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Abstract In this work an integrated methodological and operational framework for
diagnosis and calibration of Stratigraphic ForwardModels (SFMs) which are typically
employed for the characterization of sedimentary basins is presented. Model diagno-
sis rests on local and global sensitivity analysis tools and leads to quantification of
the relative importance of uncertain model parameters on modeling goals of interest.
Model calibration is performed in a stochastic framework, leading to estimates of dis-
tributions of model parameters (and ensuing spatial distributions of model outputs)
conditional on available information. Starting from a considerable number of uncer-
tain model parameters, which is typically associated with SFMs of the kind analyzed,
the approach leads to the identification of a reduced set of parameters which are most
influential to drive stratigraphic modeling results. Probability distributions of these
model parameters conditional on available data are then evaluated through stochastic
inverse modeling. To alleviate computational efforts, this step is performed through a
combination of a surrogate model constructed through the Polynomial Chaos Expan-
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sion approach and a machine learning algorithm for efficient search of the parameter
space during model inversion. As a test bed for the workflow, focus is on a realistic
synthetic three-dimensional scenario which is modeled through a widely used SFM
that enables one to perform three-dimensional numerical simulations of the accumula-
tion of siliciclastic and carbonate sediments across geologic time scales. These results
constitute a robust basis upon which further deployment of the approach to industrial
field settings can be designed.

Keywords Sedimentary basin analysis · Stratigraphic forward models · Uncertainty
quantification · Global sensitivity analysis · Stochastic inverse modeling · Parameter
calibration

1 Introduction

Sedimentary basins are large-scale systems characterized by significant planar extent
where long term subsidence takes place, thus providing the possibility for sediments
to be deposited and accumulated across geologic time scales (Allen and Allen 2013).
Subsidence processes are associated with a variety of causes that can include, e.g.,
the thinning of the underlying crust as well as the effects of transport of sediment
loadings. When considering a time frame of millions of years, changes of thickness
or density of adjacent bodies, uplift movements, as well as space-time dynamics of
underwater sea depth (bathymetry) and sea level (eustasy) can also contribute to the
formation and evolution of these basins.

The study of sedimentary basins is often referred to as basin modeling or sed-
imentary basin analysis (Wangen 2010). Stratigraphic interpretation is traditionally
grounded on geologic interpretation, where hypotheses on geologic history are quali-
tatively compared against available field data. In the last three decades, Stratigraphic
ForwardModels (SFMs) have been developed to assist interpretation of the evolution-
ary process of sedimentary basins. These are numerical, process-based computational
tools that allow simulating sedimentary and tectonic processes that control a deposi-
tional architecture (Paola 2000; Burgess et al. 2012). These models are primarily used
in petroleum geology for the assessment of the internal make-up of the subsurface, in
terms of spatial distribution of facies and their geometrical features (Warrlich et al.
2008). For instance, three-dimensional visualizations reconstructed through modeling
procedures allow quantifying the extent and geometry of sedimentary bodies.

SFMs typically include a large number of input parameters related to the phys-
ical/geochemical processes of interest and/or to the problem boundary conditions
(Granjeon 1997; Blum et al. 2006), such as those describing accommodation, ero-
sion, supply, production, transport, accumulation and compaction of basin sediments
(Burgess et al. 2008; Csato et al. 2013). Estimation of these inputs is unavoidably
fraught with uncertainty and rests on information regarding the geological history of
the system considered. Such information content is typically collected through liter-
ature studies or may be inferred by field measurement campaigns. Outputs of SFMs
are usually given in terms of a modeled stratigraphy and a set of paleoenvironmental
conditions, such as the paleobathymetry associated with the considered geological
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domain. As these models involve a large number of input parameters, a key limitation
is the validation process of the resulting modeled stratigraphy, which is one of the
main outputs of SFMs (Falivene et al. 2014). Applications of SFMs are usually based
on literature information to constrain model parameter values on a qualitative compar-
ison between final modeling outputs and field data, parameter uncertainty being only
considered by trial and error (Gervais et al. 2018). In this context, a significant amount
of work and time resources need to be invested to manually calibrate stratigraphic
models to somehow match available information. This significantly hampers the use
of SFMs in industrial applications and the potential that these tools can offer has been
only partially explored in industrially relevant scenarios.

Trial and error approaches often adopted in practice are time intensive and typically
result in a single solution, i.e. actually, they correspond to a deterministic calibration.
However, the nonlinearity of SFMs, the paucity of data and the ensuing uncertainties
imply that the inverse problem should be set in a stochastic context. In this setting a
single (deterministic) calibration is not informative of the uncertainties associatedwith
the system behavior and their implications in terms of geological scenarios. A stochas-
tic model calibration strategy is required to evaluate the risk tied to the uncertainty of
SFMs (Charvin et al. 2009; Skauvold and Eidsvik 2018).

The impact of embedding uncertainty quantification within direct and inverse mod-
eling of sediment deposition processes across geologic time scales through SFMs is
only marginally addressed in the literature (Charvin et al. 2011; Sacchi et al. 2015;
Wingate et al. 2016). During this last decade automatic parameter estimation for a
SFM is playing a key role in the oil industry and as far as is known, Falivene et al.
(2014) provide the only attempt for the Dionisos tool (Granjeon 1997). These authors
show promising results regarding the applicability of an automatic model calibration
procedure to SFMs. Given the typically large number of input parameters required in
SFMs, the effectiveness and efficiency of model calibration may be largely improved
by relying on the joint use of Sensitivity Analysis (SA) and reduced order models, as
discussed by Gervais et al. (2018) in the context of forward uncertainty quantification
for SFMs. Surrogate models may then be used to reduce the computational cost asso-
ciated with uncertainty propagation of the most relevant inputs to a selected range of
outputs (e.g., distribution of sand volumes, Gervais et al. 2018).

This study leverages on the above mentioned works and incorporates modern
numerical tools, SA techniques, and stochastic inverse modeling approaches, pro-
viding major elements of methodological innovation. Given the large number of
parameters required in stratigraphic simulations, the first objective is to diagnose the
model behavior prior to model calibration. This enables us to assess the way para-
metric uncertainty contributes to target modeling goals, such as lithological sediment
distribution at selected locations or the vertical thickness of stratigraphic units. Quan-
tification of the degree of influence on each model parameter to the variability of the
results of a model requires performing a SA, several techniques being available for
this purpose (Saltelli et al. 2006; Borgonovo et al. 2017; Dell’Oca et al. 2017; Gupta
and Razavi 2018). SA can also assist to uncertainty quantification, through identifica-
tion and enhanced understanding of model inputs that cause significant or negligible
variability in the output.

Here, the first step is employing a parameter screening procedure based on the eval-
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uation of elementary effects and ensuing global sensitivity indices (see Morris 1991,
and Campolongo et al. 2007). These indices are then combined with Principal Compo-
nent Analysis (PCA) and allow identifying the parameters that are most influential on
the behavior of the geological system considered. This screening analysis process is
applied here in the context of geological models and is selected because of its simplic-
ity and its reduced computational cost (a similar approach to SA is proposed in Ruffo
et al. 2006). The step is propaedeutic to inverse modeling. The latter is performed in a
probabilistic context, yielding estimates of the probability distribution of the identified
influential model inputs conditional to available data. The goal is then to maximize the
information content of data by providing alternative stratigraphic reconstructions, thus
being able to evaluate uncertainty. To this end: (i) a reduced complexity (surrogate)
model of the full SFM is formulated; and (ii) a stochastic inversion tool grounded on a
machine learning approach to search the parameter space for optimal combinations of
model parameters is proposed. Here, the surrogate system model is built on the Poly-
nomial Chaos Expansion (PCE) technique (Xiu and Karniadakis 2003; Sudret 2008;
Formaggia et al. 2013), while in the stochastic calibration phase a Particle Swarm
Optimization (PSO) algorithm (Robinson and Rahmat-Samii 2004; Kennedy 2010) is
used. PCE-based surrogate models are computationally efficient tools that have been
used in a variety of engineering applications, including basin compaction modeling
(Porta et al. 2014; Colombo et al. 2018). In the context of this study, the formulation
of a surrogate model is key to obtain a large number of model realizations, which
are required for stochastic model calibration through PSO. As far as is known, the
application of PCE-based surrogate models and machine learning within stochastic
inverse modeling of sedimentary basin formation across geologic time scales has not
been explored in previous studies and is proposed here for the first time.

The modeling strategy is assessed through a realistic synthetic scenario. The
selected testbed incorporates several sources of uncertainty, stemming from parame-
ters related to clastic sediment supplies through lateral sources, carbonate sediment
production within the domain, and transport of these sediments inside the sedimentary
system.

2 Methods

2.1 Dionisos Model

Dionisos (DIffusive Oriented Normal and Inverse Simulation Of Sedimentation,
Granjeon 1997) is a SFM designed for three-dimensional numerical simulations of
sediment deposition processes across geologic time scales. It has been used to model
various depositional environments, including deltaic (Burgess et al. 2008) and car-
bonate (Williams et al. 2011) systems, or complex geodynamic settings such as
growth-faulted margins (Alzaga-Ruiz et al. 2009), as well as in the context of rift-
ing/basin inversion processes (Csato et al. 2013).

Characterization of the sedimentary architecture is attained via three main com-
ponents (Granjeon 1997; Blum et al. 2006): (i) assessment of the space available for
sediment accumulation; (ii) quantification of sediment supply inflows and in situ pro-
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duction thereof; and (iii) dynamic redistribution of sediments within the depositional
environment.

The temporal evolution of the space available for sediment accumulation chiefly
depends on external geological processes (including, e.g., subsidence or uplift due to
thermal or tectonic processes and eustatic fluctuations caused by climate phenomena),
as well as on processes taking place within the system (such as, e.g., compaction, salt
diapirism, and flexural isostatic adjustments). Parameters associated with mathemat-
ical representations of such processes constitute inputs to Dionisos and are typically
assessed from expert knowledge about the time frame of the sedimentary system
development combined with collections of available field data. Dionisos can consider
siliciclastic and carbonate sediments (Granjeon 1997; Csato et al. 2013; Hawie et al.
2017). The former can derive from continental erosion and are fed to sedimentary
basins through river discharge. Lateral supply is characterized upon specifying the
number of sediment sources along the boundary, including their spatial extent, posi-
tion, sediment supply rate, and type of sediments supplied by each source, as well as
the associated fluvial discharge. All of these quantities may vary across the window
of geologic ages considered. Production of carbonate sediments is quantified through
empirical formulations upon relying on factors such as bathymetry and siliciclastic
fluxes (Kolodka et al. 2016) at specific locations (termed production zones). Parame-
ters describing carbonate production can be classified into two groups, i.e., (i) growth
rates, which can vary with time and define the largest rate at which each type of car-
bonate sediments may be formed, and (ii) effectiveness of carbonate growth, to reflect
also the influence of depth below sea level.

Sediment transport within the basin is modeled by relying on two key large-scale
mechanisms (Csato et al. 2013), i.e., hillslope creeping and fluvial transport. These
processes involve differing spatial and temporal scales, fluvial transport being con-
sidered to take place within time frames shorter than those associated with hillslope
creeping. The transport process (Granjeon 1997; Granjeon et al. 2014) is driven by
the diffusion equation coupled with mass conservation

∂h

∂t
= −∂Qsed

∂x
, (1)

where Qsed [km2/ky] and h [km] represent sediment flux and ground elevation with
respect to a fixed reference plane, respectively. Transport mechanisms are constrained
by a maximum allowed erosion (Granjeon 1997; Csato et al. 2013) to enable a realistic
large-scale sedimentary basin evolution.

Discharge Qsed is evaluated by superimposition of several physical processes. In
this study the analysis is limited to hillslope creeping and fluvial transport, i.e., it is
considered that Qsed = QHS + QFT , where

QHS = Ks S, (2)

QFT = Kw (Qw)Nq (S)Ns . (3)

Here, Ks, Kw are the (constant) slope- and water-driven diffusion coefficients
[km2/ky], respectively; S is the local gradient of the basin slope; and Qw is the
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dimensionless water flux, while Nq and Ns are two fixed coefficients. It should be
noted that the linear behavior expressed by Eq. (2) can be considered as a reasonable
approximation of the actual system behavior for gentle slopes, i.e., S < 25◦ (Roering
et al. 1999), and the model assumes that steeper slopes do not appear. Water-driven
transport is governed by fluvial discharge. Fluid flow associated with sediment sources
at a given cell in the domain is directed across the simulated system by apportioning
water discharge amongst all lower (in terms of elevation) nearby cells according to
slope ratios (Csato et al. 2013). Values of diffusion parameters in Eqs. (2)–(3) depend
on sediment class, low average grain size corresponding to a high value of the diffu-
sion coefficient. These parameters also depend on the environment where transport
takes place, e.g., sediment transport in continental and submarine environments are
associated with differing diffusion coefficients.

Seasonal variations of water discharge can also be included in the model (Granjeon
and Joseph 1999; Alzaga-Ruiz et al. 2009). Dionisos allows modulating the ratio
between high-energy phenomena such as flooding, which is typically associated with
short term periods, and long term transport mechanisms, linked to low energy flows.

The mechanism of slope failure (Falivene et al. 2014) is also included in Dionisos,
to simulate sediment instability in terms of debris flows or sediment slumps. In this
context, deposited sediments start to move downward when the local slope is higher
than a predefined critical threshold, whose value depends on sediment class (Alzaga-
Ruiz et al. 2009). Critical angles are considered as time-invariant in this study.

2.2 Sensitivity Analysis

Setting up a model within the Dionisos computational framework requires specifying
a remarkably high amount of input parameters. As such, the identification of the set
of parameters which are most influential on a target model output is a critical element
of interest. This study follows the approach proposed by Morris (1991), which is
well-suited when the number of uncertain parameters is large and model simulations
are highly demanding, in terms of computational cost. The technique relies on the
evaluation of a set of local sensitivities, typically termed as Elementary Effects (EEs)
(Campolongo et al. 2007) and defined as follows.

Considering y(pN ) (pN = [p1, p2, . . . , pN ] being a vector whose entries are N
model input parameters) as a target output of the model, the Elementary Effect, EEi ,
of the i-th parameter onto output y is expressed as (Morris 1991)

EEi (pN ) = Δy(pN )

Δ
= y(p1, p2, . . . , pi + Δ, . . . , pN ) − y(pN )

Δ
, (4)

where Δ is a given increment in the parameter space.
A collection of EEs is evaluated for each input parameter by sampling random

realizations of pN across the parameter space. Here, input parameters are considered
to be independent and identically distributed (iid) random variables, each character-
ized by a uniform probability density function, whose support is assessed based on
expert opinion or literature information.
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The approach introduced byMorris (1991) requires the design ofM trajectories ran-
domly selected in the parameter space, M typically ranging between 10 and 50 which
are here selected following Campolongo et al. (2007). The EEs are then evaluated
upon running Dionisos for the selected parameter combinations. Then the following
three indices (Morris 1991, and Campolongo et al. 2007) are considered

μ(pi , y) = 1

M

M∑

k=1

EEi,k, (5)

σ(pi , y) =
√√√√ 1

M

M∑

k=1

(EEi,k − μ(pi , y))2, (6)

μ∗(pi , y) = 1

M

M∑

k=1

|EEi,k |. (7)

These represent the mean, the standard deviation, and the mean of the absolute values
of the EEs, respectively. Evaluation of these global sensitivity indices enables us to
identify input parameters that have limited influence on given model outputs with
modest computational efforts (e.g., Porta et al. 2018). This sets the basis for a sub-
sequent step of the workflow which entails model complexity reduction through the
formulation of a surrogate model (Sect. 2.3).

Various sets of indices are obtained depending on the model goal of interest (e.g.,
spatial distribution of sediments or layer thickness). A synthesis of the information
content associated with R model outputs of interest is then obtained through PCA
(Lawson and Hanson 1995). Morris indices μ are considered to represent an approx-
imation of the entries of the Jacobian matrix in the parameters’ space, which are then
rendered by the mean of the derivatives of each of the R model outputs of interest with
respect to N model parameters, i.e.

J =
⎡

⎢⎣
μ(p1, y1) . . . μ(pN , y1)

...
. . .

μ(p1, yR) μ(pN , yR)

⎤

⎥⎦ , (8)

wherematrix J has dimensions [R×N ]. Sensitivity indices are rescaledwith respect to
the corresponding maximum value for each variable and centered around the column
mean, to circumvent issues related to combining several outputs. Note that parameter
screening is here performed with a view to a subsequent inverse modeling (or model
calibration) step, i.e., the R model outputs considered correspond to a set of available
calibration data.

Then PCA is applied to matrix JT J through singular value decomposition

JT J = VBVT , (9)

where B is a [N × N ] diagonal matrix whose entries are the N eigenvalues of JT J
and the N columns of matrix V are the set of orthonormal eigenvectors of JT J.
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Matrix V identifies the so called principal components, PCi , through a linear com-
bination of the entries of J. The weight associated with the i-th principal component
is expressed in terms of the corresponding eigenvalues (or singular values)

U (PCi ) = λ(PCi )∑N
i=1 λ(PCi )

. (10)

While one could then proceed by replacing the set ofmodel parameterswith a selection
of the principal components identified at this step, the original parameters are kept
for the model calibration step, to preserve a direct link between the prior geologic
knowledge and the mathematical formulation leading to model calibration. Thus, the
importance of any given parameter pi is calculated in terms of its contribution to the
sum of the values λ(PCi ). Model parameters are then ranked through the following
metric

Contribution(pi ) =
NPC∑

j=1

V 2
i, jU (PC j ) =

∑R
k=1 μ2(pi , yk)

∑NPC
j=1 λ(PC j )

, (11)

where NPC is the number of PCs (which coincides with N ), Vi, j is the loading asso-
ciated with parameter pi within principal component PC j , the sum of all squared
loadings being equal to 1. Contribution to all outputs normalized by the sum of eigen-
values yields the influence of each parameter with respect to principal components.
This allows ranking parameters through a metric that takes into account their impact
on various outputs at once. In this context, the joint use of sensitivity indices and PCA
allows identifying a reduced number of parameters that are most influential on the
output variables considered.

2.3 Model Reduction

Amajor issue limiting an effective routine industrial use of SFMs and their application
in the context of an inverse modeling workflow is related to the computational cost
required for numerical simulations of scenarios of interest. Here, this aspect is circum-
vented through the formulation of a surrogate model. The latter is intended to mimic
selected outputs of Dionisos at a reduced computational effort. The PCE technique
(Ghanem and Spanos 2003) is employed, where the surrogate model is expressed
through a polynomial approximation formulated in terms of model input parameters.
This technique has been adopted in a variety of studies in the earth sciences dealing
with the characterization of subsurface systems (see Fajraoui et al. 2011; Zhang and
Sahinidis 2012; Porta et al. 2014; Colombo et al. 2018 and references therein).

A limited number nrdc (with nrdc < N ) of uncertain model parameters is selected
via the procedure of Sect. 2.2 in a vector p and approximates a given model output,
y(pN ), as (Sudret 2008)

y(pN ) ≈ yPC (p) =
OP∑

j=1

α jΨ j (p), p ∼ Unif. (12)
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Here,Ψ j are orthonormal multivariate Legendre polynomials, p is a vector containing
nrdc random variables which are uniformly distributed onto the space Unif, and the
number of polynomial terms OP is defined as

OP =
(
nrdc + D

D

)
= (nrdc + D)!

nrdc!D! , (13)

where D indicates the maximum degree of the polynomial approximation with respect
to a single parameter.

Evaluation of the PCE coefficients, α j , entails solving the complete model to com-
pute y(pN ) for several combinations of the uncertain parameters. Amongst the various
strategies that can be used to sample the parameter space, here a sparse grid technique
(see, e.g., Beck et al. 2012; Porta et al. 2014) is employed.

For each collocation point in the parameter space, a forward run of Dionisos is
performed with the corresponding parameter combination. Coefficients α j are then
computed through a least square minimization of the truncation error due to the use
of a finite number, OP , of polynomial terms, i.e.

α̂ j = argmin
1

Ncoll

Ncoll∑

i=1

⎧
⎨

⎩y(pN ) −
OP∑

j=1

α jΨ j (pi )

⎫
⎬

⎭

2

, (14)

where Ncoll is the number of collocation points and the entries of vector pi correspond
to the combination of parameters used for the i-th simulation. Consider that function
argmin applies to vector ααα containing α j entries (with j = 1, . . . , OP ).

Note that an additional advantage of employing a PCE representation is that Sobol
global sensitivity indices (Sobol 2001) can be computed with simple algebraic oper-
ations from Eq. (12). These indices are variance-based global sensitivity metrics and
can be employed to apportion the variance of a target model output amongst the uncer-
tain parameters employed to describe the system behavior (see Gervais et al. 2018 for
applications to SFMs).

According toEq. (13), the number of coefficients to be estimated increasesmarkedly
with the number of model parameters and the highest degree set for the PCE. In this
study, the construction of the surrogate model is further streamlined by following
the approach of Fajraoui et al. (2012). This procedure allows reducing the number
of coefficients to be estimated by setting a threshold value, vthr , and solely retaining
coefficients associated with a relative contribution larger than vthr to the normalized
output variance.

For each model output considered, the order of the polynomial (and the above men-
tioned threshold value, when required) is then chosen so that the root mean squared
error (RMSE) with respect to a sample of (randomly selected) 100 full model simula-
tions is the lowest.
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2.4 Stochastic Inverse Modeling

Data that are typically used to constrain/calibrate stratigraphicmodels include (i) thick-
ness and sediment distributions along wellbores, and (ii) seismic information (Charvin
et al. 2009; Bertoncello et al. 2013; Sacchi et al. 2015). The latter are interpreted to
yield a reconstruction of the geometric features of the main layers forming the inter-
nal architecture of the subsurface system. A deterministic inverse modeling approach
is geared towards finding a unique set of model parameters that minimizes a given
objective function (Duan 2017). Here instead a stochastic calibration (or stochastic
inverse modeling) is considered to estimate the probability density function of the
(unknown) parameters conditioned to a set of available data (Tarantola 2005). Vectors
y∗
k = [y∗

k,1 . . . y∗
k,Nk

], whose entries are Nk observations of a given model output k
(e.g., sediment thicknesses or sediment fraction at wells) and yk(p j ), which represents
values of the corresponding quantity computed through the full (or surrogate) model at
measurement locations for parameter combination p j are considered. This stochastic
model calibration approach is grounded on the evaluation of the following objective
function, OF(p j )

OF(p j ) =
Nout∑

k=1

∑Nk
i=1(y

∗
k,i − yk,i (p j ))

2

Nk(max(y∗
k) − min(y∗

k))
2 , (15)

where the outer sum is performed across all model output variables, Nout . Equation
(15) is minimized through a machine learning technique termed PSO (see Eberhart
and Kennedy 1995; Kiranyaz et al. 2014). At the initial step of the inversion, i.e.,
for t = t0, a number Np of points p j (t0) with j = 1, . . . , Np is randomly sampled
from a uniform distribution within the nrdc-dimensional parameter space together
with a random value of the displacement v j (t0). The latter is drawn from a uniform
distribution within the support [0, 1]. Particle displacements are then updated during
subsequent evolutionary steps of the algorithm to evaluate new particle locations. The
optimal choice for Np is problem-dependent, Np being typically in the range 20-50
(Rahmat-Samii and Michielssen 1999). Each of the selected points is then displaced
across the parameter space according to

p j (t + 1) = p j (t) + v j (t). (16)

The objective function of Eq. (15) is evaluated for each parameter combination cor-
responding to a particle location p j (t + 1). Due to the computational complexity
associated with Dionisos, this step is tackled by relying on the surrogate model of the
system constructed as described in Sect. 2.3.

At each step, t , of the calibration two reference locations in the parameter space
are evaluated, i.e., pbest, j and gbest , representing the location of maximum fitness
(minimum distance to data) discovered by particle j and the location associated with
the maximum fitness ever discovered by all particles, respectively (note that pbest is
evaluated at each step of the inversion for each particle j , while gbest is the same for
the entire particle set). Thus, the best estimate of the parameter set at step t is identified
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with gbest .
Following Eberhart and Kennedy (1995), displacement is then updated by con-

sidering v j (t + 1) as a linear function of the previous displacement (v j (t)), the best
position of the swarm (gbest ) and the best position of particle j (pbest, j ). In this anal-
ysis convergence of the algorithm (i.e., minimization of Eq. (15)) is attained when a
minimum value of the objective function which is set proportional to the variance of
measurement errors is reached or after 300 iterations of the PSO algorithm. While the
latter criterion does not ensure convergence to a global minimum, such a number of
iterations is considered as a good compromise between accuracy and computational
cost.

Repeating this procedure for a variety of random initial parameter combinations
and measurement errors (i.e., random perturbation of the entries of y∗

k ) allows explor-
ing the parameter and solution spaces, thus yielding Ncalib sets of model parameters
satisfying the imposed convergence criterion. These are then analyzed through their
empirical frequency distributions. As such, these results correspond to a frequentist
analysis of a collection of model parameter estimates.

3 Application of the Workflow to a Showcase Scenario

3.1 Test Case

The robustness of this approach and operational workflow is assessed through a
realistic synthetic showcase. The domain considered has a planar (in the xy-plane)
extent of 240 × 240 = 57,600 km2. Its vertical extent (identified through coordi-
nate z) is variable in time and depends on the initial subsidence map. The planar
domain is discretized onto a mesh comprised of Nx × Ny = 16 × 16 = 256
cells of uniform size, a total number of Nz = 146 variable-thickness cells being
employed to represent the vertical extent of the system (for a global number of
Nx × Ny × Nz = 16× 16× 146 = 37,376 cells). Each computational cell is defined
by the position of its centroid within the domain (xi , y j , zk), with i = 1, 2, .., Nx ,
j = 1, 2, .., Ny , k = 1, 2, .., Nz .
Here 3 lateral sources of sediment supply are considered, each with constant (in

time) position and width. Figure 1 depicts a sketch of the planar domain considered
and the spatial distribution of the lateral sources and wells. Figure 1 also reports
the initial bathymetry map employed and related to 167 Mya. Such a bathymetry is
obtained through interpretation of seismic data (following indication of downlap and
onlap terminations), together with literature information and regional biostratigraphic
studies.

Depositional and production processes take place across 4 ages spanning the tem-
poral window, covering the time intervals 167–164, 164–156, 156–120 and 120–94
Mya, respectively. Each variable-thickness cell corresponds to a constant time step
equal to 0.5 My. The global depositional time is 73 My, spanning between the initial
subsidencemap of themodel (related to 167Mya) and the thickness attained at 94Mya.
The set of 94 model parameters are grouped according to three main categories, each
corresponding to a given process, i.e., (i) boundary supply, (ii) carbonate production,
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Fig. 1 Planar domain, location of the three sources and of the five wells (Wi , i = 1, .., 5) and initial
bathymetry map at 167 Mya employed in the synthetic scenario

and (iii) sediment transport. Uncertain model parameters are taken as independent and
identically distributed random variables, each being uniformly distributed within the
corresponding range of variability. This modeling choice rests on the idea of assigning
equal weight to each value of the model parameter distribution. The focus is on the
model outputs associated with (i) five volumetric fractions of sediments (i.e., sand,
shale, compact carbonate, porous carbonate, and evaporite) and (ii) the thickness of
cells (expressed in meters).

Information on the vertical distribution of thesemodel outputs at the current deposi-
tional time is supposed to be available at the five observation wells and constitutes the
reference data-set upon which stochastic model calibration is grounded. The objective
function is built by averaging the above mentioned Dionisos outputs across sets of
approximately 15 vertical cells. This yields 10 (vertically averaged) values of sedi-
ment fractions along each of the five wellbores. Each of these sub-levels corresponds
to a depositional time of approximately 6.5 to 7.5 Ma. A similar concept is applied to
quantify the vertical thickness of each of the above mentioned ten sub-levels, calcu-
lated as the sum of the thicknesses of about 15 variable-thickness cells.

An additional quantity considered in the model calibration is the total thickness of
the system as a result of sediment accumulation between 167 and 94Mya, correspond-
ing to the total temporal window taken into account in this scenario. This quantity is
evaluated at each of the 256 cells composing the planar domain. Table 1 lists these
variables and the associated identifier.

For the purpose of model calibration, a synthetic dataset is obtained from a forward
simulation performed with Dionisos upon fixing a randomly selected set of model
parameters (hereinafter labeled as parameter reference values). This simulation is
considered as the ground truth upon which the inverse modeling strategy implemented
is assessed. As calibration data are considered, (i) the total thickness (dz256) of the
domain at each cell in the xy-plane, and (ii) the vertically varying volumetric fractions
of sand, shale, porous carbonate and compact carbonate, obtained within each of the
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Table 1 Target model outputs considered for the exemplary showcase

Identifier Description

Vss (Wi ) Volumetric fraction of sand at well Wi

Vsh(Wi ) Volumetric fraction of shale at well Wi

Vca(Wi ) Volumetric fraction of compact carbonate at well Wi

Vcp(Wi ) Volumetric fraction of porous carbonate at well Wi

Vev(Wi ) Volumetric fraction of evaporite at well Wi

dz(Wi ) Sediment thickness at well Wi [m]

dz256 Total sediment thickness [m]

10 sub-levels at the location of well W2, together with (iii) the thickness of each of
these sub-levels.

3.2 Parameter Screening

Sensitivity indices are evaluated through Eqs. (5), (6) and (7) by relying on 1900 for-
ward simulations of Dionisos, which are required to obtain a sample of 20 elementary
effects for each of the 94 parameters and model outputs considered.

A first feature stemming from these results is that the sensitivity index μ∗ is spa-
tially heterogeneous. Figure 2 depicts examples of the spatial distribution of the values
of μ∗ associated with two selected model parameters and referred to the total sedi-
ment thickness (i.e., dz256 in Table 1) deposited between 167 and 94 Mya. The spatial
distribution of the impact of parameter influence can be related to available volume
of sedimentation evaluated by combining the strength of the subsidence process and
bathymetry maps. Parameter #29 refers to the production of compact carbonate. Opti-
mal conditions for the production of this lithology take place at the right boundary of
the area, where bathymetry attains a value of approximately 50 m (Fig. 1) and where
the subsidence map allows for carbonate accumulation. Moreover, it can be noted that
carbonates in this area are sufficiently far away from siliciclastic sources. All these
factors contribute to the dominant influence of parameter #29 on the result on the
sedimentary process. Otherwise, parameter #92 (i.e., high energy versus low energy
in the sediment transport regime) is related to transport processes. A variation of this
parameter can cause significant increase/decrease of sediment thicknesses at relatively
large distances from sediment sources, as shown in Fig. 2b.

Figure 3 synthesizes the SA results for dz256. In the figure, parameters along the
horizontal axis are grouped by categories; symbols correspond to the average value of
the Morris index μ∗ evaluated across the set of 256 cells in the xy-plane, the length
of the vertical bars being representative of the standard deviation of the associated
population of (spatially variable) indices. These results evidence that some parameters
(e.g., parameter #29 and #92) aremarkedly influential on themodel output, while most
of the parameters display negligible mean and standard deviation values for μ∗.
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Fig. 2 Spatial distributions of the sensitivity index μ∗ for parameter (a) #29, (b) #92 and referred to the
total sediment thickness, dz256 deposited between 167 and 94 Mya
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Blue, green, and orange symbols correspond to parameters related to boundary supply (from #1 to #24),
carbonate production (from#25 to #69), and transport (from#70 to # 94), respectively.Vertical bars represent
the standard deviation of μ∗ values computed over the whole domain

Sensitivity is quantified through the same outputs by considering the sensitivity of
sediment fractions and vertical distribution of properties at selectedwell locations. The
relative importance ofmodel parameters to the overall set ofmodel outputs (sampled at
selected locations) is quantified through a combination of PCA and the Morris indices
evaluated via Eq. (5), as explained in Sect. 2.2. Figure 4 synthetizes the results of
the analysis. For each parameter the contribution calculated through Eq. (11) which
quantifies the relative impact on expected output variations is reported. Here the 20
parameters displaying the highest contributions are selected, note that the sum of
the contributions of these selected parameters amounts to 70% of the sum of all
λ(PC j ), as expressed inEq. (10). This result is considered agood compromise between
computational requirements in the stochastic inversion procedure and the degree of
system complexity that can be included in the modeling effort.

3.3 Surrogate Model

Table 2 lists the 20 parameters that are selected as most influential on model outputs
on the basis of the analysis described in Sect. 3.2. These results are the ground for
the formulation of the surrogate model (i.e., a model with reduced complexity) which
will then be employed in the context of stochastic inverse modeling.
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Fig. 4 Contribution of each of the 94 parameters following the analysis illustrated in Sect. 2.2. Blue, green,
and orange bars correspond to parameters related to boundary supply (from #1 to #24), sediment production
(from #25 to #69), and transport (from #70 to #94), respectively

The training data set used to build the PCE surrogate models comprises 11,461
Dionisos runs and the PCE coefficients (see Sect. 2.3) are computed through regression
according toEq. (14) for differing values of the largest order of the ensuing polynomial.
These are evaluated (i) at the 5 well locations (Wi , i = 1, ..., 5) and each of the 10
sub-levels where the target volumetric fractions and thickness (i.e., Vss , Vsh , Vca , Vcp,
dz) are sampled, and (i i) at each cell in the horizontal plane, with reference to the
total thickness, dz256.

The accuracy of the surrogate model is evaluated by comparison against full model
results corresponding to Ncontrol = 100 randomly selected parameter combinations
(drawn for the same prior distributions) that are not used to construct the PCE. Figure
5 provides an appraisal of the quality of the surrogate model by depicting the root
mean square error (RMSE)

RMSE =
√∑Ncontrol

i=1 [y(pi )
DI ON − y(pi , OP )PCE ]2
Ncontrol

, (17)

where y(pi , OP )PCE and y(pi )
DI ON are the outputs of interest evaluated with the

PCE and with the full Dionisos model, respectively, with combination i of model
parameters. Note that y(pi , OP )PCE depends on the number of terms (i.e., OP )
included in the polynomial expansion. Here, results obtained by (i) setting the poly-
nomial order to D = 1, 2, 3, and 4 including all possible combinations between
parameters up to order D, and (ii) setting the polynomial order to D = 4 (which
includes 10,626 terms) and selecting only those who contribute to the output vari-
ance more than a given threshold, vthr , as explained in Sect. 2.3 are compared. As
an example of the type of results obtained, the focus is on the fraction of shale and
compact carbonate along wellW2 depicted in Fig. 5. Values of the RMSE representing
the quality of the PCE approximation are within the order of 0.01–0.025 with regard
to sediment composition, while the average error for thickness ranges from 1 to 3 m
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Fig. 5 PCE results at well W2: RMSE (Eq. (17)) versus number of polynomial terms retained in the
expansion for a shale and b compact carbonate. Blue curves correspond to given PCE orders (D = 1, .., 4,
indicated by blue labels) whereas green curves represent results for the reduced polynomial of order D = 4
with different selected threshold values (vthr , indicated by green labels)

appoximately. This result is considered as a good compromise between the robustness
of the surrogatemodel and the computational cost that is required for stochastic inverse
modeling. Obtaining a lower RMSE value would require increasing the polynomial
order. As this would hamper the possibility to complete the stochastic inverse analysis
due to a prohibitive computational demand, this avenue is not further pursued.

3.4 Stochastic Model Calibration

This stochastic model calibration is performed by relying on the constructed surrogate
models and a collection of Ncalib = 500 realizations of perturbed observations. As
stated in Sect. 2.4, data collected in the reference system realization are considered to
be associated with a zero mean Gaussian error with standard deviation equal to 25 m
for thicknesses and 0.05 for volumetric fractions of sediments, to mimic measurement
errors. Thus, available data about sediment volumetric fractions and layer thicknesses
are characterized by a coefficient of variation (CV) ranging between 0.07 and 5.4
or 0.004 and 0.2, respectively, which are considered as representative values of field
settings. Since prior assessments of noisy data are not available, considering a range
of CV values allows quantifying the influence of measurement error on output vari-
ables and the related uncertainty. Measurement errors are also introduced to consider
uncertainty related to age definitions, which are implicitly associated with sediment
composition and deposition thickness. The workflow presented is not constrained
by these specific values, other measurement error assumptions being fully compati-
ble with the stochastic calibration procedure. This enables us to obtain the empirical
multivariate distribution of parameter estimates given the perturbed data. The total
computational cost involves running ≈ 4 million realizations of the surrogate model.
Note that a single forward simulation of the full Dionisos model requires (on average)
between 10 and 20 min, the surrogate model being associated with a computational
cost of about 0.5 seconds. This leads to a remarkable saving of computational time
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modeling procedure. Green circles indicate the reference value, red crosses lower and upper limits of the
support of the prior distributions

(i.e., about 23 days of CPU time instead of 41,667 days = 114 years with an Intel®
Core™ i7-6900K CPU@3.20GHz processor) .

Figure 6 depicts a boxplot representation of the marginal distributions associated
with the parameter values obtained from the inverse modeling procedure together with
lower and upper limits of the support of the prior distributions (red crosses, see Table
2). The parameter reference values (green circles) generally lie within the first and
third quartile (and close to the median values) of the corresponding empirical distribu-
tions, an exception being noted for parameters #3, #28 and #32, whose corresponding
reference values lie at the tails of the distributions. The reduction of uncertainty is
quite remarkable for some parameters (e.g. parameters #5, #6, #21, #43 and #93)
while being less evident for others. Figure 7 depicts the sample histograms represent-
ing the marginal distributions of 4 selected parameters. Note that all parameters are
associated with distributions differing markedly from the uniform probability density
function assumed a priori, i.e., in the absence of information. For instance, param-
eter #3 (Fig. 7a) displays a seemingly Gaussian marginal distribution, as a result of
assimilating information through model calibration. Other parameters display skewed
(e.g., parameter #8, #35) or bimodal (parameter #71) distributions. With reference to
the latter feature, it might be an artifact related to random variation of the frequency
values.

Then, parameter combinations obtained through inverse modeling are employed to
simulate 500 Dionisos calibrated models. Figure 8 depicts the vertical distribution of
the median values resulting from the Ncalib = 500 volumetric fractions Vss , Vsh , Vca ,
and Vcp at well W2 obtained through the inversion procedure (blue solid curves). The
corresponding reference values and measurement errors (red circles and horizontal
bars) are depicted. Variability of results is illustrated in terms of the range of values
comprised between the 5th and 95th percentile of the distribution (yellow shaded
area). It is noted that (i) reference values always lie within the shaded area and (ii)
the median values of the populations of estimated model outputs are very close to
reference values, thus supporting the robustness of the model calibration procedure.
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Table 2 Parameters used for the construction of surrogate models: parameter number, short description,
units and range of variability considered for PCE approximations

NR. Description and units Range

3 Total sediment supply: source 1, age 4 [km3/My] 200–600

5 Fluvial discharge ratio: source 1, age 3 [(m3My)/(km3s)] 0.33333–3

6 Fluvial discharge ratio: source 1, age 4 [(m3My)/(km3s)] 0.33333–3

8 Shale supply percentage: source 1, age 3 [%] 30–90

9 Shale supply percentage: source 1, age 4 [%] 40–100

17 Shale supply percentage: source 2, age 3 [%] 30–90

18 Shale supply percentage: source 2, age 4 [%] 40–100

21 Fluvial discharge ratio: source 3, age 4 [(m3My)/(km3s)] 0.33333–3

23 Shale supply percentage: source 3, age 3 [%] 30–90

24 Shale supply percentage: source 3, age 4 [%] 40–100

28 Max porous carbonate production: age 2 [m/My] 5–15

29 Max compact carbonate production: age 2 [m/My] 5–15

32 Max compact carbonate production: age 3 [m/My] 25–75

35 Max compact carbonate production: age 4 [m/My] 15–45

43 Porous carbonate production rate at 10 m depth [/] 0.09–0.91

70 Nq = Water-driven transport coefficient (water) [/] 1–2

71 Ns = Water-driven transport coefficient (slope) [/] 1–2

83 Water-driven marine sand coefficient [km2/ky] 5–15

92 Flood water ratio [/] 5–15

93 Relative duration of flood periods [months/y] 1–6

3.5 Uncertainty Quantification Based on Stochastic Model Calibration

The probabilistic results obtained in Sect. 3.4 can be employed to yield an assessment
of the uncertainty associated with target model outputs at unsampled locations, e.g.,
at wellW3. This represents a common situation in field scenarios, where, for example,
exploration campaigns may be supported by a risk assessment evaluation.

Figure 9 depicts vertical distributions of the median (blue solid curves) values of
volumetric fractions of a sand, b shale, c compact carbonate and d porous carbonate
obtained at wellW3 by relying on the model parameter combinations obtained in Sect.
3.4, together with reference values and measurement errors (red circles and horizon-
tal bars). As expected, the widths of the intervals associated with values comprised
between the 5th and 95th percentile of the distribution are larger than their counter-
parts evaluated at the locations where (noisy) data are available (see Fig. 8). Hence,
these latter results show that (i) propagation of uncertainty from model parameters
to outputs can be significantly heterogeneous along the temporal window considered,
and (ii) there is the possibility that multiple geological interpretations/settings be (sta-
tistically) compatible with the information content available. As such, a strength of
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Fig. 7 Histograms of 4 selected parameters: a #3, b #8, c #35, and d #71. Solid and dashed vertical red
lines indicate median, first and third quartile of the distribution, respectively. Green dashed lines repre-
sent parameter reference values. Red crosses indicates lower and upper limits of the support of the prior
distributions

this approach is its ability to inform geological interpretation about the likelihood of
occurrence of multiple stratigraphic sequences, given an available dataset.

4 Conclusions

The key objective of this study is the development of a methodological and operational
framework for (i) diagnosis of stratigraphic models through quantification of the rel-
ative importance of uncertain model parameters on modeling goals of interest and (ii)
stochastic inverse modeling in the context of the assessment of sediment deposition
processes across geologic time scales. The focus is on the widely used Stratigraphic
Forward Model (SFM) Dionisos (DIffusive Oriented Normal and Inverse Simulation
Of Sedimentation, Granjeon 1997) that allows three-dimensional numerical simu-
lations of the accumulation of siliciclastic and carbonate sediments within a given
temporal window. This work leads to the following key conclusions.

1. While previous studies of stratigraphic modeling have often been tackled through
local SA and qualitative comparisons of model results against available data, this
strategy seamlessly integrates elements of local and global SA (Sect. 2.2) and
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Fig. 8 Vertical distributions of median values resulting from Ncalib = 500 volumetric fractions of a sand,
b shale, c compact carbonate and d porous carbonate at well W2 (blue solid lines), their reference values
and measurement errors (red points and horizontal bars). Uncertainty intervals between the 5th and 95th
percentile are also shown (yellow shaded areas)

model reduction techniques (Sect. 2.3), which are then used to assist stochas-
tic inverse modeling (Sect. 2.4). This yields probability distributions of uncertain
model parameters conditional on available information which can then be used to
propagate residual (i.e., after calibration) parameter uncertainty to modeling goals.
The ensuing probability distribution of the latter can then be used for uncertainty
quantification and associated risk assessment protocols.

2. Starting from a considerable number (in this case 94) of uncertain parameters,
the approach leads to the identification of a reduced parameter set (in this case 20
parameters) which explains a given amount (in this case about 70%) of system vari-
ability. Thus, this quantitative procedure for parameter screening can be employed
to effectively complement qualitative choices based on expert opinion and literature
studies to identify the parameters which are most influential to drive stratigraphic
modeling results. Probability distributions of these model parameters conditional
on available data can then be evaluated through stochastic inverse modeling.
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Fig. 9 Vertical distributions of the median (blue solid curves) volumetric fractions of a sand, b shale,
c compact carbonate and d porous carbonate obtained at well W3 by relying on the model parameter
combinations obtained in Sect. 3.4. Red circles and horizontal bars correspond to reference values and
measurement errors. The width of the yellow area corresponds to the range of values comprised between
the 5th and 95th percentiles of the distribution

3. It is shown that it is possible to reduce the complexity of the full Dionisos model.
This is done by relying on a PCE approach. The latter enables us to formulate
a surrogate model, according to which a given output variable is expressed as a
polynomial approximation written in terms of the identified reduced set of input
parameters. These results show that PCE-based surrogate models are well suited
to approximate outputs of stratigraphic models and can be employed to markedly
speed up the stochastic inversemodeling step, the general workflow proposed being
otherwise fully compatible with other types of surrogate models.

4. Model calibration is performed in a stochastic context by relying on the PCE-based
surrogate model and considering noisy data (i.e., sediment fractions and total thick-
ness of the domain) to mimic measurement errors associated with data collected
in a realistic synthetic showcase scenario and taken as the ground truth against
which this modeling workflow can be assessed. Empirical frequency distributions
of model parameters and spatial distributions of output variables conditional on

123



1122 Math Geosci (2021) 53:1101–1124

available information are obtained. The results of the workflow (i) are consistent
with the calibration data and (ii) can be used to quantify the uncertainty related
to sediment distributions at unsampled locations, where data are not available. A
key feature of the approach is that the frequency distribution of model parameters
allows identifying a collection of possible model responses, fully conditional on
a given set of observations. As such, this integrated approach markedly reduces
computational efforts and yields a set of stratigraphic configurations which can
then enrich the geological characterization of field scenarios at basin scale.
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