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Abstract

This paper focuses on numerical the prediction of multiaxial static strength of

lattice structures. We analyze a body-centered cubic cell printed with Selective

Laser Melting in AlSi10Mg aluminum alloy. Parent material is experimentally

characterized, and the Gurson-Tveergard-Needleman (GTN) damage model is

calibrated to predict failure in numerical simulations. The GTN model is used

to predict failure of the lattice structures exhibiting brittle localized fracture,

and it is validated through static tests. The results of experimental tension/

compression monotonic tests on lattice samples are compared with the results

of numerical simulations performed on as-built geometry reconstructed by X-

ray computed tomography, showing a good correlation. Combining the dam-

age model with computational micromechanics, multiaxial loading conditions

are simulated to investigate the effective multiaxial strength of the lattice mate-

rial. Yielding and failure loci are found by fitting a batch of points obtained by

some multiaxial loading simulations. A formulation based on the criterion pro-

posed by Tsai and Wu (1971) for anisotropic materials provides a good descrip-

tion of yielding and failure behavior under multiaxial load. Results are

discussed, with a specific focus on the effect of as-built defects on multiaxial

strength, by comparing the resistance domains of as-manufactured and as-

designed lattices.
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1 | INTRODUCTION

Lattice structures are architected materials that show a
regular periodicity at the microscale. By properly tailor-
ing their microstructure, a broad variety of physical, ther-
mal, and mechanical properties at the macroscale can be
obtained. Macroscopic properties are generally referred

to as homogenous or effective properties: They depend
on lattice topology, base material, and relative density.1,2

Metallic lattice structures are used in a wide range of
application fields. The possibility to obtain bio-
compatible titanium porous structures with elastic modu-
lus close to the one of human bone makes them suitable
for implants.3–9 The high amount of energy that can be
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stored during inelastic large deformations can be
exploited for impact absorption applications
(e.g., bumpers).10,11 The opportunity to generate porous
complex structures through which a fluid can flow also
makes lattice structures suitable for heat-exchangers, tak-
ing advantage of the improved convection.12–14

Identifying the homogenized mechanical properties
and predicting the macroscopic mechanical behavior is of
primary importance for the use and diffusion of lattice
structures. It is well known that detailed simulation of a
component with lattices can be unaffordable when using
standard computers and tools.

Prediction of homogenized linear elastic properties is
a well-addressed topic in literature. For simple 2D and
3D low-density strut-based lattices, several theoretical
models are available in literature.1,2,15–17 In these formu-
lations, lattice struts are modeled as beams. Comparing
theoretical predictions with experimental results, it was
observed that these models can be used only if lattice
beams are sufficiently slender.18 For more complex and
general lattice structures, elastic properties are computed
by means of numerical models based on the application
of Asymptotic Homogenization theory.19–21

Yielding of metallic lattices has been thoroughly stud-
ied, as well. Theoretical models were built to predict uni-
axial and multiaxial plastic collapse of honeycombs and
three-dimensional lattices.1,15,22 Other works used com-
putational micromechanics to provide the yielding locus
of lattice structures. An example is the work of Lee
et al.,23 in which yielding under multiaxial loading condi-
tions of an as-designed Schwarz-primitive surface-based
lattice structure is studied numerically and yielding locus
is fitted using an extension of the Hill's anisotropic yield-
ing function.

A limited number of works can be found in literature
about predicting static ultimate strength of lattices. In
their seminal work, Gibson and Ashby1 provided theoret-
ical prediction of the strength of hexagonal honeycombs
made of brittle materials. More recently, the uniaxial
strength of lattice structures and foams has been studied
numerically, by modeling the lattice as a set of beams
and applying proper criteria to account for failure24 or by
implementing damage models to account for local frac-
ture in 3D solid elements models.25–27 However, multi-
axial strength of lattices exhibiting brittle behavior is a
not fully addressed topic yet very important when design-
ing with this kind of structures.

Additive manufacturing processes (3D printing) allow
to fabricate complex structure with small features that
cannot be obtained by traditional processes. However, as-
built geometry obtained with these processes may differ
from as-designed geometry, as a consequence of process
induced defects. Defects strongly affect the mechanical

response of 3D printed lattice structures: They can be
material defects (micro-voids, lack of fusion, surface
roughness, etc.) or geometric defects (irregular geometry,
missing struts in lattice cells, etc.).28,29 Some works stud-
ied numerically the sensitivity of mechanical properties,
such as elastic modulus and plastic collapse, to as-
designed defects, i.e., geometry perturbations introduced
to get knock-down factors instrumental for the design
phase.30–32 On the other hand, other works studied the
effect of as-manufactured defects, by characterizing the
geometry obtained by the printing process.25,33–35 In the
comprehensive work of Liu et al.,34 defects are statisti-
cally characterized, and their effect on mechanical
response and failure mechanism in compression is found
for different strut-based 3D lattices. However, the differ-
ence between multiaxial strength of as-designed and as-
manufactured geometry is still an open point. Given the
difficulties that could arise in experimental testing lat-
tices under multiaxial loads and the impossibility to
obtain a defect-free geometry, quantifying this effect
numerically is fundamental.

In this work, we address the multiaxial strength of
imperfect lattices with brittle behavior. We propose a
numerical method to characterize lattice strength and to
obtain yielding and failure loci. We examine a body cen-
tered cubic cell, named SC-BCC according to the nomen-
clature given in Tancogne-Dejean and Mohr,36 obtained
by Selective Laser Melting (SLM) with AlSi10Mg alumi-
num alloy. The failure in compression for this cell made
of aluminum is driven by local fracture, and neither
buckling nor plastic collapse was observed.37 The base
material is characterized, and the Gurson-Tveergard-
Needleman (GTN) damage model for porous metal is cal-
ibrated to predict failure in numerical simulations. The
damage model is validated by comparing experimental
tensile and compression tests on lattice samples with
numerical simulations performed on as-built geometry
reconstructed from X-ray computed tomography. By
combining computational micromechanics with the GTN
model, the multiaxial strength is studied. Numerical fail-
ure locus and yielding surface are identified for multi-
axial loading conditions. We found that the tensor
polynomial criterion for composites proposed by Tsai and
Wu38 gives an accurate fitting of the numerical points.
Results are discussed focusing on the effect of as-built
geometry on multiaxial strength.

2 | EXPERIMENTAL
INVESTIGATION

Tensile tests were carried out on parent material to char-
acterize it and to set a reference for the calibration of the

3500 GAVAZZONI ET AL.



damage model used in numerical analyses. Tension and
compression tests were performed on lattice samples to
validate the damage model calibrated for parent material.

All the specimens were printed in AlSi10Mg powder,
with a SLM Solutions 280 v1.0 printer. The power of the
laser was set to 350 W, scanning speed of 1,150 mm/s,
with a layer thickness of 50 μm, and hatching distance of
0.17 mm. The process parameters were selected as the
result of an optimization procedure for printing lattice
structures. Consistency of process parameters was
ensured for all the samples.

2.1 | Parent material characterization

Parent material characterization was performed on
small-scale dog-bone tensile samples. Samples have nom-
inal section dimension of 1.2 � 3 mm and gauge
section of 7 mm. We chose this specimen geometry to get
as close as possible to the dimension of the lattice struts
(0.6 mm) without increasing excessively the complexity
of the test. In fact, it is well known that in metal additive
manufacturing processes, the dimension of the features
may impact the microstructure and consequently the
mechanical properties.39 Two different groups of speci-
mens were tested: The first was printed vertically, while
the second was inclined at 45� to the growth direction.
Some of the specimens were polished, while others were
tested as-built. Tests were performed with a 1kN electro-
mechanical testing machine at a strain rate of 0.0007 s�1.
Digital Image Correlation (DIC) was performed in the
central part of the gauge section to measure the strain by
means of a virtual extensometer and to study strain local-
ization at failure to be compared with numerical analysis
(see Section 3.1 and Figure 1). A high-resolution camera

with a specific set of lenses was used, with a field of view
of 13.5 � 10 mm and a resolution of 8.3 μm/pixel. The
software Vic-2D form Correlated Solutions has been used
to analyze the results.

Before testing, the specimens were analyzed by CT
scanning, at a resolution of 7 μm/voxel. The CT scan used
is a 300 kV, double X-ray tubes, Baker Hughes GE Phoe-
nix VtomexM. A reconstruction of the scan for an as-built
specimen printed vertically together with a cross-
sectional view is shown in Figure 2A. The contour of the
section is not rectangular and appears quite irregular.
Moreover, two types of defects were found in all the spec-
imens: pores (detail A) and lack of fusion (detail B). To
quantify the presence of defects in the volume, a porosity
analysis was performed, and the results are reported in
Figure 2B. Porosity was measured by applying a sharp fil-
ter to the gray-scale slice images of CT scan (Figure 2A)
to clearly distinguish voids from material and to quantify
their presence. The average void volume fraction (VVF),
defined as the volume of voids over the overall volume, is
around 0.45%, and no significant difference in terms of
amount, dimension, and shape of the defects was
observed between the specimens printed vertically and
those inclined at 45�.

Figure 3A,B shows the tensile curves of the material,
Figure 3C shows the scanning electron microscope
(SEM) analysis of the fracture surface of Sample 2, and
Table 1 reports the material properties, with mean value,
standard deviation, and coefficient of variation.

For the computation of material properties, curves
obtained with specimens printed at 45� with as-built sur-
faces (Samples 7 and 8) were discarded. For these two
samples, failure happened in the transition from the
gauge section to grips, as small notches were left by the
removal process of supports needed to print the

FIGURE 1 GTN model calibration on parent material tensile tests: (A) experimental tensile curve compared with numerical results,

(B) strain localization captured by DIC during the experiments, and (C) numerical fracture surface predicted by the damage model [Colour

figure can be viewed at wileyonlinelibrary.com]
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FIGURE 2 CT scan

analyses of parent material

tensile specimens:

(A) reconstruction and cross-

sectional view, highlighting a

pore (detail A) and a lack of

fusion (detail B); (B) results of

porosity analysis (voids volume

fraction in percentage

vs. printing angle) [Colour figure

can be viewed at

wileyonlinelibrary.com]

FIGURE 3 AlSi10Mg tensile curve obtained from dogbone specimens printed at different printing angles and with different surface

qualities (A, polished surface; bB, as-built surface); (C) SEM images of fracture surface of Sample 2, highlighting the presence of internal

defects on the fracture surface [Colour figure can be viewed at wileyonlinelibrary.com]
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specimens with an angle of 45�. This effect is not present
for Specimens 3 and 4, as surface polishing removed the
notch left by supports.

For Samples 1 to 6, the experimental scatter is lim-
ited, and all the curves are close. No significant depen-
dence of the stress-strain curves on the printing angle
and surface quality can be observed on these small-scales
samples. The coefficient of variation is small for elastic
modulus, yielding stress, and ultimate tensile strength
(UTS), while it is higher for the strain at failure. The
higher variation of the latter quantity can be attributed to
the presence of micro-voids and lack of fusion that might
play a role in fracture initiation, as can be observed
looking at the fracture surface of Sample 2 in Figure 3B.
However, a detailed analysis of the fracture mechanism
of parent material to quantify these effects is out of the
scope of this work.

2.2 | Monotonic compression and tensile
tests on lattice samples

The lattice structure we examine in this work is a body-
centered cubic cell, named as SC-BCC.36 Figure 4A shows
the periodic unit cell. The length of the cell is 2.4 mm

with a strut diameter of 0.6 mm, giving an as-designed
relative density of 35.6%. This topology was studied in
some literature works (e.g., Tancogne-Dejean & Mohr36)
and was already selected, with this combination of geo-
metric parameters,37,40,41 as a case study in our previous
works. Figure 4B shows the geometry of the specimens
used for the experiments. Specimens are provided with
grips allowing to apply both tension and compression
load and to avoid non-linearities in the first part of the
compression stress-strain curve due to contact between
compression plates and specimen ends.37

To limit the overhang angle of all the struts of the lat-
tice structure, specimens were printed with an inclina-
tion of 45� with respect to the vertical specimen axis
(i.e., the direction of the load) and 22.5� with respect to
one of two other axis. The specimens have a cross-
sectional area of 4 � 4 cells (around 10 � 10 mm) with
four cells in height that have constant density and two
layers of cells per side with graded density, in order to
smooth the transition between the lattice and the grips
and to localize failure in the central region.42,43 Graded
density is obtained by linearly increasing the struts diam-
eter, from 0.6 to 0.8 mm in the first layer and from 0.8 to
1.2 mm in the second one. The number of cells in
section and in height was chosen to match the con-
straints imposed by manufacturability, manufacturing
costs, and testing facilities (testing machine and DIC
equipment) limits and to allow numerical simulations of
the entire specimen to validate the damage model. We
emphasize that the primary target of these experiments is
to validate the damage model implemented in the
numerical models. Obtaining an experimental curve that
renders the homogenized behavior of the material is not
the main focus: The difference with homogenized behav-
ior will be evaluated by comparing the results with
numerical simulation of a single unit cell with periodic
boundary conditions (PBC).

TABLE 1 Parent material properties obtained from Specimens

1 to 6: Mean value μ, standard deviation σ, and coefficient of

variation CV = μ/σ for elastic modulus, yielding stress, ultimate

tensile strength (UTS), and strain at failure

μ σ CV

Elastic modulus (MPa) 68,000 1,000 1.5%

Yielding stress (MPa) 220 7.3 3.3%

UTS (MPa) 410 11.4 2.8%

Strain at failure (%) 6.2 1.1 16.7%

FIGURE 4 (A) SC-BCC unit cell and (B) specimen geometry with graded density to smooth transition between lattice and grips, used

for monotonic tension and compression tests
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Before the mechanical testing, one of the specimens
(Specimen 1 tested in compression) was analyzed with
CT scan to evaluate the deviation of as-manufactured
geometry from the as-designed and to reconstruct the
as-manufactured geometry for numerical analyses (see
Section 3). Figure 5A shows the 3D reconstruction of
the scan, together with its vertical section, Figure 5B,
from which it is possible to observe higher presence of
pores if compared to the tensile specimen in Figure 2, as
well as irregular struts borders and randomly distributed
imperfections. We performed a micro-porosity analysis,
as done for the dogbone samples, obtaining a void
volume fraction of 2%. Moreover, we found that
as-manufactured structure is oversized with respect to
as-design geometry, with a relative density of 38.9%.
Relative density of as-manufactured cell was computed
by weighting with a high precision scale a sample
specifically designed for this purpose, without grips and
with cells at constant relative densities, printed in the
same job of the specimens used for mechanical testing.
As-manufactured geometry is about 3% more dense than
the as-designed one (9% of relative increase), hence
showing an oversizing of the geometry induced by the
manufacturing process.

Monotonic tests were conducted in displacement con-
trol with a 10 kN MTS electromechanical testing machine
at a constant strain rate of approximately 0.00025 s�1.
Three-dimensional Digital Image Correlation (DIC) was
performed on one face of the specimen to measure the
homogenized strain and to better understand the failure

mechanism. The Aramis system by GOM was used, with
a three-dimensional field of view of 110 � 100 � 20 mm.

Figure 6A,B shows the results of compression tests.
Three tests were carried out. The homogenized strain for
the stress-strain curve (Figure 6A) was obtained placing a
virtual extensometer in the central part of the specimen
with a length of four cells. During the test, no buckling
phenomena were observed, and failure is driven by a
localized fracture inside the lattice (Figure 6B). Locally,
failure happens on the horizontal struts (red circle), sub-
jected to tensile load because of lateral expansion of the
cell. Globally, the specimens fail at a plane inclined at
45� (dashed red line), resulting in a planar fracture sur-
face. The same failure mechanism was observed for the
all the tested specimens. These experimental results are
in agreement with what was observed in previous works
on the same lattice structure.37

Monotonic tensile tests on lattice samples were car-
ried out using the test method and the specimen-
geometry described for compression tests. Also in this
case, three samples were tested. Figure 6C shows the
stress-strain curves of the three tests, while Figure 6D
shows the broken specimen configuration. In this case,
the structure fails locally because of vertical struts failure,
as they are subjected to tensile load. Globally, the failure
happens almost on the same cell row on the frontal face.
However, no clear disposure of the broken struts can be
recognized, as in the case of compression load. The strain
at failure is considerably lower in tension than in
compression.

FIGURE 5 Lattice specimen CT scan analysis: (A) volume reconstruction; (B) vertical section slice view showing irregular strut borders,

randomly distributed imperfections, and micro-porosity [Colour figure can be viewed at wileyonlinelibrary.com]
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Table 2 shows a comparison of the homogenized
mechanical strength both for tension and compression.
The elastic modulus was computed by linearly interpolat-
ing the linear part of the curve, while the yielding stress
was computed as the stress that corresponds to a plastic
strain of 0.2%. The results in tension and compression are
almost identical for the elastic modulus and the yielding
stress. However, the different failure mechanism and
damage evolution inside the structure lead to a strong

difference between the ultimate strength and the strain at
failure in tension and compression.

3 | NUMERICAL ANALYSES

The aim of the numerical analyses of this work is two-
fold: first, to study the multiaxial ultimate strength of our
lattice structure and to identify a yielding and failure
locus and, second, to quantify the differences on the mul-
tiaxial mechanical response between as-designed lattice
geometry and as-manufactured geometry obtained by the
printing process.

In this section, we calibrate the Gurson-Tveergard-
Needleman (GTN) to reproduce the parent material
behavior up to failure, as experimental test on lattice
samples showed that failure of our structure is ruled by
localized fracture (Section 2.2). The model is validated
comparing tension/compression experimental results
with increasing-complexity numerical simulations

FIGURE 6 Homogenized stress-strain curves for (A) compression and (C) tensile tests performed on lattice samples. Broken specimen

configuration and fracture surface for (B) compression (Test 1) and (d) tension (Test 1) [Colour figure can be viewed at wileyonlinelibrary.

com]

TABLE 2 Mechanical properties of SC-BCC lattice structure

computed from tension and compression experimental curves:

Mean value and standard deviation in brackets

Tension Compression

Elastic modulus (MPa) 8,750 (218) 8,730 (151)

Yielding stress (MPa) 27.57 (1.37) 28.29 (1.80)

Ultimate strength (MPa) 36.78 (0.28) 63.86 (0.96)

Strain at failure (%) 1.11 (0.12) 6.95 (1.07)
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(Section 3.2). Finally, we build single cell models with
periodic boundary conditions under multiaxial states of
stress, to identify some numerical points to fit the yield-
ing surface and failure locus (Section 3.3). For all the ana-
lyses, the commercial finite element software Abaqus44

is used.

3.1 | Damage model calibration

To predict failure in numerical simulations, we adopted
the GTN damage model for porous metals.45–49 The GTN
model is already implemented in several commercial FE
codes (e.g., Abaqus and Ansys) and predicts failure
because of growth, nucleation, and coalescence of micro-
voids inside the material. The parameter that rules failure
is the void volume fraction (VVF) that quantifies the
presence of micro-voids in each element of the model.
The VVF evolves during the loading phase according to
the constitutive equations. If the VVF reaches the critical
value in one element, that element loses its load-bearing
capacity. Recent works showed that failure of aluminum
lattice structures and foams under uniaxial compression
can be well predicted using this model.25,26

To calibrate the damage model parameters, we simu-
lated the tensile tests performed on parent material
dogone samples in Abaqus\Explicit. The stress-strain
curve obtained for Sample 5 (as-built surface and printed
vertically) was used as a reference for the calibration pro-
cess. One quarter of as-designed specimen's geometry
was modeled, exploiting two planes of symmetry. C3D10
explicit elements were used with an approximate mesh
size of 0.07 mm. The elastic modulus of the material was
set to 68,000 MPa, according to the experimental results,
with a Poisson ratio of 0.3, while the plastic law was
extrapolated from the tensile test curve, and it was
entered in Abaqus as a tabular isotropic hardening law.
Nucleation and failure options for the GTN model were
activated. The initial void volume fraction (parameter f0)
was set at 0.45%, according to the values given by the
porosity analyses of CT scans (Figure 2B). The three
material parameters q1, q2, and q3 were set at 1.5, 1, and
2.25, respectively, as indicated in Tvergaard.50 Failure
(fF = 0.125,fc = 0.007) and nucleation parameters
(ϵn = 0.057,sn = 0.01,fN = 0.04) were identified by means
of a trial-and-error method, comparing the stress-strain
curve obtained from the numerical analysis with the
experimental reference curve.

Figure 1 shows the results of the damage model cali-
bration, in terms of characteristic curves (Figure 1A),
comparison between two-dimensional DIC strain locali-
zation (Figure 1B) and fracture surface, identified by the
highest values of the variable VVF (Figure 1C).

3.2 | Damage model validation

To test and validate the accuracy of damage model in
predicting local failure under state of stress different from
the simple uniaxial tension, we replicated numerically
the compression and tension experiments on lattice sam-
ples. Even if the lattices are subjected to homogeneous
uniaxial tension (or compression), cell topology leads to
local stress multiaxiality.

To simulate the homogenized response in tension/
compression of the lattice structure, single-cell models
were developed, both on as-designed and as-
manufactured geometry. As-manufactured geometry was
obtained from the CT scan of Specimen 1 tested in com-
pression (Figure 5) by applying a sharp filter so as to
obtain a value of relative density that parallels the experi-
mental one (38.9%) and by reconstructing the geometry
with a mesh suitable for finite element analyses. Internal
defects were not modeled because their effect is consid-
ered in the parameter f0 of the GTN model that repre-
sents the initial void volume fraction of the material.
Thus, for lattice numerical simulations, f0 was set to 0.02,
according to the result of the porosity analysis performed
on CT scan of lattice sample. Periodic boundary condi-
tions (PBC) were applied to render the mechanical
behavior of a homogeneous mean not affected by bound-
aries. PBC were implemented coupling the degrees of
freedom of different points on opposite faces of the refer-
ence volume element with a proper set of equations.51–53

Three models with different complexity and boundary
conditions were built with as-manufactured geometry to
simulate the mechanical response of the specimen in ten-
sion and compression (Figure 7). One eighth of the cen-
tral part of the specimen was simulated, exploiting the
presence of three planes of symmetry, as shown in
Figure 7A. However, exploiting symmetries does not
make it possible to catch the inclined fracture plane
experimentally observed in compression. Thus, to better
understand if the failure mechanism of the structure is
correctly described by the damage model, one vertical
row of cells of the specimen was simulated. The model is
shown in Figure 7B. Periodic boundary conditions were
applied in the Y direction; i.e. this model is representative
of a structure having four cells in the X and Z directions
and an infinite number of cells in Y. Finally, the entire
specimen was modeled (Figure 7C): Four cells in the
height of constant relative density and one row of cell
with graded density per side were considered.

For all the numerical analyses, C3D10 explicit ele-
ments were used with an approximate mesh size of
0.07 mm, to ensure consistency with the calibration
model of parent material tensile test described above. A
preliminary convergence analysis conducted on single
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cell model showed that the results are stable for mesh
sizes lower than 0.09 mm.

Figure 8 shows the results of the increasing-
complexity analyses in compression. Looking at the
stress-strain curves plot (Figure 8A), we observe a signifi-
cant difference between the response of as-designed sin-
gle cell with PBC (dotted green line) and as-
manufactured single cell with PBC (dashed green line).
At equal strain, the stress predicted by the as-designed
cell is about 15% lower than the one for the as-
manufactured cell model, because of the different relative
densities. The strain at failure is approximately 30% lower
for the as-manufactured cell, as a consequence of irregu-
lar struts borders and random imperfections that lead to
strain localizations and act as fracture triggers. Single cell
with as-manufactured geometry curve lies below the
experimental response (approximately 5–10%), showing

the slight difference between the homogenous response
and the structural response of the samples. When model-
ing the specimen with the three models in Figure 7, the
prediction of the characteristic curve practically overlaps
the experimental curve (blue and red curves).

The single-cell model and the eighth of specimen
model are able to describe the local failure mechanism,
i.e., the tensile failure in the horizontal struts (red circles
in Figure 8B). However, as expected, the presence of peri-
odic and symmetry boundary conditions does not make it
possible to describe the global failure mechanism. By
modeling one vertical row (Figure 8C), it is possible to
observe that the horizontal broken struts are laid out on
a line inclined at 45�. The inclined failure plane is clearly
visible from the results of the entire specimen model sim-
ulation, in Figure 8D, in agreement with the experimen-
tal observation reported in Figure 6B.

FIGURE 7 Numerical models for as-manufactured geometry lattice sample: (A) 1/8 of specimen with symmetries, (B) one row of

specimen with periodic conditions in Y, and (C) entire specimen with one layer per side of cells with graded density [Colour figure can be

viewed at wileyonlinelibrary.com]
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The results for tensile load condition are shown in
Figure 9. The difference in the stress-strain curves
(Figure 9A) between single cell models with as-designed
and as-manufactured geometry is significant and more
severe than what observed for compression. In particular,
the strain at failure of the as-designed cell is 2.5 times
higher than the one of the as-manufactured cell, indicat-
ing more severe effects of irregular struts borders and
random imperfections for this loading condition. The pre-
diction given by the sample models (dashed and dotted
blue lines) is close to the experimental curve, and no sig-
nificant difference can be observed between them. In the
single-cell model (Figure 9B), failure occurs on the verti-
cal struts subjected to tensile load in correspondence with

geometrical imperfections. Referring to the vertical row
model, in Figure 9C, failures on the vertical strut of the
different cells, highlighted with red circles, are randomly
distributed in the structure, as for the experiments.

3.3 | Multiaxial load numerical models

The results reported above show that the GTN damage
model can be used to predict the response of the
lattice structures up to failure. Single-cell models with
as-manufactured geometry correctly describe the cell
local failure mechanism and provide predictions of the
experimental curves with sufficient accuracy (less than

FIGURE 8 Results for increasing complexity numerical models in compression: (A) homogenized stress-strain curves compared with

experiments, failure localization (VVF color plot) for (B) single cell, and 1/8 of specimen model, (C) single vertical row of cells, and

(D) entire specimen. In the numerical models, the load was applied in the vertical direction [Colour figure can be viewed at

wileyonlinelibrary.com]
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10% error). Hence, we extended the single-cell models
with PBC and as-manufactured geometry to multiaxial
loading condition to study numerically the multiaxial
ultimate strength of our lattice structure. The simula-
tions reported in this section are instrumental to the
definition of a closed form yielding and failure locus.

We emphasize that, as no relevant works in literature
addressed the experimental characterization of lattice
structures under multiaxial loading conditions, numeri-
cal analyses play a crucial role in the definition of a
criterion to assess static multiaxial strength and
yielding.

FIGURE 9 Results for numerical

simulations of tensile loading

conditions: (A) stress–strain curves,

failure localization (VVF color plot) for

(B) single cell model with as-

manufactured geometry, and (C) for

single row of cells model (load is applied

in vertical direction) [Colour figure can

be viewed at wileyonlinelibrary.com]

FIGURE 10 Multiaxial loading condition simulations: localization of failure for (A) shear condition, (B) biaxial compression, and

(C) positive triaxial condition [Colour figure can be viewed at wileyonlinelibrary.com]
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The results of three simulations for three different
multiaxial loading conditions are shown in Figure 10, in
which the VVF variable is plotted. Figure 10A shows the
results for shear condition in X-Y direction. Failure is
localized at the diagonal strut close to the central nodes
that is subjected to tensile loading and on the vertical
struts that are subjected to bending. The yielding limit in
shear is 21.8 MPa (81% of the uniaxial stress yielding
limit in Z direction), while the ultimate shear strength is
30.6 MPa (83% of the tensile ultimate strength,
Z direction). Figure 10B shows the results for the case in
which an equal negative stress was applied in directions
X and Y (σ1 = σ2). Failure happens in the struts oriented
in the third direction because of lateral expansion due to
the loads, similarly to the case of simple compression (see
Figure 8B). In Figure 10C, the results for the positive
hydrostatic stress case are shown. In this case, failure
happens in the most loaded struts, in correspondence of
geometrical imperfections.

4 | NUMERICAL YIELDING AND
FAILURE LOCUS

To identify a sufficiently large number of numerical
points onto which a failure locus can be fitted, we simu-
lated several multiaxial loading conditions. Numerical
analyses for simple compression and tension loads
applied in different directions revealed that the homoge-
nized behavior of as-manufactured structure is slightly
anisotropic, as manufacturing defects lead to a geometry
that is not cubic symmetric as the as-designed one. It was
found that a formulation based on the tensor polynomial
criterion proposed by Tsai and Wu38 well describes this
lattice structure yielding and ultimate strength:

FiσiþFijσiσj ¼ 1, ð1Þ

where i,j = 1,…,6, σi are the stress components in the
principal orthotropic directions (i = 1,2,3 normal stress

FIGURE 11 As-

manufactured cell geometry

(A) yielding and (B) failure locus

in σ1―σ2―σ3 space and (C) for

plane stress conditions (σ3 = 0).

The analytical description of the

locus is compared with the

numerical points used for the

fitting [Colour figure can be

viewed at wileyonlinelibrary.

com]
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components, i = 4,5,6 shear stress components) and Fi,
Fij are the material strength coefficients. Assuming a fail-
ure insensitive to the sign of the shear stresses, all terms
containing a linear term of shear stress vanish, leading to
the following explicit form of the general expression:

F1σ1þF2σ2þF3σ3þF11σ21þF22σ22þF33σ23þF44σ24
þF55σ25þF66σ26þ2F12σ1σ2þ2F13σ1σ3þ2F23σ2σ3
¼ 1: ð2Þ

The coefficients Fij and Fk were fitted using the least
squared error method. It was found that all shear cases,
uniaxial, biaxial, triaxial tension, and compression cases
represent the smallest set of simulations (17 overall)
which allows a sufficiently accurate identification of the
failure surface. Using this set of simulations, it is possible
to describe the interplay role of the simultaneous pres-
ence of normal stresses applied in different directions
and to catch the different failure mechanism for shear
conditions. Being the material anisotropic due to
manufacturing defects, all the possible combinations of
loading directions must be simulated.

The yielding surface was fitted with the same proce-
dure. The yielding condition from numerical simulations
was defined by means of an energetic approach used in
literature for solid materials (e.g., Banabic et al.54). The
plastic energy density is defined as

Wp ¼
X6
i¼1

ð
σi dϵ

pl
i ,

where ϵpli is ith component of the plastic strain vector.
The value at 0.2% of plastic strain for uniaxial tension
along X direction has been set as a reference. For the
other cases, yielding point has been defined taking the
stress at the instant at which the plastic energy density
equals the reference.

The yield surface found according to Equation 2 is
plotted in Figure 11A in the σ1 � σ2 � σ3 space, together
with the numerical points used for the fitting. The sur-
face is an ellipsoid with the three axes rotated in relation
to the principal ones. The ellipsoid is centered in the ori-
gin; thus, the material is symmetrical for yielding,
according to tension/compression experiments and
numerical simulations. A consequence of this aspect is
that the linear terms F1, F2, and F3 for the yielding
surface equation have a very low value if compared to
the quadratic terms. In Figure 11B, the failure locus is
shown. The surface is an ellipsoid too but not centered
in the origin, as the material is nonsymmetric at
failure.

The section views of the two surfaces for σ3 = 0 are
shown in Figure 11C. The shape of yielding surface in
this plane is similar to the Von Mises ellipse. The main
difference is that, for this lattice structure, yielding occurs
for the hydrostatic loading condition as well. Failure and
yielding surfaces are closer if one of the two applied stress
is positive (I, II, and IV quarters) while the distance
between the two increase if both the applied stresses are
negative, showing a strong detrimental effect of a positive
stress on the ultimate strength.

FIGURE 12 Yielding and failure locus validation, graphical representation in planes (A) σ1―σ2 and (B) σ2―σ6: comparison between

prediction (solid black line for yielding; dashed black line for failure) and numerical simulations (red markers) [Colour figure can be viewed

at wileyonlinelibrary.com]
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5 | DISCUSSION OF THE RESULTS

5.1 | Yielding surface and failure locus
numerical validation

The yielding and failure loci were validated by comparing
the predicted values with the results of other three
numerical simulations not used for the fitting; Figure 12
shows the results. The first simulation was carried out
imposing two normal stresses with same magnitude but
different sign (σ1 = � σ2; Figure 12A). The prediction in
terms of yielding is accurate while the failure is slightly
overestimated (around 15%). In the second analysis, a
constant positive value of σ2 (10 MPa) and an increasing
shear stress σ6 were applied (Figure 12B). To avoid over-
constraining issues in the model, the shear was imposed
in strain control and the normal stress in stress control.
Both yielding and failure prediction are accurate with
less than 5% error. In the last verification analysis, σ2 < 0
and σ6 were applied (Figure 12B). The yielding prediction
is very precise, while failure is underestimated by
around 10%.

By considering the distance between the numerical
points and the surfaces and their relative positions, it is
possible to quantify the error. If the failure or yielding

condition is overestimated, the error is negative: This
means that the numerical points are inside the surface.
Vice versa, if it is underestimated, the error is positive.
The mean value of the error and its standard deviation
are 0.046 and 0.325 MPa, respectively, for the yielding
condition, and �0.34 and 5.13 MPa respectively, for fail-
ure. As, for both cases, the mean value is close to zero
with an allowable standard deviation (lower than 10% of
the compressive strength), we can state that the predic-
tion is accurate and sufficiently precise.

5.2 | Effect of as-manufactured geometry
on multiaxial strength

The comparison between numerical prediction and
experimental results in tension and compression reported
in Figures 8 and 9 shows that as-manufactured geometry
model prediction is accurate, while the prediction pro-
vided by as-designed geometry is significantly different.
We observed two main contributions leading to different
mechanical response and properties: the different relative
density (as-manufactured cell is oversized) and the pres-
ence of localized imperfections, such as irregular strut
borders and local geometrical defects. In this section, we

FIGURE 13 Comparison of multiaxial strength between as-designed and as-manufactured cell geometry: (A) yielding surface and

failure locus for plane stress conditions (σ3 = 0); (B) comparison of failure localizations predicted by the numerical models for shear and

uniaxial compression conditions [Colour figure can be viewed at wileyonlinelibrary.com]
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discuss the deviations introduced by the as-manufactured
geometry on the multiaxial strength, by comparing fail-
ure and yielding loci found above with the ones obtained
for the as-designed geometry. We repeated the procedure
followed for as-manufactured geometry, simulating dif-
ferent multiaxial loading conditions, and then fitting the
coefficients of yielding surface and failure locus. As as-
designed cell shows a cubic symmetry, the expression in
Equation 2 can be reduced to

Fn σ1þσ2þσ3ð ÞþFnn σ21þσ22þσ23
� �þFnn σ24þσ25þσ26

� �þ
2Fc σ1σ2þσ1σ3þσ2σ3ð Þ¼ 1:

ð3Þ

In this case, only four constants are to be fitted, the
linear coefficient Fn, the quadratic coefficients Fnn and
Fnn, and the coupling coefficient Fc, leading to a consid-
erably lower number of simulations to obtain a reliable
fitting. Consequently, only seven simulations are needed:
uniaxial, biaxial, and triaxial tension and compression
(six simulations) and shear condition.

Figure 13 shows a comparison between the results
for as-designed and as-manufactured cell models. In
Figure 13A the yielding surfaces (left) and failure locus
(right) for plane stress conditions (σ3 = 0) are compared.

The yielding surface of as-designed cell is an ellipse cen-
tered in the origin, and the axis coincides with the bisec-
tors of I–III and II–IV quarters. The lower relative
density makes the yielding locus of as-designed cell
smaller than the one of as-manufactured cell, with a dif-
ference in uniaxial yielding limit of 15%. This difference
is far less significant on the failure locus: the two ellipses
are almost overlapped, especially if at least one of the two
stress is positive (I, II, and IV quarters). For as-designed
cell, the ratio between ultimate tensile strength and yield-
ing stress is approximately 1.8, while for as-manufactured
cell, it is 1.5, showing a more brittle behavior. The ulti-
mate compressive strength, instead, is about two times
bigger than yielding stress, for both geometries. As
observed for numerical simulations, geometrical imper-
fections act as fracture trigger in struts subjected to ten-
sion with a detrimental effect on ultimate strength, while
this effect is mitigated by compression.

Table 3 provides a comparison of yielding and failure
limit stresses for as-manufactured and as-designed cell
for the multiaxial loading conditions considered. As-
manufactured cell ultimate strength is more sensitive to
stress triaxiality: The ultimate strength of as-
manufactured cell is 38.5 MPa for positive hydrostatic
stress and �79.0 MPa for negative one, while the limits
for as-designed cell are 47.3 and �112.7 MPa,

TABLE 3 Yielding limit and ultimate strength for the multiaxial loading conditions used for fitting the yielding and failure loci for as-

manufactured and as-designed cells

As-manufactured cell As-designed cell

Loading
condition Dir.

Yielding
limit (MPa)

Ultimate
strength (MPa)

Yielding
limit (MPa)

Ultimate
strength (MPa)

Uniaxial compression X �28.5 �55.0 �22.1 �49.5

Y �26.2 �55.7

Z �27.0 �58.7

Uniaxial tension X 28.5 37.8 22.1 34.6

Y 25.9 30.4

Z 27.0 38.0

Biaxial compression X-Y �27.7 �47.3 �22.8 �41.0

X-Z �27.3 �41.8

Y-Z �26.3 �46.7

Biaxial tension X-Y 27.3 34.0 22.8 34.7

X-Z 26.9 39.5

Y-Z 25.9 32.5

Negative hydrostatic stress - �31.4 �79.1 �29.5 �112.7

Positive hydrostatic stress - 30.6 38.5 29.5 47.3

Shear X-Y 22.5 31.7 17.9 28.1

X-Z 22.2 32.3

Y-Z 21.7 30.6
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respectively. For shear conditions, the ultimate strength
of as-designed cell (28.2 MPa) is comparable to the one of
as-manufactured cell (30.7 MPa in X-Y directions), show-
ing that the presence of geometrical imperfections com-
bined with bending of vertical struts compensates the
possible effects of cell oversizing in increasing the limit.

Both as-designed and as-manufactured cell models
predict identical local failure mechanism (Figure 13B).
For example, for shear condition (left), failure is localized
in the diagonal strut subjects to tension and on vertical
struts subjected to bending, while for uniaxial compres-
sion (right), failure is localized in horizontal struts
subjected to tension. However, even if failure is localized
in the same struts, the position of failure localization
in the struts is different: for as-designed geometry is
always localized at struts intersections, that introduce
a singularity, while for as-manufactured geometry
failure is localized in correspondence of a geometrical
imperfection.

6 | CONCLUSIONS

In this work, the multiaxial yielding and numerical
strength of an aluminum body centered cubic (SC-BCC)
cell were studied numerically. Parent material was exper-
imentally characterized in tension, and the GTN damage
model was calibrated to predict material failure in
numerical analyses. Tension and compression monotonic
tests were performed on lattice samples. Experimental
results were compared with numerical prediction to vali-
date the accuracy of the damage model in predicting fail-
ure of lattices. By combining the use of the damage
model with periodic boundary conditions for a single cell
model, yielding and failure conditions for the homoge-
nized metamaterial were studied. Based on the numerical
results, it was found that the Tsai-Wu formulation
describes yielding and failure condition well. Failure and
yielding loci were validated numerically, and the effect
on multiaxial strength of as-manufactured geometry
obtained by the printing process was quantified.

The remarkable results obtained can be summarized
as follows:

• Experimentally, it was found that failure of this type of
structure with a relative density between 35% and 40%
is driven by localized fracture. Neither elastic instabil-
ity nor plastic collapse was observed in compression.

• The GTN model is able to predict failure of lattice sam-
ples. Good correlation with experiments in tension and
compression was found. Characteristic curves, failure
localizations, and failure mechanism are correctly
described.

• A closed form based on the Tsai-Wu criterion for
anisotropic material is proposed to describe the yield-
ing surface and the failure locus of the SC-BCC lattice
structure. The coefficients of the analytical expression
were fitting using the results of multiaxial numerical
simulations performed on single cell geometry, com-
bining PBC, and damage model. The formulation was
validated comparing the prediction and numerical
results for multiaxial loading conditions not used for
the fitting, showing good accuracy. We highlight that
the results here shown are valid for this type of cell
topology and geometric parameters, but the proposed
method to assess multiaxial strength of lattices can be
extended to other topologies that show a failure char-
acterized by localized brittle fracture.

• We observed two main differences between as-
designed and as-manufactured geometries. First, as-
manufactured cell is oversized, with a higher relative
density than as-designed cell. This aspect leads to a
higher yielding limit and a more expanded yielding
surface. Second, the manufacturing process introduced
random imperfections and irregularities in struts bor-
dered that act as fracture trigger.
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