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Abstract. We discuss an approach to the computer assisted proof
of the existence of branches of stationary and periodic solutions for
dissipative PDEs, using the Brussellator system with diffusion and
Dirichlet boundary conditions as an example, We also consider the
case where the branch of periodic solutions emanates from a branch
of stationary solutions through a Hopf bifurcation.
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1. Introduction and main results

The seminal work of Turing [1] has introduced the explanation of
pattern formation in nature through reaction and diffusion of chemical
compounds. The Gray-Scott system [2, 3] and the Brussellator with
diffusion [4]-[8] are well known models of such dynamics. The literature
on these reaction-diffusion systems is very large, see e.g. [9]-[13] and
references therein. Most result on the existence of solutions and bi-
furcations of branches of solutions for these reaction-diffusion systems
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concern Neumann boundary conditions, and are based on the explicit
knowledge of (constant) stationary solutions. When other boundary
conditions are considered, e.g. homogeneous Dirichlet, no stationary
solutions are known explicitly, therefore different techniques must be
used to study branches of solutions and bifurcations.

In the last few years different computer assisted methods have been
developed to study branches of solutions and bifurcations for both ordi-
nary and partial differential equations, see e.g. [16]-[24]. In particular,
in [21] and [22] an efficient method based on the Taylor expansion of
the Fourier coefficients of the solution has been introduced. Here we
apply such method to study branches of stationary solutions and a
Hopf bifurcation for the Bussellator system with diffusion and Dirich-
let boundary conditions, and we further expand it to study branches
of periodic solutions arising from the Hopf bifurcation, so that the ex-
istence of periodic solutions is guaranteed in a given interval of the
parameter, instead of some neighborhood of unknown width.

The problem that we choose as an example is the system

(1)


Ut − Uxx = sinx− (b+ 1)U + U2V

Vt − 1
64
Vxx = bU − U2V

U(0, t) = U(π, t) = V (0, t) = V (π, t) = 0 ∀t ,

where b is a positive parameter. This is essentially the Brussellator
system with diffusion and Dirichlet boundary conditions, the only dif-
ference being the sinx term in the first equation instead of the more
conventional constant term used with Neumann boundary conditions
(see e.g. [5]). This choice allows solutions admitting analytic exten-
sions to the whole real line, a property that simplifies the computer
assisted estimates, while maintaining the main characteristics of the
problem. Note that the diffusion coefficient for V is much smaller than
the diffusion coefficient for U . Indeed, the bifurcation that we consider
here is a typical example of Turing instability, which manifests itself
only when the speed of diffusion in the two variables is significantly
different.

Our first result is the following:

Theorem 1. For all b ∈ [0, 11] equation (1) admits an analytic station-
ary solution (Ub, Vb), symmetric with respect to the reflection x 7→ π−x.
The map b 7→ (Ub, Vb) is analytic. Furthermore, all other solutions of
equation (1) are bounded away from (Ub, Vb), uniformly in b.

In particular, Theorem 1 excludes the existence of a symmetry break-
ing bifurcation in the parameter range considered.
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We studied numerically the linear stability of the solution (Ub, Vb)
obtained in Theorem 1. It turns out that at most two eigenvalues of
the linearized equation appear to have positive real part. Figure 1
represents the real (black) and imaginary (red) parts of such eigenval-
ues, as b ranges in [0, 11]. The graph shows that the real part of two
complex conjugate eigenvalues changes of sign at b ' 2.7 and b ' 10,
suggesting two supercritical Hopf bifurcations.

Figure 1. Real (black) and imaginary (red) parts of the
eigenvalues of the linearised equation versus b.

Our second result is a proof of the Hopf bifurcation at b ' 2.7 and
of the existence of a branch of periodic solutions emanating from it.

Theorem 2. At b = b0 = 2.6992 . . . a Hopf bifurcation occurs. More
precisely, for all b ∈ [b0, b1] with b1 = 2.7418... there exists a periodic
solution (Ũb, Ṽb), where (Ũb0 , Ṽb0) = (Ub0 , Vb0), (Ub0 , Vb0) being the so-
lution obtained in Theorem 1. Furthermore, the map b 7→ (Ũb, Ṽb) is
analytic and the minimal period of the solutions when b > b0 varies in
the interval [10.35 . . . , 10.97 . . .].

The proof of the existence of the branch of periodic solutions is car-
ried out only in the interval [b0, b1] because it would be very compu-
tationally expensive to consider a wider interval. As it turns out, the
solution varies significantly and the size of the domain of analyticity
decreases very fast with increasing b, which in turn means that a very
large number of Fourier coefficients need to be taken into account. Still,
there is no theoretical obstruction to the extension of the branch. For
illustration purposes, we also proved the existence of a periodic solution
at b = 3:

Theorem 3. At b = 3 equation (1) admits an analytic periodic solution
(Ũ3, Ṽ3) of minimal period T = 22.91 . . ..
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Note that, when b increases from 2.69 . . . to 3, the period of the solu-
tion doubles and the graph of the solution changes dramatically. Figure
2 shows some snapshots of the solution (Ũ3, Ṽ3), while Figure 3 shows
the stationary solution (U3, V3) and the graph of (Ũ3(π/2, t), Ṽ3(π/2, t)).

Figure 2. Snapshots of the periodic solutions at b = 3 at
times t = kT/12, k = 0, . . . , 11. The graph of u is black and
the graph of v is red.

2. The strategy of the proofs

2.1. Stationary branch. Let ρ = 65/64, let C be the space of func-
tions

(2) f =
∑
k≥1

fk sin(kx) (fk ∈ C)
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Figure 3. Stationary solution at b = 3 (left). Graph of

(Ũ3(π/2, t), Ṽ3(π/2, t)) (right).

such that

(3) ‖f‖C :=
∑
k

|fk|ρk < +∞ .

Note that, since ρ > 1, functions in C are analytic. Denote by CS the
subspace of C characterized by the symmetry f(x) = f(π − x), that
is the subspace of functions with f2k = 0 for all k = 1, 2, . . .. For
u = (U, V ) ∈ C2 let ‖u‖C2 = ‖U‖C+‖V ‖C. Let Ab : C2 → C2 be defined
by

(4) Ab(U, V ) := (∂xx)
−1(sinx− (b+ 1)U + U2V, 64(bU − U2V )) .

Clearly, fixed points of Ab are analytic stationary solutions of (1). Also
note that Ab(U, V ) ∈ C2S for all (U, V ) ∈ C2S.

To prove that Ab admits a fixed point (Ub, Vb) ∈ C2S for each b ∈
[0, 11], and that the function b 7→ (Ub, Vb) is analytic, we write all the
coefficients in the Fourier expansion of (Ub, Vb) as Taylor polynomials
in b:

(Ub(x), Vb(x)) =
∑
k odd

(uk(b), vk(b)) sin(kx) ,(5)

(uk(b), vk(b)) =
L∑
l=0

(ukl(b), vkl(b))

(
b− b0
b1

)l
,(6)

where b0, b1 and L are as in Table 1. As a first step, we choose some
Fourier-Taylor polynomial ū = (Ū , V̄ ) ∈ C2S that is an approximate
fixed point of Ab, and some finite rank operator Mb : C2 → C2S such
that I−Mb is an approximate inverse of I−DAb(ū). Then for h ∈ C2
we define

(7) Mb(h) = Ab(ū+ Λbh)− ū+Mbh , Λb = I−Mb .
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Clearly, if h is a fixed point of Mb, then u = ū + Λbh is a fixed point
of Ab and, hence, u solves (1). Given r > 0 and w ∈ C2, let Br(w) =
{v ∈ C2 : ‖v − w‖C2 < r}. We partition the interval [0, 11] into four
subintervals. The center b0 and half-width b1 of each subinterval are
shown in Table 1, together with the order L used in the expansion (6).
Let (bi0, b

i
1, L

i) be the values displayed in row i. Then we prove the

i b0 b1 L
1 4 4 36
2 17/2 1/2 20
3 19/2 1/2 30
4 21/2 1/2 30

Table 1. Branch intervals for the stationary solution

following lemma with the aid of a computer, see Section 3.

Lemma 1. The following holds for each i ∈ {1, . . . , 4}. Let (b0, b1, L) =
(bi0, b

i
1, L

i). There exist a Fourier-Taylor polynomial ūi(b) of degree L
as described in (6), a bounded linear operator M i

b on C2, and positive
real numbers εi, ri, Ki such that

(8) εi +Kiri < ri

and

(9) ‖Mb(0)‖C2 ≤ εi , ‖DMb(h)‖C2 ≤ Ki , ∀h ∈ Bri(0)

holds for all {b ∈ C : |b− b0| ≤ b1}. Furthermore,

(10) Br1(ū
1(b10 + b11)) ⊂ Br2(ū

2(b20 − b21)) ,

(11) Br3(ū
3(b30 + b31)) ⊂ Br4(ū

4(b40 − b41)) ,

(12) Br3(ū
3(b30 − b31)) ⊂ Br2(ū

2(b20 + b21)) .

Proof of Theorem 1. First note that for all b ∈ [0, 11] there exists i ∈
{1, . . . , 4} such that b ∈ [bi0−bi1, bi0+bi1]. Such value of i is unique, except
in the case when b = 8, 9, 10, that is in the intersection of two different
intervals [bi0−bi1, bi0+bi1]. Let b ∈ [0, 11] be fixed, but arbitrary, and i be
such that b ∈ [bi0−bi1, bi0+bi1]. Then, by the inequalities in (8) and (9) it
follows that Mb(v) ∈ Br(0) for all v ∈ Br(0). Furthermore, since K <
1, the Contraction Mapping Theorem applies, andMb admits a unique
fixed point h̄(b) in Br(0), and then u(b) = ūi + Λbh̄(b) is a fixed point
of Ab, that is a solution of (1). The Implicit Function Theorem implies
that the dependence on b is continuous (in fact, analytic), and since
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r can only take 4 different strictly positive values, then the solutions
are isolated, uniformly in b. Finally, uniqueness and the inclusions in
(10)-(12) guarantee that the solutions obtained for different values of i
belong to the same continuous branch.

2.2. Periodic branch. The time period T of a (non stationary) peri-
odic solution varies with b. Instead of looking for T -periodic solutions
of equation (1), we look for 2π-periodic solutions of

(13)


αUt − Uxx = sinx− (b+ 1)U + U2V

αVt − 1
64
Vxx = bU − U2V

U(0, t) = U(π, t) = V (0, t) = V (π, t) = 0 ∀t ,
where α = 2π/T has to be determined. To simplify notation, a 2π-
periodic function will be identified with a function on the circle R/(2πZ).

Let ρ = 33/32 and % = 1 + 2−20, let

cosij(t) =

{
cos(jt) if j ≥ 0

sin(−jt) if j < 0 ,

and let A be the space of functions

f(t) =
∑
j∈Z

fj cosij(t) ,

with
‖f‖A =

∑
j∈Z

|fj|%|j| < +∞ .

Given f ∈ A, let

fe
def
=
∑
j even

fj cosij(t) , fo
def
=
∑
j odd

fj cosij(t) .

Let B be the space of functions

(U(x, t), V (x, t)) =
∑
k≥1

(Uk(t), Vk(t)) sin(kx) ,

with Uk, Vk ∈ A and

‖(U, V )‖B =
∑
k≥1

(‖Uk‖A + ‖Vk‖A)ρk < +∞ .

Given (U, V ) ∈ B, let

(Uo, Vo)
def
=
∑
k≥1

(Uko(t), Vko(t)) sin(kx) ,

and define (Ue, Ve) similarly. For b near the bifurcation point b0, we
expect U, V to be nearly time-independent. So in particular, (Uo, Vo)
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is close to zero, while (Ue, Ve) cannot be, given the constant (in time)
term in the first equation in (13). This justifies the following scaling:
for some β > 0 define

(U, V ) = Tβ(u, v)
def
= (ue + βuo, ve + βvo) .

Substituting into (13) yields the equation

(14)

{
αut − uxx = sinx− (b+ 1)u+Ns(u, v)

αvt − 1
64
vxx = bu−Ns(u, v) .

where s = β2 and

(15) Ns(u, v) = u2eve + 2ueuove + u2evo + s(u2ove + 2ueuovo + u2ovo) .

Let (u, v) ∈ C2 and define

Lα,d,bu
def
= (α∂t − d∂xx + b)−1u ,

and similarly for v. Then, if

u(x, t) =
∑
j,k

ujk cosij(t) sin kx

we have

(16) Lα,d,bu(x, t) =
∑

k≥1,j∈Z

(dk2 + b)ujk − αju(−j)k
(dk2 + b)2 + α2j2

sin(kx) cosij(t) ,

and equation (14) is equivalent to

(17)

{
u = Fs(u, v) := Lα,d1,b+1(sinx+Ns(u, v))

v = Gs(u, v) := Lα,d2,0(bu−Ns(u, v)) .

One of the features of the equation is that the time-translate of a
solution is again a solution. We eliminate this symmetry by imposing
the condition u11 = 0. In addition, close to the Hopf bifurcation point,
we normalize the odd part of u by choosing u(−1)1 = 1. This leads to
the conditions

(18) Au
def
= u11 = 0 , Bu

def
= u(−1)1 = 1 .

It is convenient to regard s to be the independent parameter and ex-
press α and b as a function of s. The functions α = α(s) and b = b(s)
are determined by the condition that u satisfies (18). Applying A and
B to both sides of u = Fs(u, v), and using the identities A∂xx = −A,
A∂t = B, B∂xx = −B, B∂t = −A, we find that

(19) α = ANs(u, v) , b = BNs(u, v)− 1− d1 .



COMPUTER ASSISTED PROOF OF BRANCHES OF SOLUTIONS 9

Away from the Hopf bifurcation point there is no need to normalize
the odd part of u, so that b can be a free parameter and then we choose
s = 1. In this case, imposing the condition Au = 0 we find that

α =
AN1(u, v)

Bu
.

To prove that (1) admits a periodic solution (Ub, Vb) ∈ C2S for each
b ∈ [b0, b1], and that the function b 7→ (Ub, Vb) is analytic, we follow a
procedure similar to the stationary case: we write all the coefficients
in the Fourier expansion of (u, v) as Taylor polynomials in s

(20) (ujk(s), vjk(s)) =
L∑
l=0

(ujkl, vjkl)

(
s− s0
δ

)l
,

where δ = 2−11 and s0 takes different values, as specified in Lemma 2.
Let

Hs(u, v)
def
= (Fs(u, v),Gs(u, v)) ,

so that periodic solutions of (1) correspond to fixed points of Hs. Let

BS
def
= {(u, v) ∈ B : u(x, t) = u(π − x, t) , v(x, t) = v(π − x, t)}, and

note that Hs(u, v) ∈ BS for all (u, v) ∈ BS.
As a first step, we choose some Fourier-Taylor polynomial w̄ =

(ū, v̄) ∈ BS, that is an approximate fixed point of Hs, and some fi-
nite rank operator M = M(s) such that I − M is an approximate
inverse of I−DHs(w̄) and Mw ∈ BS for all w ∈ BS. Then for h ∈ BS
we define

(21) Ms(h) = Hs(w̄ + Λh)− w̄ +Mh , Λ = I−M .

Clearly, if h is a fixed point of Ms, then w = w̄ + Λh ∈ BS is a fixed
point of Hs and, hence, w = (u, v) solves (1). Given r > 0 and w ∈ BS,
let Br(w) = {v ∈ BS : ‖v − w‖B < r}. Lemmas 2 and 3 are proved
with the aid of a computer, see Section 3.

Lemma 2. The following holds for each i ∈ {0, . . . , 5}. Let s0 = s0i =
i2−10 and δ = 2−11. There exist a Fourier-Taylor polynomial w̄i(s) of
degree 5 as described in (6), a bounded linear operator Mi(s) on BS,
and positive real numbers εi, ri, Ki satisfying εi +Kiri < ri, such that

(22) ‖Ms(0)‖B ≤ εi , ‖DMs(w)‖B ≤ Ki , ∀w ∈ Bri(0)

holds for all {s ∈ C : |s− s0i| ≤ δ}.

Let I be the natural embedding of C2S into BS.
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Lemma 3. α(0) = 0.607..., α(11 · 2−11) = 0.572..., b(0) = 2.6992 . . .
and b(11 · 2−11) = 2.7418 . . ., where α and b are computed as in (19).
Furthermore, for each i ∈ {0, . . . , 4}

Bri(w̄i(s0i + δ)) ⊂ Bri+1(w̄i+1(s0(i+1) − δ)) ,

Br0(w̄0(0)) ⊂ Br(I(ū(b(0)))) .

These lemmas, together with the Contraction Mapping Theorem,
imply the following proposition, which in turn yields Theorem 2. The
proof follows the same lines of the proof of Theorem 1.

Proposition 1. For each s ∈ [0, 11 · 2−11] there exists a fixed point
(us, vs) of Hs with ∂tus not identically zero for all s > 0, and the
curve s 7→ (us, vs) is analytic. Furthermore, (u0, v0) coincides with the
solution ū(b(0)) of Lemma 1.

Finally, Theorem 3 follows from the following Lemma, also proved
with computer assistance:

Lemma 4. Let b = 3. There exist a polynomial w̄ ∈ BS a bounded
linear operator M on BS, and positive real numbers ε, r,K satisfying
ε+Kr < r, such that

(23) ‖M1(0)‖B ≤ ε , ‖DM1(w)‖B ≤ K , ∀w ∈ Br(0) .

3. Technicalities

3.1. Computation of DMs. To compute the derivative of the oper-
atorMs used in Lemmas 2 and 4, we need the derivatives of {Fs,Gs}.
So, assume that u, v depend on a parameter, and denote by a dot the
derivative with respect to this parameter. Define

L′α,d,b = ∂t(α∂t − d∆ + b)−1 .

Then the parameter-derivatives of Fs(u, v) and Gs(u, v), are given by

DFs(u, v)[u̇, v̇] = Lα,d,b+1(DNs(u, v)[u̇, v̇]− α̇L′α,d,b+1(sinx+Ns(u, v))

− ḃLα,d,b+1(sinx+Ns(u, v))) ,

DGs(u, v)[u̇, v̇] = Lα,d,0(ḃu+ bu̇−DNs(u, v)[u̇, v̇]

− α̇L′α,d,0(bu−Ns(u, v))) ,

where

α̇ = ADNs(u, v)[u̇, v̇] and ḃ = BDNs(u, v)[u̇, v̇] .
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3.2. Estimates on the linear operators Lα,d,b and L′α,d,b. Consider
the linear operators Lα,d,b and L′α,d,b, with α, d, b ∈ R. Let ũ = Lα,d,bu.

Using (16) and the Cauchy-Schwarz inequality in R2 we have the esti-
mate

(24) |ũj,k| ≤ Cj,k

√
|uj,k|2 + |uj,−k|2 , Cj,k =

1√
(dj2 + b)2 + α2k2

.

Note that Cj,k is a decreasing function of j, k and can be used to esti-
mate Lα,d,bu when u is the tail of a Fourier series.

For the operator L′α,d,b we have

ũjk = k
(dj2 + b)ujk − αkuj(−k)

(dj2 + b)2 + α2k2
, ũ = L′α,d,bu .

A bound analogous to (24) holds, with with

C ′j,k =
|k|√

(dj2 + b)2 + α2k2
≤ 1

α
.

3.3. The computer assisted part of the proof. The methods used
here can be considered perturbation theory: given an approximate so-
lution, prove bounds that guarantee the existence of a true solution
nearby. But the approximate solutions needed here are too complex
to be described without the aid of a computer, and the number of
estimates involved is far too large.

The first part (finding approximate solutions) is a strictly numeri-
cal computation. The rigorous part is still numerical, but instead of
truncating series and ignoring rounding errors, it produces guaranteed
enclosures at every step along the computation. This part of the proof
is written in the programming language Ada [14]. The following is
meant to be a rough guide for the reader who wishes to check the cor-
rectness of our programs. The complete details can be found in [15].

In the present context, a “bound” on a map f : X → Y is a function
F that assigns to a set X ⊂ X of a given type (Xtype) a set Y ⊂ Y
of a given type (Ytype), in such a way that y = f(x) belongs to Y for
all x ∈ X. In Ada, such a bound F can be implemented by defining a
procedure F(X : in Xtype ; Y : out Ytype).

To represent balls in a real Banach algebra X with unit 1 we use
pairs S=(S.C,S.R), where S.C is a representable number (Rep) and
S.R a nonnegative representable number (Radius). The corresponding
ball in X is 〈S,X〉 = {x ∈ X : ‖x− (S.C)1‖ ≤ S.R}.

When X = R the data type described above is called Ball. Our
bounds on some standard functions involving the type Ball are defined
in the packages Flts Std Balls. Other basic functions are covered in
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the packages Vectors and Matrices. Bounds of this type have been
used in many computer-assisted proofs; so we focus here on the more
problem-specific aspects of our programs.

The computation and validation of branches involves Taylor series
in one variable, which are represented by the type Taylor1 with coeffi-
cients of type Ball. The definition of the type and its basic procedures
are in the package Taylors1. Given a Radius ρ, consider the space
Tρ of all real analytic functions g(t) =

∑
n gnt

n on the interval |t| < ρ,
obtained by completing the space of polynomials with respect to the
norm ‖g‖ρ =

∑
n |gn|ρn. Given a positive integer D, a Taylor1 is a

triple P=(P.C,P.F,P.R), where P.C is an array(0..D) of Ball (that
is, a list of D+1 Balls, representing the coefficients [0, . . . D] of the
Taylor series), P.F is a nonnegative integer (see the definition of m
below), and P.R = ρ. The triple P=(P.C,P.F,P.R) denotes a subset
of Tρ which we denote with the symbol 〈P,Tρ〉 and corresponds to all
functions that are represented as

(25) 〈P,Tρ〉 =
m−1∑
n=0

〈
P.C(n),R

〉
pn +

D∑
n=m

〈
P.C(n),Tρ

〉
pn , pn(t) = tn ,

where m = min(P.F, D + 1). For the operations that we need in our
proof, this type of enclosure allows for simple and efficient bounds.

Consider now the space A for a fixed domain radius % > 1 of type
Radius. Functions in A are represented by the type Fourier1 defined
in the package HFouriers1, which accepts coefficients in some Banach
algebra with unit X . In our application the coefficients of Fourier1 are
Taylor1. The type Fourier1 consists of a triple F=(F.C,F.E,F.Freq0),
where F.C is an array(-K,0..K) of Ball, F.E is an array(-2*K..2*K)

of Radius and F.Freq0 is a boolean flag that, when True, indicates
that the object Fourier1 represents a constant function. The corre-
sponding set 〈F,A〉 is the set of all function u = p+ h ∈ A, where

p(t) =
K∑

j=−K

〈F.C(J),X〉 cosij(t) , h =
2K∑

j=−2K

hj ,

hj(t) =
∑
m≥0

hj2m cosij+2m(t) if j ≥ 0 ,

hj(t) =
∑
m≥0

hj2m cosij−2m(t) if j < 0

with ‖hJ‖ ≤ F.E(J), for all J . Note that high order errors for the
even frequencies and odd frequencies are handled separately. For the
operations that we need in our proof, this type of enclosure allows for
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simple and efficient bounds. In particular, note that the nonlinearity
in (15) requires a nonstandard product, depending on the parameter
s. The procedure Prod in the package HFouriers1 provides bounds
for that product.

We note that Fourier1 (just like Taylor1) allows a generic type
Scalar for its coefficients; and this Scalar can be again a Taylor (or
Fourier) series. This feature makes it easy to represent Fourier series
whose coefficients depend on parameters.

To represent the space B we use a package Fouriers1 which is very
similar to the package HFouriers1, so that we do not provide a de-
tailed description here. The main differences consist in having a stan-
dard product, and high order errors for the even frequencies and odd
frequencies are handles together.

More precisely, the package Fouriers1 is instantiated with scalars
of type Fouriers1 defined in HFouriers1, which in turn has scalars
defined in Taylors1. For simplicity, the space C is represented with
the same object, with K = 0.

A bound on the map Hs is implemented by the procedure GMap

in the package Taylors1.Foor.Fix. Defining and estimating a con-
traction like Nβ is a common task in many of our computer-assisted
proofs. An implementation is done via two generic packages, Linear
and Linear.Contr. For a description of this process we refer to [17].
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