have seen
that more pixels allow for proportionally reducing the laser power. Alternatively,
one can use more pixels with the same laser power to increase the SNR of the
captured data and subsequently the quality of the reconstructed video. The number
of photons acquired in each histogram time bin follows a Poisson distribution (see
Section 3.3 in the Supplementary Materials); for such a distribution, increasing the
photon rate by Q improves the SNR by a factor of /Q.

Sparse illumination aperture remapping. The notation in this section and the
supplement is the same as inl7; a list of symbols can be found in the supplement.
We introduce a sparse relay wall illumination scanning pattern with a remapping
operation based on SPAD array sensing points to create a virtual complete con-
tinuous illumination grid with a single sensing point. This approach has several
benefits. First, the sparse illumination pattern reduces the physical scan time
allowing to achieve a high capturing frame rate, which is essential when it comes to
dynamic scenes. Second, the RSD method!” assumes a continuous illumination
grid x, = (xp, ¥p» 0) and a single sensing point X, = (X, Y, 0). Therefore transient
data collected from multiple sensing points X 4 = (Xc,¢» Ve 0): 4 € [1, ..., Q] using a
SPAD array cannot be used directly. The remapping operation addresses this issue
by virtually remapping the sparsely scanned grid X, and multiple sensing points
Xeq = (Xcg Ve 0) into a complete illumination grid x, = (xp, yp, 0) and a single
sensing point X ; = (X1, Y1, 0). The remapping operation exploits a spatial rela-
tionship between X, and the x;, and approximates the missing illumination
positions which is illustrated in Fig. 2a. Mathematically, given a set of sparse laser
positions X, and a set of SPAD positions X4, one seeks to obtain the measurement
at a laser grid shifted by small amounts Ax., = (Ax.g, 0,0). This can be done by
virtually remapping the captured data to shifted locations and approximating the
required time responses as

H((X, + Ax ) = X1, ) & HE, > (X1 — A% ), 1), q€ll,..., QL 4)
This holds as long as the length of the spatial shift Ax. q is small with respect to the
distance between the laser position on the relay wall and the object location, and
the object location and the SPAD position on the relay wall, respectively. The
transient data acquired by the leftmost SPAD pixels are projected to the rightmost
SPAD pixel location, which virtually creates a full illumination scan grid. Mathe-
matically speaking, what we are interested in is the absolute difference between the
actual, physical roundtrip path from the sparse laser position X, to the object at
location x, and back to one SPAD at x. 4, and the virtual path from the virtual laser
location x;, to the object at x, and back to the virtual SPAD position x;:

D=l (1% = %, |+ 1%, = xey 1)

(©)
= (%, = &+ BxeQ) I+ 1%, =%, )1 -
Here, we have taken the maximum possible shift indicated by the capital Q in
Ax. o, and || - || denotes the Euclidean distance. As long as the difference D is
shorter than the spatial uncertainty introduced by the temporal system jitter, the
approximation in (4) holds. For our actual system, as explained in the Hardware
Section below, the temporal jitter is 85 ps, which translates to roughly 2.55 cm.
Figure Fig. 2c¢ graphically shows all possible values for D for the scenario
encountered in our experiments. The virtually remapped transient data H((X, +
Ax,4) = X1, 1) can fully utilize the fast RSD method allowing for live recon-
struction:

Ty, 3002,) = QPO 1) = O(Pxy. 1) H(R, + 8% g) = %,1.0): ©6)

where ®(-) is the wave propagation operator, P(x;, t) the Phasor Field illumi-
nation function starting at the relay wall and ®(P(x_, t)) the Phasor Field function

returning to the relay wall after propagating through the scene. The operator T

denotes convolution with respect to time. Figure 2b shows 5 different recon-
structions from 5 individual SPAD pixels using the full illumination pattern, and
one reconstruction using the virtually remapped illumination pattern from the
sparse illumination pattern with 5 SPAD array pixels. The reconstruction result
from virtually remapped data has comparable quality to single-pixel reconstruc-
tions while allowing for significantly faster and more efficient data acquisition.
By consecutively scanning the relay wall rapidly with the sparse illumination
grid, we get a sequence of reconstructions V(1) = Z(x,,y,,2,;7), T=[1,2,..] with
exposure time of A7 seconds for each frame 7. The frame rate of V(7) is 1/At.

Details on the depth-dependent frame averaging. To compensate for the SNR
decrease (Fig. 3a), we can apply linear depth dependent frame averaging. Note that
one can choose the target SNR level arbitrarily. Without loss of generality, we
choose this level to be the SNR at the distance z, that is closest to the relay wall. For
the reconstruction slice Z(x,, y,,z,: 7) at z, =z, no averaging is needed. For all
consecutive depths z;,i=[1,2,3,...], we take the average of the N = ceil(z;) past

SPAD array #1

SPAD array #2

Fig. 5 Hardware Setup. Live NLOS Hardware setup layout and laser beam
path scheme.

frames, that is,

1 N=1
Lol b0 =3 5, Tzt =) )

For the Phasor Field method, we apply averaging to both the real and imaginary
parts first before taking the absolute value squared (coherent summation). As a
consequence, the statistical mean value of the averaged reconstruction does not
equal the statistical mean of a single reconstruction, see Supplementary Figures 4
and 5.

In addition to the depth-dependent frame averaging we can compensate for the
intensity decrease by applying depth-dependent intensity correction through
multiplication by the mean values resulting from the SNR calculations
(Supplementary Figures 4 and 5).

Details on the hardware configuration, calibration, and acquisition. The core
components of our imaging system are the ultra-fast laser and the SPAD array. The
used laser is a OneFive Katana HP pulsed laser operating at 532 nm with a pulse
width of 35 ps. The operating laser power is 700 mW with a repetition rate

of 5 MHz.

The prototype SPAD array has 16 pixels with a temporal resolution of
about 50 ps FWHM and a dead time of 200 ns. The active gate window duration
during which the SPAD is sensitive to photons can be adjusted. We set it to 40 ns,
which corresponds to a round trip distance of roughly 6 m. In this work, we use
two 16 by 1 pixel SPAD arrays?°, placed horizontally in a row in the imaging
system, see Fig. 5. Both SPAD arrays are focused in the middle of the relay wall
using Nikon 50 mm F1.2 objective lenses. Each pixel’s observation area on the wall
is approximately 5 mm?. The width of the total SPAD array focus area on the relay
wall is approximately 8 cm. One Thorlabs FL532-3 bandpass filter at 532 nm with
FWHM 3 nm is placed in front of each SPAD array to reject ambient light of
different wavelengths.

As a photon-counting device, we use the PicoQuant HydraHarp 400 Time-
Correlated Single Photon Counting (TCSPC) unit with eight channels. Here we use
the Time-Tagged Time-Resolved (TTTR) mode for the data acquisition at 8 ps
time resolution. Combined, the effective temporal uncertainty of laser and each
SPAD pixel is approximately 85 ps FWHM. One HydraHarp channel is used for
the confocal single-pixel SPAD for system calibration. The remaining seven
channels are used by both SPAD arrays; since the laser’s repetition rate is 5 MHz,
each HydraHarp channel has an available time window of 200 ns before the next
laser pulse. Four pixels from the SPAD arrays are connected to one TCSPC
channel. In order to separate the signals from the four SPAD pixels within a single
TCSPC channel, we use cables of the corresponding length to delay the signals
from each SPAD pixel. Thus, the 200 ns time window is divided into four sections:
[0 - 40 ns], [40 - 90 ns], [90 - 140 ns] and [140 - 180 ns]. In total we utilize 7 x 4 =
28 SPAD picxels.

There’s a tradeoff for the chosen virtual wavelength. The lower it is, the better
the spatial resolution of the reconstructed scene. However, the wavelength is
bounded from below: the temporal system resolution of about 85 ps translates to a
full width at half maximum of roughly 2.5 cm in space. The virtual wavelength of
the Phasor Field reconstruction cannot be smaller than twice this distance,
otherwise, the reconstruction does not provide meaningful results. Given this time
resolution, 8 cm provides a good tradeoff between low-noise, artifact-free
reconstructability and high spatial reconstruction resolution. Furthermore, as the
goal is to compose a virtual pulse in time that removes interference of targets at
different depths!”, more frequency components and, correspondingly, virtual
wavelengths need to be processed to compose this pulse, which is more time-
consuming to calculate. Otherwise, if only one wavelength was selected for
reconstruction, there would be a continuous wave travelling through the scene
resulting in severe out-of-focus reconstruction artifacts. Please see!” for more
details on the implementation of PF reconstruction in the frequency domain.

We scan illumination points on the relay wall using a set of two mirror
galvanometers (Thorlabs GVS012). The maximum frequency of this system is 150
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Fig. 6 Method Comparison. Comparison with other methods.

Hz, meaning that 150 vertical lines per second can be scanned. The laser scans the
relay wall continuously in a raster pattern. Our physical laser grid has 190x22
points. Vertical and horizontal spacing is 1 cm and 9 cm respectively. The full laser
grid scanning rate is 5 fps and the exposure time per frame is 0.2 s, meaning that
each laser point is exposed for 480 microseconds. Supplementary Figure 6 shows
examples of data acquired by the SPAD array.

Our imaging system is located about 2 m away from the relay wall. To calibrate
the system we use a single pixel SPAD that is aligned with the laser beam path (see
Fig. 5). We scan the relay wall (1.9 m x 1.9 m) and the single pixel SPAD collects
direct light from the relay wall, which yields the distances from the imaging system
to the illumination points. Next, we scan a small square region around the SPAD
array sensing points and collect the signal with SPAD array. The collected data is
used to evaluate the distances from imaging system to the SPAD array sensing
points on the relay wall. These distances are used to virtually shift the collected data
to the relay wall.

The hidden scene starts at 1 m away from the relay wall and goes up to 3.5 m as
limited by the time ranges provided by the TCSPC. The scene consists of
conventional diffuse objects. The person in the scene is wearing a regular white
hooded sweatshirt. Supplementary Figures 9, 10, 11, 12, 13 show examples of
different scenes and reconstructions. These figures also contain depth dependent
intensity corrected results. NLOS video results of corresponding scenes can be
found in the supplementary video file.

Comparison with other methods. To demonstrate the effectiveness of our
method, we provide a baseline comparison with other methods. Besides the two
16x1 non-confocal SPAD arrays, our imaging system has a single pixel gated SPAD
that can be used for confocal data acquisition. The temporal resolution of the single
pixel SPAD is approximately 30 ps. We capture the same scene using both the non-

confocal and confocal SPADs. The non-confocal parameters are the same as
described before; for the confocal measurement, we scan 128x128 laser illumina-
tion/detection points. Because of the limited vertical scan rate of the mirror gal-
vanometers, the sparse non-confocal pattern can be scanned in 0.2 s, whereas
almost 1 s is required to scan the full confocal grid. As a target we use a patch
shaped as a “2" which has a white diffuse surface. The target was placed at distances
of 1.2 m and 2 m in the hidden scene. For the non-confocal measurement, we
captured the scene for an illumination time up to 60 s and for confocal mea-
surement the scene was captured up to 1800 s.

Figure 6 shows the comparison which is split into two parts, non-confocal and
confocal data.

The scene was captured using the non-confocal and confocal schemes. The
non-confocal data are used for direct reconstruction with the proposed method,
and are also approximately converted to confocal data with the method described
in Lindell et al.!%, as also demonstrated in!”. Then, the LCT¢ ("approximate LCT")
and FK migration!® ("approximate FK") are applied to this approximately confocal
data. The reconstruction results of approximate LCT and approximate FK look
blurry, have a hazy background, and look noisy at short exposure times. Our
method successfully reconstructs the scene even with a short exposure time of 0.2 s.
After 1 - 4 seconds of exposure the reconstruction quality doesn’t change
noticeably, which suggests our proposed method doesn’t require long exposure
times. Liu et al.'® demonstrated that a Phasor Field reconstruction stabilizes at a
certain exposure level and adding further exposure time does not affect the
reconstruction. Using the confocal measurements we reconstruct the scene using
the confocal Phasor Field reconstruction version!’, LCT'¢ and FK!°. The confocal
acquisition method in general suffers from noise with short exposure times and
requires a long exposure time to achieve high quality reconstruction of diffuse
targets. Therefore, often times confocal methods use retroreflective materials to
increase the signal. Since the confocal measurement requires a dense scan of the
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Fig. 7 Software Block Diagram of Reconstruction Pipeline. FIFO: First-In First-Out; SPAD: Single-Photon Avalanche Diode.

relay wall, a confocal scan at 0.2 seconds was not possible with our galvo mirrors.
Note that the times reported here are in line with what was reported in the original
papers.

Details on the implementation of low-latency reconstruction pipeline. Our
custom software implements a processing pipeline that reads incoming photon
data from the hardware, performs the NLOS image reconstruction, and displays
resulting 2D images to the screen, keeping pace with hardware acquisition rates
described above. The software is written in C++ and makes use of both CPU
multithreading and GPU computation.

Algorithm 1. Frequency Domain Histogram Binning (un-optimized for clarity)
input : Array, photons, of (gridldx, photonTime) tuples

Array, fregs, of frequencies

output: Array fdh[NUM_FREQS][NUM_GRID_INDICES][2], Fourier Domain
Histogram

ZeroMemory (fdh);

for f=0to NUM_FREQS do in parallel

foreach (idx, time) in photons do
fdh[f]lidx][0] += SinLookupTable[(int)(fregs[f] * time)];
fdh[fllidx][1] += CosLookupTable[(int)(fregs[f] * time)];
end

end

return fdh;

The software is designed using a multi-stage producer-consumer model with
the processing broken up into five distinct stages. Each stage runs in a separate
thread on the CPU, and is connected to its predecessor and successor stages by
thread-safe FIFO queues. Data travels through the stages sequentially, with raw
photon event records entering the first stage, and 2D images exiting the final stage.
Each stage’s thread runs in an infinite loop, performing the same sequence of tasks:
wait for data to become available, retrieve the available data from its incoming
queue, process the data, and finally submit the processed data to its outgoing
queue. Figure 7 shows a block diagram of the design. The five stages of processing
are Acquisition, Parsing, Binning, Reconstruction, and Display. The staged pipeline
and multithreaded model allows the entire pipeline to always remain full and
working. That is, while frame 7 is being displayed, simultaneously frame n + 1 is
being reconstructed, frame # + 2 is being binned, frame n + 3 is being parsed, and
photon events for what will become frame n + 4 are being collected. During
properly tuned execution, the queues between stages never have more than a single
entry waiting for processing, but serve primarily to decouple the processing of each
stage. The implementation details of each stage are now described briefly.

Acquisition The first stage directly connects to the HydraHarp API to retrieve
raw photon timing records in the T3 format (4 bytes per photon record) via the
vendor-provided USB3 driver. In each iteration of its infinite loop, the thread
polls the hardware driver for all available photon records that have accumulated
in a driver-side queue. Beginning-of-frame and end-of-frame markers are
encoded inline with the photon events in the T3 record format. After retrieving
all available records from the hardware FIFO, the array of raw (unparsed) T3

records is passed to the next stage by enqueuing the records into this stage’s
outgoing queue, and the thread repeats its process of polling the
hardware again.

Parsing The parsing thread retrieves arrays of raw photon records from its
incoming queue and unpacks each T3 record into usable photon information.
This includes de-multiplexing the SPAD channels, calculating the grid-index of
the photon based on galvo time, adjusting photon arrival timing based on
physical SPAD geometry, and searching for start-of-frame and end-of-frame
markers. Having found these markers, this stage packages the newly-calculated
tuples of (grid index, photon_ timing) into an array representing a
single discrete image frame and submits this array to its outgoing queue.
Binning The binning thread receives an entire frame of pre-processed tuples
containing the grid indices and timings of each photon’s arrival. These records
are binned directly into a frequency domain histogram (FDH). See Algorithm 1
for details. To increase performance, we use OpenMP to enlist all available CPU
threads to perform the frequency for loop in parallel, as there are no data write
hazards on this loop. We achieve good cache-coherency due to the chosen FDH
memory layout. To further increase performance, we pre-multiply the
frequency and omega values, and we discretize the photon arrival times to
enable use of a pre-calculated lookup-table of sin and cos values that fits entirely
within cache. The output of this stage is a FDH for a single frame.
Reconstruction The reconstruction thread dequeues a frame’s FDH from its
incoming queue and immediately transfers the FDH into GPU memory. Using
an RSD kernel that has been pre-computed at application startup based on
scene parameters, a sequence of CUDA kernels are executed to perform the Fast
RSD algorithm’s FFT, convolution with kernel, inverse FFT, and slice selection.
The previous 3 reconstructed image cubes are held in memory and the resulting
2D image is formed by the depth dependent time averaging scheme described
above. The resulting 2D image for this frame is then moved from GPU memory
to main system memory and is enqueued in this stage’s outgoing queue.
Display The final stages of the pipeline dequeues 2D images from its incoming
queue. The 2D image is normalized, color-mapped, rotated, and scaled for
display. The image is then displayed to the user, and the thread resumes waiting
for the next 2D image to arrive in its incoming queue.

Data availability
Example raw data files recorded using the described hardware setup are available at
https://biostat.wisc.edu/~compoptics/rt_nlos21/rt_nlos.html.

Code availability
Source code for the implementation used in this paper is available at https://
biostat.wisc.edu/~compoptics/rt_nlos21/rt_nlos.html.
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