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Preface

This book offers a collection of papers focusing on methods for statistical learning
and modeling in data analysis. A series of interesting applications are offered as
well. Several research topics are covered, ranging from statistical inference and
modeling to clustering and factorial methods, from directional data analysis to time
series analysis and small area estimation. Applications deal with new analyses
within a variety of fields of interest: medicine, finance, engineering, marketing,
cyber risk, to cite a few.

The book arises as post-proceedings of the 12th meeting of the CLAssification
and Data Analysis Group (CLADAG) of the Italian Statistical Society (SIS), held in
Cassino (IT), on September 11–13, 2019. The first CLADAG meeting was held in
1997, in Pescara (IT). CLADAG is also a member of the International Federation of
Classification Societies (IFCS), founded in 1985. CLADAG promotes advanced
methodological research in multivariate statistics with a special vocation towards
Data Analysis and Classification. It supports the interchange of ideas in these fields
of research, including the dissemination of concepts, numerical methods, algo-
rithms, computational and applied results. This book is thus in line with the main
CLADAG goals.

Thanks to the participation of renowned speakers, coming from 28 different
countries, the scientific program of the CLADAG 2019 Conference was particularly
engaging. It saw 5 Keynote Lectures, 32 Invited Sessions, 16 Contributed Sessions,
a Round Table, and a Data Competition. The richness of the Conference program,
and hence of this book, is definitely due to the Conference Scientific Committee and
particularly to its Chair Francesca Greselin. We are indebted to their work. We are
also indebted to the anonymous referees. They did a great job and helped us to
improve the overall quality of this book.

Our gratitude also goes to the staff of the Department of Economics and Law,
University of Cassino and Southern Lazio, who supported the conference and
contributed to its success. A special thank goes to Livia Iannucci, who worked side
by side with the Local Organizing Committee offering her precious administrative
support before, during, and after the conference.
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Above all, we are thankful to all the participants and to those who, among them,
have chosen this book to share their research findings. Our wish is that this book
will contribute to foster the creation of new knowledge in the field.

Cassino, Italy Simona Balzano
26 November 2020 Giovanni C. Porzio

Renato Salvatore
Domenico Vistocco

Maurizio Vichi
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Interpreting Effects in Generalized
Linear Modeling

Alan Agresti, Claudia Tarantola, and Roberta Varriale

Abstract With nonlinear link functions in generalized linear models, it can be dif-
ficult for nonstatisticians to understand how to interpret the estimated effects. For
this purpose, it can be helpful to report approximate effects based on differences
and ratios for the mean response. We illustrate with effect measures for models for
categorical data. We mainly focus on binary response variables, showing how such
measures can be simpler to interpret than logistic and probit regressionmodel param-
eters and their corresponding effect measures, such as odds ratios. For describing the
effect of an explanatory variable on a binary response while adjusting for others, it is
sometimes possible to employ the identity and log link functions to generate simple
effect measures. When such link functions are inappropriate, one can still construct
analogous effect measures from standard models such as logistic regression. We also
summarize recent literature on such effect measures for models for ordinal response
variables. We illustrate the measures for two examples and show how to implement
them with R software.

Keywords Binary data · Link functions · Logistic regression · Ordinal data ·
Partial effects · Probit models
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1 Introduction

For n independent response observations {yi } with {μi = E(yi )} and p explanatory
variables, consider the generalized linear model (GLM) using link function g,

g(μi ) = α + β1xi1 + · · · + βpxip.

Except for the normal linearmodel, standardGLMs use nonlinear link functions such
as logistic and probit models for binary data and loglinear models for count data.
For many such link functions, interpretation of numerical values of the estimates
{β̂k} can be difficult, especially for nonstatisticians and for methodologists who are
mainly familiar with ordinary linear models.

In this paper, we show how to report simple approximations of the effects, such
as based on a linearization of the model, that can be much simpler to interpret. The
approximations can be expressed in terms of differences and ratios for the mean of
the response variable. We illustrate with effect measures for popular models for cat-
egorical data. Section 2 focuses on models for binary regression models, using such
measures to supplement standard effects such as the odds ratio. Section 3 summarizes
recent literature on effect measures for models for ordinal response variables that
apply link functions to cumulative probabilities. Implementation of the measures is
simple using R software. We illustrate effect interpretation for binary data with an
Italian study to model an employment response variable and for ordinal data with a
study of mental impairment.

2 Interpreting Effects in Generalized Linear Models for
Binary Data

Models for binary responses that apply nonlinear link functions to the probability of
“success,” such as logistic andprobit regressionmodels, havemodel effect parameters
that are not as simple to interpret as slopes and correlations for ordinary linear
regression. For example, logistic regression has effects most naturally interpreted
using odds ratios. To compare two levels of an explanatory variable such as two
groups, however, it is easier for practitioners to understand a difference or a ratio of
probabilities than a ratio of odds. In practice, even some statisticians misinterpret the
odds ratio as if it were a ratio of probabilities. When two groups have probabilities
close to 0, the ratio of odds is similar to the ratio of probabilities, but this is not true
otherwise. For example, when the probabilities exceed 0.2, the odds ratio is better
approximated by the square of the ratio of probabilities [7]. If an odds ratio is 9, one
group may have success probability merely about 3 times the success probability for
the other group.

Another aspect of logistic and probit regression that is due to the nonlinear link
function is the dependence of a variable’s effect on the other explanatory variables
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in the model, even when those variables are uncorrelated with the one of inter-
est. Suppose explanatory variables x1 and x2 are uncorrelated, such as in many
experimental designs. In ordinary linear models, the estimated effect of x1 is the
same when x1 is the sole predictor as when x1 and x2 are joint predictors. For
logistic regression, this is not the case with model-based odds effect measures. For
instance, the effect β∗

1 when x1 is the sole predictor relates to the effect β1 when

x2 is also in the model by β∗
1 ≈ β1

√
3.29/[3.29 + β2

2var(x2)], where 3.29 = π2/3 is
the variance of the standard logistic distribution [6]. For the model with probit link,

β∗
1 = β1

√
1/[1 + β2

2var(x2)]. Equality of the effects in the two cases is, however,
approximately true for the simpler measures discussed next.

2.1 Alternatives to the Logit and Probit Links with Binary
Responses

For binary responses, the logit and probit link functions are used almost exclusively.
Sometimes, however, we can also use the log and the identity link functions.

• The identity link provides similar fits as the logit or probit link when P(y = 1)
falls mainly between about 0.2 and 0.8. It has simpler interpretations, as the model
parameters relate to differences of probabilities instead of ratios of odds.

• The log link provides similar fits as the logit or probit link when P(y = 1) falls
mainly below 0.25, and similar to those models with log link applied to P(y = 0)
when probabilities are uniformly above 0.75. It has simpler interpretations, as the
model parameters relate to ratios of probabilities instead of ratios of odds.

• With uncorrelated explanatory variables, the effects with log and identity links are
the same in the full model as in marginal models with sole predictors, which is not
true with logit or probit links.

We illustrate the first two points with data from Istituto Nazionale di Statistica
(Istat), the Italian government agency for official statistics. We fitted models to some
data from a simple random sample of 100,000 Italians from the Toscana region of
Italy inDecember 2015. For the binary response y =whether employed (where y = 1
means that the person is present in some administrative source about labor statistics),
we use explanatory variables x1 = gender (1 = female, 0 = male), x2 = whether an
Italian citizen (1 = yes, 0 = no), and x3 = whether receiving a pension (1 = yes, 0 =
no).

Consider first the 27,775 subjects in the survey having age over 65. For the 8
combinations of x1, x2, x3, the sample proportions employed fall between 0.02 and
0.12. The main effects logit and log-link model fits are

logit[P̂(y = 1)] = −1.869 − 1.324x1 − 0.429x2 + 0.216x3,

log[P̂(y = 1)] = −2.037 − 1.239x1 − 0.362x2 + 0.200x3.
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The absolute difference in fitted proportions, averaged over the 27,775 cases, is
0.0001. For the log-link model, the exponentiated coefficients estimate probability
ratios; for example, adjusting for x2 and x3, the probability that a woman is employed
is estimated to be exp(−1.239) = 0.290 times the probability that aman is employed.

Consider next the 72,225 subjects having age under 65. For the 8 combinations
of x1, x2, x3, the sample proportions employed fall between 0.18 and 0.74. The
main-effects logit and identity-link model fits are

logit[P̂(y = 1)] = 0.350 − 0.644x1 + 0.702x2 − 1.874x3,

P̂(y = 1) = 0.587 − 0.139x1 + 0.151x2 − 0.408x3.

The absolute difference in fitted proportions, averaged over the 72,225 cases, is only
0.004. For the identity-link model, the coefficients estimate differences of probabil-
ities. For instance, adjusting for x2 and x3, the probability that a woman is employed
is estimated to be 0.139 lower than the probability that a man is employed.

Of course, an advantage of using a standard binary model such as logistic regres-
sion is that it is relevant regardless of the range of values for P(y = 1). However,
when the probabilities are in the appropriate ranges, we believe that the log-link
model and identity-link model can supplement the logit-link model by providing
effect interpretations that are simpler for many to understand. For further details,
including the data for this example, see [4].

2.2 Probability Effects Measures for Logistic Models

When we fit standard binary models such as logistic or probit regression, summary
measures based on differences and ratios of probabilities can summarize the size of
the effects. Such effects, which are available even when we do not consider separate
models with identity or log link functions, also exhibit greater stability in terms of
the impact of uncorrelated explanatory variables.

A simple summary for the effect of an explanatory variable xk averages the rate
of change in P(y = 1), as a function of xk . For this, we express the model as

F−1[P(y = 1)] = α + β1x1 + · · · + βpxp, (1)

where the link function g = F−1 is the inverse of a standard cdf. For logistic regres-
sion, F(z) = exp(z)/[1 + exp(z)] is the standard logistic cdf. For probit regression,
F is the standard normal cdf, which we denote by �. Let f (y) = ∂F(y)/∂y denote
the corresponding probability density function. For a quantitative explanatory vari-
able xk , the rate of change in P(y = 1) when other explanatory variables are fixed
at certain values (i.e., the partial effect) is

∂P(y = 1|x)/∂xk = f (α + βz + β1x1 + · · · + βpxp)βk .
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For the logit link, the partial effect for xk on P(y = 1) has the expression

∂P(y = 1|x)/∂xk = βk P(y = 1|x)[1 − P(y = 1|x)].

This takes values bounded above by its highest value of βk/4 that occurs when
P(y = 1|x) = 1/2. For probit models, the highest value of this instantaneous rate
of change is βk/

√
2π , also when P(y = 1|x) = 1/2. These maximum values need

not be relevant, as P(y = 1) need not be near 1/2 for most or all the data.
Any particular way of fixing values of the explanatory variables has its corre-

sponding partial effect value for xk . The authors of [5] summarize various versions.
For example, the average partial effect (called average marginal effect in some liter-
ature and software) estimates the partial effect of xk at each of the n sample values of
the explanatory variables, and then averages them. For a categorical explanatory vari-
able, one would instead use a discrete change, estimating the change in P(Y = 1)
for a change in an indicator variable. For comparing two groups having indicator
variable z, for instance, for the n sample observations, we could find the difference
between estimates of P(y = 1)when z = 1 and when z = 0 at the sample values for
the other predictors, and average the obtained differences. Discrete changes are also
relevant for quantitative explanatory variables, to summarize estimated changes in
P(y = 1) over a particular range of xk values. For example, to summarize the effect
of a quantitative variable xk on y, it can be useful to report the difference between
the model-fitted estimate of P(y = 1) at the maximum and minimum values of xk ,
when other explanatory variables are set at particular values such as their means.

A measure that we’ve not seen proposed for the two-group comparison focuses
on average partial ratios of estimated probabilities for the groups. For example, we
could average the n ratios of probability estimates, or average the n log ratios of
probability estimates and then exponentiate that average. The authors of [4] discuss
such measures, which are useful when fitted probabilities are near 0 for the groups
being compared.

The effect measures are available in R software. For instance, here is how to use
an existing R package to estimate average partial effects for the younger sample of
the Istat data, after fitting a logistic regression model

-----------------------------------------------------------------
mod.logit <- glm(y ˜ x1 + x2 + x3, family=binomial, data=younger)
library(mfx) # library with functions for rate of change effects
logitmfx(mod.logit, atmean=FALSE, data=younger)
Marginal Effects:

dF/dx Std. Err.
x1 -0.1406203 0.0034589 # average estimated diff. of P(y=1)
x2 0.1582009 0.0051184 # for binary predictors
x3 -0.4160246 0.0050788
-----------------------------------------------------------------

The reported discrete change effect for x1 indicates thatwith the logit link, the average
difference in the estimated probability of employment between women and men is
−0.141. This is close to the estimated gender effect of−0.139 shown above in using
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the identity link. For the older sample, an R function presented by [4] estimates an
average ratio of employment probabilities of 0.2895 for comparingwomenwithmen.
This is close to the estimated gender effect of exp(−1.239) = 0.2897 using the log
link.

3 Interpreting Effects in Models for Ordinal Responses

Summary effect measures are also relevant in GLMs for multi-category response
variables. Here, we consider a standard model for ordinal responses. For observation
i on ordinal response variable y having c categories, the cumulative link model is

link[P(yi ≤ j)] = α j +
∑
k

βk xik, j = 1, ..., c − 1, (2)

for link functions such as the logit and probit. With the logit link, effects now refer
to odds ratios that relate to outcome below instead of above any particular point on
the response scale. For the probit link, effects are especially difficult to interpret, as
βk is the change in �−1[P(yi ≤ j)] for each 1-unit increase in xk , adjusting for the
other explanatory variables.

A common approach to aid in interpretation focuses on means and probabilities
for an underlying latent variable model that yields this ordinal-response model. For
a latent variable y∗, suppose that y∗

i = ∑
j β j xi j + εi , where εi has cdf G with mean

0, and suppose thresholds −∞ = α0 < α1 < . . . < αc = ∞ exist such that yi = j
if α j−1 < y∗

i ≤ α j . Then, it follows (e.g., see [1], pp. 303–304) that G−1[P(yi ≤
j)] = α j − ∑

j β j xi j . The effects in the ordinal model as parameterized in equation
(2) are merely the negatives of those in the latent variable model. So, for instance, the
cumulative linkmodel with probit link is valid when an ordinary normal linear model
holds for the underlying response, and βk in the ordinal model has the interpretation
that a 1-unit increase in xk corresponds to a change in E(y∗) ofβk standard deviations,
adjusting for the other explanatory variables. But this interpretation can be rather
obscure for non-methodologists. Alternative summaries can focus on the probability
scale, including generalizations of the measures we’ve discussed for binary data.

The authors of [2] suggested a simple probability summary to compare two
groups, adjusting for the other p explanatory variables: At a setting (x1, . . . , xp)
of explanatory variables, let y∗

1 and y∗
2 denote independent latent variables when

a group indicator is z = 1 and when z = 0, respectively. Consider P(y∗
1 > y∗

2 ).
For the latent variable model that generates the cumulative link model with pro-
bit link, with parameter β as the coefficient of an indicator variable for the two
groups, they showed that P(y∗

1 > y∗
2 ) = �(β/

√
2) at any setting of the explana-

tory variables. For the cumulative link model with logit link, they showed that
P(y∗

1 > y∗
2 ) ≈ exp(β/

√
2)/[1 + exp(β/

√
2)].

However, the latent variable model is not always appropriate. The authors of [3]
surveyed ways to use average partial effect measures to summarize effects for ordi-
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nal models for the observed data, without reference to latent variables. As any xk
increases, cumulative link models that contain solely main effects imply monotonic-
ity in the extreme outcome category (1 and c) probabilities. One can summarize the
effect by the average rates of change

1

n

n∑
i=1

∂P(yi = 1|xi )/∂xk

1

n

n∑
i=1

∂P(yi = c|xi )/∂xk .

The authors of [3] prepared R functions for such effects.
We illustrate with an example from [3], for which the data come from a study of

effects associated with mental health. The response variable was an ordinal measure
of mental impairment, with categories (1=well, 2=mild impairment, 3=moderate
impairment, 4 = impaired). The explanatory variables were x1 = socioeconomic
status (SES: 1 = high, 0 = low) and x2 = a life events index that is a numerical
composite measure of the number and severity of important life events such as birth
of child, new job, divorce, or death in family that occurred to the subject within
the past three years. The life-events index takes values on the nonnegative integers
between 0 and 9, with mean 4.3 and standard deviation 2.7. The n = 40 observations
are available as shown in the following R output. Here, we use the R functions from
[3] to summarize effects on the extreme categories (1 = well, 4 = impaired) for the
fit of the cumulative link model with logit link and main effects of the explanatory
variables

--------------------------------------------------------------------
> Ord<-read.table("http://www.stat.ufl.edu/˜aa/glm/data/Mental.dat",
+ header=TRUE)
> library(MASS) # for polr = proportional odds logistic regression
> fit.logit <- polr(y ˜ ses + life, method="logistic", data=Ord)
> summary(fit.logit)

Value Std. Error t value
ses -1.1112 0.6109 -1.819
life 0.3189 0.1210 2.635
> ocAME(fit) # ordinal "average marginal effect" function
$ME.1 # WELL category for mental impairment

effect std.error
ses 0.198 0.104
life -0.057 0.019
$ME.4 # IMPAIRED category for mental impairment

effect std.error
ses -0.171 0.094
life 0.048 0.017
--------------------------------------------------------------------

At the observed values for life events and SES, the rate of change in the estimated
probability per unit change in life events averages to −0.057 for the well outcome
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and to 0.048 for the impaired outcome. At the observed values for life events, when
SES increases from 0 to 1, the estimated probability of thewell outcome increases by
an average of 0.198 and the estimated probability of the impaired outcome decreases
by an average of 0.171.

4 Future Potential Research

This article has focused on generalized linear models, with emphasis on models for
categorical response variables, but the need for interpretable measures is even greater
for more complex models. Future research could develop and apply simple summary
measures for other models.

The authors of [4] showed how to apply average partial effect measures to gener-
alized additive models for binary data, which replace the linear predictor by additive
unspecified smooth functions. The measures presented there are appropriate when
relationships are monotone, but often that is not the case when such models are
used. Even when it is the case, difference or ratio effects are sometimes highly vari-
able across the range of an explanatory variable, and a single summary may be too
simplistic.

For categorical responses, using alternative link functions to aid in interpretation
would be useful for marginal models, whether fitted by GEE methods or maximum
likelihood. The binary and log links are more challenging for random effects mod-
els, as the usual assumption of normally-distributed random effects adds another
restriction to models with bounded range values. However, in either case, it should
be possible to generalize the average partial effect measures.
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ACE, AVAS and Robust Data
Transformations

Anthony C. Atkinson, Marco Riani, Aldo Corbellini, and Gianluca Morelli

Abstract Unlike the Box-Cox transformation, that of Yeo and Johnson for the
response of a linear model can be applied when the observations are not constrained
to be positive. We study the extended Yeo–Johnson transformation in which posi-
tive and negative observations can be transformed with different parameter values.
The procedure is illustrated for data with many outliers. The data are cleaned with a
robust method, the forward search, and the obtained transformations compared with
the results from twononparametric transformationmethods based on data smoothing.

Keywords Box-Cox transformation · Extended Yeo–Johnson transformation ·
Fan plot · Forward search · Nonparametric transformation · Smoothing

1 Introduction

The widely used parametric family of power transformations introduced by [3] is
only applicable to positive observations. Yeo and Johnson [7] spliced together two
Box-Cox transformations to provide a one-parameter family of transformations for
data that can be positive or negative. Atkinson et al. [2] extended the Yeo–Johnson
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transformation to allow different parameter values for the transformation of positive
and negative observations; they illustrate the usefulness of this procedure through
the analysis of two sets of data.

Nonparametric transformations provide an alternative to such families of para-
metric transformations. The purpose of this short paper is to compare parametric and
nonparametric transformations for a set of data that contain outliers, to illustrate a
robust method for cleaning the data of outliers and to compare transformations on
the cleaned data.

2 Extended Parametric Transformations

The purpose of these parametric transformations is to achieve a response which is
approximately normally distributed with errors of constant variance and a linear
model of simple form. For comparisons of estimates of parameters for different
values of λ, many authors, starting with [3], stress the importance of working with a
normalized transformation allowing for the change of scale of the observations with
transformation. For the Box-Cox transformation, the normalized transformation is

z(λ) = (yλ − 1)(zλ − 1)/(λẏλ−1) (λ �= 0); ẏ log y (λ = 0), (1)

where ẏ is the geometric mean of y and J , the Jacobian of the transformation is
given by log J = n(λ − 1) log ẏ. The linear model to be fitted is z(λ) = Xβ(λ) + ε,

where X is n × p, β is a p × 1 vector of unknown parameters and the variance of ε

is σ 2.
The normalized transformation for the two-parameter extended Yeo–Johnson

(EYJ) transformation is given by [2]. There are now four regions of y, rather than
two, with distinct forms of z(λ) and the Jacobian is now amore complicated function
of the observations.

3 Robustness and the Fan Plot

We use a robust procedure, the Forward Search [1] to order the data by closeness to
the fitted model. The procedure starts from a carefully chosen subset of m0 = p + 1
observations and moves forward increasing the subset size m by introducing the
observation, not used in fitting, that is closest to the fittedmodel, until all observations
have been fitted. Outliers, if any, enter at the end of the search.

Outliers in one value of λmay not be so for some other values.We, therefore, need
to repeat the forward search for a grid of values of λ. For each resultant ordering of the
data, we monitor evidence for the correctness of the transformation as m increases.
We include the constructed variable w(λ) = ∂z(λ)/∂λ in the linear model for the
EYJ transformation. The approximate score statistic for the value λ0 is the t-test
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for the significance of w(λ0) in the regression. The plot of trajectories of the score
statistic against subset size for a set of values of λ is called a fan plot.

Constructed variables for the one-parameter Yeo–Johnson transformation are
given by [2]. They further derive constructed variables for testing whether posi-
tive and negative observations require the same transformation. These come from
the extended transformation in which one kind of response has the parameter λ + α

and the other λ. The test is for α = 0.

4 Augmented Investment Fund Data

As our example, we analyze data on the relationship between the medium term
performance of 309 investment funds and two indicators. Of these funds, 99 have
negative performance. To examine the properties of transformation procedures in the
presence of outliers, we augmented the data with 40 outliers, to produce a data set
in which the outliers are evident after transformation, but not before. The analysis of
the uncontaminated data [2] concludes that the negative observations need transfor-
mation with parameter λN = 0, which for the EYJ is not the log transformation. The
positive observations need no transformation (λP = 1). The data are well behaved,
with no evidence of any outliers.

The fan plot for the augmented data indicates that themajority of the outliers enters
the subset at the end of the search; the structure of the plot changes form > 310. The
extended fan plot with separate trajectories for positive and negative observations
shows that different transformations are required for the two parts of the data. The
best values are λN = 0 and λP = 1 when the trajectories of the score statistics for
positive and negative observations are similar to those for the overall data until m is
around 320. This is the transformation found for the uncontaminated data.

5 Robust Analysis

We now identify the outlying observations by a forward search analysis of the data
with the recommended transformation λP = 1 and λN = 0.

The left-hand panel of Fig. 1 shows a forward plot of all 349 scaled residuals
of the augmented data for a wide range of values of m. There is an upper band of
residuals, in blue in the online version of the paper, separated from a lower band of
37 residuals, shown in red. What is remarkable is the stability of this pattern, until
m = 310, indicative of a set of data without outliers and with normally distributed
errors and the second group of observations, not included in the subsets used for
fitting.

The highlighted, red, residuals were identified by brushing the plot. That is, we
selected all the trajectories that lie within the brush in the centre of the figure. The
right-hand panel of the figure shows a linked forward plot of minimumMahalanobis
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Fig. 1 Augmented investment fund data; brushing linked plots from the forward search when
λP = 1 and λN = 0. Left-hand panel, trajectories of residuals from the forward search with the
residuals from 37 observations highlighted by brushing. Right-hand panel, linked forward plot of
minimum deletion residuals during the search with the 37 brushed values shown in red

distances, with the trajectory of the 37 brushed observations shown in red. These are
indeed the last observations to enter the search. Our automatic procedure for outlier
detection [5] in fact identifies 35 outliers.

6 Nonparametric Transformations

It is clear from the results of the previous sections that the contaminated data need
both cleaning and transformation. The purpose of this section is to determine what
information nonparametric transformations provide on the presence of outliers, the
transformation of the data and whether the parametric extended Yeo–Johnson trans-
formation can be improved by further transformation. The parametric transforma-
tions produce a smooth relationship between z(λ) and the original y. A nonparametric
alternative is to use smoothing to estimate this relationship. We use two such meth-
ods, ACE—Alternating Conditional Expectations—[4] and AVAS [6] in which the
transformation for the response is intended to yield additivity and variance stabi-
lization. We consider only response transformation, comparing models through the
value of unadjusted R2.

We start with the extended Yeo–Johnson transformation, using the parameter
estimates λP = 1 and λN = 0 for all comparisons. First we look at the contaminated
data before and after cleaning. The left-hand panel of Fig. 2 shows the QQ plot of
the residuals of all 349 observations from regression with the original response. The
sigmoid shape of this plot indicates that the observations are not normally distributed.
The right-hand panel is the QQ plot for residuals of the transformed cleaned data.
The distribution of residuals is much closer to normality, although the centre of the
curve indicates that many small residuals are slightly too large in absolute value.
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Fig. 2 Comparison of normal QQ plots of residuals. Left-hand panel, untransformed contaminated
data. Right-hand panel, transformed cleaned data

Table 1 Investment fund data: summary properties of regression for parametric and nonparametric
transformations of contaminated and cleaned data

Contaminated Cleaned and transformed

Untransformed 0.399 –

EYJ 0.356 0.783

AVAS 0.241 0.778

ACE 0.421 0.806

ACE (monotonic) 0.417 0.805

The value of R2 for regression on the untransformed contaminated data is 0.399.
For the cleaned transformed data it is 0.783 and for the uncontaminated data 0.816.
The left-hand column of Table 1 lists the values of R2 achieved by regression on
parametric and nonparametric transformations of the contaminated data. The largest
value is 0.421 for unconstrained ACE. The monotonicity constraint on ACE comes
from isotonic regression on the unconstrained transformation and yields a slightly
reduced value of 0.417. AVAS produces a value of 0.241, less than that for EYJ.
Figure 3 provides plots of transformed against untransformed response for these
four transformations.

The top left-hand panel of the figure shows that the EYJ transformation for y > 0
is linear (no transformation), whereas for negative y, the transformation is concave,
transforming the more negative observations to be more extreme. AVAS, in the top
right-hand panel, provides a more smooth concave curve, which not only makes
the more negative values more extreme but makes the more positive values less
extreme. Unconstrained ACE is virtually linear for y > 12, but shrinks in the most
negative observations, some of which are outliers. Constrained ACE is formed by
isotonic regression on the unconstrained version, and as the figure shows, is similar in
structure to ACE. Both transformations show several points of inflection for y < 12,
especially just above zero.

If the errors are approximately normally distributed and the model is correct, the
plot of residuals against fitted values should be without any features, apart from those
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Fig. 3 Contaminated data: transformed responses against untransformed responses. Top row, EYJ
and AVAS. Bottom row, ACE, constrained and unconstrained
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Fig. 4 Contaminated data; residuals against fitted values. Left-hand panel, constrainedACE. Right-
hand panel AVAS (note the scale of these residuals)

from the distribution of fitted values. The left-hand panel of Fig. 4 shows such a plot
of residuals from constrained ACE. The plot is wedge shaped, with a sharp lower
diagonal bound. The other panel, for AVAS, also has some structure, in this case,
a cloud of large negative residuals for fitted values around 0.5; the nonparametric
transformations indicate faults in the model or data.

We now look at the transformation of the cleaned data after it has been subjected
to the extended Yeo–Johnson transformation to check whether the properties can be
improved by a further nonparametric transformation. Values of R2 for such trans-
formations are in the right-hand column of Table 1. The value for EYJ is 0.783.
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Fig. 5 Nonparametric transformations of cleaned transformed data against EYJ. Left-hand panel,
constrained ACE, right-hand panel, AVAS
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Fig. 6 Residuals against fitted values from nonparametric transformations of cleaned transformed
data. Left-hand panel, constrained ACE, right-hand panel, AVAS

AVAS is slightly less than this at 0.778, whereas constrained ACE is 0.805, with the
unconstrained version giving a value of 0.806.

The left-hand panel of Fig. 5 shows the plot of transformed y from constrained
ACE against the values from EYJ. Some of the points of inflection shown in Fig. 3
remain and correspond to original values of y that were just positive. The indication is
that the two-parameter EYJ transformationwith one transition point can be improved
by using a distinct transformation for the observations just above zero, leading to a
slight increase in R2. The right-hand panel for AVAS shows a virtually straight line
and the transformation is very close to that for EYJ.

The plots in Fig. 6 are of residuals against fitted values for the two transformations
featured in Fig. 5; both indicate the presence of three groups of funds, which are also
surprisinglywell transformedby the two-parameterEYJprocedure.Although the two
plots are similar, some of the details of the central group are different, which is where
the two transformations diverge. TheQQplots for the nonparametric transformations
are close to that for EYJ shown in Fig. 2.

The results of this section indicate that the nonparametric transformations do
not provide a robust procedure. But they can provide insight when used to check a
suggested parametric transformation. For the EYJ it is possible that the two trans-
formation regions may not separate at zero, but at some value to be determined. A
second aspect is whether two regions of transformation are enough. It may be that
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for some data structures the flexibility of the nonparametric transformation will lead
to improved data modelling.
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On Predicting Principal Components
Through Linear Mixed Models

Simona Balzano, Maja Bozic, Laura Marcis, and Renato Salvatore

Abstract This work introduces a Principal Component Analysis of data given by
the Best Predictor of a multivariate random vector. The mixed linear model frame-
work offers a comprehensive baseline to get a dimensionality reduction of a variety
of random-effects modeled data. Alongside the suitability of using model covariates
and specific covariance structures, the method allows the researcher to assess the
crucial changes of a set of multivariate vectors from the observed data to the Best
Predicted data. The estimation of the parameters is achieved using the extension
to the multivariate case of the distribution-free Variance Least Squares method. An
application to some Well-being Italian indicators shows the changeover from longi-
tudinal data to the subject-specific best prediction by a random-effects multivariate
Analysis of Variance model.

Keywords Best prediction · Linear mixed model · Variance least squares
estimation · Random-effects MANOVA model

1 Introduction

Principal Component Analysis (PCA) is one of the best established methods for
dimension reduction. Principal Components (PCs) lead to a better assessment of the
available information, by summarizing and visualizing data, and at the same time,
minimizing the loss of information [6, 7].
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Given a p-variate centered random vector yi (i = 1, . . . , n) and an n × p matrix
of observed data Y from y, the PCA of y can be obtained by a Singular Value
Decomposition (SVD) of Y into the matrix product Y = PLsQ′ + N = CsQ′ + N,
where: (i) P is the s-reduced rank orthogonal matrix of the first s eigenvectors (the
left singular vectors) of the symmetric matrix YY′ (r = 1, ..., s, ..., p, s � p),
(ii) Ls is the diagonal matrix of the first s singular values, and (iii) Q is the s-
reduced rank matrix of the eigenvectors (the right singular vectors) of the symmetric
covariance matrix Sy = 1

nY
′Y. The n × s matrixCs = PLs gives the first s principal

components, and the n × pmatrixN reports the cross-productminimumnormmatrix
of residuals. Given the s-dimensional subspace representation of the observed data,
we have

∥
∥N′N

∥
∥
2 = tr(N′N) = min (here tr is the trace of a square matrix).

For decades, PCA has undergone many generalizations and adjustments to the
needs of specific research goals. One of them brings into play the role of prediction
by the linear statistical models. Bair et al. [1] provided a supervised PCA to address
the high dimensional issue that arises when the number of predictors, p, far exceeds
the number of observations, n-seeking linear combinations with both high variance
and significant correlation with the outcome.

Tipping and Bishop [13] had already introduced the notion of prediction for the
PCs. They called Probabilistic PCA (probPCA) the model behind the PCA, in which
parameters are estimated by means of the Expectation-Maximization algorithm. The
“noisy” PC model (nPC), proposed by Ulfarsson and Solo (see [13, 14] for details)
has a quite similar formulation respect to the probPC model, providing—in a similar
way—the nPC prediction once the model estimates have been given [2, 10].

Unlike the fixed effects PCs, as the traditional linear regression PCA model
assumes, the probPC (or nPC) are random variables. This condition suggests, on
the one hand, the adoption of the Bayesian approach to handle the estimates for the
probPC linear model and, on the other hand, to predict PCs under its meaning within
the random linear models theory [9].

The Bayesian approach to the estimation requires an expectation of some model
parameters that are random, conditionally to the observed data. Given normal-
ity of the error ε ∼ N (0, σ 2I), for a linear model τ = Bλ + ε—in case of the
vector λ random—the likelihood is based on the conditional distribution λ|τ ∼
N [E(λ|τ), var(λ|τ)]. Moreover, it is known [8, 9, 11] that E(λ|τ) = λ̃ is the Best
Prediction (BP) estimate, with var (̃λ − λ) = Eτ [var(λ|τ)]. This is somewhat dif-
ferent from the standard linear regression model, where the prediction is given by
E(τ |λ). Therefore, given a LinearMixedModel (LMM) for τ , with E(τ |λ)) = λ, the
model parameters become realizations of random variables. The BP of a linear com-
bination of the LMMfixed and random effects (i.e., linear in τ , with E[E(τ |λ)] = 0)
gives the Best Linear Unbiased Prediction (BLUP) estimates [3, 8, 11].

LMM’s are particularly suitable for modeling with covariates (fixed and random)
and for specifying model covariance structures [3]. They allow researchers to take
into account special data, such as hierarchical, time-dependent, correlated, covariance
patterned models. Thus, given the BP estimates of the nPC λ, λ̃ = E(λ|τ), the vector
τ̃ = B̃λ represents the best prediction of the p-variate vector (in the way of the BP).
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In general, it is convenient to employ the LMM’s to assess how the most relevant
parameters affect the linear model assumed for yi : we acknowledge the difficulty
of including in the probPC model some of the typical LMM parameters. For this
reason, this work proposes to reverse the BP estimation typical of the probPCmodel,
in the sense that the data from the p-vector may produce itself the BP estimates ỹi
by a multivariate BLUP. Afterwards, ordinary PCs can be obtained by the matrix of
the n realizations ỹi . Using the predictive variance of (yi − ỹi ), we can configure
a double set of analyses analogous to the Redundancy Analysis [12, 15], the last
based on the eigenvalue-eigenvector decomposition of the multivariate regression
model predictions and errors. Therefore, we have a constrained analysis, based on
the eigenvalue-eigenvector decomposition of cov(̃yi ), and an unconstrained analysis
of the Best Prediction model error covariance, cov(yi − ỹi ).

Themain advantagewith respect to RedundancyAnalysis is that the novel method
may works also without model covariates. This is because the largest part of the mul-
tidimensional variability is due to the covariance of the same random effects among
the components of the multivariate data vectors. We call this analysis a predictive
PCA (predPCA), because the PCs are given by the BP data vectors of the subjects.

The proposed procedure would be particularly worthwhile with typically cor-
related observations, like repeated measures surveys, clustered, longitudinal, and
spatially correlated multivariate data. Although the PCA operates only as a final
step, this type of analysis can be valuable when the reduction of dimensionality aims
to be investigated on data predicted by the sample, rather than the PCA of the sample
data by themselves. Usually, the BLUP estimation of the p-variate random effects
request iterative procedures in case of likelihood-based methods: the larger is the
number of the model parameters, the more computationally expensive is to obtain
the estimates to the normal variate covariance components of the LMM model.

Given that the general BLUP estimator has the same form of the BP under nor-
mality [8, 11], it is proposed to estimate the model covariance parameters, defining
a distribution-free estimator of the BLUP. We introduce a multivariate extension of
the Variance Least Squares (VLS) estimation method [4] for the variance compo-
nents. Because of the specific aspects related to the multivariate case, this method
changes from non-iterative to iterative, depending on alternating the minimization
procedure from knowing, in turn, one of the two covariance matrices involved in the
linear model. For this reason, we obtain an iterative version of the VLS: the Iterative
Variance Least Squares (IVLS) method.

When the linear model for yi is a population model without fixed covariates, the
predPCA is equivalent to a PCA of the n realizations of the p-vector, ỹi . Thus, the
linear mixed model is aMultivariate Analysis of Variance (MANOVA) with variance
components.

The paper is organized as follows: the first part is dedicated to the predPCA
method, together with some explanations about the IVLS estimation. Then, an appli-
cation of the predPCA method to some Well-being Italian indicators is presented.
Two Appendices report some backgrounds and the proof of the Lemma given in the
paper.
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2 Predictive Principal Components Analysis

Given a p-variate random vector yi j , i = 1, ...,m, j = 1, ..., k, consider the case
when y is partitioned inm subjects, each of themwith k individuals (balanced design).
Ifμ′ = (μ1, ..., μp) is the vector of the pmeans, a random-effects MANOVAmodel
is given by

yi j − μ = ai + ei j , (1)

where ai
ind∼ Np(0, �a) is the p-variate random effect and ei j

ind∼ Np(0, �e) is the
model error. Given n = m × k data from y, we write the model (1) in the LMM
standard matrix formY = XB + ZA + E, where Y is the n × p matrix of data from
y, X is a n × l matrix of explanatory variables, B the l × p matrix of the l fixed
effects, Z the n × m design matrix of random effects, A is the m × p matrix of
random effects, E the n × p matrix of errors.

For the random-effects MANOVA model (1), we have that X is a column of ones
(i.e., l = 1), and B the row vector μ′ of sample means:

Y − 1n×1μ
′
1×p = (Im ⊗ 1k) × (a1..., ap)m×p + E, (2)

where ⊗ is the Kronecker product, Z = (Im ⊗ 1k), A = (a1, ..., ar , ..., ap). Further-
more, the data Y and the error matrices have the structure

Ymk×p = (y11, y12, ..., y1k, ..., ym1, ym2, ..., ymk)
′

Emk×p = (e11, e12, ..., e1k, ..., em1, em2, ..., emk)
′.

Bycentering the dataY,withY − 1n×1μ
′
1×p = Y∗, and remembering that E(μ) =

μ, the p-vector population model (1) becomes y∗
i j = ai + ei j . The BP estimation of

the p-vector ai in the LMM is given by [3, 8, 11]

ãi = E(ai |y∗
i ) = cov(ar , y∗

i )[var(y∗
i )]−1[y∗

i − E(y∗
i )] (3)

Reducing the LMM to the random-effects MANOVA model, we have by the
Eq. (2): E(yi ) = B′xi = μ. It is well-known [8] that the variance of the LMM
model is cov[vec(Y)] = V = D + U, with D = Z × cov[vec(A)] × Z′ and U =
cov[vec(E)]. The variance matrix V allows to define a variety of typical linear mod-
els, by setting the parameters vector θ = (θ1, ..., θq) inside the components D and
U. The estimation of these parameters is done by standard methods (e.g., Maxi-
mum Likelihood, Restricted Maximum Likelihood, Moment Estimator). Given the
parameters estimate θ̂ , and then the variance V̂ = V(θ̂), the fixed effects estimate
is given by the General Least Squares estimate B̂ = B̂GLS = (X′V−1X)−1X ′V−1Y∗.
The random effects (3) estimate Ã = (̃a1..., ãr , ..., ãp), ãr = col(̃ari ), r = 1, ..., p,
completes the so-called Empirical BLUP (EBLUP) Ỹ∗ = XB̂ + ZÃ. We assume for
the model (2) the more simple structure, with a single random effect by the i-th
subject. Furthermore, an equicorrelation between these random effects is employed.
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Some further computational details for the specification of the model (2) are given
in Appendix 1.

We introduce an iterative multivariate variance least squares estimation (IVLS)
for the estimation of the vector of parameters θ . The objective function to min-
imize is V LS = trace(� − U − D)2, with �|mkp×mkp the empirical model covari-
ancematrix. The algorithm is based on alternating least squares in a two-step iterative
optimization process. At every iteration, the IVLS procedure first fixes U and the
solves for D, and then it fixes D and solves for U. Since the LS solution is unique, at
each step the VLS function can either decrease or stay unchanged but never increase.
Alternating between the two steps iteratively guarantees convergence only to a local
minimum, because it ultimately depends on the initial values for U. Being � the
matrix of the multivariate OLS cross-products of residuals, the V LS iterations are
given by the following steps: (a) starting from the separate subject (group)-specific
empirical covariance matrices Uri , first minimize V LS to obtain the estimate of the
random-effects covariance D, then (b), given the matrix B̂GLS%, minimize V LS,
setting the same error covariance matrix among the subjects, and (c), iterate (a) and
(b), until convergence to the minimum. The number of iterations may vary, depend-
ing on the choice of the specific model variance structure for the random effects and
error covariance matrices.

Applications of the predPCA may be related to different types of available data,
and then may accommodate a variety of patterned covariance matrices. Further,
groups can be dependent or independent, even in space, time, and space-time corre-
lated data.

The IVLS estimator at each step is unbiased, as discussed in the followingLemma:

Lemma (Unbiasedness of the IVLS estimator) Under the balanced p -variate
variance components MANOVA model Y∗ = ZA + E, with Z the design matrix
of random effects, E the matrix of errors, and covariance matrix D + U, D =
(I ⊗ Z)cov[vec(A)](I ⊗ Z′), U = cov[vec(E)], and known matrix U, for the IVLS
estimator of the parameters θ in D we have E[D = D(θ̂I V LS)] = D(θ).

The proof is given in Appendix 2.
Finally, a SVD of the matrix Ỹ from the p-dimensional ỹ vector is obtained, in

order to give a PCdecomposition of the subject data involved by the linearmodel. The
predPC are generated by the eigenvalue-eigenvector decomposition of the covariance
matrix of the predicted data, i.e., (Ỹ − XB(θ̂))′(Ỹ − XB(θ̂)).

3 An Application to Some Well-Being Indicators

The introduced predPCA is applied here for the analysis of some Equitable and
Sustainable Well-being indicators (BES), annually provided by the Italian Statistical
Institute [16].

The discussed IVLS estimation procedure is adopted.
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Table 1 IVLS fixed effects estimates of the random-effect MANOVA model (centered data)

vec(β̂OLS) vec(β̂GLS)

Education and training –1.26E-15 –0.008118

Job satisfaction –2.44E-16 0.0082529

GDP 5.468E-16 0.0024191

Lack of safety 1.062E-16 –0.01079

Research and innovation –9.35E-16 –0.00471

Table 2 Iterative variance least squares estimates of the random-effects MANOVA model

IVLS estimates

σ̂ 2
a 0.374155

ρ̂a –0.147169

σ̂ 2
e 0.242975

ρ̂e 0.328184

ρ̂t 0.266346

According to recent law reforms, these indicators should contribute to define
the economic policies which largely affect some fundamental dimensions of the
quality of life. In this case study, we present an application of predPCA to 5 of
the 12 BES indicators available in the years 2013–2016, collected at the level of
NUTS2 (Nomenclature of Territorial Units for Statistics). We use the random-effect
MANOVA model, where the random multivariate vector Y includes the repeated
observations of all the Italian regions in the 4 time instants (X). We do not consider
model covariates, allowing predictors to be derived only by the covariance structure.
We assume equicorrelation both of themultivariate random effects and of the residual
covariance (seeAppendix 1 for details). The random-effectsMANOVAmodel is then
given by a balanced design, with an AR(1) error structure.

The fixed effects estimates, obtained through both the OLS and GLS estimators,
are provided inTable 1.Wehave that theGLSestimates outperform theOLSestimates
in terms of coefficient’s interpretability. The GLS estimate of the variable “Lack of
Safety” highlights the greater change in value respect to the OLSmean estimate. This
means that this indicator plays the most important role in highlighting the adjustment
provided by the model prediction with respect to the observed data. Furthermore,
this implies that the Lack of Safety will be the most influential indicator in terms
of shifting the statistical units (i.e., the administrative Regions) from their observed
position in the factorial plane.

Table 2 shows the IVLS estimation results of the mixed MANOVAmodel param-
eters, reporting the estimated variance and correlation among indicators (σa , ρa) and
regression errors (σe, ρe), in the�a and�e matrices, respectively. We find a negative
covariance between the BES indicators, together with a positive covariance between
the regression errors among indicators. Finally, the time autocorrelation between
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Fig. 1 Multiple Factor Analysis (MFA), observed factor loadings and scores per year (dashed
lines); predicted loadings and scores (plain lines) in the space of the MFA

units is estimated as slightly positive, independently from the nature of the BES
indicator.

Finally, in order to visualize simultaneously the first factorial axes of the four
years on a common factorial plane, for both observed and predicted variables, we
performed a Multiple Factor Analysis (MFA) on a matrix obtained by juxtaposing
the BES indicators with their IVLS prediction. Figure 1 shows the MFA biplot,
where observed factor loadings and scores for each year (dashed lines) and predicted
loadings and scores (plain lines) for each indicator are jointly represented with the
observed and predicted (in rectangles) regions.

On this plan, it is possible to see how the axes change over years (among groups),
and at the same time, to foresee how they could change in a new situation (in this
example on a new year), comparing the position of the observed variable with their
IVLS prediction.

Looking at the biplot, the horizontal axis clearly represents the well-being, being
positively correlated with the variables GDP, Education and training (E&T), Job sat-
isfaction and Investment in research and development (R&I), and having the variable
Lack of Safety always a high negative coordinate. As expected, the Southern Italian
regions are concentrated on the left side of the plane.

What is interesting to see is that most of the Southern regions, e.g., Puglia, Cam-
pania, Sicily, show a general improvement in terms of predicted values along this
axis: the coordinates generally move towards the origin, foreseeing a decrease in the
Lack of Safety, (i.e., an increase in their Well-being).
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4 Conclusions and Perspectives

This paper introduces PCA of a multivariate predictor to perform an exploratory
survey of sample data. The predPCA provides a new tool for interpreting a factorial
plan, by enriching the factorial solution with the projection of the trends included in
the observations. Given amultivariate vectorwith independent groups, and a random-
effects population model, the predPCA relies on the assumption that the linear model
itself is able to predict accurately specific subjects or group representatives, even in
time and spatial dependent data. The use of the PCA is given afterward when the
model has provided data predictions. Substantially, predPCA is a model-based PCA
where the data are supplied by the model best predictors.

The advantage in using the predPCA, with respect to the PC-based models, is
given by accommodating more easily a variety of structured data by the linear model
itself. After using a linear mixed model, the PredPCA explores predicted data that
originates in part from the regressive process and in part from the observed ones to
understand the contribution of the observed to predictions.

We note that this approach is able to work out simultaneously the issues related to
the use of model covariates and specific patterned covariance matrices. The impact
of choosing the model structure is easily recognizable when we investigate changes
in the factor data description. The reduction of dimensionality of the Best Prediction
of a variety of linear models, some of them designed for grouped and correlated data,
represents an important issue.

A forthcoming careful consideration will be made against Common Principal
Components [5], as a comparative study in terms of a simultaneous representation
of different data submatrices. Future studies can accommodate spatial and spatio-
temporal data, bringing out the predictive ability of the general linear mixed models,
by pivoting on specific covariance structures of the data.

Appendix 1

To accommodate a variety of random effects and error covariance matrices, it is
appropriate to refer to the general LMM, as the generalization of the MANOVA
variance components model given by Eq. (1):

Y = X̃B + Z̃A + E.

We use the vector operator vec(S), that converts the matrix S in a column vector.
Then we have y = vec(Y) = Xβ + Za + e, ymkp×1 = vec(Ymk×p), X̃mk×1 = 1′

p ⊗
1mk,B1×p = (β01, ..., β0p),Xmkp×p = Ip ⊗ X = Ip ⊗ 1mk, β = vec(B1×p),

Z̃mk×pm = 1′
p ⊗ Zr ,Zi = 1k,Zr = Im ⊗ Zi = Im ⊗ 1k,Zp(mk×m) = diag(Z1, ...,

Zp),Amp×p = diag(a1, ..., ap), ar = col(ar1, ..., arm), apm×1 = col(col(ar1, ...,
arm)), and Emk×p = (e1, ..., ep), e = col(e1, ..., ep) = col(col(col(erm1, ..., ermk))).
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The BLUP for the j-th group (subject) and r -th response variable is given by
ãri = E(ari |yri ) = cov(ari , yri )[var(yri )]−1[yri − E(yri )], with Uri the covarince
matrix of the residual errors for the i-th group and the r -th variable (r = 1, ..., p). The
fixed effects estimates are given by the matrix B̂GLS = (X′V−1X)−1X′V−1Y, where
V is the model covariance. In the case the variance components MANOVA model
(1), ifG is the p × p covariance matrix of random effects, withD = ZGZ′

mkp×mkp =
G ⊗ ZrZ′

r , Uri = σ 2
ri Ik , Ur = diag(Ur1, ...,Urm), Umkp×mkp = diag(U1, ...,Up),

and the model covariance matrixVmkp×mkp = cov(vecY) = cov(y) = ZGZ′ + U =
D + U, we get a “constrained” PCA by the predictors, as the SVD of the esti-
mates Y − 1μ̂′

GLS = (Im ⊗ 1k) × (̃a1, ..., ãp). Further, an “unconstrained” analy-
sis by the scores of the model conditional residuals Y − Ỹ = Y − 1μ̂′

GLS − (Im ⊗
1k) × (̃a1, ..., ãp) is done. To get the BLUP estimates ãri , we must know the param-
eters of the MANOVAmodel inside the covariance matrix D = Z × cov(vec(A)) ×
Z′
mkp×mkp, that is equal to:

D = �a ⊗ (Im ⊗ 1k)(Im ⊗ 1′
k) = �a ⊗ (Im ⊗ 1k1′

k).

Then: vec(Y) = (Ip ⊗ 1mt )vec(B) + (Ip ⊗ Z)vec(A) + vec(E) ; y∗ = vec(Y),

X∗ = (Ip ⊗ X) = (Ip ⊗ 1mt ), β∗ = vec(B), Z∗a∗ = (Ip ⊗ Z)vec(A).
Further, given the IVLS estimates θ̂ , we have cov[(y∗(θ̂))] = (Ip ⊗ Im ⊗ 1k)

(�a(θ̂) ⊗ Im)(Ip ⊗ Im ⊗ 1′
k)+cov(vec(E))=�a(θ̂) ⊗ (Im ⊗ 1k1′

k)+(�e(θ̂) ⊗ In) ⊗

(θ̂). Finally, after the iterative VLS estimation, the predictor is given by ỹ∗(θ̂) =
X∗β̂∗

GLS + Z∗̃a∗ = �y∗(θ̂) + (I − �)X∗β̂∗
GLS , � = (�a(θ̂) ⊗ ZZ′)cov

[(y∗(θ̂))]−1. Note that the matrix � specifies both the contribution of the regres-
sion model and the observed data to the prediction.

We assume equicorrelation both of themultivariate randomeffects and the residual
covariance, together with the AR(1) structure of the error:

�a = σ 2
a ×

⎡

⎢
⎢
⎢
⎣

1 ρa · · · ρa

ρa 1 · · · ρa
... · · · . . .

...

ρa ρa · · · 1

⎤

⎥
⎥
⎥
⎦

5×5

�e = σ 2
e ×

⎡

⎢
⎢
⎢
⎣

1 ρe · · · ρe

ρe 1 · · · ρe
... · · · . . .

...

ρe ρe · · · 1

⎤

⎥
⎥
⎥
⎦

5×5


 = 1

1 − ρ2
t

⎛

⎜
⎜
⎝

1 ρt ρ2
t ρ3

t
ρt 1 ρt ρ2

t
ρ2
t ρt 1 ρt

ρ3
t ρ2

t ρt 1

⎞

⎟
⎟
⎠

4×4

Appendix 2

Lemma (Unbiasedness of the IVLS estimator) Under the balanced p -variate
variance components MANOVA model Y∗ = ZA + E, with Z the design matrix
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of random effects, E the matrix of errors, and covariance matrix D + U, D =
(I ⊗ Z)cov[vec(A)](I ⊗ Z′), with known matrix U = cov[vec(E)], for the IVLS
estimator of the vector of parameters θ in D we have E[D = D(θ̂I V LS)] = D(θ).

Proof With m groups (i = 1, ...,m), each of k individuals ( j = 1, ..., k), for the
multivariate mixed model we have the vector representation y = X∗β + Z∗a +
e, with y = vec(Y), X∗ = (I ⊗ X), β = vec(B), Z∗ = (I ⊗ Z), a = vec(A), e =
vec(E), and η = Z∗a + e, B̂ = B̂OLS . Defining ε̂ = y − X∗β̂ = X∗β + η − X∗β̂ =
η − X∗(β̂ − β), by standard results on multivariate regression we write β̂ − β =
{

I ⊗ (X′X)−1X′} y − β = C × (X∗β + η) − β. Thus: X∗(β̂ − β) = X∗CX∗β
+ X∗Cη − X∗β, and noticing thatCX∗ = {

I ⊗ (X′X)−1X′}X∗ = {

I ⊗ (X′X)−1X′}

(I ⊗ X) = I ⊗ (X′X)−1X′X = I, we get: X∗(β̂ − β) = X∗β + X∗Cη − X∗β = X∗
Cη, and ε̂ = y − X∗β̂ = η − X∗Cη.

Setting for the MANOVA model Y∗ = Y − XB, X = 1mk×1, B = μ′
1×p, to stack

matrices by ordering subjects (groups), assume y∗∗ = vec(Y∗′) = (Z ⊗ I)vec(A) +
vec(E′) = Z∗a + e = η, with Z∗ the design matrix of the multivariate random
effects. Given ε̂ = vec(Y′ − B̂′X′) = ŷ∗∗, B̂ = B̂OLS = μ′, the VLS estimator finds
the minimum of V LS(θ) = tr(T2) = tr

{

ε̂̂ε′ − cov(vec(η)
}2 = �T2

i j . Now denot-
ing cov(a) = G = G(θ), g∗ = vec(G), u∗ = vec(U), and differentiating the VLS
function with respect to G, we have the following derivatives:

∂

∂G
V LS(θ) = Z∗′̂ε̂ε′Z∗ − Z∗′Z∗GZ′Z − Z∗′UZ∗ = 0

(Z∗′Z∗ ⊗ Z∗′Z∗)g∗ + (Z∗′ ⊗ Z∗′)u∗ = (Z∗′̂ε) ⊗ (Z∗′̂ε).

Then: ĝ∗ = g∗(θ̂) = (Z∗′Z∗ ⊗ Z∗′Z∗)−1
{

(Z∗′̂ε) ⊗ (Z∗′̂ε) − (Z∗′ ⊗ Z∗′)u∗}.
Remembering that (Z∗′̂ε) ⊗ (Z∗′̂ε) = (Z∗′η) ⊗ (Z∗′η), cov(a, e) = 0, and taking

the expectation of η ⊗ η:

E(η ⊗ η) = E(vec(ηη′)) = E(vec
{

(Z∗a + e)(Z∗a + e)′
}

)

= E
{

(Z∗ ⊗ Z∗)vec(aa′) + (e ⊗ Z∗)a + (Z∗ ⊗ e)a + vec(ee′)
}

= (Z∗ ⊗ Z∗)g∗ + 0 + 0 + u∗.

Since (Z∗′η) ⊗ (Z∗′η) = (Z∗′ ⊗ Z∗′)(η ⊗ η), the expectation become:

E
{

(Z∗′̂ε) ⊗ (Z∗′̂ε)
}

= E
{

(Z∗′η) ⊗ (Z∗′η)
} = (Z∗′ ⊗ Z∗′)E(η ⊗ η)

= (Z∗′ ⊗ Z∗′)(Z∗ ⊗ Z∗)g∗ + (Z∗′ ⊗ Z∗′)u∗

= (Z∗′Z∗ ⊗ Z∗′Z∗)g∗ + vec(Z∗′UZ∗).

Hence: E[g∗(θ̂I V LS)]=(Z∗′Z∗ ⊗ Z∗′Z∗)−1
{

E
[

(Z∗′̂ε) ⊗ (Z∗′̂ε)
] −(Z∗′ ⊗ Z∗′)u∗} =

(Z∗′Z∗ ⊗ Z∗′Z∗)−1
{

(Z∗′Z∗ ⊗ Z∗′Z∗)g∗ + vec(Z∗′UZ∗) − (Z∗′ ⊗ Z∗′)u∗} = g∗(θ).
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Robust Model-Based Learning to
Discover New Wheat Varieties and
Discriminate Adulterated Kernels in
X-Ray Images

Andrea Cappozzo, Francesca Greselin, and Thomas Brendan Murphy

Abstract In semi-supervised classification, class memberships are learnt from a
trustworthy set of units. Despite careful data collection, some labels in the learning
set could be unreliable (label noise). Further, a proportion of observations might
depart from the main structure of the data (outliers) and new groups may appear in
the test set, which were not encountered earlier in the training phase (unobserved
classes). Therefore, we present here a robust and adaptive version of the Discrim-
inant Analysis rule, capable of handling situations in which one or more of the
aforementioned problems occur. The proposed approach is successfully employed
in performing anomaly and novelty detection on geometric features recorded from
X-ray photograms of grain kernels from different varieties.

Keywords Impartial trimming · Label noise · Model-based classification ·
Novelty detection · Anomaly detection · Robust estimation

1 Introduction and Motivation

Thanks to scientific advances, sophisticated techniques likeX-ray, scanningmicroscopy
and laser technology are increasingly employed for automatic imaging collection.
Unfortunately, among the many observations obtained via measurement and record-

A. Cappozzo (B) · F. Greselin
Department of Statistics and Quantitative Methods, University of Milano-Bicocca, Milano, Italy
e-mail: a.cappozzo@campus.unimib.it

F. Greselin
e-mail: francesca.greselin@unimib.it

T. B. Murphy
School of Mathematics & Statistics and Insight Research Centre, University College Dublin,
Dublin, Ireland
e-mail: brendan.murphy@ucd.ie

© Springer Nature Switzerland AG 2021
S. Balzano et al. (eds.), Statistical Learning and Modeling in Data Analysis,
Studies in Classification, Data Analysis, and Knowledge Organization,
https://doi.org/10.1007/978-3-030-69944-4_4

29

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-69944-4_4&domain=pdf
mailto:a.cappozzo@campus.unimib.it
mailto:francesca.greselin@unimib.it
mailto:brendan.murphy@ucd.ie
https://doi.org/10.1007/978-3-030-69944-4_4


30 A. Cappozzo et al.

ing, someunreliable unitsmay appear: the percentage of encoding errors in real-world
databases, all fields taken together, is estimated to be approximately five percent [8].
Therefore, there is strong interest in developing methodologies that perform reliable
inference even when standard assumptions are not met, as it happens when deal-
ing with complex contaminated datasets. In discriminant analysis, for example, it is
assumed that a set of outlier-free and correctly labeled units are available for each and
every group within the population of interest. Nevertheless, this may not hold true,
for instance, in image classification, where data quality is influenced by the number
of pixels in each sample and by the variability associated with the labeling task [16].
Moreover, as more and more units are acquired, previously unseen structures may
emerge.

Motivated by a dataset recording geometric parameters of grains, detected using
a soft X-ray technique, we propose a newmethod for anomaly and novelty detection.
Specifically, we introduce a robust model-based approach for adaptive classification:
novelties are assumed to arise from a mixture of multivariate normal densities, while
no distributional assumption is a priori set for the anomalies. Robustness, based on
trimming the least likely observations, copes with training units whose class mem-
berships are unreliable (label noise) and with specimens that are far away from the
main data structure (outliers). On the other hand, groups not previously encountered
within the labeled units (unobserved classes) are easily added in the form of new
mixture components by adaptive learning.

The rest of the paper is organized as follows. In Sect. 2 the notation is introduced
and the main concepts about the model and its inferential aspects are presented.
In Sect. 3 we apply our methodology to discriminate different varieties of wheat
kernels, under adulteration and sample selection bias. Section 4 summarizes the
novel contributions and concludes the manuscript.

2 RAEDDA Model

Let us consider a classification framework with {(x1, l1), . . . , (xN , lN )} identifying
the training set: xn is a p-variate outcome and ln its associated class label, such that
lng = 1 if observation n belongs to group g and 0 otherwise, g = 1, . . . ,G. Cor-
respondingly, let {(y1, z1), . . . , (yM , zM)} be the test set, where it is assumed, dif-
ferently from the standard framework, that the unknown classes zm have dimension
E ≥ G. That is, there may be a number H of “hidden” classes in the test, not previ-
ously observed within the labeled units, such that E = G + H , with H ≥ 0. Both xn ,
n = 1, . . . , N , and ym ,m = 1, . . . , M , are assumed to be independent realizations of
a continuous random vectorX taking values in Rp; while ln and zm are considered
to be realizations of a discrete random vector C taking values in {1, . . . , E}. Notice
that we implicitly suppose here that an unknown sample selection bias mechanism
prevents the learning units to arise from classesG + 1, . . . , E . Assuming a Gaussian
mixture distribution for X , the observed data likelihood reads:
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L(τ ,μ,�|X,Y, l) =
N∏

n=1

G∏

g=1

[
τgφ(xn;μg,�g)

]lng
M∏

m=1

⎡

⎣
E∑

g=1

τgφ(ym;μg,�g)

⎤

⎦

(1)
where τg is the prior probability of observing class g, such that

∑E
g=1 τg = 1, and

φ(·;μg,�g) represents the multivariate Gaussian density with mean vector μg and
covariance matrix �g . Notice that the first term in (1) accounts for the complete
observations (xn, ln); whereas in the second termonly themarginal density of ym con-
tributes to the product, since its associated label zm is unknown. Equation (1) defines
the likelihood of an Adaptive Mixture Discriminant Analysis (AMDA) model, intro-
duced in [2]. By means of impartial trimming [10], patterned covariance matrices
[1, 5] and constrained parameter estimation [11], we extend the original AMDA
method developing a flexible classifier, denoted Robust and Adaptive Eigenvalue
Decomposition Discriminant Analysis (RAEDDA), which performs reliable super-
vised classification when dealing with label noise, outliers and unobserved classes.
RAEDDA parameters are obtained by maximizing the trimmed observed data log-
likelihood:

�tr im(τ ,μ,�|X,Y, l) =
N∑

n=1

ζ(xn)
G∑

g=1

lng log
(
τgφ(xn;μg,�g)

)+

+
M∑

m=1

ϕ(ym) log

⎛

⎝
E∑

g=1

τgφ(ym;μg,�g)

⎞

⎠
(2)

where ζ(·) and ϕ(·) are indicator functions that determine whether each observation
contributes or not to the trimmed likelihood. The trimming levels αl and αu are pre-
specified such that only

∑N
n=1 ζ(xn) = �N (1 − αl)� and

∑M
m=1 ϕ(ym) = �M(1 −

αu)� terms are not null in (2). Notice that the total number E of groups is not
established in advance and needs to be estimated: a dedicated penalized likelihood
criterion, based on the one introduced in [6], is developed for model selection. Two
alternative estimation procedures for maximizing (2) are proposed: the transductive
and the inductive learning approaches. Computational details are reported in the next
subsections.

2.1 Transductive Learning

In the transductive approach, the parameters of both known and hidden classes are
concurrently estimated via the joint exploitation of training and test sets. That is,
labeled and unlabeled units mutually partake in the learning procedure: the maxi-
mization of (2) is carried out via an adaptation of the EM algorithm that includes
a Concentration step [14] for enforcing impartial trimming and an eigenvalue-ratio
restriction [9] for protecting the final estimates from spurious local maximizers.
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In detail, each iteration begins with a C-step, in which the �Nαl� and �Mαu�
least likely units (under the currently estimated model) are tentatively discarded
in the training and test sets, respectively. Afterwards, in the E-step the expected
value of the unknown label for each untrimmed unit ym is computed. Then, an M-
step is performed: parameters are updated by determining the set {τ̂g, μ̂g, �̂g}, g =
1, . . . , E , which maximizes the transductive trimmed complete data log-likelihood

�tr imc(τ ,μ,�|X,Y, l, ẑ) =
N∑

n=1

ζ(xn)
G∑

g=1

lng log
(
τgφ(xn;μg,�g)

)+

+
M∑

m=1

ϕ(ym)

E∑

g=1

ẑmg log
(
τgφ(ym;μg,�g)

)
(3)

where the ẑmg have been previously determined in the E-step. Lastly, whenever the
estimated covariance matrices do not satisfy the eigenvalue-ratio restriction [11],
constrained estimation is enforced.

Once convergence is reached, the final output comprises the set of estimated
parameters for the E classes, values for the indicator functions ζ(·) and ϕ(·) that
pinpoint unreliable units, and a posteriori classification for the unlabeled observa-
tions via the maximum a posteriori (MAP) estimate [12]. For a more comprehensive
description of the algorithm, the interested reader is referred to Sect. 3.2 of [4].

2.2 Inductive Learning

In the inductive approach, parameters are determined in a sequential manner: firstly
the training set is employed for robustly estimating the structure of the G known
classes (robust learning phase) and, subsequently, the extra classes are sought in
the test set keeping the structure learnt in the previous step fixed (robust discovery
phase). The first phase consists in the robust fitting of a fully supervised model-based
classifier: the REDDA method introduced in [3]. In the robust discovery phase, we
search for the H = E − G hidden classes in an unsupervised fashion, bymaximizing
the likelihood on the test set via an EMalgorithm. Each iteration beginswith aC-step,
in which the �Mαu� least likely units are tentatively discarded. Notice that both the
current estimates for the parameters of the H hidden classes, as well as the structure
of the G known groups (previously determined in the learning phase) concur in
the determination of the trimming functions. Then, a standard E-step is computed.
Afterwards, an M-step is performed: parameters are updated by determining the set
{τ̂1, . . . , τ̂E , μ̂G+1, . . . , μ̂E , �̂G+1, . . . , �̂E } that maximizes the inductive trimmed
complete data log-likelihood:
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�tr imc(τ ,μ,�|Y, μ̄, �̄, ẑ) =
M∑

m=1

ϕ(ym)

( G∑

g=1

ẑmg log(τgφ(ym; μ̄g, �̄g))+

+
E∑

h=G+1

ẑmh log(τhφ(ym;μh,�h))

) (4)

where the ẑmg have been determined in the E-step and the parameters for theG known
classes, identified by a bar in the notation, were obtained in the learning phase and
are therefore kept fixed. Notice that the entire vector τ is updated, renormalizing the
mixing proportions for the G known classes according to the estimated sizes of the
H new groups. Once convergence is reached, the output of the discovery phase com-
prises the set of estimated parameters for the H new classes, values for the indicator
function ϕ(·) that pinpoint unreliable test units, and a posteriori classification for the
unlabeled observations via the MAP rule. For a more comprehensive description of
the algorithm, the interested reader is referred to Sect. 3.3.2 of [4].

3 Anomaly and Novelty Detection in X-Ray Images of
Wheat Kernels

The methodology presented in the previous section is employed to perform adaptive
classification and anomaly detection in a dataset comprised of 210 grains belonging
to three different varieties of wheat. For every sample (70 units for each variety),
seven geometric parameters are recorded from postprocessing X-ray photograms of
the kernel [7]. The seeds dataset is publicly available in the University of California,
Irvine Machine Learning data repository.

The considered experiment involves the random selection of 98 training units from
the first two cultivars, and a test set of 102 samples, including 60 grains from the third
variety (data are displayed in Fig. 1). The remaining 10 units from the third group are
appended to the training set and their associated labels are altered, as to pretend they
come from thefirst variety.Besides, for 7 randomly chosen training units thelength
variable is manually modified to be three times larger than its original value. The
aim of the experiment is, therefore, to determine whether the RAEDDA method is
capable of recovering the unobserved class in the test set while copingwith both class
and attribute noise in the training set. The study is repeated B = 100 times: for each
recurrence, model results for RAEDDA and for the original AMDAmodel (denoting
by RAEDDAt, AMDAt and RAEDDAi, AMDAi their transductive and inductive
versions) and for two popular novelty detection methodologies, namely Classifier
Instability (QDA-ND) [17] and Support VectorMachine for novelty detection (SVM-
ND) [15] are collected.

In Table 1, we report two metrics for evaluating the correct classification rate and
the recovery of the true test partition. The RAEDDAmodel shows a remarkably good
classification accuracy: the unseen class is correctly discovered via both transductive
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Fig. 1 Learning scenario for the considered experiment, seeds dataset. Plots below the main diag-
onal represent the training set, in which the first two wheat varieties are displayed with hollow
diamonds and solid squares, respectively. Solid diamonds denote the 10 units from the third variety
with altered labels. Plots above the main diagonal represent the test set

and inductive inference with the underlying test partition effectively retrieved, as
demonstrated by the high average value of the Adjusted Rand Index (ARI) [13].
The AMDAmethod instead reports a large misclassification error: the outlying units
obscures the separation between the first and the third wheat variety.

It is interesting to notice, however, that the test partition is adequately well recov-
ered by AMDA, since its ARI metric presents comparable values to those obtained
by our proposal. This intriguing result is explained by looking at the number of esti-
mated components for the twomodel-based methods, displayed in the barplot of Fig.
2. In trying to mitigate the bias induced by the noise in the learning phase, the non-
robust methodology tends to overestimate the true number of hidden classes. On the
one hand, this produces a satisfactory clustering in the test set, allowing the model
to correctly identify the patterns that were originally contaminated in the training
set. On the other hand, estimated parameters for the known classes are highly biased
and thus their structure is no longer paired with the (outlier-free) test units: the true
varieties are identified as extra classes in the unlabeled set.
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Table 1 Average misclassification errors and Adjusted Rand Index for AMDA and RAEDDA
classifiers (transductive and inductive inference) and accuracy in separating known and hidden
patterns for QDA-ND and SVM-ND on the test set for B = 100 runs of the considered experiment,
seeds dataset. Standard deviations are reported in parentheses

RAEDDAt RAEDDAi AMDAt AMDAi SVM-ND QDA-ND

Misclassi-
fication error

0.082
(0.021)

0.105
(0.073)

0.521
(0.293)

0.43
(0.324)

0.329
(0.185)

0.34
(0.045)

ARI 0.788
(0.052)

0.735
(0.102)

0.674
(0.155)

0.745
(0.105)

– –

0%

25%
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75%

100%

2 3 4
Selected number of mixture components

Model
AMDAi

AMDAt

RAEDDAi

RAEDDAt

Fig. 2 Percentage of times, out of B = 100 runs of the considered experiment, each model-based
method identifies the final estimated mixture to have 2, 3 or 4 components. The correct value is 3,
as the test set contains the two known classes of wheat, plus the one previously unseen

Low classification accuracy is displayed also by the novelty detection techniques,
where the mislabeled units have a severe impact on the correct separation between
known and hidden patterns. The same does not happen for our robust proposal, and
setting trimming values respectively equal to 0.15 and 0.05 for the training and test
sets prevents the noisy units to jeopardize the learning process. The units with inflated
length (attribute noise) and 7 out of the 10 wrongly labeled units (class noise) are
on average correctly identified to be anomalies, discarding them from the estimation
procedure and so yielding higher classification accuracy. Such a result is noteworthy
as the separation between the third and first wheat variety is not at all apparent by
looking at the pairs plot in Fig. 1.

4 Conclusions

In the present paper,we have introduced amethodology that performs classification in
presence of adulteration and sample selection bias.Wehave employed it in effectively
achieving anomaly and novelty detection in X-ray images of grain kernels, where a
challenging classification framework, including label noise and outliers, along with
one unobserved wheat variety, has been considered.
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Further research directions include the extension of the present methodology to
high-dimensional classification: a robust and adaptive variable selection procedure,
based on theoretical results for Gaussian mixtures, is currently being developed.
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A Dynamic Model for Ordinal Time
Series: An Application to Consumers’
Perceptions of Inflation

Marcella Corduas

Abstract This article discusses an innovative model for time series ordinal data,
which develops the well-established CUB model to allow for time-varying parame-
ters. This is amixture of aUniform and a Shifted Binomial distribution, characterized
by two parameters that can be interpreted as a measure of the ability of the rater to
use the available rating scale and the degree of liking/disliking about the item. For
illustrative purposes, the method is applied to consumers’ perceptions of inflation in
Italy.

Keywords Ordinal time series · CUB model · Time-varying model · Qualitative
survey data

1 Introduction

Repeated surveys about opinions, perceptions, or attitudes of the interviewees are
regularly carried out by national statistical offices. Elementary data are usually not
available because individuals are randomly selected each time, and only the aggregate
frequency distributions of opinions are published. This is the case of the surveys
concerning the qualitative assessment or anticipations on the price level that ISTAT
carries out every month.

Measuring public’s inflation expectations and perceptions of inflation is of great
importance for monetary authorities because both expectations and perceptions are
key determinants of actual inflation. For this reason, numerous studies have focused
their attention either on quantifying the observed opinion data in order to derive
indices of perceived (or expected) inflation or on searching explicative models that
could describe data in terms of economic explanatory variables [1, 13]. In this article,
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we discuss an innovative model for time series ordinal data, that extends the well-
established CUBmodel to allow for time-varying parameters. The paper is organized
as follows. Firstly, we briefly recall the main features of the CUB model. Then,
we extend the formulation so that time-varying parameters are allowed. Finally,
for illustrative purposes, the method is applied to the time series of consumers’
perceptions of inflation in Italy.

2 The Static CUB Model

A class of mixture distributions for ordinal data, denoted as CUB model, has been
widely investigated in the past decade, proving its usefulness in numerous empirical
studies (see, among others, [9–11]). In particular, ratings are described by a random
variable Y characterized by the following probability mass distribution:

p(y; θ) = π

(
m − 1
y − 1

)
(1 − ξ)y−1ξm−y + (1 − π)

1

m
, y = 1, 2, ...,m (1)

where θ = (π, ξ)′, ξ ∈ [0, 1], π ∈ (0, 1] and m > 3. Hence, the parameter space is
given by:

Ω(θ) = Ω(π, ξ) = {(π, ξ) : 0 < π ≤ 1, 0 ≤ ξ ≤ 1}. (2)

The weight π determines the contribution of the uniform distribution in the mixture,
therefore, (1 − π) is interpreted as a measure of the ability of the rater to use the
available rating scale. This component has been denoted as uncertainty. Besides,
the parameter ξ characterizes the shifted Binomial distribution and is related to the
rater’s perception of the item content. For this reason, it has been denoted as feeling.
Specifically, (1 − ξ) denotes the degree of liking/disliking expressed by raters about
the item. Assuming that the question is expressed with positive wording and that the
lowest score is attached to the worst judgement, when (1 − ξ) > 0.5 the skewness of
the distribution is negative so that the portion of individuals attaching a high rating
to the item under evaluation is large. The opposite is verified when (1 − ξ) < 0.5.

Various developments have been discussed in the literature. In particular, the
model has been extended to account for the presence of a ‘shelter category’, where a
respondent refuges himself when he is unwilling to elaborate an accurate judgement
[8]. In this case, the random variable Y is described by a GeCUB model such that

p(y; θ) = δDc + (1 − δ)

[
π

(
m − 1
y − 1

)
(1 − ξ)y−1ξm−y + (1 − π)

1

m

]
(3)

where Dc is a degenerate distribution at the ’shelter category’ c , and θ = (δ, π, ξ)′,
with 0 ≤ δ ≤ 1.

In the following section, we will introduce a dynamic version of such a model
that can be useful to describe the qualitative assessment of items in repeated surveys.
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3 The Dynamic Model for Ordinal Time Series

Let {Yt , t = 1, ..., T } be a collection of random variables describing ordinal data
observed at different time points. We assume that at time t , the variable Yt is char-
acterized by the following GeCUB distribution:

P(Yt = y|It−1) = δt Dt + (1 − δt )

[
πt

(
m − 1
y − 1

)
(1 − ξt )

y−1ξ
m−y
t + (1 − πt )

1

m

]

y = 1, 2, ...,m

with

πt = 1

1 + e−β0−β1zt−1...βpzt−p
; ξt = 1

1 + e−γ0−γ1wt−1...γswt−s
;

δt = 1

1 + e−α0−α1vt−1...αk vt−k
; (4)

where zt ,wt and vt are explanatory variables, It−1, is the set of information concerning
these variables until time (t − 1). Moreover, Dt is a degenerate distribution such that:
Dt = 1 for the shelter category and Dt = 0 for the remaining categories. Finally,β =
(β0, β1, ..., βp)

′ and γ = (γ0, γ1, ..., γs)
′, and α = (α0, α1, ..., αk)

′ are the parameter
vectors. Without losing in generality, we concentrate our attention on the case when
each GeCUB parameter is affected by one explanatory variable at various lags, but
the model can be easily extended so that several explanatory variables are included.
Moreover, note that when the shelter effect is not present, the model collapses to the
CUB formulation with time-varying parameters.

Let us denotewith [ f1t , f2t , ..., fmt ] the relative frequencies froma randomsample
of n observations drawn from Yt , t = 1, 2, ..., T . The estimation of the model (4) can
be performed by minimizing the sum of the Pearson’s chi-square distances between
the observed relative frequencies and the GeCUB probabilities:

G(θ) = n
T∑
t=1

m∑
y=1

[ fyt − pyt ]2/pyt (5)

where the notation has been simplified denoting with θ = (α′, β ′, γ ′)′ the vector
of r = k + p + s + 3 parameters, and pyt = pyt (θ) = P(Yt = y|It−1). It is well
known that the minimum chi-square method yields estimates that are asymptotically
equivalent to maximum likelihood estimates. In particular, they are consistent and
asymptotically efficient (see [3] p. 425–6; [7] and references therein). Then, the
parameter estimators are asymptotically normalwithmean θ and asymptotic variance
covariance matrix Q−1 with Q = {qih}:
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qih = −
T∑
t=1

m∑
y=1

nyt pyt (θ)
∂2 log pyt (θ)

∂θi∂θh
. (6)

being nyt = n fyt the absolute frequencies.
Finally, the goodness of fit of the model is assessed by comparing G̃mod =

n−1G(θ̂)with the distance G̃U = m
∑T

t=1

∑m
i=1[ fi t − m−1]2. This measures the dis-

crepancy of the observed frequencies from the uniform probabilities, which reflects
the situation of pure ignorance about the phenomenon under investigation.

The model (4) can be used for various purposes. Firstly, the dynamic pattern of
the estimated parameters helps to detect how the ordinal distributions change over
time. In our opinion, this characterization is more informative with respect to the
study of the time series of a certain summary statistics (for example, the mean) of the
empirical distribution observed at time t . Secondly, the model is useful for predicting
the probability distribution of YT+k using the past realizations (or predictions) of the
explanatory variables. Finally, by analogy to the static model, the pattern of the
estimated time-varying parameters can be exploited to compare the dynamics of
various ordinal time series.

4 A Case Study: Consumer Inflation Perceptions

Consumers’ qualitative opinions about the development of inflation are regularly
surveyed by ISTAT within the harmonized European programme of business and
consumer surveys. Specifically, in Italy, every month a sample of about 2000 con-
sumers are interviewed about their perceptions of past inflation development and
their expectations about the future. The first variable, Yt , is originated from the ques-
tion (Q5): ‘How do you think that consumer prices have developed over the last 12
months? They have: risen a lot; risen moderately; risen slightly; stayed about the
same; fallen’. The second one, Zt refers to the question (Q6): ‘By comparison with
the past 12 months, how do you expect consumer prices will develop in the next
12 months? They will: increase more rapidly; increase at the same rate; increase
at a slower rate; stay about the same; fall’. Only the frequency distribution of the
opinion categories is published monthly. In this section, we analyze data ranging
from 1994.01 to 2018.1. A preliminary study of this data-set has been presented by
[4]. Here, the observed categories have been recoded so that 1 is associated to the
category ‘fallen/fall’, and 5 to the category ‘risen a lot/increase more rapidly’. This
scale is reversed with respect to that widely used in the economic literature.

The shape of the distributions of the ordinal variable, Yt , associated to each time
point may vary depending on the economic situation, as Fig. 1 shows. For this reason,
the perceived change in inflation is usually evaluated by the balance statistic: B(t) =
b = − f1t − 0.5 f2t + 0.5 f4t + f5t . This measure is often compared graphically with
the actual inflation rate. In this regard, it is worth recalling that the link between
inflation perceptions and actual inflation had been quite strong before 2002, but this
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Fig. 1 Examples of observed frequency distribution of Yt for selected time points

Fig. 2 Balance statistic of perceived (solid line) and expected (dashes) inflation

co-movement disappeared after the Euro cash changeover in 2002 in all EU countries
[2]. In Italy, this gap was exceptionally large and persistent, and a similar divergent
pattern also affected the balance statistic of perceived and expected inflation [5].
Only towards the end of 2007, perceptions and expectations started again to move
together, even if the gap began to reduce only after the 2008 global economic crises
(Fig. 2).

We have applied the model (4) to describe the dynamics of ordinal data originated
by the question concerning the perception of past price development. A conceptual
framework of the process generating consumer’s opinions about inflation has been
illustrated by [12]. The socio-economic environment, the amplification due tomedia,
and personal attitudes (gender, personal income, level of education) are all important
drivers. In addition, the perceptions are strictly related to the expectations. This is
not only true from the present to the future, but expectation about the price trend,
formed at some previous time, may in some cases bias the perceptions of the current
situation [6, 14]. Moving from those considerations, we have specified the dynamics
of the GeCUB coefficients as follows:
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Table 1 Estimation results (standard errors in parenthesis)

γ̂0 = 3.213(0.010) γ̂1 = −1.128(0.003) Fitting measures

β̂0 = −2.221(0.129 ) β̂1 = 1.704(0.043) G̃mod = 4.04

α̂0 = −1.857(0.006) α̂1 = −0.724(0.010) G̃U = 157.32

P(Yt = y|It−1) = δt Dt + (1 − δt )

[
πt

(
m − 1
y − 1

)
(1 − ξt )

y−1ξ
m−y
t + (1 − πt )

1

m

]
,

y = 1, 2, ..., 5.

ξt = 1

1 + e−γ0−γ1 yt−1
; πt = 1

1 + e−β0−β1zt−1
; δt = 1

1 + e−α0−α1vt−1
; (7)

where, for any t :

• the parameter ξt depends on yt−1, the mean of the price past trend perceptions
(this is simply the mean of the observed ratings) at time t − 1;

• the parameter πt depends on zt−1, the mean of the expectations about future price
level at time t − 1;

• Dt = 1 for the category: ‘stayed about the same’, and 0 otherwise. The corre-
sponding coefficient δt depends on vt−1 = yt−1 − zt−1, the gap between price
trend perceptions and future trend expectations at time (t − 1). When this gap is
small, the perception that prices stayed about the same becomes stronger.

Table 1 illustrates the estimated coefficients of themodelwith their standard errors
in parenthesis. Computations have been done using the programming systemGAUSS
(Aptech Systems, Inc.). The global fitting of the model is satisfactory as the remark-
able reduction of the discrepancy between the observed andfitted distributions shows.
The time plot of (1 − ξ̂t ) helps to detect the main characteristics of the distributions
of the ordinal variable Yt (see Fig. 3, panel a). From 1994 to the beginning of 2014,
(1 − ξ̂t ) > 0.5. This implies that most of the estimated ordinal distributions are left
skewed because consumers tend to state that prices have increased in the last twelve
months. High values of (1 − ξ̂t ) are achieved after the Euro cash changeover. Other
remarkable fluctuations can be recognized between 2010 and 2013 when various
international and national political crises affected financial indicators (such as the
increase of the spread between 10-year BTP and German bund) feeding the uncer-
tainty of consumers about the economy. Only at beginning of 2014 the time series
collapsed below 0.5 and start to fluctuate around that value.

The pattern of weight of the shelter category δ̂t and the weight of the Uniform
distribution, (1 − π̂t )(1 − δ̂t ) (i.e. uncertainty) are illustrated in Fig. 3, panel b. Both
components have a limited role in determining the mixture. However, after the Euro
cash changeover, the two components follow an opposite but consistent pattern. As
a matter of fact, the role of the ‘uncertainty’ increases whereas the weight of the
refuge and neutral category decreases.
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Fig. 3 Time-varying coefficients: a (1 − ξ̂t ); b δ̂t (solid line); (1 − π̂t ) ∗ (1 − δ̂t ) (short dashed)

Fig. 4 Balance statistic from the empirical distributions (solid line) and the estimatedmodel (dashed
line)
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The plot of the observed balance statistic with that implied by the model confirms
the goodness of the results (Fig. 4). The two time series are very close in all the
considered time interval. In this regard, it is worth to point out that the model is also
able to reproduce the large increase that occurred in the time series with the Euro
cash changeover.

5 Final Remarks

We have presented a parsimonious model for describing time series of ordinal data
that exploits the features of the CUBmodel. The analysis of the pattern of character-
izing parameters helps to summarize the changes in the ordinal distributions along
time. Firstly, this synthesis is more informative than using simple summary statis-
tics, such as the average, to describe the dynamics of the phenomenon originating the
ordinal data. Secondly, the model provides a useful tool for prediction and control,
because the relationships that define the time-varying parameters are specified as a
function of explanatory variables for which future scenarios may be elaborated.
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Deep Learning to Jointly Analyze Images
and Clinical Data for Disease Detection

Federica Crobu and Agostino Di Ciaccio

Abstract In recent years, computer-assisted diagnostic systems increasingly gained
interest through the use of deep learning techniques. Surely, themedical field could be
one of the best environments in which the power of the AI algorithms can be tangible
for everyone. Deep learning models can be useful to help radiologists elaborate fast
and even more accurate diagnosis or accelerate the triage systems in hospitals. How-
ever, differently from other fields of works, the collaboration and co-work between
data scientists and physicians is crucial in order to achieve better performances. With
this work, we show how it is possible to classify X-ray images through a multi-input
neural network that also considers clinical data. Indeed, the use of clinical informa-
tion together with the images allowed us to obtain better results than those already
present in the literature on the same data.

Keywords Deep learning ·Medical deep learning · Convolutional neural
networks · X-ray images ·Multi-input neural networks

1 Introduction

Recent years have been marked by an exponential growth of interest towards what-
ever concerns data. Thanks to their great availability and hardware/software break-
throughs, many improvements and progresses have been made in the world of deep
learning [5]. The use of deep convolutional neural networks has had a great impact
on image recognition techniques. In this context, the evolution of research conducted
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in the past decade is well represented by the continuous progress in the ImageNet
dataset [9], until few years ago considered the benchmark for new architectures.

Among the many scopes of the AI, one of the most fascinating and advantageous
branches for the application of these models is medicine. However the challenge is
more complex: while within the general context of image recognition, the goal is to
classify what it is contained in a given image (since the information is completely
inside the picture), in the specific case of medical images we also should consider
other important information about the patients. In fact, in order to try to emulate the
role of an expert radiologist, the model should consider much more information such
as demographic and clinical details.

Doctors usually gather and handle all this information and it is equally advanta-
geous to provide them to the predictive model. From the technical point of view, the
goal of including more inputs of different nature can be achieved using a multi-input
neural network architecture. Using this kind of model we were able to obtain a very
accurate classification, as shown in the following sections. Until a few years ago,
it was unreasonable to think about a future in which doctors would be helped by
computers to recognize diseases and elaborate diagnoses. The impact of these new
technologies could represent a drastic improvement in underdeveloped countries,
where the availability of doctors can often be problematic and pathologies such as
pneumonia are still one of themain causes of death.Moreover, it could also be helpful
in wealthy countries, where the number of radiologists is insufficient.

2 State of the Art and Challenges of the Medical Deep
Learning

Among the many studies, some stand out for having achieved an accuracy compa-
rable with that of the radiologists. DeepMind and Google Health have successfully
trained an algorithm on mammogram images from a large database of 28,953 female
patients in the US and the UK, the results were published in the journal Nature [10].
Considering 2 images for each breast, they analysed 115,812 images. In a standard
analysis, about 20% of screenings fail to find breast cancer even when it is present
and many others are false positive. The AI algorithm decreased both types of error
performing better than human radiologists (AUC 0.889 for UK data). To correctly
evaluate the results, the real outcomes were derived from the biopsy record and lon-
gitudinal follow-up. NYU researchers published a similar study [11] using 229,426
screening mammography exams on 141,473 patients with about 1 million of images.
Their network achieved an AUC of 0.895 and, to validate the model, they conducted
a reader study with 14 radiologists, each analyzing 720 exams. The model confirmed
its goodness showing an accuracy higher than a single experienced radiologist. How-
ever, both studies concluded that the AI screenings should be used in tandem with
radiologists. In fact, thanks to the combination of experienced doctors and computers,
it is possible to obtain the most precise diagnostic results.
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The benefits of AI systems in automated triaging of chest radiographs have been
explored by Annarumma et al. [2]. This work uses more than four hundred thousand
X-rays, jointly with their reports. Firstly, an NLP algorithm extracts the prioritization
level from each report, subsequently a DCNN model associates the urgency from
the image’s analysis. The new prioritization system was tested in a simulation study,
which showed a shorter mean delay for critical cases.

To apply these methodologies, an important requirement is the availability of a
large and reliable database of images and clinical evaluations. This need clashes with
the complexity of the image labeling process, as the definition of diagnosis is always
characterized by a certain subjectivity, even if made by expert radiologists.

In general, an optimal solution to the problems faced in the medical area is to
includemuchmore information beyond themere analysis of the images. For example,
the correlation of certain pathologies to age or smoking is well known. Other diseases
may be characterized by genetic predispositions and many diseases can be related
to each other. Thus, the more additional information we have about the patients’
clinical history the more we are able to construct a framework useful to improve the
predictive model.

This work is based on our previous paper [4], a similar approach, given by
Baltruschat [3], is discussed in Sect. 3.

3 Material and Methods

Among the general framework of medical deep learning we decided to focus on
the analysis of X-ray images. Probably, the largest public database containing both
images and clinical information is ChestX-ray14. From a technical point of view, we
had to solve a multi-class and multi-label problem, since the task is the prediction of
presence/absence of 14 diseases that can coexist in the same diagnostic image.

We will demonstrate how a multi-input neural network, so called since it is made
by two independent nets joined in the end to perform predictions, can fruitfully use
the information provided by the images with that coming from the patients’ other
data.

3.1 The Data

The ChestX-ray14 [15] database was released in 2017 by the United States National
Institutes of Health (NIH) and contains over 112,000 radiographic frontal chest
images of 30,805 patients. To exemplify, some of them are displayed in Fig. 1.

Each of them can be healthy or sick, affected by one or more of the following 14
diseases: Atelectasis, Cardiomegaly, Consolidation, Edema, Effusion, Emphysema,
Fibrosis, Hernia, Infiltration, Mass, Nodule, Pleural thickening, Pneumonia, Pneu-
mothorax. Furthermore, a “no finding” category represents the images in which none
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Fig. 1 Some images of the database ChestX-ray14

of the previously mentioned diseases have been detected. “No finding” is the diag-
nosis in 60361 radiographs, while, for example, the diagnosis of “only” pneumonia
is given in 322 cases. Few clinical and demographic information were also available:
age, patient gender and follow-up number. In fact, each patient may have performed
more than one radiographic examination, the progressive follow-up number indicates
the sequence in which the examination was performed.

The labels, corresponding to the pathologies identified in each image, were
extracted from radiological reports using natural language processing techniques
with an accuracy that is declared by the authors over 90% [15]. Therefore, we cannot
fully trust the labelling process and, furthermore, some researchers have raised many
doubts about the correctness of the labels. Most of the criticism has been advanced
by the radiologist Luke Oakden-Rayner [12] who, after observing the images, stated
that many incorrect labels are present in the data and thus he could not say what the
algorithmwould be really able to understand and learn from such images. In addition,
reports are mainly written in order to help other doctors, and the labels extracted by
them can be different from the final diagnosis of the physicians.

3.2 Previous Works on the Same Data

This dataset has been already used by many other researchers. Surely, the best-
known work was made by a Stanford’s team [13]. They proposed an architecture
called CheXNet based on the usage of the DCNN architecture called DenseNet-121
[8]. This work represents, at present, the state-of-the-art results in terms of AUC
scores. Other important works are Yao’s et al. [16] and Wang’s et al. [15]. The first
one is mainly based on an architecture consisting of a DenseNet as an encoder and on
a recurrent neural network as a decoder.Wang tries to apply some of the most famous
CNN architectures (excluding DenseNet), achieving the best results with ResNet-50
[7]. However, there are numerous other papers that address this problem on the same
or similar data using a deep neural network. For example, [1] proposed to apply a
pretrained CNN as a feature extraction from the images and then, in sequence, a
classification model. Another interesting work is that of Gündel [6], but these papers
did not use additional clinical data. More interesting, from our point of view, is the
Baltruschat’s [3] work.

The last paper uses a multi-input neural network and includes the analysis of 3
variables: age, sex and view position. The architecture of the model was based on
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the ResNet-50 model applied to 448x448 px images. Because of this choice, which
implies different input sizes than those expected by the model (224x224 px), the
authors added asfirst layer oneMaxPooling to reduce the size of the images.The three
variables were concatenated and directly linked to the output. In their work, some
choices were introduced that impede a direct comparison with other applications in
the literature. In particular, they did not use the ‘official partition’ (the benchmark
train/test split proposed by the authors of the database). Although they experimented
different architectures based on the ResNet model, the results obtained seem worse
than those of the previous papers. They stressed the importance of including clinical
data, but they did not consider the patient’s medical history, which, to some degree,
could be derived from the data. These aspects and the model architecture constitute
the main elements of differentiation from our proposal.

3.3 The Model

Inspired by the Stanford’s work, we decided to enrich the model by including the
few clinical and demographic information available with these images. To reach our
goal, we employed two independent networks that are joined at the end in order to
share information before making predictions (a schematic drawing can be seen in
Fig. 3).

The first and main branch consists of a Convolutional Neural Network, suitable to
capture the essence of theX-rays.Among themanypossibilities available,wedecided
to adopt the DenseNet-121 model, which is a CNN with 121 layers. The aspect that
characterizes the architecture is the presence of 4 dense blocks, respectively, with 6-
12-24-16 layers inside. The blocks are connected by transition blocks each consisting
of one convolutional layer and one pooling layer, which have the task of reducing
the dimensionality (see Fig. 2).

The potential of this architecture lies in the usage of a deep structure characterized
by many “short paths” between the layers that constitute the network itself [8]. This
innovative mechanism lets the information pass directly from a layer to all the other
ones, in a feed-forward fashion. This model has shown to be very efficient in terms
of optimization, achieving top performances on benchmark datasets as ImageNet.

The second and innovative step is the building of the parallel network which
processes the non-image characteristics. It considers age, opportunely rescaled using
min-max normalization, sex and other 14 new dummy variables using the follow-
up information. In fact, we constructed these new variables by recording patient
information obtained in the previous pathological history, if present in the data. This
branch of the network includes one input layer with 16 neurons and two hidden dense
layers with 128 neurons activated by a ReLU function.

Finally, the two networks are concatenated and connected to the output layer
consisting of 14 neurons with sigmoid activation function, whose task is to estimate
the probability of the presence of each disease in the X-ray image.



52 F. Crobu and A. Di Ciaccio

Fig. 2 The DenseNet-121 architecture [8], based on the repetition of two kind of blocks: the dense
block, able to perform the concatenation of many different convolution filters of different size, and
the transition block, which performs the compression of the information. In order to make possible
the last step, the CNN structure has to be flattened: this is performed using a Global Average Pooling
layer

Fig. 3 Multi-input neural network architecture. On the top the DenseNet-121 architecture [8] in
which the ‘top layers’ have been eliminated. The branch at the bottom consists of two hidden dense
layers applied to the non-image inputs. The two branches are then concatenated in order to produce
predictions

The data was divided using the official benchmark partition proposed by [15],
which consists of 80% for the training set and 20% for the test set. Tomake the tuning
of themodelwe used 20%of the training set as a validation set. The entire network has
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a complex structure with 123 ‘main’ layers and more than 7 million parameters. We
used the pretrained weights of DenseNet-121 (without the top-layers) on Imagenet
as initialization of the convolutional neural network, while the second network has
been trained from scratch using random weights. In the first epochs, to avoid the
corruption of Imagenet’s pre-trained weights, DenseNet’s weights were frozen. To
solve this multi-input multi-output problem, we have employed a weighted binary
cross-entropy loss function [5] for accounting the high imbalance among the classes.
Moreover, a data augmentation has been applied to the images. We tried several
alternatives, for example, adding noise or a slight zoom, but a simple horizontal flip
of the X-ray resulted to be the best choice. As regard the optimization technique, we
have chosen theAdammethodwith a tiny learning rate (0.001 and0.0001 tofine tune).
Adam combines the best properties of the AdaGrad and RMSProp algorithms to
provide an optimization algorithm that can handle sparse gradients on noisy problems
[5]. To perform the analysis, we used the Tensorflow library and one Nvidia Titan
XP 6100 GPU. To train one model it took up to 120 h.

4 The Results

Despite the limited clinical and demographic data available, our approach provides
an interesting improvement of the state-of-the-art results, confirming our intuition of
the architecture’s power. Following the literature, we have adopted the AUC (Area
Under theROCCurve) index as themain tool to evaluate the quality of the predictions
(Fig. 4). Table1 shows the comparison of the performances of our model with the
best results obtained by other researchers in terms of AUC scores.

Fig. 4 ROC curves of the 14 diseases on the training (left) and test (right). The diseases’ curves
are represented according to the decreasing AUC scores order
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Table 1 AUC scores comparison

Wang et al. Yao et al. CheXNet Multi-input

Official split Yes No No Yes

Atelectasis 0.716 0.772 0.809 0.815

Cardiomegaly 0.807 0.904 0.925 0.925

Effusion 0.784 0.859 0.864 0.866

Infiltration 0.609 0.695 0.735 0.731

Mass 0.706 0.792 0.868 0.898

Nodule 0.671 0.717 0.780 0.825

Pneumonia 0.633 0.713 0.768 0.774

Pneumothorax 0.806 0.841 0.889 0.927

Consolidation 0.708 0.788 0.790 0.800

Edema 0.835 0.882 0.888 0.893

Emphysema 0.815 0.829 0.937 0.947

Fibrosis 0.769 0.767 0.805 0.885

Pleural
thickening

0.708 0.765 0.806 0.830

Hernia 0.767 0.914 0.916 0.966

Average 0.738 0.803 0.841 0.863

It is evident in Table1 that the average AUC has been significantly improved by
our approach and, for most classes, we have clearly outperformed previous jobs.
The scores show great variability: from 0.731 for Infiltrations to 0.966 for Hernia.
The reason for these differences can be partly attributed to the imbalance of the data
(even if we have applied appropriate weights to the training set), and partly to the
differences between the pathologies: some of them are more difficult to identify with
the available information.

5 Conclusions

The results of this application confirmed the validity of our approach: a multi-input
neural network architecture can significantly improve predictions. Clearly, the idea
of combining different heterogeneous sources of information can be applied in many
other fields ofmedicine.Whenever the patient’s clinical and/or demographic informa-
tion is available, it is possible and fruitful to take this approach. Another possibility,
which could produce great strides in medical AI, could be the joint real-time work
with the radiologist [14]. In this way all the entities involved could enjoy significant
advantages: doctorswould be helped by the computerwhile analyzing the images and
the algorithm would be trained in real-life situations, making a tangible contribution
to its development.
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Finally, it would be remarkable to have more public medical data in order to
improve the researches, hoping that future studies in this sector will lead to a better
quality of life and healthcare all over the world.
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Studying Affiliation Networks Through
Cluster CA and Blockmodeling

Daniela D’Ambrosio, Marco Serino, and Giancarlo Ragozini

Abstract In this paper, we propose a new joint approach for analyzing affiliation
(two-mode) networks by using factorial methods and blockmodeling. In our recent
work, we pursued the joint use of a given factorial method, i.e., MCA/MFA, and a
clustering method, namely blockmodeling, but through distinct steps. Here we look
for a strategy that permits us to apply the twomethods simultaneously. To this aim,we
propose a method that allows us to group individuals and variables simultaneously
and directly for binary matrices, namely cluster correspondence analysis (cluster
CA). This method can be adopted when dealing with affiliation matrices having
a binary structure. Hence, we look at the way network positions (clusters) can be
incorporated in cluster CA to verify if cluster CA can properly represent specific
network structures. We illustrate our proposal through an empirical application on
an affiliation network of stage co-productions.

Keywords Affiliation networks · Blockmodeling · Cluster CA · Data
classification

1 Introduction

Affiliation networks are a special case of two-mode networks, which consist of two
disjoint sets: a set of actors and a set of events in which those actors are involved.
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One of the main concerns in studying such networks is to establish equivalent classes
of actors that are similarly embedded in the whole network, following some crite-
rion of equivalence, such as structural equivalence. Blockmodeling, with its recent
extensions [5], permits us to perform a clustering of the affiliation network units.

However, other methods proved equally apt to find relational patterns within
affiliation networks. Factorial methods, such as Multiple Correspondence Analysis
(MCA) [6], permit us to synthesize, analyze, and graphically represent the relational
structure in ametric space. Thanks to the relationships betweenMCA and blockmod-
eling, namely the measures that capture structural similarities in a network [3, 4], a
joint approach has been proposed to apply a clustering method, i.e., blockmodeling,
along with a given factorial method [10, 11].

Nonetheless, in this latter strategy, we can foresee three shortcomings. First, this
joint approach is more a tandem analysis than a simultaneous analysis. It performs
the different methods through consecutive but distinct steps (sequential approach).
Second, clusters do not emerge from the factorial analysis but are added to it only
as supplementary variables in order to be projected onto the reduced space. Cluster
memberships are thus new categorical variables not involved in the computation of
the factorial solution, which only accounts for binary (active) variables represent-
ing actors’ participation/non-participation in the events. Third, this strategy yields
different, albeit compatible, results from the distinct procedures used to analyze the
affiliation network structure.

Hence, in this paper, we propose a different method, namely cluster correspon-
dence analysis (cluster CA) [12], which simultaneously groups individuals and vari-
ables for binary matrices. It also permits us to evaluate the relations among groups in
terms of proper distances in a metric space and with respect to the dimensionality of
the factorial solution. By doing that, we attempt at better highlighting and evaluating
the relationships among network units both between and within the different clusters
(network positions). In line with the main argument of positional network analysis
[5], we want to deploy cluster CA to unveil underlying structures (dimensions) in the
network data. We present an application of this approach by analyzing the affiliation
network of the stage co-productions released in Campania (a region of Italy) during
the 2012/2013 season.

2 Factorial Methods and Blockmodeling for Analyzing
Affiliation Networks

Recently, a joint approach has been proposed that uses MCA and blockmodeling for
affiliation networks, relying upon the relationships that exist between factorial meth-
ods and blockmodeling. The network positions (i.e., the clusters), as derived from
the blockmodeling, are incorporated in the analysis made byMCA as supplementary
variables and represented in a metric space [10, 11].

In this approach, clustering and factorial methods, albeit jointly used to analyze
the network structure, are kept separated in the analytic process. In this paper, as an
advancement of such research line,we propose a factorialmethod that simultaneously
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performs a clustering of individuals and variables for binarymatrices, the latter being
no less than the type of variables concerned with event affiliations (participation or
non-participation in a given event).

Themethodwepropose in thiswork, namely clusterCA, combines cluster analysis
and CA and allows us to obtain both a low-dimensional representation of clusters
and attributes and a clustering of individuals relying on the profiles related to the
categorical variables [12]. Therefore, it permits us to obtain dimension reduction and
clustering of categorical data simultaneously [12].

Hence, our main goals are: (i) to look at the way network positions, as they result
from blockmodeling, can be incorporated in the cluster CA method and to assess
the advantages of this strategy with respect to the one provided by Ragozini et al.
[10] (see also [11]); (ii) to analyze specific network structures (e.g., core-periphery
and/or segmentation, in line with the theoretical premises discussed in [11]) and to
verify if cluster CA can reveal and clearly represent such structures. In fact, we aim
to propose this method in that it provides a unique and comprehensive framework
for such analytical purposes, in contrast with a sequential approach. The proposed
approach will be demonstrated in Sect. 4 by analyzing a real dataset consisting of an
affiliation network of stage co-productions.

3 Applying Cluster CA and Blockmodeling to Affiliation
Networks

An affiliation network G can be represented by a triple G (V1, V2,R) composed of
two disjoint sets of nodes, V1 and V2 of cardinality n and m, and a set of edges or
arcs,R ⊆ V1 × V2. By definition V1 ∩ V2 = ∅, the two disjoint sets V1 and V2 refer
to different entities. That is, the set V1 = {a1, a2, . . . , an} represents the actor set,
whereas the other, V2 = {e1, e2, . . . , em}, represents the set of m relational events.
The edge ri j = (ai , e j ), ri j ∈ R, is an ordered couple, and it indicates if an actor ai
attends an event e j . The set V1 × V2 can be fully represented by a binary matrix, the
affiliation matrix, F(n × m), with element fi j = 1 if (ai , e j ) ∈ R and 0 otherwise.

In affiliation networks, the structural equivalence principle states that two actors
are equivalent if they participate exactly in the same events [9]. Formally, given two
actors ai and ai ′ , the structural equivalence property ≡ states that ai ≡ ai ′ if and
only if ri j = ri ′ j ∀ j . If two actors ai and ai ′ are structurally equivalent, they are
indistinguishable, and one equivalent actor can substitute for the other one because
the two relational patterns are identical.

To discover the relational structure embedded in F, it is possible to consider it as
an usual case-by-variable matrix and then apply a factorial method like MCA. In
applying the latter, the indicator matrix Z is derived from the matrix F through full
disjunctive coding. Given that each relational event e j is a dichotomous variable, the
indicator matrix Z contains two columns for each e j , namely e+

j and e−
j , where e

+
j

is the value of a dummy variable coding the participation in the event, and e−
j is the

value of a dummy variable coding the non-participation. As all the variables in F are
dichotomous, the corresponding indicator matrix Z turns out to be a doubled matrix.
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Given our affiliation matrix F and the (doubled) indicator matrix Z derived from
the former, and following the approach proposed by van de Velden et al. [12], we
aim to findZK. It is the indicator matrix of dimensionality n × K , which includes the
cluster membership considered as a categorical variable such that Fc = Z′

KZ is the
table of cross-tabulations that includes all the associations between the cluster mem-
berships and the binary variables coding the participation (and non-participation) in
events.

Following the iterative procedure described by van de Velden et al. [12], skipping
its technical details, we propose to apply the algorithm for cluster CA as follows:

1. generate an initial cluster allocation ZK;
2. find category quantifications by using the usual CA algorithm;
3. construct an initial configuration of the relational patterns for the actors Y (as

defined by van de Velden et al. [12]);
4. update the membership matrix ZK by applying a clustering method to Y, and
5. repeat the procedure (i.e., go back to step 2) until convergence.

In the original paper [12], the first solution that was proposed was the random
assignment, while the clustering algorithm was the k-means. In this paper, we com-
pare the performance of such methods with the use of blockmodeling to provide
both the initial cluster allocation ZK and its updating. In this way, the network posi-
tions should be optimally separated with respect to the distributions over the events
and, simultaneously, events with different participation patterns should be optimally
separated [12].

The proposed approach will be demonstrated in the next section by analyzing a
real dataset consisting of an affiliation network of stage co-productions.

4 A Case Study of Stage Co-productions

The affiliation network that we analyze in this paper stems from a wider dataset of
theater companies and co-productions which we dealt with in our previous work
[11]. The original dataset comprised the stage co-productions that 20 theater com-
panies located in the Campania region of Italy released with 80 other companies
over four theater seasons (from 2011 to 2015). In this work we focus on the 43
co-productions (i.e., the events in the affiliation network) released and performed
in that region during the 2012/2013 season, which involved 40 companies (i.e., the
actors). We collected data on the co-productions and the companies involved in them
by means of web-based questionnaires completed by companies’ staff, along with
those companies’ websites to complement the data (for more details see [11]). In this
data structure, where the rows represent the companies and the columns represent
the stage co-productions, we expect to find groups of theater companies that share
similar participation patterns and that are involved in co-productions with similar
characteristics (i.e., belonging to the same artistic genres). At the same time, we
attempt to evaluate the structural similarities between the groups of companies on
the basis of their projections in a metric space.
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Table 1 Global results of the Cluster CA solutions from different ways to start initial cluster
allocation: randomly and by blockmodeling positions

Random start Blockmodeling positions

Number of clusters of the best
solution

5 6

Number of dimensions of the
best solution

4 5

Average silhouette width 0.57 0.12

Objective criterion 20.63 21.46

Between-SS/Total-SS 0.94 0.91

Participation in this kind of collaboration can be done for specific reasons. Indeed,
stage co-productions are intended to share costs and gain mutual advantages thanks
to the optimization of financial, material, and human resources and to pursue a joint
artistic project by sharing aesthetic and socio-cultural views.

As shown in our previous research [11], we know that the relational patterns of
co-productions can be more or less segmented. The motives for co-producing plays
(e.g., personal relations or preferred artistic genres) may induce producers to enter
more or less exclusive alliances with several partners. Furthermore, companies with
interdependent economic or symbolic resources, or with similar artistic motivation,
will participate in co-productions in relative isolation from other partners.

As noted above, we analyze the co-production network structure by means of
clusterCA, comparing its resultswith those obtained by the blockmodeling procedure
on the same network and using the network positions (clusters) that derive from the
blockmodeling as a custom starting partition for cluster CA.

4.1 Comparison of Different Ways to Start Initial Cluster
Allocation: Randomly and by Blockmodeling Positions

We run cluster CA using the ‘clustrd’ R package [7, 8], and we analyze the co-
production network in two ways: using the random procedure and the blockmodel-
ing positions (according to our previous work [11]) to start clustering. The results
are illustrated in Tables 1, 2, and 3, where the performances of the two different
procedures of the method are compared.

In both ways, the first step is to identify the proper number of clusters and dimen-
sions to be extracted. We make this choice through a procedure implemented in the
‘tuneclus()’ function of the ‘clustrd’ R package [7, 8]. It facilitates the selection of the
appropriate number of clusters and dimensions for the joint dimension reduction. It
also helps with selecting the clustering methods by assessing the cluster’s quality for
a certain range of clusters and dimensions. We select the solutions with an optimal
number of dimensions and clusters based on the average silhouette width (ASW)
index, which ranges from –1 to 1. The ASW index reflects the compactness of the
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Table 2 Results (by cluster) of the cluster CA solutions from different ways to start initial cluster
allocation: randomly and by blockmodeling positions

Size % Tot. ASW Within
cluster
sum of
squares by
cluster

CA clusters and members Cluster CA with random start

Cluster 1 - Other 32 80% 0.60 2.15

Cluster 2 - CampaniadeiFestival/Stabile
Napoli

2 5% 0.30 1.34

Cluster 3 - Bracco/Totò 2 5% 0.18 0.04

Cluster 4 - TeatrAzione/Magazzini 2 5% 0.85 0.63

Cluster 5 - Progetto Museo/Nuvole 2 5% 0.41 1.76

CA clusters and members Cluster CA with blockmodeling positions

Cluster 1 - Ex-Asilo and other 18 45% –0.09 2.85

Cluster 2 - Other 13 32.5% 0.30 0.67

Cluster 3 - TeatrAzione/Magazzini/Carrozza 3 7.5% 0.03 3.63

Cluster 4 - Progetto Museo/Nuvole 2 5% 0.13 2.19

Cluster 5 - Bracco/Totò 2 5% 0.85 0.07

Cluster 6 - CampaniadeiFestival/Stabile
Napoli

2 5% 0.23 1.82

clusters, and it indicates if the cluster structure is well separated (values near 1) or not
(values near –1) [8]. As shown in Tables 1 and 2, the random start procedure achieves
a (slightly) higher performance than the one based on the blockmodeling positions,
where the optimal ASW value is 0.57 and is obtained for a solution with 5 clusters
and 4 dimensions. Furthermore, as shown in Table 3 and on the factorial plane in Fig.
1, the clustering results of the two procedures of cluster CA are similar to each other
and also to those that derive from the blockmodeling classification. In both cases,
the best solution reproduces the classification we found for this network, with 6 or 5
clusters (starting from the blockmodeling or randomly, respectively). In particular,
the solution obtained through random start turns out to parallel the one obtained by
MCA (with the advantage of performing simultaneous classification and dimension
reduction). The differences between the results of the two clustering methods (i.e.,
blockmodeling and cluster CA) shown in Table 3 seem to reflect the ability of the
cluster CA method to identify only non-random patterns of structures.

These results allow us to identify three levels of meaning from three perspectives.
Notably, the location of the points on the factorial plane and their distances from the
axes origin can be read in terms of the following:

1. Network topology from the SNA and graph theory perspectives: points that lie
close to the origin indicate structures tending to randomgraphs; conversely, points
that are located far from the origin indicate the presence of some structure other
than a random graph.



Studying Affiliation Networks Through Cluster CA and Blockmodeling 63

Table 3 Comparison of clustering results: blockmodeling and the two cluster CA procedures

Blockmodeling positions and members

C1-PN C2-BT C3-CS C4-TMC C5-Ex-
A/O

C6-O

Clustering
of the
cluster CA

By
random
start

Cluster
1-Other

0 0 0 1 18 13

Cluster
2-CS

0 0 2 0 0 0

Cluster
3-BT

0 2 0 0 0 0

Cluster
4-TM

0 0 0 2 0 0

Cluster
5-PN

2 0 0 0 0 0

By block-
modeling
positions

Cluster
1-Ex-
A/Other

0 0 0 0 18 0

Cluster 2 -
Other

0 0 0 0 0 13

Cluster 3 -
TMC

0 0 0 3 0 0

Cluster 4 -
PN

2 0 0 0 0 0

Cluster 5 -
BT

0 2 0 0 0 0

Cluster 6 -
CS

0 0 2 0 0 0

Note: columns show blockmodeling positions (clusters); rows indicate clusters of the cluster CA
solution (random above and by blockmodeling positions below)

2. Distance from the independence hypothesis in the statistical perspective: points
that lie close to the origin show structures that approximate the independence
condition, while points that are located far from the origin show structures and
patterns that are far from the independence condition.

3. Substantive meaning in a theoretical perspective: points that lie close to the origin
indicate unstable and unstructured relational patterns, namely occasional collab-
orations, whereas points that are located far from the origin suggest stable and
structured relational patterns, namely habitual and strong collaborations.
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Fig. 1 Representation of organizations and Random Start (red stars) and Blockmodeling Positions
Start (blue crosses) centroids of the clusters in the space of co-productions. Labels of points close
to the center are omitted

4.2 Cluster CA for Affiliation Networks: Results From
Random Start Clustering

As noted, in this case, the results of the two procedures are very similar. However, we
choose to show only those related to the random start version, as they turned out to
be slightly better in discriminating between the most stable and significant relational
patterns and those without a clear structure (casual and unstable collaborations). In
fact, cluster CA with a random start procedure seems able to identify non-random
association patterns in a clearer way.

Hence, focusing on the random start solution (Fig. 2), we note that companies
belonging to the clusters that are located far from the origin—namely Clusters 2, 3,
4, and 5—are characterized by specific patterns of participation in co-productions,
those patterns being very distant from the probability of independence. Instead,
Cluster 1 lies close to the origin of the axes in that the related companies have a
common participation profile. That is to say, the profile is close to the null hypothesis
(no association between the participation profiles of those companies). For those
companies, there is no clearly identifiable pattern (they participate “by chance” in
co-productions). Figure 3 shows the co-productions for each cluster that deviate
most from the independence condition. This allows us to provide the reader with
further comments regarding the composition of the clusters and the co-productions
characterizing them.

On the basis of our prior knowledge of the field under investigation [10, 11],
we then attempt to interpret the joint representation shown in Fig. 2 by examining
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Fig. 2 Joint representation of organizations, centroids of the clusters, and co-productions

the positions of the cluster centroids and the co-productions on the factorial planes.
The first dimension discriminates between clusters and co-productions that denote
higher amounts of cultural (symbolic) capital [1, 2]. On the left-hand side of themap,
Clusters 2 and 5 are made of distinguished organizations that have a clear orientation
toward the dissemination of “high culture”. On the right-hand side are the clusters
and co-productions with less prestige and/or cultural vocation and that are more bent
on entertainment, namely Cluster 3 and 4.More specifically, organizations belonging
to the clusters located on the left-hand side benefit from formal acknowledgment by
the state or local authorities as key institutions in the cultural field [1], as is the case
with publicly funded theaters like Stabile Napoli (Cluster 2) and Nuvole (Cluster
5). This is also the case for Campania dei Festival (Cluster 2), a foundation that,
thanks to public subsidies, manages a renowned theater festival. In fact, this festival
guarantees accrued symbolic capital to the theater companies and performers that
appear in its program [11].

Another organization, namely Progetto Museo (Cluster 5), is an association of
art historians devoted to promoting educational activities related to the cultural her-
itage, and to museums in particular, in the Campania region. Liaisons - i.e., strong
relationships based on recurrent co-productions that reinforce each other’s cultural
capital - occur between the companies that belong to each of these two clusters.
The same culturally oriented purposes hold true for the co-productions located on
the same side of the map. They comprise well-known classic and contemporary
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Fig. 3 Co-productions that
deviate the most from the
independence condition (C1
has been removed because it
is not informative)

(a) Cluster 2: Campania dei Festival - Stabile Napoli

(b) Cluster 3: Bracco-Totò

(c) Cluster 4: TeatrAzione - Magazzini

(d) Cluster 5: Progetto Museo - Nuvole
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plays often presented with revised play scripts, but also youth theater or new drama
projects, with a key propensity for more serious themes and elaborate styles and
languages. These traits are clearly present in co-productions that most deviate from
the independence condition in Cluster 2, in Fig. 3a. They are Plauto’s Vantone, the
innovative drama project Un giorno tutto questo sarà tuo (denoted by the label UN
GIORNO), a revisited version of Antigone, and Shakespeare’s Antonio e Cleopatra,
which can also be seen on the left-hand side of the factorial plane (Fig. 2). As for
Cluster 5(d), the labels BALLO CORTE, CARAVAGGIO, SANGUE and BOTTEGA
denote co-productions aimed at joining theater, history, art, and education. They con-
firmwhat was said above by their marked deviation from the independence condition
(see also the left-hand side of the map in Fig. 2).

The right-hand side of the map is instead characterized by the presence of the
companies Bracco and Totò (Cluster 3), which devote themselves to the traditional
and markedly popular segment of Neapolitan dialect productions made by local
playwrights and directors. Those productions are, nonetheless, very different from
the plays by Eduardo De Filippo, a renowned and “cultured” figure of the Neapolitan
theater, these plays being often presented by the companies of the Clusters 2 and 5. In
fact, the five co-productions that are more distant from the independence condition
in Cluster 3, as shown in Fig. 3b, are all Neapolitan comedies and musicals of the
kind mentioned above. However, on the bottom-right of the map in Fig. 2, Magazzini
and TeatrAzione (Cluster 4) are, instead, more steadily devoted to youth theater, but
they lack the amount of symbolic recognition that characterizes the companies of
Clusters 2 and 5. In fact, differently from the latter, they are not acknowledged by the
state as key theater institutions. Indeed, the companies Magazzini and TeatrAzione
put great effort into producing plays that convey ideas about socially relevant issues
which suit the educational needs of the youth and of school pupils. This is the case
with the four co-productions (CAFE SHOAH, SEGRETO GAIA, UOMO BESTIA,
BORSELLINO) more distant from the probability of independence in Cluster 4 (see
Fig. 3c and Fig. 2, bottom-right). However, they do not receive the same recognition
for their works as that granted to the productions in Clusters 2 and 5.

The second dimension best highlights the opposition between educational and
entertainment purposes. It clearly distinguishes the companies belonging to Cluster
4—but also to those in Cluster 5 (in that companies like Nuvole and Magazzini
share a preference for educationally driven pieces)—from the mere entertainment
that characterizes the companies of Cluster 3. These latter are more clearly market-
driven and prone to respond to the audience’s needs for amusement and “popular”
theater pieces (e.g., comedy, cabaret, and musicals).

5 Concluding Remarks

By focusing at the same time on classification and dimension reduction, cluster CA
helps us understand how and why we observe certain relational (structural) patterns
in an affiliation network. Given the results we have obtained, this method may be a
good candidate to accompany blockmodeling in the analysis of affiliation networks.
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In sum, we noted that cluster CA allowed us to both synthesize the relevant network
structure and obtain a classification of actors starting from their event affiliations.
Moreover, it provided a joint representation, in a metric space, of both actors/events
and the cluster they belong to, allowing us to quantify their distances.

In conclusion, we believe that this method can be further developed as follows.
First, we need to test the cluster CA method with more complex network structures.
Second, it can be useful to perform a simulation study to evaluate the performances
of the cluster CA method with network structures that have different characteristics
(density, etc.). Finally, in an SNA perspective, it may be interesting to find a way
to modify the criterion function of the cluster CA so that the performed procedure
leads to indirect blockmodeling.
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Sectioning Procedure on Geostatistical
Indices Series of Pavement Road Profiles
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Abstract Road sectioning plays a crucial role in Road Asset Management Sys-
tems and nowadays high-speed laser-based devices are able to quickly collect a huge
amount of data on pavement surface characteristics. However, collected data can-
not be directly employed in road maintenance planning but synthetic values have
to be derived and this implies a high computational effort in identifying effective
synthetic indices and road homogeneous sections. To this purpose, the Geostatistical
tools, in terms of Variogram scheme have been applied for characterizing road sur-
face. “Range” and “Sill” values, deriving from the Variogram application, have been
proposed as pavement surface characteristics synthetic indices (namely the macro-
texture) to identify different road surfaces. Once that Variogram scheme has been
applied, a dynamic sectioning procedure can be employed to detect homogeneous
road pavement sections and compared with more traditional descriptors. Preliminary
results obtained by an experimental smart road, seem to highlight that the Variogram
variables can be promising in both road texture characterization and homogeneous
section identification.
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Keywords Pavement management · Road surface macrotexture · Geostatistics
variogram scheme · Spatial data analysis · Dynamic sectioning

1 Introduction

A Pavement Management System (PMS) is a decision support system that provides
effective help to road managers for planning maintenance interventions on a road
pavement network in order to reach predefined performance goals that are consistent
with budget constraints within a short-, medium-, and long-term scenarios. Nowa-
days, a PMS acts as a “sub-module” of a more general Transportation Infrastructure
Asset Management System comprising all the different facilities (such as safety bar-
riers, lighting or hydraulic systems, geotechnical structures, and so on). However,
its basic principles rely on the possibility to describe pavement condition by means
of several parameters that can be measured and collected along the road on a rou-
tine basis. Among the different parameters collected according to the existing Road
Standards and Guidelines [2, 3], pavement surface characteristics [19] are the most
significant as they affect several functional properties of road pavements such as the
vehicle riding comfort and the tire-road friction, noise, and rolling resistance. Pave-
ment surface characteristics are mainly measured by spectrally decomposing the
acquired longitudinal road profiles in order to evaluate the different texture scales.
The macrotexture scale, which is associated with the road profile wavelengths lying
between the 0.5 and 50 mm range [7, 8, 11, 19], appears to be one of the most
critical as it affects skid resistance, splash and spray phenomenon, hydroplaning,
tire-pavement noise, and rolling resistance. As a matter of fact, different macrotex-
ture descriptive indices can be derived: one of the most known and used is an indirect
measure calledMean Profile Depth (MPD) evaluated according to [2], althoughmore
reliablemacrotexture synthetic indices have been recently proposed [7] together with
new methods for the texture prediction [8]. On the other hand, in the past decades,
measuring methods and techniques for pavement condition evaluation made great
strides and several High-Speed Laser-based (HSL) measuring devices have been
developed and employed. Due to technologies, operating conditions, and intrinsic
heterogeneous nature of the road pavement surface, the one-dimensional sampled
profile can be affected by noise and invalid readings. For these reasons the HSL
data usually undergo a pre-processing (filtering) procedure, according to several
approaches [7, 16]. However, the huge amount of data collected cannot be directly
used in the databases, but must be previously analyzed, in order to identify the sta-
tistically significant values to be associated with each homogeneous road section
(pavement condition parameters as almost constant). Several sectioning methods are
available in the literature; however, different aspects have to be still investigated
in order to identify better synthetic indices for the texture characterization. In this
paper, an innovative approach is proposed to describe the macrotexture of road sur-
face employing geostatistical tools for characterizing one-dimensional road profiles.
Then the sectioning process has been applied on both traditional synthetic index
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(MPD) and spatial index obtained by the geostatistical approach showing a better
performance of the latter proposed approach.

2 Geostatistical Tools for Road Pavement Characterization

Geostatistics is a field of the Statistics focused on the study of spatial or regionalized
phenomena, which are characterized by a spatial correlation [5]. Thanks to this
peculiarity, several applications within environmental aspects have been performed
[21, 22] and encouraging results have been achieved from preliminary attempts for
the road profiles analysis [10]. In this case, the spatial structure of the pavement
texture has been studied using the geostatistical tools, highlighting a correlation
between the pavement characteristics (grain size andbinder) and the spatial properties
of the Variogram. This spatial tool describes the relation between twomeasured point
at “h” distance. The experimental variogram γ (h) is estimated following Eq.1:

γ (h) = 1

2N (h)

N (h)∑

i=1

(Z(xi + h) − Z(xi ))
2 (1)

where Z(xi ) is the measured variable at location xi , Z(xi+h) is the measured variable
at location xi+h, and N(h) is the number of couple of points at h distance. The
spatial structure is obtained by modeling the experimental variogram according to
the specific functions proposed in literature [5, 18]. Themost common simplemodels
are reported in Table 1.

Those variogram models are increasing function with distance, characterized by
two properties: the range “a” and the sill “C”. The range represents the distance
beyond which the data exhibit a spatial correlation, and the sill is the value of the
variogram reached the range. Several methodologies are available to automatically
fit the chosen model with the experimental variogram. The optimal definition of the

Table 1 The most common simple variogram models

Model Equation

Spherical γ (h) =
{
C

[( 3h
2a

) −
(

h3

2a3

)]
, f or 0 ≤ h < a

C, f or h ≥ a
(2)

Exponential γ (h) = C
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a
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( h
a

)7]
, f or 0 ≤ h < a

C, f or h ≥ a

(5)
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sill and the range can be obtained by using standardminimization procedures [18]. In
this paper, the calculations have been performed with R software [20] and RGeostats
plugin [17]. The automatic variogram modeling is based on an iterative least square
algorithm, called foxleg [9]. Both MPD and the variogram model properties, are
considered as indices of the pavement texture and used to identify the homogeneous
pavement sections.

3 Brief Overview on Road Sectioning Methods

Pavement condition data usually vary along the road alignment and since data sam-
pling has always been pursued by means of a discrete approach sectioning method
were borrowed by typical industrial process control techniques. The key aspect is
based on the identification of the transition point between two adjacent homogeneous
sections, namely the “break points”. Break points can be detected bymeans of graph-
ical or statistical approach. The Cumulative Difference Method (CDA) proposed by
the American Association of State Highway Transportation Officials (AASHTO) [1]
and the method of CUMulative SUMs (CUMSUM) [4] use a graphical approach
and became very popular because of the ease of implementation and use in PMS,
however, this approach gives rise to some problems related to objective identification
of transition points. Statistical approaches offer more sound and automated methods
to identify the position of breakpoints since their basic principle relies on the fact that
pavement data collected can be described as time series characterized by structural
changes. These latter methods can be further distinguished in the following:

• linear, if the algorithm to detect and statistically verify the break points is sequen-
tially applied along the road chainage, thus by an analysis approach based on a
moving window,

• non-linear, if the method is applied to the entire dataset thus providing the optimal
partition that meets predefined requirements and statistical criteria.

In the former group, the most significant are the Dichotomic method developed by
Laboratoire Central du Ponts et Chaussées (LCPC) [15] and the Pruned Exact Linear
Time with the Empirical Distribution of the cost function (ED-PELT) [12], whereas
at the latter one belong: the Bayesian Methods [23], minimum Root Mean Square
(RMS) based methods (MINRMS), or the Linear Model with Multiple Structural
Changes (LMSC) Method as the method introduced by James and Matteson [13]
and the method developed by Killick, Fearnhead, and Eckley [14]. A benchmarking
among these different methods is reported in [6].
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Fig. 1 a Measured profile by the HSL and b corresponding MPD values along the road profile

4 Data Collection and Analysis

The road pavement characterization is mainly based on the analysis of the road
surface, which can be sampled on a one-dimensional or two-dimensional basis. In
this paper, a single one-dimensional road profile has been collected with sample
spacing of about 0.5 mm (see Fig. 1a) by means of an HSL device, with a laser
spot of 0.2 mm and a sampling frequency of 64 kHz. Pavement profile measurement
has been performed at the Virginia Smart Road, which is a full-scale, closed test-
bed research facility managed by the Virginia Tech Transportation Institute (VTTI),
where 24 different road pavement typologies have been laid along an overall length
of about 2300 m. According to the [2], the sampled profile underwent a cleaning
process, enabling to remove spikes, drop-outs, and data trend. On the filtered profile
in parallel theMPD has been evaluated (see Fig. 1b) and the Geostatistical tools have
been applied. Due to the one-directional sampling of the collected road profiles, the
isotropy and anisotropy analysis has been inevitably reconducted to the evaluation
of one-directional experimental semivariograms.

The one-directional experimental semivariograms of the profile have been calcu-
lated with a lag distance of 0.5 mm and the number of lag of 30 (15 mm) on a moving
window of 1 m. The four models of Table 1 have been automatically fitted (Fig. 2).

In order to identify the appropriate model, statistical tests in term of the Pearson
correlation coefficient (ρ), the Kendall rank correlation coefficient (τ ), the Spear-
man’s rank correlation coefficient (rs), and the R2 (also in term of angular coefficient
and intercept), have been calculated and summarized in Table 2. As can be seen, the
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Fig. 2 Experimental semivariogram of a meter of road pavement and a Spherical, b Exponential,
c Gaussian and d Cubic variogram Models

Table 2 Average values of the statistical descriptors for comparison between the different vari-
ogram models

Model ρ τ rs R2 Ang. Coeff. Intercept

Spherical-Fig. 2a 0.9880 0.7869 0.8660 0.9763 0.9756 0.0004

Exponential-Fig. 2b 0.9877 0.7041 0.8038 0.9757 1.0342 –0.0410

Gaussian-Fig. 2c 0.9787 0.7071 0.8015 0.9582 0.9176 0.0491

Cubic-Fig. 2d 0.9780 0.7737 0.8566 0.9568 0.9166 0.0496

Spherical Model is more appropriate to describe the experimental semivariogram
evaluated on the road profiles.

The Range and Sill evaluated by the Spherical model have been represented
in Fig. 3. As it is possible to see, the Range and Sill (R&S) series describe two
different features of the samemeasured profile thus providing additional information
on structural changes that can be used by sectioning methods.

In order to perform the sectioning process, among the aforementioned statistical
methods, the LCPC Method, the ED-PELT, and the methods proposed in [13, 14],
on both MPD and the R&S series, have been employed and compared. In this case,
the comparison in terms of the number of identified real break points has been
summarized in Table 3.
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Fig. 3 Sill and range representation along the road profile

Table 3 Identification of the homogeneous segments with different sectioning methods on both
MPD and R&S series

Sectioning methods Series

R&S MPD

ENVCPT package—mean 17/24 15/24

ENVCPT package—AR1 17/24 8/24

ENVCPT package—AR2 16/24 7/24

CHANGEPOIT.NP package
(mean)

17/24 13/24

ECP package 11/24 15/24

LCPC 20/24 15/24

The LCPC method, with a significance level (α) = 5% and sample size of 25,
appears to be the more efficient in the identification of the homogeneous pavement
road sections, moreover, the R&S indices provide more satisfactory results than the
MPD for 5 sectioning methods on 6 tested.

5 Conclusion

In Pavement Management Systems, pavement condition data are nowadays col-
lected bymeans of high-performancemeasuring devices.However, the acquired huge
amount of data requires a sectioning analysis in order to obtain synthetic descriptors
to be used in the planning of maintenance interventions for specific road sections.
The basic idea is to apply a Variogram scheme, derived from the Geostatistics field,
to the filtered road profile in order to obtain a transformed dataset that is charac-
terized by two statistical descriptors (Range and Sill—R&S). It is believed that this
dual representation can better highlight the structural changes in the dataset in order
to improve the effectiveness of road sectioning procedures, with respect to more
traditional descriptors such as the MPD. A preliminary experimental validation of
this procedure has been carried out on real pavement data collected by means of the
HSL Device on the Virginia Smart Road (an experimental track that is composed
of several pavement sections). Different variogram models have been applied and
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compared and the Spherical one was more appropriate to describe the road texture;
its relative R&S indices have been selected, together with theMPD, for the following
sectioning process. In order to detect homogeneous road sections, different methods
have been used and compared. The obtained results showed that the R&S indices
produce more satisfactory results than MPD (for 5 sectioning procedures on 6) and
the LCPC method detects the highest number of real breaks. However, further inves-
tigations have to be carried out in order to improve the proposed procedure and to
extend the validation to a wider dataset.
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Directional Supervised Learning
Through Depth Functions: An
Application to ECG Waves Analysis

Houyem Demni

Abstract The present work investigates arrhythmias which can be detected from
Electrocardiography (ECG) waves. Detecting cardiac arrhythmia helps indeed to
prevent sudden and untimely deaths. Here, directional depth-based classifiers are
employed to predict the presence or absence of cardiac arrhythmia. A comparison
of their performance with respect to the directional Bayes rule is also provided.

Keywords Distance-based depth · Directional variables · Supervised
classification

1 Introduction and Motivations

Over many decades, linearization was used to explore spherical data by trying to cir-
cumvent their non-linear nature. Then, Fisher [5] showed that linear approximations
hamper studying some specific phenomena such as the remanent magnetism in sedi-
mentary rocks. Thereafter, several studies have been dedicated to analyze directional
data in an appropriate way due to their distinctive properties (e.g. [8, 11]).

The use of directional statistical methods has been motivated by interesting appli-
cations in many fields such as astronomy, bioinformatics, neurology, genetics, aero-
nautics, medicine, and machine learning. Here, we focus on the application of direc-
tional supervised learning techniques to Electrocardiography (ECG) wave analysis.
The aim is to find a function that assigns new patients to either the class of healthy or
ill people, based on values obtained from their ECGwaves. To this end, the predictive
variables in our problem are not treated as linear continuous variables anymore but
as directional variables measured in angles.

Within the context of directional supervised classification, new depth-based clas-
sifiers have been quite recently introduced: the max-depth classifier [14], the DD-
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classifier [13], and the depth distribution classifier [2]. For these classifiers, both
optimality properties and simulation results are available.

Vencalek et al. [17] derived the conditions underwhich someof these classifiers are
optimal in the Bayes sense. For instance, they found that the max-depth and the depth
distribution classifiers are optimal if the underlying distributions are rotationally
symmetric, unimodal, differ only in location, and have equal prior probabilities.

Robustness properties of themax-depth, depth versus depth and depth distribution
classifiers were investigated under different contamination schemes in [3]. It came
out that the DD-classifier performs better or equivalent to the empirical Bayes while
it outperforms the max-depth and the depth distribution classifiers in the presence of
noise.

What is still lacking is to evaluate how these depth-based directional classifiers
perform on real data. This short note has thus the goal of starting fulfilling this
gap. With that aim, this work analyzes the performance of the max-depth, the depth
versus depth, and the depth distribution classifiers on a real data set which is well
known in the supervised learning literature. It refers to some arrhythmia data used to
discriminate between healthy and ill people. In our study, we focus on the directional
predictors which come from ECG waves. The performance of such classifiers is
also compared with the performance of the directional Bayes classifier under the
hypothesis of a von Mises-Fisher distribution.

The work is organized as follows. Section 2 presents the arrhythmia data set, a
description of the directional variables, and the overall aim of the analysis. In Sect. 3,
we briefly present the mentioned depth-based classifiers for directional data. Section
4 reports results on the performance of the depth-based classifiers when applied to
the ECG waves problem. In Sect. 5, some final remarks are offered to the reader.

2 The Arrhythmia Data Set

Arrhythmia refers to irregular heartbeats, and it can be evaluated by looking at the
electrical activity of the heart, recorded through Electrocardiogram (ECG) waves.
Analyzing ECG waves can provide insights into heart health issues. These waves
can be in turn be treated as angular variables.

The arrhythmia data [16] is one of the data sets available within the UCI Machine
Learning Repository [6]. It reports the presence of different types of cardiac-
arrhythmia from ECG as well as its absence. The original data set contains 452
patient records described by 279 predictive variables (measurements, patient data,
and ECG recordings) and 16 classes: the first refers to normal ECG (healthy patients)
while classes 2–15 correspond to different types of arrhythmia and class 16 refers to
the unclassified patients.
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2.1 Previous Studies

Among the many, the studies which exploited arrhythmia data while adopting direc-
tional data techniques are considered here.All of themdealt with thewaves as angular
variables.

First, Lopez-Cruz et al. [10] proposed an extension to directional data of the naive
Bayes classifier and the selective naive Bayes for von Mises and von Mises-Fisher
distributions. They showed their superiority with respect to other versions of naive
Bayes.

Then, Fernandes and Cardoso [4] introduced a discriminative binary classifier for
mixed data (linear and angular), and they showed that their method is competitive to
traditional classifiers. More recently, Pernes et al. [15] proposed several versions of
directional support vector machines that support both angular and linear predictors
and compared them to several directional classifiers.

The best average misclassification rate for the arrhythmia data is 0.209, and it
was obtained in [15] by a directional logistic regression model. However, we note
that the performances reported within these three papers are not directly compara-
ble, given that different simulation settings have been adopted within each of them.
Furthermore, such performances are not comparable with our case study results as
well, where the focus is on the discriminant power of the directional variables on
their own.

2.2 Scope of the Analysis and Variable Description

In line with the previously mentioned studies [4, 10, 15], unclassified samples were
removed and the study goal was transformed into a binary classification problem
(normal vs. arrhythmia).

As predictors, the four angular variables characterizing ECG waves are consid-
ered. That is, the aim of our study is to discriminate between healthy and non-healthy
patients with arrhythmia based on the values obtained from their ECG waves. Table
1 summarizes the number of directional variables, the number of classes, and the
number of observations per class of the evaluated data set.

Table 1 Summary of the main characteristics of the data used in this work, including the number
of directional (dir.) features and the number of observations (obs.) per class (class 1—normal vs.
class 2—arrhythmia)

Number of dir.
variables

Classes Number of obs. Number of obs. per
class

4 2 430 Class 1, normal: 245
Class 2, arrhythmia:
185
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The angular variables characterize the vector angles from the front plane of four
ECG waves, and they are measured in degrees in the original data set. The P-wave
reflects the atrial depolarization, the QRS-wave represents the depolarization of the
ventricles, the T-wave describes the rapid re-polarization of contractile cells while
the QRST-wave corresponds to the global ventricular re-polarization.

By looking at the rose diagram of each observed distribution separately for the
groups of healthy and ill people, we saw they are unimodal. Hence, their distribution
can be properly investigated by means of circular box-plots [1], which are here
represented in Fig. 1.

We note that the distribution of the QRS-wave angles span over more than half
a circle, while all the others have angles in (0, π). As a consequence, they can be
mapped into a 4-dimensional hyper-sphere embedded in a 5D space. Directional
supervised learning procedures act directly on such a hyper-sphere.

Fig. 1 Circular box-plots of
the angular variables
exploited in this study. By
column: healthy patients
(left) and patients with
arrhythmia (right). By row:
QRS-wave, T-wave, P-wave,
and QRST-wave
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Some of the observed marginal distributions are substantially symmetric, others
are clearly asymmetrically distributed (e.g. the P-wave angles and, to a certain extent,
the QRSTwaves). Looking at differences between the two groups, the T-waves seem
to have the higher marginal ability to discriminate.

3 Directional Depth-Based Supervised Learning
Techniques

In this section, the threemain directional depth-based supervised classificationmeth-
ods are briefly reviewed: the max-depth classifier, the depth versus depth classifier
(DD-classifier), and the depth distribution classifier.

Considering K empirical distributions Ĥi , i = 1, .., K , the directional max-depth
classifier is given by

classmax (x) := argmaxi D(x; Ĥi ),

where x ∈ S(q−1) is a new observation to be classified, and D(x, Ĥi ), i = 1, .., K
is the empirical depth of x with respect to the directional empirical distributions
Ĥ1, .., ĤK , respectively.

The directional DD-classifier is a generalization of the max-depth classifier and
it is given by

classDD(x) := argmax
i

r(D(x; Ĥi )), (1)

where r(.) is a real increasing function which has the aim of well separated points in
the depth versus depth space (DD-plot). Different choices have been considered for
r(.). Li et.al. [9] suggested considering a polynomial discriminating function, whose
degree has to be estimated, while Mosler and Mozharovskyi [12] adopted a k-NN
decision rule.

The directional depth distribution classifier is given by

classdd(x) := argmaxi FD(x, Ĥi ),

with

FD(x, Ĥi ) := P(D(X, Ĥi ) ≤ D(x, Ĥi )),

where D(x, Ĥi ), i = 1, .., K is the empirical depth of x with respect to the empirical
distributions Ĥ1, .., ĤK , respectively, and hence FD(., Ĥi ) is the cdf of the depth
function under Ĥi .

For each classifier, a depth function must be adopted. Here, distance-based depth
functions are considered. They are defined as follows [14]:

• The cosine depth: Dcos(x, H) = 2 − EH [(1 − x ′X)];
• The arc-distance depth: Darc(x, H) = π − EH [arccos(x ′X)];
• The chord depth: Dchord(x, H) = 2 − EH [√2(1 − x ′X)].
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Here, x ∈ S(q−1) is a point whose depth is evaluated with respect to the directional
distribution H , E[.] is the expected value, and X is a random variable from H . The
empirical depth is obtained by replacing H with Ĥ for each depth function.

Finally, for the sake of completeness, we recall how the empirical Bayes classifier
is defined. We have

classBayes(x) := argmaxi ĥi (x)pi

where pi is the prior probability corresponding to the distribution Hi , i = 1, .., K ,
and ĥi () is the estimated assumed density for the ith group. In directional supervised
learning, the Bayes classifiers has been used with the hi ()’s being von Mises-Fisher
densities with different location and concentration parameters [10].

4 Performance of Depth-Based Classifiers on ECG Waves

As discussed, the aim of this study is to evaluate the performance of depth-based
classifiers on a set of real data arising from an ECG analysis. With that goal, the
angular variables were transformed to their Euclidean coordinates (units vectors)
and a simulation study was performed. In line with the existing literature [4, 10, 15],
a threefold stratified cross-validation method where the percentage of samples for
each class is preserved was considered. The experiment was repeated 100 times.

Ten different possible solutions were evaluated and compared. Each of the three
mentioned classifiers was combined with three different directional depth functions
(cosine, chord, and arc-distance), and all of themwere compared against the empirical
Bayes classifier under the von Mises-Fisher assumption.

For the r(.) function in Eq.1, the k-Nearest Neighborhood (k-NN) discriminant
rule has been adopted in line with [3, 14], with the tuning parameter k chosen by
cross validation. The performance of the classifiers was evaluated by means of the
misclassification rate which is the number of misclassified observations over the
sample size in each replicated sample, and by the macro F1-score which is the
unweighted mean value of the individual F1-scores of each class.

The distribution of the misclassification rates obtained by the max-depth, depth
distribution, DD- andBayes classifierswhen associatedwith different distance-based
depth functions are here provided through box-plots (Fig. 2) and summarized through
the average misclassification rates (Table 2). The macro F1-scores of the directional
classifiers are also given in Table 2.

Although the two classes are imbalanced, the average macro F1-score and the
average accuracy of the classifiers are consistent with each other: the best classifier
in terms of average accuracy is the best classifier in terms of average macro F1-score
too (Table 2).

The DD-classifier achieves the best overall performance in terms of average mis-
classification rate (Fig. 2, most right graph-box). Furthermore, it performs better than
the Bayes rule independently from the choice of the depth function. The depth dis-
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Fig. 2 Box-plots of misclassification rates (MR) of the Bayes, max-depth (MD), depth distribution
(Dd), and DD-classifiers (DD) when associated with the cosine, chord, and arc-distance depth
functions. In each graph-box (excluding the Bayes), the most left box-plot refers to the cosine
depth, the middle one to the chord depth, and the most right to the arc-distance depth. The best
performance is achieved by the DD-classifier associated with the chord depth

Table 2 Average misclassification rate (AMR) and average macro F1-score of the Bayes, max-
depth, depth distribution, and DD-classifiers when associated with the cosine, chord, and arc-
distance depth functions. Best achieved results are highlighted in bold

Classifier Average
misclassification rate
(AMR)

Average macro
F1-score

Empirical Bayes 0.36 0.63

Max-depth Cosine 0.40 0.60

Chord 0.39 0.60

Arc-distance 0.42 0.52

Depth distribution Cosine 0.36 0.63

Chord 0.35 0.64

Arc-distance 0.35 0.63

DD-plot with k-NN Cosine 0.35 0.64

Chord 0.33 0.67
Arc-distance 0.34 0.66

tribution and the DD-classifiers perform equivalent to the empirical Bayes classifier
(if not slightly better). The worst performance is given by the max-depth classifier.

In general, the choice of the depth function seems not to be particularly influential
on the performance of the three classifiers, although some small differences arise.
In addition, by looking at the confusion matrix of the classifiers, it appears that it is
in general more difficult to classify patients with arrhythmia. The higher proportion
of misclassified observations arises indeed from class 2 (observations are wrongly
assigned to class 1 while they are coming from class 2).
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5 Final Remarks

In this work, directional distance-based depth classifiers were applied to some
arrhythmia data in order to distinguish between the presence or absence of car-
diac diseases. We investigated the performance of the max-depth, depth distribution,
depth versus depth classifiers, and the Bayes rule. Angular variables arising from
ECG recordings were considered.

In directional supervised learning, the standard Bayes rule assumes data in each
group coming from a von Mises-Fisher distribution. If so, the Bayes rule yields the
best available discriminant procedure. On the other hand, real data not necessarily
fulfill such or any other parametric assumption. This is why it is always of interest to
compare the performance of new methods against the Bayes rule on specific fields
of application.

On the considered data, we had that the DD-classifier largely outperforms max-
depth and it performs better than the depth distribution and the empirical Bayes
classifier. On the other hand, the performance of the depth distribution classifier is
equivalent to the Bayes rule, and the max-depth classifier definitely provides the
worst behavior over all the considered methods.

As further research, we see the necessity of developing new depth-based methods
which combine both linear and directional variables to fully exploit the informa-
tion available within the data set. It would be also of interest to test the discussed
directional supervised learning methods on other real data applications within this
field.
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comments and suggestions which improved the presentation of this work.
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Penalized Versus Constrained
Approaches for Clusterwise Linear
Regression Modeling

Roberto Di Mari, Stefano Antonio Gattone, and Roberto Rocci

Abstract Several approaches exist to avoid singular and spurious solutions in maxi-
mum likelihood (ML) estimation of clusterwise linear regressionmodels.Wepropose
to solve the degeneracy problemby using a penalized approach: this is done by adding
a penalty term to the log-likelihood function which increasingly penalizes smaller
values of the scale parameters, and the tuning of the penalty term is done based on the
data. Another traditional solution to degeneracy consists in imposing constraints on
the variances of the regression error terms (constrained approach). We will compare
the penalized approach to the constrained approach in a simulation study, providing
practical guidelines on which approach to use under different circumstances.

Keywords Clusterwise linear regression · Penalized likelihood · Scale constraints

1 Introduction

Let y1, . . . , yn be a sample of independent observations drawn from the response
randomvariableYi , each observed alongsidewith a vector of J explanatory variables
x1, . . . , xn . Let us assumeYi |xi to bedistributed as afinitemixture of linear regression
models, that is
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f (yi |xi ;ψψψ) =
G∑

g=1

pgφg(yi |xi , σ 2
g ,βββg) =

G∑

g=1

pg
1√
2πσ 2

g

exp

[
− (yi − x′

iβββg)
2

2σ 2
g

]
,

(1)
where G is the number of clusters and pg, βββg, and σ 2

g are the mixing proportion,
the vector of J + 1 regression coefficients that includes an intercept, and the vari-
ance term for the gth cluster. The set of all model parameters is given by ψψψ =
{(p1, . . . , pG;βββ1, . . . ,βββG; σ 2

1 , . . . , σ 2
G) ∈ R

(G−1)+(J+1)G+G : p1 + · · · + pG = 1,
pg > 0, σ 2

g > 0, for g = 1, . . . ,G}.
The likelihood function can be specified as

L (ψψψ) =
n∏

i=1

{ G∑

g=1

pg
1√

2πσg
2
exp

[
− (yi − xxx′

iβββg)
2

2σ 2
g

]}
, (2)

which we maximize to estimate ψψψ either by means of direct maximization or with
the perhaps more popular EM algorithm [5]. However, there is a well-known compli-
cation in ML estimation of this class of models: the likelihood function of mixtures
of (conditional) normals with cluster-specific variances is unbounded [4, 11].

A traditional solution to the problem of unboundedness is based on the seminal
work of [7] which, for univariate mixtures of normals, suggested imposing a lower
bound to the ratios of the scale parameters in the maximization step. The method
is equivariant under linear affine transformations of the data. That is, if the data
are linearly transformed, the estimated posterior probabilities do not change and the
clustering remains unaltered. Recently, in the multivariate case, [12] incorporated
constraints on the eigenvalues of the component covariances matrices of Gaussian
mixtures that are tuned on the data based on a cross-validation strategy. These con-
straints are built upon [9]’s reformulation and are an equivariant sufficient condition
for Hathaway’s constraints. Estimation is done in a familiar ML environment [10],
with a data-driven selection of the scale balance. Di Mari et al. [6] adapted [12]’s
method to clusterwise linear regression, further investigating its properties.

Another possible approach for handling unboundedness is to modify the log-
likelihood function by adding a penalty term, in which smaller values of
the scale parameters are increasingly penalized. Representative examples can be
found in [1–3].

In this work, we review the constrained approach of [6] and develop a data-driven
equivariant penalized approach for ML estimation. In Sect. 2, we sketch the bulk of
the methodologies; in Sect. 3 we report the results from the simulation study and then
draw some conclusions (Sect. 4).
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2 The Methodology

2.1 The Constrained Approach

Di Mari et al. [6] proposed relative constraints on the group conditional variances
σ 2
g of the kind

√
c ≤ σ 2

g

σ̄ 2
≤ 1√

c
, (3)

or equivalently

σ̄ 2√c ≤ σ 2
g ≤ σ̄ 2 1√

c
. (4)

The above constraints are equivariant and have the effect of shrinking the variances
to a suitably chosen σ̄ 2, the target variance term, and the level of shrinkage is given by
the value of c. These constraints are easily implementable within the EM algorithm
[9, 10], which is fully available in closed form, and the selection of c is based on the
data.

2.2 The Penalized Approach

An alternative to the constrained estimator is the penalized approach, in which a
penalty sn(σ 2

1 , . . . , σ 2
G) is put on the component variances and it is added to the log-

likelihood. Under certain conditions on the penalty function, the penalized estimator
is know to be consistent [1]. A function sn that satisfies these conditions is

sn(σ
2
1 , . . . , σ 2

G) = −λ

G∑

g=1

(
σ̄ 2

σ 2
g

+ log(σ 2
g )

)
, (5)

where σ̄ 2, the target variance, can be seen as our prior information on the scale
structure and λ is the penalizing constant that is selected based on the data. Thus, the
penalized log-likelihood can be written as

p�(ψψψ) = �(ψψψ) + sn(σ
2
1 , . . . , σ 2

G) (6)

and the set of unknown parameters is found byMLwith computation done by means
of anEMalgorithm that is available in closed form.Besides the constrained approach,
the penalized approach is equivariant with respect to linear transformation in the
response.
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2.3 Selection of the Tuning Parameter

Both approaches require selection of the tuning parameter—c and λ, respectively, for
the constrained and penalized estimators. The tuning constants can be pre-specified
by the user if any prior knowledge on the scale structure of the cluster is available. If
this is not the case, the tuning can be based on the data. We propose two alternative
approaches to select the tuning constant that can be used for both constrained and
penalized methods.

2.3.1 Cross-Validation

The first tuning approach is based on a cross-validation strategy that looks for a
tuning parameter such that the cross-validated likelihood is maximized. For a given
c or λ, this is done as follows:

1. Temporary estimates for the model parameters are obtained from the entire sam-
ple, and these are used as starting values to initialize the cross-validation proce-
dure.

2. The data set is partitioned into training and test sets.
3. Parameters are estimated on the training set and the contribution to the log-

likelihood of the test set is computed.
4. Steps 2–3 are repeated M times and the M contributions to the log-likelihood of

the test set are summed for different values of c/λ.

2.3.2 k-Deleted Method

The second tuning approach is based on the modification of the k-deleted method
[13, 14] that looks for a tuning parameter such that the (modified) k-deleted log-
likelihood1 is maximized.

For a given c or λ, this is done as follows:

1. Temporary estimates for the model parameters are obtained from the entire sam-
ple, and these are used as starting values to initialize the procedure.

2. For a given c/λ, the model parameters are estimated.
3. The (modified) k-deleted log-likelihood is computed.
4. Steps 2–3 are repeated for different values of c/λ.

1For some estimates of the model parameters, this is computed by taking out the k units with the
largest log-likelihood.
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3 Simulation Study

A simulation study has been conducted to compare the quality of the parameter
estimates and the ability to recover the clusters structure of the constrained and
the penalized approaches. Both tuning strategies—cross-validation based and k-
deleted method—were considered for the constrained and penalized approaches—
respectively conC, conCk, penC, and penCk—and the unconstrained estimator with
common (homoscedastic) component-scales (hom) and the unconstrained estima-
tor with different (heretoscedastic) component-scales (het) were also included for
comparison.

The target measures used for the comparisons were average Mean Squared Errors
(MSE) of the regression coefficients (averaged across regressors and groups) and the
adjusted Rand index [8].

We generated the data from a 3-group clusterwise linear regression model with
3 regressors and an intercept term. The group mixing weights were set equal to 0.1,
0.3, and 0.6. The regressors were generated from 3 independent standard normal
distributions; regression coefficients were randomly generated from Uniform distri-
butions U(−1.5, 1.5), and the group-specific intercepts were set equal to 4, 9, and
16.
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Fig. 1 (average) MSE of the regression coefficients for all approaches, for the three scale scenarios
and n = 100
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Fig. 2 Adjusted Rand Index (ARI) for all approaches, for the three scale scenarios and n = 100
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We considered 6 crossed simulation conditions of sample size—n = 100, 200—
and scale scenarios—σσσ 2 = (0.1, 0.8, 0.1)′ (heteroscedasticity),σσσ 2 = (0.2, 0.6, 0.2)′
(mild heteroscedasticity), and σσσ 2 = (0.5, 0.5, 0.5)′ (homoscedasticity)

For each simulation condition, we generated 250 samples and, for each approach,
we selected the best solution (highest likelihood) out of 10 random starts. We report
only the results for n = 100 as those for n = 200 were qualitatively the same (Figs. 1
and 2).

We observe that the penalized and constrained approaches overcome their uncon-
strained rivals (hom and het) both in terms of quality of regression parameter esti-
mates and cluster recovery. It seems that while with a tuning based on the more
time-consuming cross-validation strategy conC does slightly better than penC, with
the more efficient k-deleted tuning the penalized approach penCk does better than
conCk. Overall, penCk delivers the best performance.

4 Concluding Remarks

In this work, we have proposed a new penalized estimator for clusterwise linear
regressionmodels in which penalties are put on the component scales. This penalized
estimator is equivariant under changes in the scale of the response.We have compared
it with the constrained approach of [6] and illustrated two alternative tuning strategies
for bothmethodologies. The constrained and penalized estimators performuniformly
better than unconstrained ones. Whenever the computing time of tuning strategies
is not an issue, both approaches serve well the scope of fitting clusterwise linear
regression models. For quicker—and perhaps less-refined selection strategies—like
the k-deleted method, the penalized approach seems to be preferable.
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Effect Measures for Group Comparisons
in a Two-Component Mixture Model: A
Cyber Risk Analysis

Maria Iannario and Claudia Tarantola

Abstract This article deals with ordinal effect measures in the cup models. They
are mixture models for ordinal data with an uncertainty component, where the Uni-
form distribution is used to model indecision and the standard cumulative model is
employed for the analysis of evaluation. We present probability-based measures for
comparing clusters on ratings, while adjusting for other explanatory variables, and
discuss marginal effects to address the interpretation of the results on the extreme
categories of a cyber risk scale.

Keywords Cumulative logit models · Cup models · Extreme categories ·
Marginal effects · Ordinal superiority measures · Uncertainty

1 Introduction

A widespread recent literature deals with a class of mixture models for rating data
that considers the selection of a response category as a combination of the deliberate
choice based on the preference of the respondent and an uncertainty component (see
[18, 19] and reference therein). In the basic cub framework [2, 17], the deliberate
choice is modelled by a shifted Binomial distribution and the uncertainty part by
a discrete Uniform distribution. Various models with different specifications of the
distributions of the considered choice and the uncertainty component have been
proposed; see, for example, cub models with varying uncertainty [6], cub models
for a don’t know category [11, 15], nonlinear cubmodels [14]. Furthermore, to take
into account the possible presence of overdispersion the author of [9] introduced
cube models, where the shifted Binomial distribution has been substituted with a
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shifted Beta Binomial random variable. Finally, cub models with shelter have been
presented by the author of [8] to take into account a possible inflation in one of the
categories. An overview on the modelling approaches has been presented in [10, 20]
whereas a comparison with traditional cumulative models for rating data analysis
[16] is in [19].

Starting with the basic cumulative model approach confounded with the attention
on the uncertainty, detected when a subject selects a score on a rating question, the
authors of [21] introduce the alternative cupmodels. They are a Combination of two
components referred to the individual indecision (Uncertainty), expressed on the
selection or motivated by the context, and a deliberate choice of a response category
determined by the Preference of the respondent. A recent development replaces the
Uniform with a Beta Binomial random variable to process the uncertainty [22]. The
proposal deals with a more flexible distribution which allows distinguishing between
a tendency to middle categories and a tendency to extreme categories.

In this contribution, we focus on cup models; for this mixture, as a consequence
of the nonlinearity, model parameters are not as simple to interpret like slopes and
correlations for ordinary linear regression. Thus, effect measures based on marginal
effects are discussed (see [13] for a comprehensive analysis). The paper surveys
simpler ways to interpret the effects of the explanatory variables simplifying the
interpretation of the models, describing and visualizing average marginal effects.
Furthermore, the article considers simple ordinal effect summaries for model-based
comparisons of groups on ratings, while adjusting for other explanatory variables
by following the idea by the authors of [1] for standard models. Section2 is devoted
to the introduction of the model, discussion of marginal effects and presentation of
measures for ordinal models. Section3 shows the interpretative usefulness of the
cup model by investigating marginal effects and group comparison measures in a
cyber risk analysis. Section4 concludes with some final remarks and possible future
extensions.

2 CUP Models

In a cup model, the probability distribution of the ordinal response variable Ri

(i = 1, 2, . . . , n), describing the rating assigned by respondent i , is given by

P(Ri = r |xi ) = πi PM(Yi = r |xi ) + (1 − πi )P(Ui = r), r = 1, 2, . . . ,m.

(1)
The Preference part PM(Yi = r |xi ) is obtained via a cumulative link model on an
appropriate row vector of covariates xi = (

xi1, . . . , xi j , . . . xip
)
. More precisely,

PM(Yi ≤ r |xi ) = F(αr − xiγ ) i = 1, 2 . . . , n; r = 1, 2 . . . ,m − 1,

where F(·) is the cumulative distribution function, αr is the threshold of the
latent scale Y ∗ of Y (see [16]), and γ is a parameter vector of dimension p.
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The uncertainty parameter πi may also depend on a row vector of covariates
wi = (

wi1, . . . ,wi j , . . .wiq
)
, which may have a non-empty intersection with xi . A

logit link is usually applied to model the effect of covariates on the uncertainty com-
ponent, πi = πi (β) = 1/(1 + e−wiβ), where β is a parameter vector of dimension
q. Finally, as mentioned, the second component of the mixture P(Ui = r) follows a
discrete Uniform distribution. For given data (ri , xi ), the likelihood contribution of
observation i is given by

�i (ri ; θ) = log [πi PM(Yi = r |xi ) + (1 − πi )P(Ui = r)] r = 1, 2, . . . ,m,

(2)
where θ = (α, γ ,β)′ collects all parameters of the ordinal model used in the mixture
components. The log-likelihood is �(θ) = ∑n

i=1 �i (ri ; θ).
A way to obtain stable estimates is to consider the mixture as a problem with

incomplete data and use the EM algorithm [3] (see Appendix of [21] for details).

2.1 Marginal Effect Measures for Covariates in CUP Models

One natural way to interpret the effect of one explanatory variable is to consider
the corresponding marginal effects (MEs). A ME shows how a variation in one
variable affects the outcome distribution, holding all the other variables constant.
MEs are computed differently for continuous and categorical covariates. We refer
to [7] for a discussion of the interpretation of MEs in ordered response models. As
an exemplification, we report the ME on P(Ri = 1) of an explanatory variable xi j
involved only in the preference part of the model. If xi j is continuous, the ME on
P(Ri = 1) is given by the partial derivative of P(Ri = 1) with respect to xi j

ME{Ri=1} = ∂P(Ri = 1|x∗
i\ j )

∂xi j
= −πi γ j f (α1 − xiγ ).

In the previous equation, f (·) indicates the density function corresponding to the
examined cumulative model and x∗

i\ j indicates the values assumed by the other
explanatory variables. If xi j is a categorical variable, we need to calculate the discrete
change. The discrete change for a dichotomous variable xi j is given by

ME{Ri=1} = πi ×
[
P

(
Ri = 1|x = (1, x∗

i\ j )
) − P

(
Ri = 1|x = (0, x∗

i\ j )
)]

.

If the number of possible values is greater than two, the discrete change is computed
as the difference in the predicted probabilities for cases in one category relative to
the reference level. For more details on MEs for cup models, see [13].
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2.2 Ordinal Superiority Measures in CUP Models

We discuss ordinal superiority measures for group comparisons in cup models fol-
lowing the approach presented in [1]. Let us consider a dichotomous covariate d
identifying two different groups g0 and g1 where d = 0 for g0 and d = 1 for g1. For
a specific value x∗

\d of the remaining covariates, we define

Δ(x∗
\d) = P(Rg0 > Rg1) =

∑

l>k

π̂0l(x∗
\d)π̂1k(x∗

\d) −
∑

k>l

π̂0l(x∗
\d)π̂1k(x∗

\d),

where π̂0r (x∗
\d) = P̂(R = r; d = 0, x∗

\d) is the fitted value obtained from the exam-
ined model for g0; π̂1r (x∗

\d) is obtained in a similar way for g1. A value of Δ(x∗
\d)

greater than zero indicates that it is more likely to obtain a higher rating in g0 than
in g1. An alternative measure that has null value equal to 0.5 is given by

γ (x∗
\d) = P(Rg0 > Rg1) + 1

2
P(Rg0 = Rg1) =

=
∑

l>k

π̂0l(x∗
\d)π̂1k(x∗

\d) + 1

2

∑

l

π̂0l(x∗
\d)π̂1l(x∗

\d).

The previous measures are functionally related, in fact Δ(x∗
\d) = 2γ (x∗

\d) − 1.
If all covariates are continuous with the exception of d, as suggested in [1], a

summarymeasure can be obtained as an arithmetic average of the previous quantities
calculated for the observed values of x∗

\d

Δ = 1

n

∑

x∗\d

Δ(x∗
\d); γ ∗ = 1

n

∑

x∗\d

γ (x∗
\d). (3)

If all covariates are discrete, we suggest using as summary measures the average
obtained considering for x∗

\d all possible combinations of the values of the covariates
(|C |)

Δ∗ = 1

|C |
∑

x∗
\d

Δ; γ ∗ = 1

|C |
∑

x∗
\d

γ.

In the case of discrete and continuous covariates, it is possible to extend (3) by using
representative values (mean or median, for instance) for the continuous covariates.

3 Example

Cyber risk commonly refers to any risk of financial loss, disruption or damage to the
reputation of an organization resulting from the failure of its information technology
systems. Nowadays, with the increasing use of technology, cyber security incidents
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are rapidly multiplying and no business line can consider itself immune from it.
Cyber risk is usually associated with cyber attacks, but its domain is broader and it
includes risk events that may be caused without any intention to harm. Cyber risk
could materialize in a variety of ways, such as

– deliberate and unauthorized breaches of security to gain access to information
systems;

– unintentional or accidental breaches of security;
– operational Information Technology (IT) risks due to factors such as poor system
integrity.

Poorly managed cyber risks can leave subjects open to a variety of cybercrimes, with
consequences ranging from data disruption to economic destitution.

The paper investigates a sample of 1127 statistical units regarding cyber attacks
that occurred worldwide in 2018.Wework with a sample of data collected by a group
of researchers of Clusit and discussed in their Report of the first semester of 2019.
Clusit’s experts classify the severity of an attack by an ordinal variable (Severity)
assuming values 1 (critical severity), 2 (high severity) and 3 (medium severity).

As for explanatory covariates, we examine a dichotomized version of the data. A
detailed analysis of the full dataset is provided in [4, 5].

Here we analyse some specific tools of several domains:Malware selected among
different techniques,Cybercrime as the candidate attack,Bank as target andEuropean
Union as the country area of reference. Summary statistics of these dichotomous
variables are reported in Table1. Figure1 shows frequency distribution of Severity
highlighting that most of the observations are in the last category (medium).

Estimated results of cupmodels are reported in Table2. It lists estimated parame-
ters π̂ , γ̂p; p = 1; 2; 3; 4 and cutpoints α̂r ; r = 1; 2 with asymptotic standard errors
(in parentheses). No covariates are considered for the uncertainty part. AIC index is
1829.028 compared with a standard cumulative model with AIC = 1841.615.

Table 1 Summary statistics concerning the examined characteristics of the 1127 statistical units
of the survey

Country

EU (83.50%)–Other (16.50%)

Target

Bank (89.62%)–Other (10.38%)

Technique

Malware (60.42%)–Other (39.58%)

Type of attack

Cybercrime (23.95%)–Other (76.05%)
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Fig. 1 Frequency distribution of the severity of risk activity

Table 2 Estimated cup models for Cyber risk analysis

Covariates Uncertainty parameters Severity parameters

π̂ 0.790 (0.029)
˜EU −0.844(0.254)

˜Malware −0.772(0.191)
˜Cybercrime 7.001(1.142)

˜Bank −2.626(0.384)

Thresholds Parameters

1|2 0.847(0.215)

2|3 5.493(1.082)

�(θ) −907.5138

AIC 1829.028

Average MEs are in Table3. Given the decreasing order of the scale, it is possible
to observe the reduced effect of the severity of scale when Cybercrime is the kind of
attack. For the other dichotomous variables, instead, the effect on the margin is the
reverse; it means that EU area,Malware among the technique and Bank as target are
more likely than the alternative to generate critical severity levels.

These results are confirmed by the summary ordinal superioritymeasures reported
inTable4. For example, the negative value ofΔ∗ forCybercrime indicates that there is
a higher probability to obtain amediumseverity attack in the group g1. The indexes for
the other dichotomous variables, consistently with marginal effects results, indicate
that EU,Malware and Bank present higher probability to have the first level (critical)
of severity. In same fashion, results of γ ∗ suggest the ordinal inferiority of g0 for
EU, Malware and Bank and the reverse order for Cybercrime.
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Table 3 Average Marginal Effect for cup models—Cyber risk data

ME .1(Critical) Effect Std.error z.value p.value

EU 0.032 0.011 2.988 0.003

Malware 0.029 0.008 3.452 0.001

Cybercrime −0.264 0.017 −15.753 0.000

Bank 0.099 0.018 5.613 0.000

ME .3(Medium) Effect Std. error z.value p.value

EU −0.092 0.027 −3.434 0.001

Malware −0.084 0.020 −4.191 0.000

Cybercrime 0.765 0.102 7.520 0.000

Bank −0.287 0.031 −9.309 0.000

Table 4 Ordinal superiority measure for cup models—Cyber risk data

γ ∗ Δ∗

EU 0.541 0.082

Malware 0.538 0.075

Cybercrime 0.140 −0.720

Bank 0.630 0.259
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Fig. 2 Group comparisons for individual marginal effects. Light colour is for first marginal effect,
dark colour for the last

Finally, Fig. 2 shows the individual marginal effects for the four examined covari-
ates. It underlines a higher variability of Cybercrime followed by Bank with respect
to the other covariates.

The R code for the implementation of the results is available in the Supplementary
material of [13], whereas the code for the cupmodel is available from the first Author
under request.
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4 Discussion and Extension

The paper discusses effect measures for covariates, especially dichotomous ones,
to interpret the cluster contribution in ordinal data models with uncertainty. The
measures may be extended also to more general ordinal-response models than those
having linear predictors, such as the Betamix and Betabin models (see [22]) or gener-
alized additive models for ordinal responses with uncertainty. The use of the alterna-
tive link functions for the Preference part of the models (as probit or complementary
log log, for instance) has been discouraged by accounting for robust inference (see
[12]). Alternative analyses with the use of different covariates are also planned for
the furthered comprehension of cyber risk activities.
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A Cramér–von Mises Test of Uniformity
on the Hypersphere

Eduardo García-Portugués, Paula Navarro-Esteban,
and Juan Antonio Cuesta-Albertos

Abstract Testing uniformity of a sample supported on the hypersphere is one of the
first steps when analysing multivariate data for which only the directions (and not
the magnitudes) are of interest. In this work, a projection-based Cramér–von Mises
test of uniformity on the hypersphere is introduced. This test can be regarded as an
extension of the well-known Watson test of circular uniformity to the hypersphere.
The null asymptotic distribution of the test statistic is obtained and, via numerical
experiments, shown to be tractable and practical. A novel study on the uniformity of
the distribution of craters on Venus illustrates the usage of the test.

Keywords Circular data · Craters · Directional data

1 Introduction

Testing uniformity of a sample X1, . . . ,Xn of a random vector X supported on the
hypersphereΩq := {x ∈ R

q+1 : x′x = 1} ofRq+1, with q ≥ 1, is one of the first steps
when analysing directional data, that is, data supported onΩq . Directional data arise
in many applied disciplines, such as astronomy or biology, and have been the focus
of a considerable number of monographs; see, e.g., [10, 11]. Since the seminal paper
by Lord Rayleigh [13], and despite its relative concreteness, the century-old topic of
testing uniformity on Ωq has attracted more than 30 proposals of tests with varying
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degrees of generality (many are circular- or spherical-specific tests, i.e., they assume
q = 1 or q = 2); see [6] for a review on the topic.

Testing uniformity onΩ2 has several applications in astronomy. An instance is the
analysis of the presumed uniform orbit distribution of long-period comets originating
in the nearly isotropic Oort cloud [1]. Another application is in the analysis of the
distribution of crater impacts, a valuable informer on the impactors that create them.
For instance, the case study in [8] for Rhea attributes the uniform-like distributions of
small craters to the predominance of planet-orbiting impactors caused by returning
debris ejected from large crater impacts. Sun-orbiting impactors, on the other hand,
tend to be related to non-uniform crater distributions.

In this work, we propose yet another test of uniformity on Ωq . The test is based
on projections, it is of a Cramér–von Mises nature, and it has the following main
appeals: (i) applicability to arbitrary dimensions q ≥ 1; (ii) consistency against any
alternative to uniformity, i.e.,omnibusness; (iii) conceptual neat extensionof thewell-
known Watson [17] test of circular uniformity; (iv) known and usable asymptotic
distribution; (v) computational tractability for the most common dimensions.

The contents of the work are organized as follows. Section2 sets the problem
(Sect. 2.1), reviews a projection-based test of uniformity that motivates this work
(Sect. 2.2), and exposes the projected uniformity distribution (Sect. 2.3). Section3
presents the new test of uniformity, providing the genesis of the test statistic
(Sect. 3.1), its U -statistic form (Sect. 3.2), and its asymptotic null distribution
(Sect. 3.3). Numerical experiments given in Sect. 4 evidence the tractability of the
asymptotic distribution and the fast convergence of the test statistic towards it. Finally,
Sect. 5 investigates whether Venusian craters are uniformly distributed.

2 Background

2.1 Testing Uniformity on Ωq

Testing the uniformity of a continuous random variable X ∼ P supported on Ωq is a
simple goodness-of-fit problem. It is formalized as the testing of

H0 : P = νq vs. H1 : P �= νq (1)

from a sample X1, . . . ,Xn of independent and identically distributed observations
from P, the distribution of X, and where νq denotes the uniform distribution on Ωq .
The probability density function (pdf) of νq assigns density ω−1

q to any point on Ωq ,

where ωq := 2π
q+1
2

/
�

( q+1
2

)
denotes the surface area of Ωq , q ≥ 1.

If X ∼ νq , then X is identically distributed to any rotation of X. This property
suggests that any proper test for H0 must be rotation invariant, in the sense that the
obtained test decision should remain invariant if we apply the test to any rotation of
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the sample. Recall also that, sinceH0 is actually a simple hypothesis that completely
specifies a distribution, Monte Carlo calibration of any test statistic for problem (1)
is conceptually straightforward (though perhaps computationally costly).

2.2 Using Projections for Assessing Uniformity

A projection-based test of uniformity on Ωq is proposed in [1]. This test is based on
Corollary 3.2 in [2] from which it is easily deduced that, under some mild regularity
conditions, if

(i) X andY are two d-dimensional random vectors whose distributions are different
and

(ii) γ is a random vector independent of X and Y with distribution absolutely con-
tinuous with respect to the Lebesgue measure,

then the distributions of the projections ofX andY on the one-dimensional subspace
generated by γ almost surely differ.

Taking into account that the distribution of the projections coincide if X ∼ Y, we
have that testing H0 is almost surely equivalent to testing H γ

0 : X′γ ∼ �q , where
�q is the distribution of γ ′U and U ∼ νq (see Sect. 2.3).

The test by [1] proceeds as follows: (i) sample γ ∼ νq ; (ii) reject H
γ
0 , and con-

sequently H0, for large values of the Kolmogorov–Smirnov statistic

KSn,γ := sup
−1≤x≤1

|Fn,γ (x) − Fq(x)|, (2)

where Fn,γ is the empirical cdf of X′
1γ , . . . ,X′

nγ and Fq is the cdf of �q .
The test that rejectsH0 for large values of KSn,γ is omnibus and fast to evaluate.

However, it is also dependent on γ , whose selection adds an extra layer of random-
ness. As proposed in [1], this can be mitigated by considering k random directions
and combining the p-values associated with each of the k tests into the test statistic

CCFn,γ 1,...,γ k
:= min{p-value1, . . . , p-valuek}, (3)

which rejects H0 for small values. The asymptotic distribution of (3) is unknown
and has to be calibrated by Monte Carlo (conditionally on the choice of γ 1, . . . , γ k).

2.3 Projected Uniform Distribution

The distribution�q is fundamental to any projection-based test of uniformity. It does
not depend on γ and its pdf (see, e.g., [11, p. 167]) is
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B
(
1
2 ,

q
2

)−1
(1 − t2)q/2−1, t ∈ [−1, 1],

where B(a, b) := �(a)�(b)/�(a + b). Therefore, (γ ′U)2 ∼ Beta
(
1
2 ,

q
2

)
and

Fq(x) = B
(
1
2 ,

q
2

)−1
∫ x

−1
(1 − t2)q/2−1 dt = 1

2

{
1 + sign(x)Ix2

(
1
2 ,

q
2

)}
,

where Ix (a, b) := B(a, b)−1
∫ x
0 ta−1(1 − t)b−1 dt ,a, b > 0, is the regularized incom-

plete beta function. Trivially, F1(x) = 1 − cos−1(x)
π

and F2(x) = x+1
2 for x ∈ [−1, 1].

3 A New Test of Uniformity

3.1 Genesis of the Test Statistic

Motivated by (2), we consider the Cramér–von Mises statistic given by

CvMn,q,γ := n
∫ 1

−1

(
Fn,γ (x) − Fq(x)

)2
dFq(x). (4)

Of course, this statistic still has the issue of being dependent on γ . Rather than
drawing several random directions and aggregating afterwards the tests’ outcomes
as (3) does, our statistic itself gathers information from all the directions on Ωq : it
is defined as the expectation of (4) with respect to γ ∼ νq :

CvMn,q := Eγ
[
CvMn,q,γ

] = n
∫

Ωq

[∫ 1

−1

{
Fn,γ (x) − Fq (x)

}2 dFq (x)

]

νq (dγ ). (5)

The test based on (5) rejects H0 for large values of CvMn,q .
The integration on all possible projection directions within the test statistic, as

(5) does, was firstly considered in the regression context by [3], though employing
an empirical measure instead of νq in (5). In our setting, the choice of νq as the
distribution of γ is canonical, given that it is the only (deterministic) distribution that
makes (5) invariant to rotations of the sample.

3.2 U-statistic Form

Form (5) is not computationally pleasant: it involves a univariate integral and a
more challenging integral on Ωq . Such level of complexity is undesirable for a test
statistic, provided that eventually it may be required to be calibrated byMonte Carlo.
In addition, form (5) obfuscates the quadratic structure of the statistic and complicates
obtaining its asymptotic distribution. The next result solves these two issues.

Theorem 1 (U -statistic form of CvMn,q ; [5]) The statistic (5) can be expressed as
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CvMn,q = 2

n

∑

i< j

ψq(cos
−1(X′

iX j )) + 3 − 2n

6
, (6)

where, for θ ∈ [0, π ],

ψq(θ) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

1
2 + θ

2π

(
θ
2π − 1

)
, q = 1,

1
2 − 1

4 sin
(

θ
2

)
, q = 2,

ψ1(θ) + 1
4π2

(
(π − θ) tan

(
θ
2

) − 2 sin2
(

θ
2

))
, q = 3,

− 3
4 + θ

2π + 2F2
q

(
cos

(
θ
2

))

−4
∫ cos(θ/2)
0 Fq(t)Fq−1

(
t tan(θ/2)
(1−t2)1/2

)
dFq(t), q ≥ 4.

The proof of Theorem 1 is lengthy and therefore omitted. This is also the case for
the rest of the presented results. The reader is referred to [5] for the detailed proofs.

The case q = 1 of CvMn,q is especially interesting. It connects withWatson [17]’s
well-known U 2

n statistic for testing the uniformity of a circular sample, defined as

U 2
n := n

∫ 2π

0

{
Fn(θ) − F0(θ) −

∫ 2π

0
(Fn(ϕ) − F0(ϕ)) dF0(ϕ)

}2

dF0(θ),

where Fn(θ) := 1
n

∑n
i=1 1{Θi≤θ} is the empirical cdf of the circular sampleΘ1, . . . , Θn

in [0, 2π) and F0(θ) := θ/(2π) is the uniform cdf on [0, 2π). The U 2
n statistic can

be regarded as the rotation-invariant version of the Cramér–von Mises statistic for
circular data, achieving such invariance byminimizing the discrepancy of the sample
with respect toH0 (see, e.g., [6]).

The relation between U 2
n and CvMn,1 stems from the following alternative form

for U 2
n (see, e.g., [11, p. 111]):

U 2
n = 1

n

n∑

i, j=1

h
(
Θi j

)
, h(θ) := 1

2

(
θ2

4π2
− θ

2π
+ 1

6

)
. (7)

HereΘi j := cos−1(cos(Θi − Θ j )) ∈ [0, π ] is the shortest angle distance betweenΘi

and Θ j . Therefore, if we denote by Θ1, . . . , Θn the angles determining the sample
X1, . . . ,Xn , it happens that cos−1(X′

iX j ) = Θi j . From this point, elaborating on the
expressions in Theorem 1 when q = 1 leads to CvMn,1 = 1

2U
2
n . Therefore, our claim

that the test based on CvMn,q is an extension of the Watson test to Ωq , as stated in
the following corollary.

Corollary 1 (An extension of the Watson test to Ωq ) It happens that CvMn,1 =
1
2U

2
n . Consequently, the test that rejects for large values of CvMn,1 is equivalent to

the Watson test.
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3.3 Asymptotic Distribution

Expression (6) unveils theU -statistic nature of CvMn,q . Since theU -statistic can be
seen to be degenerate, the asymptotic distribution of CvMn,q is an infinite weighted
sum of chi-squared random variables. It involves the coefficients {bk,q} such that

bk,q =
{

2
π

∫ π

0 ψ1(θ)Tk(cos θ) dθ, q = 1,
1

ck,q

∫ π

0 ψq(θ)C (q−1)/2
k (cos θ) sinq−1(θ) dθ, q ≥ 2,

where Tk represents the kth Chebyshev polynomial of the first kind, C (q−1)/2
k stands

for the kth Gegenbauer polynomial of order (q − 1)/2, and

ck,q := 23−qπ�(q + k − 1)

(q + 2k − 1)k!�((q − 1)/2)2
.

Theorem 2 (Asymptotic null distribution; [5]) Under H0 and for q ≥ 1,

CvMn,q
d�

{
1
2

∑∞
k=1 bk,1χ

2
dk,1

, q = 1,
∑∞

k=1
q−1

q−1+2k bk,qχ
2
dk,q

, q ≥ 2,
(8)

where χ2
dk,q

, k ≥ 1, are independent chi-squared random variables with degrees of
freedom

dk,q :=
(
q + k − 2

q − 1

)
+

(
q + k − 1

q − 1

)
.

The coefficients {bk,q} are non-negative and satisfy
∑∞

k=1 bk,qdk,q < ∞.

The coefficients {bk,q} admit explicit expressions that drastically improve the
tractability of the asymptotic null distribution of CvMn,q for all q ≥ 1.

Theorem 3 (Coefficients for ψq ; [5]) Let k ≥ 1. For q ≥ 1,

bk,q =

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

1
π2k2 , q = 1,

1
2(2k+3)(2k−1) , q = 2,
35

72π2 1{k=1} + 1
2π2

3k2+6k+4
k2(k+1)(k+2)2 1{k>1}, q = 3,

(q−1)2(2k+q−1)�((q−1)/2)3�(3q/2)
8πq2�(q/2)3�((3q+1)/2)

×4F3

(
1 − k, q + k, q+1

2 ,
3q
2 ; q + 1, q

2 + 1, 3q+1
2 ; 1

)
, q ≥ 4,

where 4F3 stands for the generalized hypergeometric function.
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The final result is a consequence of the fact that bk,q > 0, for all k ≥ 1 and q ≥ 1,
and the fact that CvMn,q belongs to the class of Sobolev tests [7].

Corollary 2 (Omnibusness) The test that rejects H0 for large values of CvMn,q is
consistent against all alternatives to uniformity with square-integrable pdf.

4 Numerical Experiments

The asymptotic distributions (8) are usable in practice. The closed forms of {bk,q}
and the (exact) Imhof [9]’s method allow to compute asymptotic p-values through
the evaluation of the truncated-series tail probability function:

x 	→ P

[ K∑

k=1

wk,qχ
2
dk,q > x

]
(9)

where x ≥ 0 and K is a “sufficiently large” integer. Asymptotic critical values cα for
a significance level α are computable using a numerical inversion on (9).

The first numerical experiment investigates how large K must be for ensuring a
uniform error bound in (9), relatively to K = 105. Figure1 evidences that (9) con-
verges slower, as a function of K , for increasing q’s. It also gives simple takeaways:
(i) K = 103 ensures asymptotic p-values with uniform error bound ε = 5 × 10−3

for q ≤ 10; (ii) K = 104 decreases the uniform error bound to ε = 5 × 10−4; (iii)
the accuracy for lower p-values, approximately in the [0, 0.15]-range (left side of
the horizontal axis), improves over the uniform bound.
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Fig. 1 Accuracy of the truncation of (9), computed with Imhof’s method. The vertical axis shows
the absolute errors, with respect to K = 105, of considering K = 103 (left) and K = 104 (right).
The horizontal axis shows the probability of (9)with K = 103 (a common [0, 1]-scale for all curves)
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Table 1 Critical values of the CvMn,q statistic, approximated by M = 106 Monte Carlo replicates.
The asymptotic (∞) critical values result from computing and inverting (9) with K = 104

α n q

1 2 3 4 5 6 7 8 9 10

0.10

25 0.3015 0.2752 0.2588 0.2481 0.2401 0.2343 0.2295 0.2256 0.2223 0.2193

50 0.3026 0.2760 0.2600 0.2490 0.2411 0.2351 0.2302 0.2264 0.2229 0.2201

100 0.3029 0.2765 0.2605 0.2496 0.2416 0.2355 0.2307 0.2268 0.2234 0.2206

200 0.3032 0.2769 0.2608 0.2498 0.2419 0.2357 0.2309 0.2270 0.2236 0.2207

400 0.3036 0.2769 0.2608 0.2502 0.2423 0.2360 0.2311 0.2272 0.2237 0.2209

∞ 0.3035 0.2769 0.2607 0.2498 0.2419 0.2358 0.2309 0.2269 0.2236 0.2207

0.05

25 0.3696 0.3254 0.2994 0.2824 0.2703 0.2613 0.2541 0.2483 0.2434 0.2394

50 0.3716 0.3273 0.3012 0.2841 0.2719 0.2627 0.2554 0.2495 0.2446 0.2403

100 0.3730 0.3284 0.3027 0.2852 0.2730 0.2635 0.2563 0.2503 0.2453 0.2411

200 0.3728 0.3290 0.3029 0.2857 0.2734 0.2638 0.2566 0.2506 0.2456 0.2414

400 0.3744 0.3288 0.3029 0.2859 0.2735 0.2639 0.2566 0.2508 0.2457 0.2417

∞ 0.3737 0.3291 0.3029 0.2856 0.2733 0.2639 0.2566 0.2506 0.2456 0.2414

0.01

25 0.5220 0.4360 0.3868 0.3561 0.3349 0.3186 0.3062 0.2958 0.2876 0.2805

50 0.5306 0.4412 0.3920 0.3601 0.3384 0.3219 0.3090 0.2983 0.2903 0.2830

100 0.5339 0.4451 0.3948 0.3626 0.3400 0.3235 0.3105 0.3002 0.2915 0.2842

200 0.5359 0.4467 0.3962 0.3642 0.3405 0.3238 0.3112 0.3006 0.2916 0.2843

400 0.5368 0.4463 0.3968 0.3635 0.3409 0.3242 0.3114 0.3006 0.2921 0.2849

∞ 0.5368 0.4469 0.3963 0.3639 0.3413 0.3244 0.3113 0.3008 0.2921 0.2848

The second numerical experiment evaluates the convergence speed of (8) with
Table1, which gives the critical values of the statistic for dimensions q = 1, . . . , 10
and significance levels α = 0.10, 0.05, 0.01. As it is unveiled, the convergence
towards the asymptotic distribution is quite fast, for all the dimensions explored,
effectively requiring to save a single critical value for each dimension q to yield a
test decision. The critical values steadily decrease with the increment of the dimen-
sion.

5 Are Venusian Craters Uniformly Distributed?

Venus is the closest planet to Earth and themost Earth-like planet of the Solar System
in termsof size and composition.As such, it is oneof themost explored extraterrestrial
bodies by humankind, a landmark on its exploration being the Magellan mission
(1989–1994). Through a series of mapping cycles, theMagellan spacecraft produced
the first global, high-resolutionmapping of 98%of theVenusian surface. The analysis
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Fig. 2 Venusian craters (black points) overlaid over a colourized image of the Venus surface [16]

of the vast imagery produced in the mission (see [4]) revealed the high uniformity of
the Venusian crater distribution [12, 14]. Indeed, [12, Sect. 3.1] tested the uniformity
of such distribution using the 763 locations of craters back then available, finding no
evidence to reject H0 for several tests.

We tested uniformity with an updated database of Venusian craters [15] that
contains the locations of the centres of 967 craters. Figure2 shows these locations
overVenus’ surface, asmapped by theMagellanmission.We performed theRayleigh
[13] and Giné’s Fn [7] tests, as considered by [14], the Cuesta-Albertos et al. [1] test
(using k = 50), and the novel CvMn,2-based test. The obtained p-values, estimated
with 104 Monte Carlo replicates, were 0.170, 0.112, 0.117, and 0.129, respectively.
Consequently, we found no statistical evidence to reject H0 at usual significance
levels, thus confirming the analysis by [12] with updated crater records.

The apparent uniform distribution of Venusian craters is truly remarkable. Indeed,
among the very fewplanets andmoons of the Solar Systemwith uniformly distributed
craters, Venus has the largest number of observed craters, according to the database
of named craters of the International Astronomical Union [5]. The filtering of small
meteoroids by the dense Venusian atmosphere may be one of the causes explaining
the uniform distribution of craters.
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On Mean And/or Variance Mixtures
of Normal Distributions

Sharon X. Lee and Geoffrey J. McLachlan

Abstract Parametric distributions are an important part of statistics. There is now a
voluminous literature on different fascinating formulations of flexible distributions.
We present a selective and brief overview of a small subset of these distributions,
focusing on those that are obtained by scaling the mean and/or covariance matrix
of the (multivariate) normal distribution with some scaling variable(s). Namely, we
consider the families of the mean mixture, variance mixture, and mean–variance
mixture of normal distributions. Their basic properties, some notable special/limiting
cases, and parameter estimation methods are also described.

Keywords Scale mixture distribution · Mean mixture distribution · Non-normal
distribution · Normal distribution · Skew-normal distribution

1 Introduction

The normal distribution plays a central role in statistical modeling and data analysis,
but real data rarely follow this classical distribution. The quest for more flexible
distributions has led to an ever-growing development in the literature of parametric
distributions. In the past two decades or so, intense interest has been in the area
of skew or asymmetric distributions; see, for example, the book edited by [18], the
monograph by [10], and the papers by [2, 5, 9] for recent accounts of the literature
on skew distributions. Many of these formulations belong to the class of skew-
symmetric distributions, which is a generalization of the classical skew-normal (SN)
distribution by [11]. This SN distribution can be characterized as a mean mixture of
normal (MMN) distribution, where the mean of a normal random variable is scaled
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by a truncated normal random variable [28]. Another related and extensively studied
family of distributions that can render asymmetric distributional shapes is the mean–
variance mixture of normal (MVMN) distribution. Introduced by [12], the MVMN
distribution is obtained by scaling both mean and variance of a normal random
variable with the same (positive scalar) scaling random variable. These distributions
belong to the recently proposed class of generalized mixtures of normal distributions
presented by [6].

This paper presents a brief overviewof flexible distributions that arise from scaling
either/both the mean and variance of a normal random variable. For simplicity, we
focus on the case of a univariate scaling variable. Apart from the aforementioned
MMN andMVMN families, a third family called variance mixture of normal (VMN)
distribution can be defined by scaling only the variance of a normal random variable.
Although VMN does not produce asymmetric distributions (at least not in the case
of a scalar scaling variable), we include this family in this paper for completeness.

The flexibility to model non-normal data features has rendered these three fami-
lies of distributions useful in a wide range of applications. In particular, some of the
special cases (such as the generalized hyperbolic distribution and the skew-normal
distribution) are enjoying increasing popularity in applications ranging from bioin-
formatics, climatology, and fisheries to finance and social sciences [3, 8, 14, 22, 30,
32].

Following conventional notation, a p-dimensional random vector Y is said to
follow a (multivariate) normal distribution, denoted by Y ∼ Np(μ,�), if its density
is given by

φp(Y ;μ,�) = (2π)−
p
2 |�|− 1

2 e− 1
2 (Y−μ)��−1(Y−μ), (1)

where μ is a p × 1 vector of location parameters and � is p × p positive definite
symmetric matrix of scale parameters. The mean and variance of Y are E(Y) = μ

and cov(Y) = �, respectively. The vector Y can be expressed as a location-scale
variant of a standard normal random variable, that is,

Y = μ + �
1
2 Z, (2)

where Z ∼ Np(0, I p), 0 is a vector of zeros, and I p is the p × p identity matrix.
By ‘scaling’ or ‘mixing’ Y , we mean that μ is mixed with W and/or � is weighted
by

√
W , whereW is a positive random variable independent of Z. We consider each

of these cases in Sects. 2–4. By adopting a range of different distributions for W , a
wide variety of non-normal distributions can be constructed.

Each of the MMN, VMN, and MVMN models have their own (theoretical and
practical) advantages and limitations. For example, some facilitates parameter esti-
mation procedures that are easier to implement and less computationally demanding
to compute, while some others may offer nice features such as more flexible distri-
butional shapes.
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2 Mean Mixture of Normal Distributions

The mean mixture (or location-mixture) of normal (MMN) distribution [28] refers
to the family of distributions generated by mixing the location parameter μ with a
(scalar) variableW . More formally, the MMN distribution arises from the stochastic
expression

Y = μ + Wδ + �
1
2 Z, (3)

where δ is p × 1 vector of shape parameters. The density (3) is asymmetric ifW has
an asymmetric distribution. In this case, δ may be interpreted as a vector of skewness
parameters. A prominent example is the (positively) truncated normal or half-normal
distribution, that is, W ∼ T N (0, 1;R+). This leads to the classical characterization
of the skew-normal (SN) distribution proposed by [11].

From (3), the density of the MMN distribution can be expressed as

f (Y ;μ,�, δ; h(w; θ)) =
∫ ∞

−∞
φp(Y ;μ + wδ,�) h(w; θ)dw, (4)

where, again, h(w; θ) denotes the density of W with parameter θ . The notation
Y ∼ MMNp(μ,�, δ; h(w; θ)) will be used when Y has density in the form of (4).
Similar to the VMN distribution, the MMN distribution admits a two-level hierar-
chical representation given by

Y |W = w ∼ Np(μ + wδ,�) ⊥ W ∼ h(w; θ). (5)

2.1 Properties

It is straightforward to obtain the moments for a MMN random variable. From
the stochastic representation (3), it can be seen that first moment of Y is given by
E(Y) = μ + E(W )δ if E(|W |) < ∞. Similarly, the second moment of Y is given
by cov(Y) = � − var(W )δδ�, provided E(W 2) is finite. Further, the mgf of Y is
given by

MY (t) = et
�μ+ 1

2 t
�� tMW

(
t�δ

)
. (6)

The MMN distribution also enjoys nice properties such as closure under lin-
ear transformation, marginalization, and conditioning. Let Y ∼ MMNp(μ,�, δ; h
(w; θ), A be a q × p matrix of full row rank, and a be a q-dimensional vector. Then
the affine transformation AY + a still has a NMM distribution, given by

AY + a ∼ MMNq(Aμ + b, A�A�, Aδ; h(w; θ)). (7)
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In addition, the linear combination of a MMN and a normal random variables is also
a MMN random variable. If X ∼ Nq(μ

∗,�∗) is independent of Y , then the linear
combination AY + X is distributed as

AY + X ∼ MMNq(Aμ + μ∗, A�A� + �∗, Aδ; h(w; θ)). (8)

Concerning themarginal and conditional distributions ofMMN random variables, let
Y , μ, and � be partitioned as in Sect. 4.1. Similarly, partition δ into δ� = (δ�

1 , δ�
2 ).

Then the marginal density of Y 1 is MMNp1(μ1,�11, δ1; h(w; θ)) and the condi-
tional density of Y 1|Y 2 = Y 2 is MMNp1(μ1.2,�11.2, δ1.2; h(w; θ)), where δ1.2 =
δ1 − �12�

−1
22 δ2, and μ1.2 and �11.2 are defined in Sect. 4.1.

2.2 Special Cases

Asmentioned previously, takingW ∼ T N (0, 1;R+) leads to the classical SNdensity
given by

f (Y ;μ,�, δ) = 2φp(Y ;μ,�)�1(δ
��−1(Y − μ); 0, 1 − δ��−1δ), (9)

where � = � + δδ� and �1(·;μ, σ 2) denotes the corresponding distribution func-
tion of φ1(·;μ, σ 2). When δ = 0, the SN distribution reduces to the (multivariate)
normal distribution.

Another special case of the MMN distribution was presented in [28]. Taking W
to have a standard exponential distribution, that is, W ∼ exp(1), leads to the MMN
exponential (MMNE) distribution. It can be shown that the density is given by

f (Y ;μ,�, δ) =
√
2π

α
e

β2

2 �p(Y ;μ,�)�1(β), (10)

where α2 = δ��−1δ and β = α−1
[
δ��−1(Y − μ) − 1

]
. For further details and

properties of the MMNE distribution, the reader is referred to Sect. 8.1 in [28]. The
flexibility of the MMN and MMNE distributions has been demonstrated applica-
tions such as the modeling of environmental data [28] and segmentation of satellite
images [27].

3 Mean–Variance Mixture of Normal Distributions

The mean–variance mixture of normal (MVMN) distribution, sometimes called the
location-scale mixture of normal distribution, is a generalization of the VMN dis-
tribution described in Sect. 2. Compared to (3), the scaling parameter � is now also
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weighted with W like in the case of the MVN distribution. The MVMN distribution
has the following stochastic representation:

Y = μ + Wδ + √
W�

1
2 Z. (11)

In this case, both the location and scale of the distribution vary with W . Moreover,
W is a positive random variable and hence the MVMN distribution is asymmetric
when δ �= 0. It is important to note that while the MVMN distribution reduces to the
VMN distribution when δ = 0, the MMN distribution described in Sect. 2 is not a
special case of the MVMN distribution.

Following the definition (11), the density of p-dimensional MVMN distribution
can be expressed as

f (Y ;μ,�, δ; h(w; θ)) =
∫ ∞

0
φp(Y ;μ + wδ,w�) h(w; θ)dw. (12)

The notation Y ∼ MVMNp(μ,�, δ; h(w; θ)) will be used when Y has density
in the form of (12). Analogous to the VMN and MMN distributions, the MVMN
distribution can be conveniently expressed in a hierarchical form given by

Y |W = w ∼ Np(μ + wδ,w�) ⊥ W ∼ h(w; θ). (13)

3.1 Properties

Some basic properties of the MVMN distribution have been studied in [12], among
other works. The moments of Y ∼ MVMNp(μ,�, δ; h(w; θ)) can be derived
directly from (11). Specifically, the first two moments of Y are given by E(Y) =
μ + E(W )δ and cov(Y) = var(W )δδ� + E(W )�, respectively. Further, the mgf of
Y is given by

MY (t) = et
�μMW

(
t�δ + 1

2
t�� t

)
. (14)

As can be expected, theMVMNdistribution shares certain nice propertieswith the
VMN distribution such as closure under linear transformation and marginalization.
Let A be a q × p matrix of full row rank and a be a q-dimensional vector. Then the
affine transformation AY + a remains a MVMN distribution. Specifically,

AY + a ∼ MVMNq(Aμ + b, A�A�, Aδ; h(w; θ)). (15)

Similar to theMMNdistribution, a linear combination of aMVMNand a normal ran-
dom variable remains aMVMN random variable. If X ∼ Nq(μ

∗,�∗) is independent
of Y , then the linear combination AY + X is distributed as
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AY + X ∼ MVMNq(Aμ + μ∗, A�A� + �∗, Aδ; h(w; θ)). (16)

Marginal distributions and conditional distributions of MVMN random variables
can also be derived. Let Y , μ, �, and δ be partitioned as in Sect. 2.1. Then the
marginal density of Y 1 is MVMNp1(μ1,�11, δ1; h(w; θ)) and the conditional den-
sity of Y 1|Y 2 = Y 2 is MVMNp1(μ1.2,�11.2, δ1.2; h(w; θ)), where δ1.2, μ1.2, and
�11.2 are defined in Sect. 2.1.

3.2 Special Cases

Perhaps the most well-known special case of the MVMN distribution is the general-
ized hyperbolic (GH) distribution, which is widely applied in finance and other fields.
This distribution is obtained by letting W ∼ GIG(ψ, χ, λ), yielding the following
density [25]:

f (Y ;μ,�, δ, ψ, χ, λ) =
(

ψ

χ

) λ
2
Kλ− p

2

(√
(ψ + dδ)(χ + dY )

)
(2π)

p
2 |�| 1

2 Kλ(χψ)eδ��−1(Y−μ)

(
χ + dY
ψ + dδ

) λ
2 − p

4

,

(17)
where dδ = δ��−1δ, dY = (Y − μ)��−1(Y − μ), and Kλ(·) denotes the modified
Bessel function of the third kind with index λ. Here GIG refers to the generalized
inverse gamma distribution. The GH distribution, as the name suggests, contains
the symmetric GH distribution mentioned in Sect. 4.2 and an asymmetric version
of some of its members. However, the SN distribution cannot be obtained as a spe-
cial/limiting case. Other noteworthy special cases of the GH distribution include the
normal inverse Gaussian, variance gamma, and asymmetric Laplace distributions.
The GH distribution and its properties have been well studied in the literature; see,
for example, [16, 21].

Two other less well-knownMVMNdistributions were recently considered by [26,
29]. The former presented a MVMN of Birnbaum–Saunders (MVNBS) distribution,
where W has a Birnbaum–Saunders distribution with shape parameter α and scale
parameter 1. In the second reference, the authors assumed W follows a Lindley
distribution, which is a mixture of exp(α) and gamma(2, α) distributions. This leads
to the so-called MVN Lindley (MVNL) distribution.

4 Variance Mixture of Normal Distributions

Rather than mixing μ with W , the variance mixture (or scale mixture) of normal
(VMN) distribution is obtained by weighting � with W . Note that in this case W
needs to be positive. More formally, VMN refers to distributions with the following
stochastic representation:
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Y = μ + √
W�

1
2 Z, (18)

where Z ∼ N (0, I p) and W are independent. Let the density of W be denoted by
h(w; θ), where θ is the vector of parameters associated with W . It follows that the
density is in the form of an integral given by

f (Y ;μ,�, θ) =
∫ ∞

0
φp(Y ;μ,w�) h(w; θ)dw. (19)

A similar expression to (19) above can be given in the case where W has a discrete
distribution; see, for example,Eq. (3) of [24].As canbeobserved from(18), the family
of VMN distributions has constant mean but variable scale depending on W . This
allows theVMdistributions to have lighter or heavier tails than the normal distribution
and thus are suitable for modeling data with tails thickness that deviates from the
normal. However, this distribution in the unimodal family remains symmetric in
shape.

4.1 Properties

The moments of VMN distributions can be readily obtained from (18). For example,
thefirst and secondmoments ofY are givenby, respectively, E(Y ) = μ and cov(Y) =
E(W )�. Further, the moment generating function (mgf) of Y can be expressed as

MY (t) = et
�μMW

(
1

2
t�� t

)
, (20)

where MW (·) denotes the mgf of W .
Some nice properties of the normal distribution remain valid for VMN distribu-

tions, including closure under affine transformation, marginalization, and condition-
ing. Let Y ∼ V MNp(μ,�; h(w; θ)) denotes Y having the density (19). Let also A
be a q × p matrix of full row rank and a be a q-dimensional vector. Then the affine
transformation AY + a still has a VMN distribution given by

AY + a ∼ V MNq(Aμ + b, A�A�; h(w; θ)). (21)

Furthermore, if X ∼ V MNq(μ
∗,�∗; h(w; θ)) is independent of Y , then the linear

combination AY + X has distribution given by

AY + X ∼ V MNq(Aμ + μ∗, A�A� + �∗; h(w; θ)). (22)

Suppose Y can be partitioned as Y� = (Y�
1 ,Y�

2 ) with respective dimensions p1
and p2 where p1 + p2 = p. Accordingly, let μ� = (μ�

1 ,μ�
2 ) and � be partitioned

into four block matrices �11, �12, �21, and �22. Then the marginal density of
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Y 1 is V MNp1(μ1,�11; h(w; θ)) and the conditional density of Y 1|Y 2 = Y 2 is
V MNp1(μ1.2,�11.2; h(w; θ)), where μ1.2 = μ1 + �11�

−1
22 (Y 2 − μ2) and �11.2 =

�11 − �12�
−1
22 �21.

4.2 Special Cases

The family of VMN distribution encompasses many well-known distributions,
including the t , Cauchy, symmetric generalized hyperbolic, and logistic distribu-
tions. The slash, Pearson type VII, contaminated normal, and exponential power
distributions can also be represented as a VMN distribution; see also [4, 24] for
some other special cases of VMN distributions.

The (p-dimensional) t-distribution can be obtained by letting W ∼ IG
(

ν
2 ,

ν
2

)
in

(18), where IG(·) denotes the inverse gamma distribution and ν is a scalar parameter
commonly known as the degrees of freedom. This tuning parameter regulates the
thickness of the tails of the t-distribution, allowing it to model heavier tails than the
normal distribution. The Cauchy and normal distributions are special/limiting cases
of the t-distribution (by letting ν = 1 and ν → ∞, respectively).

The (symmetric) generalized hyperbolic distribution is another important spe-
cial case of the VMN distribution. It arises when W follows a generalized inverse
Gaussian (GIG) distribution, which includes the IG distribution as a special case.
Thus, the above-mentioned t-distribution and its nested cases are also members of
the symmetric generalized hyperbolic distribution.

5 Parameter Estimation for MMN, MVMN, and VMN
Distributions

The MMN, MVMN, and VMN distributions can be conveniently expressed in hier-
archical forms that facilitate maximum likelihood estimation of the parameters of
the models via the Expectation–Maximization (EM) algorithm [15]. For example,
utilizing the hierarchical representation of the MMN distribution (5), an EM algo-
rithm can be derived for any specified distribution h(w; θ) of W . Technical details
of the EM algorithm for the MMN distribution and some of its special cases can be
found in [1].

The MVMN distribution admits a similar hierarchical representation as given
by (13). For special cases of the MVMN distribution such as the GH, MVNBS,
and MVNL distributions, explicit expressions for the implementation of the EM
algorithm can be found in [13, 26, 29], respectively. Software implementations of
some special/limiting cases of the MVMN distributions are available. For example,
the GH distribution and some of its nested cases have been implemented in the R
package ghyh [33].
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From (18), a VMN distribution can be expressed in a hierarchical form given by
Y |W = w ∼ Np(μ,w�) and (with a slight abuse of notation) W ∼ h(w; θ). Tech-
nical details of the EM algorithm for this model can be found in many reports, for
example, [23]. Software implementation for the VMN distribution and some of its
special cases are readily available. For example, the recent R package nvmix [19]
allows a user-specified quantile function for W , as well as special cases including
inverse gamma and Pareto distributions; see also [20].

6 Conclusions

A concise description of three generalizations of the (multivariate) normal distri-
bution has been presented. These families of flexible distributions arise by mixing
the mean and/or weighting the variance matrix of a normal random variable. Two
of these families, namely the variance mixture (VMN) and mean–variance mixture
of normal (MVMN) distributions, have a relatively long history in the literature,
whereas the third family (mean mixture of normal (MMN) distribution) was intro-
duced more recently. Each of these families has their own merits and limits. We
have presented their basic properties, some important special/limiting cases, and
references for parameter estimation procedures.

Throughout this paper, we have focused on the case of the univariate scaling
variable. Some recent proposals have considered adopting a multivariate scaling
variable W (with a matrix scaling coefficient �). Reference [17] introduced the
multiple scale distribution, based on the VMN model but with a multivariate W
where its elements are independent of each other. In the case of VMN distributions,
some characterizations of the (multivariate) skew-normal distribution allow for W
to have a multivariate truncated normal distribution [7, 31]. More recently, a variant
of the generalized hyperbolic distribution that was studied in [34] is an example of
a MVMN distribution that adopts a multivariate W .

Some further versions and/or generalizations of MVMN would be of interest for
future investigation; for example, a scalemixture ofMMNdistributions (as suggested
by [28]) and a MVMN distribution where different mixing variables can be used for
the mean and variance of the normal random variable.
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Robust Depth-Based Inference
in Elliptical Models

Stanislav Nagy and Jiří Dvořák

Abstract Elliptical models are the most important family of multivariate probabil-
ity distributions. We explore the properties of these distributions with respect to their
halfspace depth and their illumination. The densities of elliptically symmetric dis-
tributions are expressed only in terms of the depth, the illumination, and a univariate
function that can be estimated from the data. These observations set the ground for
robust and nonparametric inference for (nearly) elliptical models based on the use
of depth and illumination.

Keywords Elliptical distribution · Halfspace depth · Illumination · Density
estimation

1 Depth and Illumination in Statistical Analysis

The (halfspace) depth [2, 13] is a notion that allows extensions of nonparametric
statistical inference to multivariate data. Recall that the depth of a point x ∈ R

d with
respect to (w.r.t.) the distribution of a random vector X ∼ P ∈ P

(
R

d
)
is defined by

hD (x; P) = inf
u∈Rd

P (〈X, u〉 ≤ 〈x, u〉) .

Here, P
(
R

d
)
is the set of all (Borel) probability measures on R

d , and (Ω,A , P)

is the probability space on which all random elements are defined. The depth is a
measure of centrality of x , as evaluated w.r.t. the mass of P—the higher the depth of
x is, the more appropriate it is to use x as a location estimator for P . The upper level
sets of the depth, given for δ > 0 by Pδ = {

y ∈ R
d : hD (y; P) ≥ δ

}
, are called
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the central regions of P . Shapes of these regions provide information about the
geometric properties of the distribution. The depth is known to possess many nice
properties—it is affine invariant and quite robust near the center of the distribution
[2], that is in non-empty regions Pδ with δ large. In the tails of P , or more generally,
at points where hD (·; P) is low, the depth loses its fine robustness properties and
may be hard to be estimated accurately [3].

In [9], the latter problems were addressed using the concept of the illumination, a
notion complementary to the depth. Suppose that α > 0 is given so that the interior
of Pα is non-empty. The (α-) illumination of x w.r.t. P is defined as the ratio of the
volume of the convex hull of x and the central region Pα , and the volume of Pα itself

I (x; P) = vold (co (x, Pα)) / vold (Pα) .

It is argued in [9] that in the tails of the distribution, the illumination is a better
indicator of centrality than the depth. In contrast to the depth, the illumination is an
outlyingness function—for x ∈ Pα , the illumination equals one; for x outside Pα , it
is greater than one and increases as x moves further from the central region. For a
more detailed account of illumination and examples, see also [10].

2 Elliptically Symmetric Distributions

We are concerned with the properties of the halfspace depth and the illumination
when applied to elliptically symmetric distributions. Recall that the distribution of a
random vector X = (X1, . . . , Xd)

T ∼ P ∈ P
(
R

d
)
is spherically symmetric if for

any orthogonal matrix O ∈ R
d×d we have OX ∼ P . If a spherically symmetric ran-

dom vector possesses a density f , it takes the form f (x) = h
(
xTx

)
for all x ∈ R

d .
The function h : [0,∞) → [0,∞) is called the density generator of P . Clearly, h
characterizes P . It is well known that all univariate projections uTX of a spher-
ically symmetric random vector X , with u in the unit sphere S

d−1 ⊂ R
d , have the

same distribution [4, Theorem 2.4]. In particular, the cumulative distribution function
(c.d.f.) F : R → [0, 1] of the first marginal X1 (or any other univariate projection)
also characterizes P completely. We call F the marginal c.d.f. of X .

For a spherically symmetric random vector Z = (Z1, . . . , Zd)
T with the marginal

c.d.f. F and density generator h, a center μ ∈ R
d , and a non-singular1 matrix A ∈

R
d×d , the random vector X = AZ + μ is said to have an elliptically symmetric

distribution with location μ and shape A. The distribution of X is described by the
triplet (μ, A, F), but actually it can be shown [4, Sect. 2.1] that it depends only on
(μ,�, F) for� = AAT. We therefore write P = EC(μ,�, F). The representation
(μ,�, F) is not unique—a positive multiple of�, and an appropriately transformed

1For singular or non-square matrices A, results analogous to those given in this note can be shown
if we restrict to the affine subspace given by the support of X .
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F may lead to the same distribution P . This ambiguity is avoided by imposing that
the determinant |�| of � is one; we shall assume this in what follows.

Because |�| = 1, there exists a unique real, symmetric, and positive definite
square root matrix�1/2 of� [7, Theorem 7.2.6] that satisfies�1/2�1/2 = �. Denote
the inverse of�1/2 by�−1/2. This allows us towrite Z = �−1/2 (X − μ). The density
of X ∼ P = EC(μ,�, F) is equal to

f (x) = h
(
d� (x, μ)2

)
for x ∈ R

d , (1)

for h the density generator of Z . The density depends on x through the (�-)Mahalano-

bis distance of x from μ defined by d� (x, μ) =
√

(x − μ)T �−1 (x − μ). Denote

by Eμ,� = {
x ∈ R

d : d�(x, μ) ≤ 1
}
the (�-)Mahalanobis ellipsoid around μ. Our

task is to express the density f of P = EC (μ,�, F) in terms of the depth and the
illumination of P . This allows estimation of f in a robust and nonparametric way.

2.1 Depth and Illumination of Elliptical Distributions

Elliptically symmetric distributions are quite simple when it comes to their depth.
Since hD is affine invariant [2], the depth of x w.r.t. X ∼ P = EC (μ,�, F) equals
the depth of z = �−1/2 (x − μ) w.r.t. the spherically symmetric �−1/2 (X − μ) =
Z ∼ Q ∈ P

(
R

d
)
with the same density generator h as X . For spherically symmetric

distributions, it is well known that the depth takes the form

hD (z; Q) = F

(
−

√(
�−1/2 (x − μ)

)T
�−1/2 (x − μ)

)
= 1 − F (d�(x, μ)) .

(2)
In particular, the central regions Pδ take the shape of Mahalanobis ellipsoids of P .

Because Pα is an ellipsoid, and because of [9, Lemma 1], we know that the
illuminationI (·; P) is also a known function of theMahalanobis distanced�(x, μ).
Consequently, by [9, formula (10)], we can write for any x /∈ Pα

d�(x, μ) = F−1 (1 − α) g−1
d (I (x; P)) (3)

for gd : [1,∞) → [1,∞) a continuous, strictly increasing function defined by
gd(1) = 1, and for t > 1 as a primitive function to

g′
d(t) = Γ

(
d
2 + 1

)

√
π Γ

(
d+1
2

)
1

d

(
1 − 1

t2

)(d−1)/2

for t ∈ (1,∞).

By g−1
d we mean the inverse function to gd , and F−1 stands for the quantile function

corresponding to F . For additional details about g−1
d and its properties, we refer to

[9, Appendix A].
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3 Depth-Based Density Estimation

The correspondence between elliptically symmetric distributions and the halfspace
depth described in the previous section is well documented in the literature [5, 6].
Nonetheless, these relations have never been made explicit, and they have not been
used to estimate the density f based solely on the halfspace depth/illumination.

For P = EC (μ,�, F) with density (1), we can express f in terms of the depth
of P . Indeed, from (2) and (3), we get, given that |�| = 1,

f (x) =
⎧
⎨

⎩

h
((

F−1 (1 − hD (x; P))
)2)

if hD (x; P) ≥ α,

h
((

F−1 (1 − α) g−1
d (I (x; P))

)2)
if hD (x; P) < α.

Therefore, to write f by means of the depth and the illumination, it remains to
find depth-based expressions for the marginal c.d.f. F and the density generator h.
Contrary to the approaches based exclusively on the halfspace depth, the advantage
of using the illumination is that robustness and better stability properties, especially
in the tails of P , can be achieved. This will be seen in an application in Sect. 4.

3.1 The Density Generator as the Volume of Pδ

Functions F and h are in a one-to-one relationship, i.e., one can be explicitly com-
puted from the other. A closed form expression for this relation can be found,
for instance, in [4, Sect. 2.2.3]. Write fX1 = F ′ for the density of X1, and set
h1(x) = fX1(x

2) for x > 0. For almost every x > 0 and m a positive integer, define

hm−1(x) =
∫ ∞

x
(y − x)−1/2 hm(y) d y,

hm+2(x) = − 1

π
h′
m(x).

(4)

Then h(x) = hd(x) for almost every x > 0. Perhaps more elegantly, h can be also
written as a fractional derivative of h1 [14, Sect. 7.4].

We proceed by writing h and F in terms of the depth hD (·; P). Because of (2),

Pδ = {
x ∈ R

d : d� (x, μ) ≤ −F−1 (δ) = F−1 (1 − δ)
} = E

μ,�(F−1(1−δ))
2 (5)

for δ ∈ (0, 1/2). First, we compute the volume of Pδ . Any ellipsoid Eμ,� is an affine
image of the unit ball Bd = {

x ∈ R
d : ‖x‖ ≤ 1

}
given by Eμ,� = �1/2Bd + μ =⋃

x∈Bd

{
�1/2x + μ

}
. It is also well known that vold

(
Bd

) = πd/2/Γ (d/2 + 1) for
Γ (·) the gamma function. This means that vold

(
Eμ,�

) = √|�|πd/2/Γ (d/2 + 1),
and in particular also
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vold (Pδ) = (
F−1 (1 − δ)

)d πd/2

Γ (d/2 + 1)
.

The marginal c.d.f. F can be expressed from the formula above by

F

(
(vold (Pδ) Γ (d/2 + 1))1/d√

π

)
= 1 − δ for δ ∈ (0, 1/2). (6)

Having F written in terms of Pδ only, we can use formulas (4) to obtain an analogous
result for the density generator h directly using a plug-in method.

3.2 The Density Generator as the Probability of Pδ

A practical implementation of the formula for h using (6) and (4) requires precise
numerical differentiation and integration, or numerical fractional differentiation.
Therefore, it might lead to numerically unstable results. Here, we use a different
approach and express h using its relation with the density of the radial distribution of
P [4, Theorem 2.9]. Recall that any spherically symmetric Z with marginal c.d.f. F
can be expressed in the form2 Z

d= RU for R a non-negative random variable whose
distribution is called the radial distribution of Z , andU an independent random vec-
tor with uniform distribution on Sd−1 [4]. By formula (2.21) from [4], there exists a
simple relation between the density fR2 of R2 and the density generator h

fR2(t) = πd/2

Γ (d/2)
td/2−1h(t) for t ≥ 0. (7)

The density of R2 can be expressed directly from the depth hD (·; P). We start from
(5), and use [4, formula (2.34)] to write for δ ∈ (0, 1/2)

P (X ∈ Pδ) = P
(
d� (X, μ) ≤ F−1 (1 − δ)

) = P
(
R2 ≤ (

F−1 (1 − δ)
)2)

. (8)

Thus, the probability content of a central region of X is given by the distribution
function of R2, the link between them being F . Because F depends on the depth via
(6) and the left-hand side of (8) is expressed in terms of the probabilities of Pδ only,
this allows to express the distribution of R2 based on the depth and the probabilities
of the central regions. It turns out that this approach to the estimation of h requires
only a single numerical differentiation in practice, unlike the direct approach using
only the volume of Pδ and (4). Therefore, the procedure based on (8) is more stable
and uses both the information about the volume and the probability content of Pδ to
estimate the density of P .

2 d= stands for “is equal in distribution”.
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3.3 Fisher Consistent Estimators of the Density

Let X1, . . . , Xn be a random sample from P that corresponds to an empiricalmeasure
Pn ∈ P

(
R

d
)
. To estimate the density f , we start by estimating the marginal c.d.f.

F . First, in (6), one replaces the volume of the population depth central region Pδ

by the volume of the empirical depth central region (Pn)δ of points whose depth
hD (·; Pn) is at least δ. An estimator of F is obtained in the implicit form of (6) with
P replaced by Pn . More specifically, let vn : (0, 1/2) → [0,∞) : δ �→ vold ((Pn)δ).
This is a non-increasing function, and for its (generalized) inverse function v−1

n , we
can express our estimator of F as

Fn (t) = 1 − v−1
n

( (
t
√

π
)d

Γ (d/2 + 1)

)

for t ≥ 0. (9)

With an estimator of F at hand, we can use any of the two approaches described
above to estimate h by hn . For the method based on formula (8), the left-hand side
in (8) is estimated by its empirical counterpart

∑n
i=1 I [Xi ∈ (Pn)δ] /n. Function F

can be replaced by its estimator (9). We get an estimator of the c.d.f. of R2

Fn,R2(t) =
n∑

i=1

I

[
Xi ∈ (Pn)1−Fn(

√
t)

]
/n for t ≥ 0. (10)

To estimate h, we take a derivative of (an interpolant of) this function, and set by (7)

hn(t) = F ′
n,R2(t)

Γ (d/2)

πd/2
t1−d/2 for t ≥ 0. (11)

Finally, we are prepared to estimate the density f from (1) using Pn by

fn(x) =
⎧
⎨

⎩

hn
((

F−1
n (1 − hD (x; Pn))

)2)
if hD (x; Pn) ≥ α,

hn
((

F−1
n (1 − α) g−1

d (I (x; Pn))
)2)

if hD (x; Pn) < α.
(12)

In the following theorem, we summarize the derivations we made in Sect. 3.

Theorem 1 Let P = EC(μ,�, F) ∈ P
(
R

d
)
be such that |�| = 1, and let f be

the density of P. Then, for any α ∈ [0, 1/2), the estimator (12) taken as a functional
of the empirical measure Pn ∈ P

(
R

d
)
of a random sample from P is a Fisher

consistent estimator of the true density f .

In its current form, our main result is interesting mostly from the theoretical point of
view. Its potential applications include depth-based inference for elliptical models
or construction of asymptotically optimal, nonparametric, and highly robust clas-
sification rules. For the special case of multivariate normal distributions, the latter
application was explored in [9, Sect. 5.3] and [10, Sect. 3] with quite promising first
results.
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Fig. 1 Illustration of our nonparametric density estimation procedure for standard bivariate normal
distribution. Solid black lines depict the true theoretical functions in all panels. Top left: estimate
of the marginal c.d.f. F . Top right: estimate of the c.d.f. of R2. Bottom left: estimate of the density
generator h, shown as a thick gray curve. Bottom right: estimate of the density f using α = 0.05,
shown as a thick gray curve. The vertical dotted line indicates which estimated values are based
solely on the depth (to the left from the vertical line) and which are based on a combination of the
depth and illumination (to the right). For comparison, also the estimator using α = 0, i.e., based
only on the depth, is plotted by the black dashed line in the right part of the panel (in the left part
of the panel, the estimator coincides with the original estimator and hence is not plotted)

4 Application

To illustrate the potential of the proposed nonparametric density estimation proce-
dure, we employ it for P the standard bivariate normal distribution. In this case, the
marginal c.d.f. F is the c.d.f. of the (univariate) standard normal distribution, R2 has
χ2
2 -distribution, and the density generator h(t) is proportional to exp{−t/2}, t ≥ 0.

We perform our computation in R, taking advantage of the packagesTukeyRegion
[1, 8] and ddalpha [11, 12]; the source code is available online.3

We generate n = 500 independent observations Xi ∼ P with an empirical mea-
sure Pn . A grid δ1, . . . , δK , used in further computations, is taken to be uniform in the
interval [mini hD(Xi ; Pn),maxi hD(Xi ; Pn)], with K = 51. The volumes and the
probability contents of the central regions (Pn)δ j

are determined using the function
TukeyRegion.

The values of the marginal c.d.f. F are estimated using (6) for δ = δ1, . . . , δK , see
the points in the top left panel of Fig. 1. Note the non-uniform sampling of points on

3http://gems.karlin.mff.cuni.cz/software.php.
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the horizontal axis, implied by the uniform sampling of the δ j values on the vertical
axis. The distribution function of R2 is estimated using (10) for a non-uniform grid of
arguments t1, . . . , tK such that δ j = 1 − Fn(

√
t j ). The points corresponding to the

estimate Fn,R2 are displayed in the top right panel of Fig. 1. To estimate the density
generator h by (11), we approximate Fn,R2(t), t ≥ 0, by a smoothing spline and
take the derivative of that spline, see the gray line in the bottom left panel of Fig. 1.
Note that thanks to the spline approximation of the discretized estimate Fn,R2 it is
possible to evaluate hn(t) at any t ≥ 0. Finally, to estimate the density f (x) for a
given x ∈ R

2, formula (12) is used. The required value of F−1
n (·) is obtained from

(6). For computation of g−1
d , we refer to [9, Appendix A]. In our illustration, fn(x) is

computed in a grid of points x = (u, 0)T with u ∈ [0, 3], see the bottom right panel
of Fig. 1. For the cut-off value α = 0.05, the estimated density is plotted in thick
gray. For the choice α = 0, the estimator is based solely on the depth and becomes
unreliable for points with very low empirical depth, as illustrated by the dashed line
plotted in the bottom right panel of Fig. 1.

Our density estimator (12) takes advantage of the robustness of the depth in the
central region Pα and the robustness of the illumination outside Pα . This overcomes
a major drawback of all depth-based procedures, namely their instability in regions
of low depth. Hence α is an important tuning constant of our procedure, defining
the largest central region where the depth estimates are still considered reliable. The
amount of smoothing in the spline approximation of Fn,R2 is also specified by the
user. Finally, the grid of values δ1, . . . , δK can be chosen in a non-uniform way to
obtain more detailed information in the tails of Fn and Fn,R2 . We leave these practical
issues for further investigation.

The approach presented in this note is applicable in any dimension. Its only
practical limitation arises from the need to compute the central regions (Pn)δ j

. This
is a difficult task; the currently best-performing function TukeyRegion handles
hundreds of observations in dimensions d ≤ 5 without substantial difficulties [8].
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Latent Class Analysis for the Derivation
of Marketing Decisions: An Empirical
Study for BEV Battery Manufacturers

Friederike Paetz

Abstract Currently, battery electric vehicles (BEVs) constitute prominent alterna-
tives to vehicles with combustion motors. As the competition between BEV battery
manufacturers increases, it is essential that they design batteries that perfectly meet
the needs of BEV manufacturers. However, the needs of BEV manufacturers are
actually derivatives of the needs of BEV customers. We, therefore, conducted an
empirical discrete choice experiment with BEV customers in China and performed
latent class analysis. We found substantial preference heterogeneity among BEV
customers, which transfers into varying needs of BEVmanufacturers w.r.t. batteries.
Using these results, we determined the pricing and product design strategies for BEV
battery manufacturers.

Keywords Latent class analysis · Discrete choice experiment · Marketing
decisions

1 Motivation

Currently, battery electric vehicles (BEVs) constitute prominent alternatives to vehi-
cles with combustion motors. As is documented, the demand for BEVs has tremen-
dously increased in recent years. In 2014, approx. 750,000 BEVs were registered
worldwide, and this number nearly quintupled to 3.2 million in 2017 [23]. Here,
China has the most impressive growth rate for electromobility and has emerged as
the most important market for BEVs [7].

Hence, it is not unexpected that Chinese BEV customers are the main focus in
academic research. This attention is supported by the literature review of Ref. [13],
which shows that recent studies have frequently investigated Chinese customers’
preferences for BEV technologies. Often, these studies use discrete choice experi-
ments (DCEs) to determine customer preferences for BEVs. Reference [9] conducted
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Fig. 1 Demand relationship

a DCE and estimated multinomial logit (MNL) models and mixed logit (MXL) mod-
els to compare the BEV preferences of Chinese and US customers.1 Chinese cus-
tomers showed a significantly higher relative willingness-to-pay (WTP) for BEV
technology than did US customers. In addition, the authors investigated how sub-
sidies influence the competitiveness of alternative technologies. To accomplish this
task, they used a market simulation and found that Chinese customers’ willingness
to adopt BEVs was independent of subsidies. This result further replicates the result
of an earlier study of Ref. [20], which found that the subsidy of waiving sales taxes
does not have a significant effect on Chinese customers’ willingness to buy BEVs.
Reference [15] also focused on Chinese respondents and conducted a DCE. Like [5],
they estimatedMNLmodels andMXLmodels and explored the preference structures
for certain BEV attributes/levels (driving range, charging time etc.). In addition, they
compared the preferences of unlikely BEV customers and potential BEV customers
and found that latter have a higher WTP for BEVs.

All studies show that Chinese respondents yield high preferences for BEVs and
that they are willing to pay a price premium for BEVs in comparison to vehicles
with combustion motors. Although the results from DCEs with stated choices are
frequently criticized [27], they are supported in the focalBEVcontext by the observed
tremendously increasing demand for BEVs in China in recent years [24].

With the increasing demand for BEVs, the demand for BEV batteries also deriva-
tively increases. The battery is the core component of a BEV and is one of the main
BEV cost drivers [26, p. 17]. Since the competition between BEV battery manu-
facturers is prevalent, BEV battery manufacturers have to accurately design their
products and use sophisticated pricing strategies to gain a competitive advantage.
A battery manufacturer could increase its competitive ability if its battery solves
the problems associated with electromobility, namely, the driving range, (charging)
infrastructure, and purchase price [5].

In sum, BEV customers evoke demand at BEV manufacturers, who, in turn,
generate demand at BEV battery manufacturers. Hence, BEV customers indirectly
generate demand for BEV batteries, as shown in Fig. 1. If we consider the demand
relationship in Fig. 1, it becomes clear that the preferences of BEV customers influ-
ence the preferences of BEV manufacturers concerning BEV batteries. Hence, even
in a business-to-business relationship, BEV battery manufacturers have to accom-
modate the BEV customers’ preferences.

1For a concise guide to the MNL and MXL model please refer to [4].
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This paper relies on the preference relationship explained above and explores the
up-to-date preferences of Chinese customers in the electromobility research field. In
particular, following the research methodology of recent studies, a DCE using BEVs
was conducted to explore Chinese customers’ preferences. However, we accommo-
date preference heterogeneity on a segment level and therefore differ from previous
studies, which either do not account for preference heterogeneity at all (e.g., estimat-
ing MNL models) or capture heterogeneity on an individual level (e.g., estimating
MXL models). The estimation of latent class multinomial logit (LC-MNL) mod-
els provides insights into preference structures of certain customer segments, i.e.,
submarkets that are homogeneous within their preferences. Segment-specific market
contemplations are highly relevant for marketing practitioners to derive segment-
specific marketing decisions. Here, the results of a LC-MNLmodel are used to draw
inferences for the pricing and product strategies of BEV battery manufacturers. This
paper is an advanced of Ref. [17]. This current version differs from Ref. [17] by pro-
viding new details regarding an elaborated literature review on Chinese preferences
for BEVs and the demand relationships between BEV customers ans BEV battery
manufacturers. In addition, a detailed description on the applied methodology, e.g.,
Latent Class Multinomial Logit Models, is provided.

The remainder of this contribution is as follows. In the next section, Sect. 2,
we briefly introduce the LC-MNL model for the estimation of segment-specific
preferences. Section3 contains information on the empirical DCE. Here, the model
selection procedure and the results of the selected segment solution are discussed.
Furthermore, BEV customers’ preferences are translated into inferences for pricing
and product design strategies for BEV battery manufacturers. Finally, the results are
concluded in Sect. 4.

2 Latent Class Multinomial Logit Model

The LC-MNL model is a widely used model in different application fields, e.g.,
marketing [11], and is available in various versions, e.g., usingMNLparameterization
with data collected over time [19]. The LC-MNL model relies on random utility
theory [10, 14, 25]. Here, it is assumed, that a respondent j , where j = 1, ..., J , from
a specific segment s, where s = 1, ..., S, chooses alternativem, wherem = 1, ..., M ,
in a certain choice set t , where t = 1, ..., T , that provides the biggest utility Ujstm

to that respondent. The utility vector u js = (Ujs11, ...,UjsT M)
′
contains the utilities

of all alternatives in all choice sets and is considered to be a stochastic construct.
It could be further described as the sum of a segment-specific deterministic part
vs , s = 1, ..., S, and a stochastic component ε j : u js = vs + ε j . For the LC-MNL
model, ε j , where j = 1, ..., J , is a random error term that is assumed to follow
an i.i.d. Gumbel distribution. The deterministic term vs = v js is the same for all
respondents j in a certain segment s and could be further described as vs = Xβs .
Here, X denotes the design matrix of the choice task, and βs is the segment-specific
part-worth utility vector of segment s.
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For a fixed number of segments S, the researcher usesLC-MNLmodels to estimate
both the segment-specific part-worth utility vectors βs as well as the relative segment
shares πs , where s = 1, ..., S. The estimation is commonly performed using maxi-
mum likelihood estimation. Here, the log-likelihood can be maximized with iterative
procedures such as the expectation-maximization algorithm [2, 12].

The log-likelihood is

LL =
J∏

j=1

S∑

s=1

πs

T∏

t=1

M∏

m=1

P
δ j tm

jstm, (1)

where Pjstm describes the choice probability of alternative m in choice set t by
respondent j from segment s and δ j tm is a binary variable, that equals one, if alter-
native m is chosen in choice set t by respondent j and zero otherwise. The choice
probability is

Pjstm = exp(μx′
tmβs)

R∑
r=1

exp(μx′
trβs)

, (2)

where R denotes the number of alternatives in choice set t and μ > 0 is a scale
parameter. The design vector x′

tm of alternativem in choice set t is the corresponding
row vector of X .

LC-MNL models are known for their fuzzy segment assignment, i.e., a respon-
dent has a specific segment membership probability for each segment. Obviously,
the better the separation between segments is, the more the posterior segment mem-
bership probabilities differ in favor of one specific segment [3]. For example, if two
segments are well separated, the posterior segment membership of a respondent for
one segment, e.g., segment 1, is likely to approximate 100%. However, if the two
segments are very similar, i.e., less separated, then the posterior segment member-
ship probability of a respondent is likely to approximate 50% for each of the two
segments.

The extent of the heterogeneity within empirical (versus artificial) data sets is not
known a priori. Therefore, LC-MNL models are estimated for several numbers of
segments. To determine the appropriateness of certain segment solutions, different
criteria have to be evaluated. For example, the model fit, the predictive validity, and
the separation of segments provide valuable insights [18]. A popular measure to
determine the model fit is the adjusted Bayesian information criterion (ABIC). The
ABIC is calculated via [22]

ABIC = 2LL + ln

(
J + 2

24

)
(S · dim(βs)), (3)

where LL denotes the log-likelihood value of the LC-MNL model and dim(βs)

describes the dimension of the part-worth utility vector βs . In comparison to the
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Bayesian information criterion (BIC), that uses a penalty term of ln(J ), the ABIC
uses penalty term of ln( J+2

24 ). Therefore, the ABIC circumvents the underestimation
of the number of classes for small samples which is frequently reported for the
BIC [16]. The mean posterior segment membership probabilities of respondents are
frequently used as ameasure of segments’ separation and, therefore,model fit.Higher
values represent a unique assignment of respondents to certain segments and a better
separation of segments. These results provide a better model fit [3]. The predictive
validity could be measured by the first choice (FC) hit rates in several holdout choice
sets [18]. Obviously, the LC-MNL model of the segment solution with the highest
FC hit rate performs the best.

3 Empirical Analysis

To gain information on customers’ preferences for BEVs, we use the data of a DCE
that was conducted in China. The DCE included 10 choice sets with three BEV
alternatives and a no-purchase option. The BEVs were characterized by their driving
range (150km, 250km, and 350km), charging time (4h, 6h, and 8h), purchase price
(60, 000�, 160, 000�, and 260, 000�), and car-body design (sedan, estate car, and
SUV). All attributes were chosen in accordance with the attributes in the recent
literature using DCEs to assess BEVs in China [15, 20]. In addition, the first three
attributes cover the problems of electromobility. The attributes’ levels conform to the
most prevalent realizations of the top 20 best-selling BEV models in China in 2017
[6]. However, we did not incorporate Tesla because Tesla’s BEVs are much more
expensive and have a wider driving range and shorter charging time than all other
top 20 BEVs in the Chinese market. The final sample includes 194 respondents.

The data of eight choice sets, which resulted in 1,552 observations, were used
for the estimation of the LC-MNL models, and two holdout choice sets, which
had 388 observations, were considered. The estimation was performed using the
latent class module of the Sawtooth Software [21]. Furthermore, the effects-coding
of all attributes and the part-worth utilities for all attribute levels were used. As
a basis for the model selection, LC-MNL models for one to eight segments were
estimated. We used the recommended convergence limit for the log-likelihood of
0.01 of Ref. [21]. Hence, the estimation procedure stops, if improvements in the log-
likelihood between two iterations are less than 0.01. Furthermore, several criteria
(e.g., the ABIC statistics, FC hit rates, and mean posterior segment membership
probabilities) were calculated to determine the appropriateness of segment solutions.

Table1 displays the results of the ABIC statistics, the FC hit rates, and the mean
posterior segment membership probabilities (post. memb.).

The 6-segment solution achieves the best model fit, i.e., the lowest ABIC value,
and the best predictive validity, i.e., the highest FC hit rate. The FC hit rate is 59%
and therefore, the 6-segment solution performs more than two times better than
chance (Each holdout choice set contained four alternatives, which results in a coin
flip probability of a right prediction of 1/4 ∼= 25%). In addition, the mean posterior
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Table 1 Values of criteria for model selection (compare Ref. [17], p. 370)

Number of segments ABIC Mean post. memb. (%) FC hit rates (%)

1 3,780 100 48

2 3,619 97 52

3 3,552 91 52

4 3,486 91 58

5 3,435 90 58

6 3,426 92 59

7 3,429 90 57

8 3,431 90 56

segmentmembership probability of the 6-segment solution (92%) ismarkedly higher
than those of the 5- or 7-segment solutions (90%). This result argues for a less fuzzy
segment assignment of respondents and, therefore, for well separated segments. All
these criteria strongly argue for the selection of the 6-segment solution.

Table2 illustrates the segment-specific part-worth utility estimates βs , the rela-
tive segment shares πs , and the segment-specific relative attribute importances of
the selected 6-segment solution. Obviously, the relative shares πs of all six segments
as well as the segment-specific attribute importances sum to 1 resp. 100%. In con-
trast, the segment-specific part-worth utility estimates of a certain attribute sum to
0, because we used effects-coding [1].

Table2 shows that all segments are of meaningful size. Even the smallest seg-
ment, segment 4, with a relative segment size of 7%, contains 14 respondents and is
therefore managerially worthwhile.

The interpretation of the segments may rely on themost preferred car-body design
for the sake of simplicity. For example, segments with the highest preferences for
SUVs could be interpreted as (potential) SUVcustomers, e.g., segment 1 and segment
6. SUV customers attach the highest importance to the driving range (39.16%) and
purchase price attributes of a BEV (32.56%, segment 1), or the car-body design
(60.28%, segment 6). Estate car customers (segment 3) attach the highest importance
to the driving range (56.51%) and prefer higher prices, i.e., they view the price as
a quality signal and favor the highest price of 260,000�. Sedan customers either
exclusively care about the car-bodydesign (48.51%, segment 5) or about the attributes
associated with the problems of electromobility (segment 2 and segment 4).

Obviously,well-separated preference structures between the consideredBEVcus-
tomer clusters exist. Those differences build a sound basis for customer-specific port-
folio differentiations of BEVmanufacturers and, therefore, derivatively for potential
product and price differentiations of BEV battery manufacturers.

This approach is based on the characteristics of business-to-business (B2B) mar-
keting. B2B buying behavior is based on derived demand, i.e., organizations (here:
BEV manufacturers) buy products (here: BEV batteries) from other organizations
(here: BEV battery manufacturers) that meet the needs of their customers [8, p. 193].
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Table 2 Estimates of segment-specific shares, part-worth utilities, and attribute importances

rel. shares
πs

seg. 1 seg. 2 seg. 3 seg. 4 seg. 5 seg. 6

0.361 0.162 0.103 0.070 0.184 0.120

Part-worth utilities βs

Driving
range (in
(km))

150 −1.334 −2.044 −3.630 0.060 −0.224 −0.586

250 0.342 0.491 −0.162 −0.122 0.152 0.322

350 0.992 1.553 3.792 0.062 0.072 0.264

Charging time (in [h])

4 0.221 0.621 1.716 −1.085 0.471 0.135

6 0.244 0.094 −0.353 0.193 −0.141 −0.158

8 −0.465 −0.715 −1.363 0.892 −0.330 0.023

Purchase price (in [�])

60,000 0.856 0.664 −1.157 −1.197 0.329 −0.561

160,000 0.222 0.072 0.102 0.660 0.223 0.168

260,000 −1.078 −0.736 1.055 0.537 −0.552 0.393

Car-body design

estate car 0.175 −0.241 0.153 −0.225 −0.925 −0.142

sedan −0.572 0.449 0.113 0.309 1.015 −1.564

SUV 0.397 −0.208 −0.266 −0.084 −0.090 1.706

Attribute importances (in [%])

Driving
range

39.16 51.23 56.51 4.06 9.40 16.73

Charging
time

11.96 19.03 23.45 43.41 20.03 5.40

Purchase
price

32.56 19.93 16.85 40.78 22.06 17.59

Car-body
design

16.32 9.81 3.19 11.75 48.51 60.28

Hence, to derive inferences for a BEV battery manufacturer, we could ultimately
rely on the preferences of different BEV customers (using Fig. 1). The batteries built
for SUVs and estate cars need a high reservoir capacity because (potential) SUV
customers and (potential) estate car customers prefer a wide driving range. Batteries
for sedans must have a quick recharging time and a high reservoir capacity because
the majority of (potential) sedan customers prefer a quick charging time and a wider
driving range. (Potential) estate car customers view a higher price as a quality signal.
Hence, the batteries for estate cars could be offered at higher prices and, therefore,
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may result in higher costs to fulfill customers’ preferences for a wide driving range
and a quick charging time.

For pricing and product design decisions, it could be inferred that even identically
constructed batteries could be offered at higher prices to manufacturers of electric
estate cars. Such a price differentiation arises from BEVmanufacturers’ opportunity
to counteract higher battery costs by charging higher prices.

4 Conclusion

The rising demand of BEVs derivatively increases the demand for BEV batteries.
Since the competition is strong, BEV battery manufacturers have to take the prefer-
ences of BEVmanufacturers (and, therefore, the preferences of BEV customers) into
account. We conducted a DCE using BEVs in China and estimated latent class multi-
nomial logit models. Based on the results, inferences for pricing and product design
strategies for BEV battery manufacturers were drawn. We found that the batteries
built for SUVs, sedans, and estate cars need a high reservoir capacity. In addition,
the batteries for sedans must have a quick recharging time. Furthermore, (potential)
estate car customers viewed price as a quality signal. Therefore, the batteries for
electric estate cars could be more expensive (and could be sold at higher prices)
because BEV manufacturers could smoothly pass their higher costs onto their BEV
customers.
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Small Area Estimation Diagnostics: The
Case of the Fay–Herriot Model

Maria Chiara Pagliarella

Abstract Leverage and Cook’s distance are some of the most important tools in
influence analysis, where the main target is to identify observations that might deter-
mine the character of model estimates and predictors. In the small area estimation
setup, applied statisticians are interested in tools to identify observations that might
influence the variance component and the regression parameter estimates, the empiri-
cal best linear unbiased predictor and itsmean squared error estimate. For this reason,
this paper discusses the leverage matrix, the influence on the mean squared error of
the empirical predictor, and a Cook’s Distance of the empirical predictor for the Fay–
Herriot model, when the area-random effect variance is estimated by the restricted
maximum likelihood method. Further, the validity of this approach is illustrated by
means of an application to poverty data.

Keywords Influence analysis · Leverage · Cook’s distance · Poverty

1 Introduction

In themodel-based approach to small area estimation, data is assumed to be generated
according to a specific model and the whole inferential process depends on this
assumption. Therefore, it is quite important to check if some data points or groups
of cases are particularly influential on the analysis. For this reason, diagnostics tools
are needed to ensure that model parameters are properly estimated.

In classical linear models, this examination has been traditionally carried out
by residual analysis and detection of influential cases. Many articles and books deal
with influential observations and outliers. Some of them are [3, 5, 21], and important
papers have been written by Chatterjee and Hadi [8], and Cook [6, 7]. Two main
types of influence analysis for linear models have been developed. Within the first,
the calculation of leverage and standardized residuals plays a key role (the leverage
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is the diagonal element of the hat matrix). The second one is based on measuring
the effect on the estimates of deleting observations from the whole dataset, and it is
called case deletion diagnostics. A third approach, less considered in applications,
is based on the maximum curvature of log-likelihood displacement and it is called
local influence (see [2, 7]).

In the context of mixed models, many contributions are available as well. Without
this list being exhaustive, the followingmay bementioned: Lesaffre andVerbeke [17]
applied the local influence approach to linear mixed-effects models; Fung et al. [14]
considered both case and subject deletion influence diagnostics for semi-parametric
mixed models; Demidenko and Stukel [11] generalized common measures of influ-
ence for the fixed effects parameters of the linear mixed-effects models; Zewotir and
Galpin [29] extended the ordinary linear regression influence diagnostics approach
to linear mixed models; Nobre and Singer [22] covered a decomposition of the gen-
eralized leverage matrix for the linear mixed models; Pan et al. [23] proposed a case
deletion approach to identify influential subjects and influential observations in linear
mixed models.

A specific application of mixed models is small area estimation. Small area esti-
mation refers to estimates over domains for which direct estimates are produced with
unacceptably large standard errors due to the sample sizes available. Standard survey
designs are typically carried out in order to achieve reliable estimates on planned
domains (subpopulations) of the reference population. Direct estimates are those
based only on the domain-specific sampling data. On the other hand, small area esti-
mation produces indirect estimates for topic of interest on unplanned domains with
too small or even zero sample sizes. Indirect estimators based on explicit linking
models are called model-based estimators. They “borrow strength” by using values
of the variables of interest from related small areas through supplementary informa-
tion (auxiliary variables), such as data from other related areas or covariates from
other sources.

Within this setting, case diagnostics requires special attention. Therefore, diag-
nostics for mixed models are an incomplete answer to diagnostics in small area esti-
mation, because of the different population parameters of interest. This motivates
our interest in diagnostics methods for area level linear mixed models appearing in
small area estimation problems. In other words, the goal of small area estimation
methods is to determine Empirical Best Linear Unbiased Predictor (EBLUP) for the
mean or the total of the variable of interest and to minimize the Mean Squared Error
(MSE) of the empirical predictor. Furthermore, case deletion diagnostics cannot be
applied whenever there are few units for certain domain of interest.

However, while Battese, Harter, and Fuller [1] applied diagnostics methods for
validating the small area estimation model, checking the normality of the error terms
and the transformed residuals of the EBLUP, we found only a short note [20] on
specific diagnostic measures for the Fay–Herriot model.

For these reasons, this paper has two main aims. On the one hand, it revises and
makes it available to a larger audience the results in [20]. On the other, it shows the
potential of such an approach by presenting an application of case diagnostics for the
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Fay–Herriot model when the goal was to estimate poverty levels across small areas
in Spain.

Fay–Herriot model is an area level linear mixed model, with random-area effects.
It was first proposed by Fay and Herriot in 1979 [12] to estimate average per capita
income in small places of the United States. Since then, the Fay–Herriot model
has been widely used because of its flexibility in combining different sources of
information with different error structures. It has been largely studied in small area
estimation (e.g. [4, 9, 15, 18, 24]), and used to study poverty ([19, 25]) and other
related socio-demographic variables [16].

The rest of the paper is organized as follows. Section2 recalls the fundamentals of
the area level Fay–Herriotmodelwhenwe dealwithRestrictedMaximumLikelihood
(REML) of the random-area effect variance estimator. Section3 presents diagnostics
for the Fay–Herriot model. More specifically Sect. 3.1 gives the leverage matrix on
the fixed effects and the leverage matrix on the random-area effects; Sect. 3.2 shows
the influence analysis on the first two terms of the estimated mean squared error of
the EBLUP; Sect. 3.3 considers some case deletion diagnostics. Section4 provides
the application where diagnostics tools are tested on a model aiming at estimating
small area poverty proportions in Spain, while Sect. 5 draws the conclusions. Lastly,
an Appendix is provided with detailed formulas.

2 The Fay–Herriot Model

The Fay–Herriot model is a special case of a linear mixed model. We have

ŷi = x′
iβ + bivi + ei , vi

iid∼ (0, σ 2
v ), ei

ind∼ (0, ψi ), i = 1, ...,m (1)

where the ŷi ’s are the direct estimates of the indicator of interest y for the i-th area,
xi is a vector containing the aggregated (population) values of p auxiliary variables
with β regression coefficients, the random effects vi and the sampling errors ei are
assumed to be independent with zero mean and known sampling variances ψi and
unknown σ 2

v , respectively.
For our purposes, we rewrite the model in the general matrix form

ŷ = Xβ + B1/2v + e, (2)

where nowB = diag(b2i ) and the covariancematrix has a diagonal structure var(y) =
V = diag(Vi ) = diag(ψi + σ 2

v b
2
i ). The vector of theBest LinearUnbiased Predictors

(BLUPs) is given by

ŷH = X̂β+B1/2v̂ = X̂β+B1/2σ 2
v B

1/2V−1(̂y − X̂β) = X̂β + Γ (̂y − X̂β),
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with Γ = diag(γi ) = diag(σ 2
v b

2
i /(ψi + σ 2

v b
2
i )). The generalized least squares esti-

mator of β is
̂β = ̂βGLS = (X′V−1X)−1(X′V−1ŷ).

By using the relation

V−1 = (Ψ + σ 2
v B)−1 = Ψ −1 − Ψ −1(Ψ −1 + (σ 2

v )−1B−1)−1Ψ −1 = Ψ −1(I − Γ )

where Ψ = diag(ψi ) and I is the identity matrix. Denoting with ŷ∗ = Ψ −1/2̂y and
X∗ = Ψ −1/2X, for this estimator the result is

̂βGLS = (X′V−1X)−1(X′V−1ŷ)

= (X′Ψ −1X − X′Ψ −1ΓX)−1(X′Ψ −1ŷ − X′Ψ −1Γ ŷ) (3)

= (X∗′X∗ − X∗′ΓX∗)−1(X∗′̂y∗ − X∗′Γ ŷ∗).

An Empirical Best Linear Unbiased Predictor (EBLUP) estimator is obtained from
the BLUP by substituting suitable estimators of the variance and covariance param-
eters. Finally, the Restricted Maximum Likelihood (REML) estimator of σ 2

v is (see
[27] for more details)

σ̂ 2
v,REML = a

c∗

∑

(ŷ∗
i − ŷ

∗
)2 − (m − 1)

∑

(ŷ∗
i − ŷ

∗
)2

. (4)

With reference to the error in the EBLUP estimator, Prasad andRao in 1990 [24] gave
an approximation to the mean squared error of the EBLUP under the Fay–Herriot
model, which estimator includes three terms

mse(ŷHi ) = g1(σ̂
2
v ) + g2(σ̂

2
v ) + 2g3(σ̂

2
v ). (5)

It is worth noting that the terms g2 and g3, due to estimating β and σv, are of lower
order than the leading term g1.

The expressions (3), (4), and (5) will be used in next Section to derive the leverage
matrix of the fixed and random effects, the influence on the MSE and a case deletion
diagnostics for the empirical predictor.

3 Diagnostics for the Fay–Herriot Model

The main aim of a case diagnostics analysis is to identify observations or groups of
observations that might determine the character of model estimates and predictors.
In small area estimation, this means to identify the areas among the many that mostly
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affect the results of the estimates. In order to pursue that aim, after [20], we discuss
three diagnostics measures: the leverage, the influential areas that affect the mean
squared error estimates, and a Cook-type distance for the empirical predictor.

3.1 The Leverage Matrix

The aim is to investigate the influence of the domains (small areas) on the outcome
of the analysis. We are therefore interested in the assessment of the effects of small
perturbations in the data on the resulting BLUP estimates ŷH . For this reason, the
leverage, that is the partial derivative of the predicted value with respect to the
corresponding dependent variable, is considered here. In the framework of small
area estimation under area level models, leverage is thus the partial derivative of the
BLUP with reference to the corresponding direct estimator.

In order to obtain the leverage matrix of fixed and random effects, some useful
results are provided below (more details are available within the Appendix). The
leverage matrix for the traditional mixed model is given by definition as

L(̂β, v̂) = ∂ ŷ
∂y

.

Assuming fixed V, the leverage matrix L(̂β, v̂) can be seen as sum of two com-
ponents:

L(̂β, v̂) = L(̂β) + L (̂v)

= H1 + H2

= X(X′
̂V−1X)−1X′

̂V−1 + σ̂ 2
v,REMLB̂P,

where the first component is the hat matrixH1 = X(X′
̂V−1X)−1X′

̂V−1, also denom-
inated generalized marginal leverage matrix, while the second component is given
by H2 = σ̂ 2

v,REMLB̂V−1(Im − H1), the leverage matrix for the random component,
with

̂P = ̂V−1 − ̂V−1X(X′
̂V−1X)−1X′

̂V−1.

Under model (2), it is appropriate to evaluate the effect of each area level direct
estimate on the final predictor ŷH . The explicit form of the joint leverage matrix that
we denote as L∗ can be thus decomposed in terms of sampled observations as follows

L∗(̂β, v̂) = ∂ ŷH

∂ ŷ
= ∂(X̂β)

∂ ŷ
+∂(B1/2̂v)

∂ ŷ
= L∗(̂β) + L∗(̂v).

Based on the derivative



154 M. C. Pagliarella

∂H1

∂ ŷ
=

[

∂(X′
̂V−1X)−1

∂ ŷ
(X′⊗X′)

]

(̂V−1 ⊗ Im) + ∂̂V−1

∂ ŷ
(Im ⊗ [X(X′

̂V−1X)−1X′]),

the leverage matrix for the fixed effects is given by [20]

L∗(̂β) = ∂(X̂β)

∂ ŷ
= ∂

∂ ŷ
[X(X′

̂V−1X)−1X′
̂V−1ŷ]

=
(

∂H1

∂ ŷ

)

(̂y ⊗ Im) + H′
1 = H∗

1 + H′
1. (6)

While the leverage associated with the estimated random effects is

L∗(̂v) = ∂(B1/2v̂)
∂ ŷ

= ∂

∂ ŷ
[B1/2σ̂ 2

v,REMLB
1/2

̂V−1(̂y − X̂β)]

= [(B ⊗ σ 2
∂ )(̂V−1 ⊗ Im) + (

∂̂V−1

∂ ŷ
)(Im ⊗ σ̂ 2

v,REMLB)][(̂y − X̂β) ⊗ Im ] (7)

+[Im − L∗(̂β)](̂σ 2
v,REMLB̂V−1).

For the marginal leverageH1, as threshold value, it is suggested to use 2p/m (see
[10]). Using h∗

1,i i to indicate the diagonal elements of the matrix H∗
1 (6) for the i-th

area, and considering that tr(H′
1) = p, by analogy with [22], in our case influential

observations that affect the fixed effects estimates can be verified comparing the
quantity (h∗

1,i i − 1
m tr(H

∗
1)) with [L∗(̂β)i i − 1

m tr(L
∗(̂β))], more directly through the

estimation of the model variance.
In practice, high-leverage observations are also identified by visual examination of

the plot of the diagonal values of the leverage matrix. When we assess the potentially
influential values, this is very useful in analyzing the contribution to the leverage of
the single observation (small area) in estimating the model variance, with reference
to the marginal leverage H1.

3.2 Influence on the MSE of the EBLUP

The final purpose in small area estimation is to determine EBLUP estimates for the
mean or the total of the variable of interest and to minimize the mean squared error
of the empirical predictor. Because of that, the influence of some small areas on
the estimation of the MSE plays a central role in the analysis. Once an influential
observation has been identified, it could therefore be removed by the researcher in
order to improve the precision of the estimates.

With regard to the first component of the mean squared error estimate of the
EBLUP, we have the following term as matrix form
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G1 = diag(g1i ) = Γ Ψ (8)

so that influential area estimates can be detected by the following derivative

∂G1

∂ ŷ
= ∂

∂ ŷ
(Γ Ψ ) = ∂

∂ ŷ
(̂σ 2

v,REMLB̂V−1Ψ )

= (B ⊗ σ 2
∂ )(

̂V−1Ψ ⊗ Im) + [∂̂V−1

∂ ŷ
(Ψ ⊗ Im)](Im ⊗ σ̂ 2

v,REMLB). (9)

With reference to the second component, related to the variation of the fixed effects,
that is

G2 = (Im − Γ )X(X′
̂V−1X)−1X′(Im − Γ )(Im − Γ )U(Im − Γ )],

after [20] we have the following influence measure

∂G2

∂ ŷ
= ∂(Im − Γ )

∂ ŷ
([U(Im − Γ )] ⊗ Im) + ∂[U(Im − Γ )]

∂ ŷ
[Im ⊗ (Im − Γ )], (10)

where

∂(Im − Γ )

∂ ŷ
= −(B ⊗ σ 2

∂ )(
̂V−1 ⊗ Im) + (

∂̂V−1

∂ ŷ
Im2)(Im ⊗ σ̂ 2

v,REMLB),

∂[U(Im − Γ )]
∂ ŷ

= [∂(X′
̂V−1X)−1

∂ ŷ
(X′⊗X′)][(Im − Γ ) ⊗ Im] + ∂(Im − Γ )

∂ ŷ
(Im ⊗ U).

These derivatives are important as they measure the increase (positive value) or
the decrease (negative value) of the MSE of a small area, with reference to the direct
estimate of another small area. For such an influential measure, no threshold values
are available. Consequently, our suggestion is to first visualize the results for each
area of interest (by column vector) from the m × m resulting matrix of (9) and (10)
and then, for each column vector, investigate if there is any area showing particularly
higher values.

3.3 Case Deletion Diagnostics and Cook’s Distance

Here, we define Cook’s distances for the REML estimate of σ̂ 2
v and for the EBLUP

ŷHi .
After [20], Cook’s distance for σ̂ 2

v is given by

dv
	 = (σ̂ 2

v − σ̂ 2
v(	))

2

v̂ar(σ̂ 2
v )

,
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where v̂ar(σ̂ 2
v ) is the asymptotic variance of σ̂ 2

v that is obtained from the inverse of the
REML Fisher information matrix, and the subscript (	) is used for those estimators
that are calculated after deleting case 	.

The proposed Cook-type distance for the EBLUP ŷHi is

d eblup
	 = (ŷHi − ŷHi(	))

2

mse(ŷHi )

where ŷHi(	) is the EBLUP with case 	 deleted and mse(ŷHi ) is the Prasad-Rao [24]
MSE estimator.

Cook’s distance assesses the effects of a global change by removing an entire data
point. It follows that large values of d eblup

	 will point out that the corresponding area
may affect the EBLUP estimate of the related deleted area.

4 An Application to Poverty Data

In order to design and implement poverty reduction policies and funding programs,
there has been an increasing demand for poverty and living condition estimates at
aggregate and local levels. Within such a framework, case diagnostics may have a
very important role.

For this reason, this Section illustrates how the diagnostic tools introduced before
can be exploited within a real data analysis performed on the official Spanish Living
Condition Survey of the European Statistics on Income and Living Conditions (EU-
SILC). The latter is a cross-sectional and longitudinal sample survey, coordinated by
Eurostat, based on data from the European Union member states. It provides data on
income, poverty, social exclusion, and living conditions in the European Union.

The analysis aims at estimating poverty levels in small area domains by the use
of a Fay–Herriot area level model (1).

The dataset refers to the years 2004–2006 and contains 104 observations (areas
in our context) obtained by crossing 52 Spanish provinces with 2 sex (men and
women). The target variable is the direct estimate of the poverty indicator proposed
by Foster et al. [13] (poverty incidence or proportion) at domain level (province ×
sex). Estimates of the domainmeans are used as responses in the area levelmodel. The
considered auxiliary variables are the knowndomainmeans of the category indicators
of the following variables: age, education, citizenship, and labor. Finally, only 3
statistically significant variables that have a relevant meaning in a socio-economic
sense are selected. They are age group 50–65, secondary education completed, and
unemployment condition. The analysis was conductedwith the open-source software
R.

As discussed in Sect. 3.1, we start our influential analysis by computing the lever-
age values. We estimated the REML random-area effect variance, and we calculated
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Fig. 1 The diagonal values of the leverage matrix for the fixed effects L∗(̂β) plotted for all the
Spanish provinces, separately for men (left) and women (right)

the derivatives for the construction of the leverage matrix of the fixed effects as
described in Eq. (6).

Results referring to the diagonal values of the leverage matrix for the fixed effects
L∗(̂β) are presented in the scatter plot appearing in Fig. 1 for men and women,
comparedwith a critical value of 2

(∑m
i=1 L

∗
i i (

̂β)/m
)

. By looking at themagnitude of
the leverage values we conclude that the highest influential values are the provinces
of Barcelona (8) and Madrid (28), for both sex categories, where the number in
brackets indicates the corresponding numerical label on the abscissa axis of each
plot. Differences also appear when focusing on to the three years taken into account.
The leverage values tend to decrease from 2004 to 2006.

The relation between L∗(̂β) and the direct estimates of the poverty proportions
along the three years 2004–2006 is shown in Fig. 2. The plot shows that the direct esti-
mates with lower values generally correspond to higher level of leverage. Therefore,
lower direct estimates of poverty proportion can be considered to be more influential
than the higher ones. The values which stand out as the most influential are again the
provinces of Barcelona (8) and Madrid (28).

Results of the influence analysis on theMSEof the EBLUP estimates, in particular
that of the calculations of the derivative ofG1 inducedby the direct estimates (Eq. (9)),
are illustrated in Fig. 3. By way of an example, according to their sample sizes
(respectively small, large, andmedium), the results for three provinces are presented:
Alicante, Barcelona and Granada, for men and women, respectively, and for the year
2004. Similar results were also obtained for the years 2005 and 2006: for the sake
of brevity they are not reported here. In this case, we observe a difference between
men and women among the cases that are more influent on the MSE of the poverty
level estimates. Among the three selected provinces, the most influential province
for men is Granada, while for women it is Alicante. They are highlighted in the plots
with dotted and dashed lines, respectively, which consistently dominate the others.

The derivative ofG1 captures the influence that each small area can have on each
other in terms of the power for increasing or decreasing the MSE of the EBLUP.
The province of Granada suffers thus the increase of its MSE by the provinces of
Badajoz (6), Barcelona (8), Madrid (28), Murcia (30), Sevilla (41), and Valencia
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Fig. 2 The diagonal values of the leverage matrix for the fixed effects L∗(̂β) plotted against all the
Spanish provinces direct estimates
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Fig. 3 Derivative of G1 for the provinces of Alicante (dashed line), Barcelona (dotdashed line),
and Granada (dotted line) plotted against all the Spanish provinces in the year 2004, separately for
men (left) and women (right)

(46). On the other side, the decrease of its MSE is caused by the provinces of Alava
(1) and Gerona (17) (Fig. 3, left). As for the women (Fig. 3, right), the first part of
the MSE of Alicante is affected by a positive influence by the same provinces that
affect the plot of the men: Badajoz (6), Barcelona (8), Madrid (28), Murcia (30),
Sevilla (41), and Valencia (46); the decrease instead is due to Alava (1), Gerona (17),
Guipuzcoa (20), and Teruel (44).

Cook’s Distance for the EBLUP as calculated in Sect. 3.3 are presented in Fig. 4.
As done before, only the results of three provinces are presented: Alicante, Barcelona
and Granada, for men and women, respectively, and for the year 2004. In the graph,
three lines of Cook’s distance are reported, which correspond to the deleted provinces
of Alicante, Barcelona, and Granada. The peaks of Cook’s distance represent the
most influential values on the EBLUP estimates of the related deleted provinces. In
particular, when looking at the results for men (Fig. 4, left), the lines of Alicante and
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Fig. 4 Cook’s Distance for the EBLUP ŷHi performed deleting the provinces of Alicante (dashed
line), Barcelona (dotdashed line), andGranada (dotted line) plotted against all the Spanish provinces
in the year 2004, separately for men (left) and women (right)

Barcelona show more peaks, and the deletion of these provinces shows that Alava
(1), Cuenca (16), and Soria (42) are the provinces more influential for them. For
women (Fig. 4, right), it shows that removing the province of Granada produces a
high value of Cook’s distance in correspondence with the province of Soria (42).

5 Concluding Remarks

A review of recent developments on diagnostic tools for the Fay–Herriot small area
model when dealing with the restricted maximum likelihood estimate is proposed.
Detailed formulae on fixed and random effects leverage matrices are reached in case
of fixed V. Tools for an influence analysis on the Mean Squared Error (MSE) of the
Empirical Best Linear Unbiased Predictor (EBLUP) and a Cook’s distance for the
empirical predictor are considered.

The problem of the leverage of observed values on predicted values by the EBLUP
was observed when we consider that, even though we make use of convenient esti-
mates, the latter depends on the same influential values. Therefore, the leverage
matrix of the model can be affected by influential observations through the estimates
of the model variance. On the other hand, influence analysis on MSE estimates is
based on m × m2-order matrices, which can be very useful in assessing the contri-
bution of single observations (the small area direct estimates) in the evaluation of
the MSE of all areas.

An application to real data is offered to the reader. The case of the estimation
of poverty proportions for the Spanish provinces is exploited to illustrate the ben-
efits of using specific diagnostic tools in the context of small area estimation. This
methodology is useful because once the influential areas have been identified through
visual examination, the researcher can eliminate them to improve the accuracy of the
estimates.

Results in this paper are intended to be extended by the author to some other
small area models, in particular to models that borrow strength from time or spatial
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correlations. It is thought that this research line might be of great interest to applied
statisticians.

Acknowledgements The author thanks the Spanish National Statistics Institute for supplying the
data.

Appendix

Details on how Eqs. (6), (7), (9) and (10) are derived are provided below.
For Eq. (6), let us first define the matrix A as

A =
∑

(ŷ∗
i −̂y)2 = ŷ∗′̂y∗ − 1

m
(̂y∗′1m)2

where 1m denote the unitary vector all of whose components are unity. Following
[20], we have then

∂A

∂ ŷ
= ∂

∂ ŷ

∑

(ŷ∗
i −̂y)2 = ∂

∂ ŷ

[

ŷ∗′̂y∗ − 1

m
(̂y∗′1m)2

]

= 2̂y′Ψ −1 − 2

m
(̂y′1Ψ

m )(1Ψ
m )′, where 1Ψ

m = Ψ −1/21m .

For the Eqs. (7), (9), and (10), the derivative of the REML variance estimate is
defined as follows:

∂σ̂ 2
v,REML

∂ ŷ
= ∂

∂ ŷ

[

a

c∗
A − (m − 1)

A

]

= a

c∗ A
−2

[

2̂y′Ψ −1 − 2

m
(̂y′1Ψ

m )(1Ψ
m )′

]

= σ 2
∂ .

For the derivative of ̂V and its inverse, appearing in Eqs. (7) and (9), we have the
following:

∂̂V
∂ ŷ

= ∂

∂ ŷ
diag(ψi + σ̂ 2

v,REMLb
2
i )

= ∂

∂ ŷ
(Ψ + B1/2σ̂ 2

v,REMLB
1/2) = B ⊗ σ 2

∂ ,

∂̂V−1

∂ ŷ
= −(̂V−1B̂V

−1
) ⊗ σ 2

∂ .

Finally, the derivative of (X′
̂V−1X)−1 which refers to Eq. (10) is
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∂(X′
̂V−1X)−1

∂ ŷ
= −∂(X′

̂V−1X)

∂ ŷ
[(X′

̂V−1X) ⊗ (X′
̂V−1X)]

= [(̂V−1B̂V
−1

) ⊗ σ 2
∂ ](X ⊗ X)[(X′

̂V−1X) ⊗ (X′
̂V−1X)].
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A Comparison Between Methods to
Cluster Mixed-Type Data: Gaussian
Mixtures Versus Gower Distance

Monia Ranalli and Roberto Rocci

Abstract In this paper, we compare through a simulation study two approaches
to cluster mixed-type data, where some variables are continuous and some others
ordinal. The first is model-based, according to which the variables are assumed
to follow a Gaussian mixture model, where, as regards the ordinal variables, it is
only partially observed. In order to overcome computational issues, the parameter
estimation is carried out through an EM-like algorithmmaximizing a composite log-
likelihood based on low-dimensional margins. In the second approach, the Gower
distance matrix is computed, then the PAM algorithm is used for clustering.

Keywords Mixture models · Composite likelihood · EM algorithm · Mixed-type
data · Gower’s distance · PAM algorithm

1 Introduction

The aim of cluster analysis is to partition the data into meaningful homogeneous
groups which should differ considerably from each other. The problem is made more
difficult by the presence of mixed-type data: ordinal and continuous variables. In
order to find a solution, mainly two different approaches exist, based on a model
describing the data generation process or a distance able to capture the dissimilarity
between two entities. Before to summarize the main features of the two approaches,
let us specify that when we use the word categorical data, we are still referring
to the ordinal variables. Following the definition given in [1], ordinal variables are
categorical variables with ordered categories.

As regards the model-based approach, the literature on clustering for continuous
data is rich and wide; the most commonly clustering model-based used is the finite
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mixture of Gaussians [17]). Differently, that one developed for categorical data is
still limited. In the Underlying Response Variable (URV), mainly developed in the
SEM framework (see, e.g., [11, 14, 20] approach, the ordinal variables are seen as a
discretization of continuous latent variables jointly distributed as a finite mixture (see
[5, 16, 23]. However, this makes the maximum likelihood estimation rather complex
because it requires the computation ofmany high-dimensional integrals. The problem
is usually solved by approximating the likelihood function by a surrogate one. In this
regardwemention some useful surrogate functions, such as the variational likelihood
[7] or the composite likelihood [21, 23, 24]. The problem arises when we consider
the joint distribution between continuous and ordinal variables. By assuming the
local independence assumption, the issue can be easily solved by factorizing the
joint density into the product of univariate marginals. However, this assumption is
unrealistic and too restrictive.

Following the URV approach, [5, 23] proposed a model according to which the
variables follow a Gaussian mixture model, where some variables, the ordinal ones,
are only partially observed through their discretization. As a side note, at this stage,
nominal variables cannot be included in themodel, since there is no type of proximity
among the unordered categories.

Besides these methods, there are others based on the Gower’s distance [8]. This is
computed as the average of partial dissimilarities across subjects (or entities), where
the type of partial dissimilarity used depends on the specific type of the variable. To
cluster the data then a k-medoids algorithm can be used (PAM algorithm, [13, 25]).
However, these clustering methods are not the only ones existing in literature. Indeed
there are many techniques for mixed-type data and many reviews. See, for example,
[2, 6, 10]. Comparing clustering techniques is extremely useful and benchmarking
in cluster analysis has been increasing. A good discussion on it can be found in [18].

The paper aims at exploring and comparing the behavior of the mixture model for
mixed-type data with the distance-based methods, and some more naive approaches,
according to which ordinal data are treated as metric.

The plan of the paper is as follows. In Sect. 2, we describe the model-based
approach to cluster mixed-type data. The Gower distance method followed by the
PAM algorithm is described in Sect. 3. In Sect. 4, we compare these clustering tech-
niques through a simulation study. In the last section, some concluding remarks are
pointed out.

2 The Model-Based Approach

Let x = [x1, . . . , xO ]′ and yŌ = [yO+1, . . . , yP ]′ be O ordinal and Ō = P − O con-
tinuous variables, respectively. The associated categories for each ordinal variable
are denoted by ci = 1, 2, . . . ,Ci with i = 1, 2, . . . , O .

Following the Underlying Response Variable (URV) approach, the ordinal vari-
ables x are considered as a categorization of a continuous multivariate latent variable
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yO = [y1, . . . , yO ]′. The latent relationship between x and yO is explained by the
threshold model,

xi = ci ⇔ γ
(i)
ci−1 ≤ yi < γ (i)

ci ,

where −∞ = γ
(i)
0 < γ

(i)
1 < . . . < γ

(i)
Ci−1 < γ

(i)
Ci

= +∞ are the thresholds defining
the Ci categories collected in a set Γ . To accommodate both cluster structure and
dependencewithin the groups,we assume thaty = [yO′, yŌ′]′ follows aheteroscedas-
tic Gaussianmixture, f (y) = ∑G

g=1 τgφp
(
y;μg,Σ g

)
, where the τg’s are the mixing

weights and φp
(
y;μg,Σ g

)
is the density of a P-variate normal distribution with

mean vector μg and covariance matrix Σ g .
Let us set ψ = {

τ1, . . . , τG,μ1, . . . ,μG,Σ1, . . . ,ΣG,Γ
} ∈ �, where � is the

parameter space. For a random i.i.d. sample of size N : (x1, yŌ1 ), . . . , (xN , yŌN ), the
log-likelihood is

�(ψ) =
N∑

n=1

log

⎡

⎣
G∑

g=1

τgφŌ(yŌn ;μŌ
g ,Σ Ō Ō

g )πn

(
μ

O|Ō
n;g ,ΣO|Ō

g ,Γ
)
⎤

⎦ , (1)

where with obvious notation

πn

(
μ

O|Ō
n;g ,ΣO|Ō

g ,Γ
)

=
∫ γ

(1)
c1

γ
(1)
c1−1

· · ·
∫ γ

(O)
cO

γ
(O)
cO−1

φO(u;μ
O|Ō
n;g ,ΣO|Ō

g )du

μ
O|Ō
n;g = μO

g + ΣOŌ
g (Σ Ō Ō

g )−1(yŌn − μŌ
g ),

ΣO|Ō
g = ΣOO

g − ΣOŌ
g (Σ Ō Ō

g )−1Σ ŌO
g .

πn

(
μ

O|Ō
n;g ,ΣO|Ō

g ,Γ
)
is the conditional joint probability of response pattern xn =

(c1;n, . . . , cO;n) given the cluster g and the values yŌn for the continuous variables.
Finally, τg is the probability of belonging to group g subject to τg > 0 and

∑G
g=1 τg =

1.
The presence of multidimensional integrals makes the maximum likelihood esti-

mation computationally demanding and infeasible as the number of ordinal variables
increases. To overcome this, a composite likelihood approach is adopted [15]. It
allows us to simplify the problem by replacing the full likelihood with a surrogate
function. As suggested in [21, 23, 24] within a similar context, the full log-likelihood
could be replaced by O(O − 1)/2 marginal distributions each of them composed of
a pair of ordinal variables and the Ō continuous variables. In this way, the compu-
tational complexity is greatly decreased because the evaluation of the new function
requires the calculation of bivariate, rather than O-variate, integrals. This leads to
the following surrogate function
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c�(ψ) =
N∑

n=1

O−1∑

i=1

O∑

j=i+1

Ci∑

ci=1

C j∑

c j=1

δ(i j)
nci c j log

[ G∑

g=1

τgφŌ(yŌn ;μŌ
g ,Σ Ō Ō

g )π(i j |Ō)
ci c j

(μ
(i j |Ō)

n;g ,Σ(i j |Ō)
g ,Γ (i j))

]

,

where δ
(i j)
nci c j is a dummy variable assuming 1 if the nth observation presents

the combination of categories ci and c j for variables xi and x j , respectively, 0

otherwise; π
(i j |Ō)
ci c j (μ

(i j |Ō)

n;g ,Σ
(i j |Ō)
g ,Γ (i j)) is the conditional probability of the pair

(xi = ci , x j = c j ) obtained by integrating the density of a bivariate normal distribu-

tion with parameters (μ
(i j |Ō)

n;g ,Σ (i j |Ō)
g ) between the corresponding threshold param-

eters contained in the set Γ (i j). The parameter estimates are carried out through an
EM-like algorithm that works in the same manner as the standard EM. Likewise, it
suffers from the problem of local optima.

In the simulation study, the partition has been initialized randomly. The output of
a mixture model for continuous data has been considered as a good rational starting
point for the component parameters. On the other hand, the initial values for the
thresholds have been computed as follows: for each variable, we have considered
the empirical relative frequency of each category and then we have minimized the
quadratic difference between this frequency and the corresponding quantile of the
mixture.

2.1 Classification, Model Selection, and Identifiability

The classification is obtained by assigning the observations to the component with
the maximum scaled composite fit, i.e., the CMAP criterion [23, 24]. As regards
model selection, the best model is chosen by minimizing the composite version
of penalized likelihood selection criteria like BIC or CLC (see [22] and references
therein). Finally, as regards identifiability, adopting a composite likelihood approach,
the sufficient condition should be reformulated by investigating the Godambe infor-
mation matrix, that is, the analogous of the information matrix. However, as far as
we know, such modification has not been formally investigated yet. About the nec-
essary condition, we note that the number of essential parameters in the block of
ordinal variables equals the number of parameters of a log-linear model with only
two-factor interaction terms. Thus, it means that we can estimate a lower number of
parameters compared to a full maximum likelihood approach. Furthermore, under
the underlying response variable approach, the means and the variances of the latent
variables are set to 0 and 1, respectively, because they are not identified. This iden-
tification constraint individualizes uniquely the mixture components (ignoring the
label switching problem), as well described in [19]. This is sufficient to estimate
both thresholds and component parameters if all the observed variables have three
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categories at least and when groups are known. Given the particular structure of the
mean vectors and covariance matrices, it is preferable to adopt an alternative, but
equivalent, parametrization. This is analogous to that one used by [12]; it consists in
setting the first two thresholds to 0 and 1, respectively, without constraining means
and variances. This means that there is a one-to-one correspondence between the two
sets of parameters. If there is a binary variable, then the variance of the corresponding
latent variable is set equal to 1 (while its mean should be still kept free).

3 The Gower Distance Method

Gower distance is computed as the average of partial dissimilarities across obser-
vations (subjects or objects), where the computation of the partial dissimilarities
depends on the specific type of the variable. For the continuous variables, a range-
normalizedManhattan distance is used; for the ordinal variables, they are first ranked,
then Manhattan distance is used with a special adjustment for ties. Then, a weighted
sum is calculated to create the final distance matrix. However, it is important to note
that as the sample size increases, its storage becomes infeasible.

One of the popular partitioning algorithms formixed-type data is k-medoids (PAM
algorithm [13, 25]), which is based on the Gower’s distance. The k-means and the
PAM algorithm are briefly described in Sects. 3.1 and 3.2. Both suffer from reaching
local optima; indeed different initializations can lead to different partitions. Finally,
the choice of the number of cluster can be made based on different criteria; the most
commonly used is choosing the number of clusters corresponding to an elbow of the
scree plot of the within deviance versus the number of clusters.

3.1 k-means

By letting X = {xn : n = 1, . . . , N } be the sample of P-dimensional observations,
k-means is based on the minimization of the loss function

�km (ψ,Z;X) =
N∑

n=1

G∑

g=1

zngd
2(xn,µg), (2)

where d2(xn,µg) is the squared distance, usually the classical unweighted Euclidean
between xn and µg , Z = [zng] is a binary membership matrix, with rows that sum
to 1, such that zng = 1 if observation n belongs to cluster g and 0 otherwise, and
ψ = {μ1, . . . , μG} is the set of cluster centroids.
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3.2 k-medoids

The PAM algorithm is an iterative algorithm composed of the following steps:

1. choose k random entities to become the medoids;
2. assign every entity to its closest medoid using the distance matrix computed;
3. for each cluster, the observation with the lowest average distance is re-assigned

as the medoid;
4. if at least one medoid has changed, repeat steps 2–4, otherwise the algorithm

reaches convergence.

Both k-means and k-medoids are partitioning algorithms and both attempt to
minimize the distance between points labeled to be in a cluster and a point desig-
nated as the center of that cluster. However, k-means has cluster centers defined by
Euclidean distance (i.e., centroids), while cluster centers for PAM are restricted to be
the observations themselves (i.e., medoids). Furthermore, k-medoids can be based
on an arbitrary dissimilarity matrix. As a consequence, k-medoids is more robust
because it minimizes a sum of dissimilarities instead of a sum of squared Euclidean
distances.

4 Simulation Study

To evaluate empirically the performance of the different clustering methods, a sim-
ulation study has been conducted. We compare: a mixture of Gaussians treating all
variables as continuous (Naive), a mixture model for mixed-type data (Mixed), PAM
algorithm, and k-means, treating all variables as continuous. The performance has
been evaluated in terms of recovering the true cluster structure using the Adjusted
Rand Index (ARI) [9] between the true hard partition matrix and the estimated one.
The ARI counts the pairs of entities that are assigned to the same or different clusters
under both partition matrices. The index has expected value zero for independent
clusterings and maximum value 1 for identical clusterings.

We simulated 250 samples from a latent mixture of Gaussians with three compo-
nents. We considered 8 scenarios given by three different experimental factors: the
sample size (N = 100, 500), the separation between clusters (well separated or not),
and number of ordinal variables (3 ordinal and 5 continuous variables or the other
way around).

In order to have approximately the same computational time for each method, the
model-based approaches (Naive and Mixed) were initialized using only one good
rational starting point described in Sect. 2, while for the remaining ones, 10 different
random starting points were used.

Data were generated from a three-component mixture model partially observed
with 3 or 5 ordinal variables (5 categories) and 5 or 3 continuous variables. In
Table1, we report the true values that are used to generate the data. The overlap
between groups ismeasured by the Bhattacharyya distance [3, 4]. The Bhattacharyya
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Table 1 True values of the observed/latent three-component mixture model and thresholds under
different scenarios

Common parameters

Mixture
weights

p1 = 0.25

p2 = 0.35

p3 = 0.40

Coviariance
matrixes

Σ1 =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

2.50 0.60 1.50 0.50 0.20 0.70 0.40 0.40

0.60 1.00 0.40 0.40 0.65 0.40 0.50 0.20

1.50 0.40 2.00 0.30 0.25 0.50 0.4 0.30

0.50 0.40 0.30 1.00 1.00 0.40 0.25 0.50

0.20 0.65 0.25 1.00 2.00 0.70 0.65 0.20

0.70 0.40 0.50 0.40 0.70 1.50 0.30 0.40

0.40 0.50 0.40 0.25 0.65 0.30 1.75 0.25

0.40 0.20 0.30 0.50 0.20 0.40 0.25 1.00

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

Σ2 =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1.875 0.450 1.125 0.375 0.150 0.5250 0.375 0.300

0.450 0.750 0.300 0.300 0.4875 0.300 0.300 1.125

1.125 0.300 1.500 0.225 0.1875 0.375 0.450 0.750

0.375 0.300 0.225 0.750 0.750 0.300 0.5250 0.150

0.150 0.4875 0.1875 0.750 1.500 0.525 0.375 0.225

0.525 0.300 0.375 0.300 0.525 1.125 0.750 0.1875

0.375 0.300 0.450 0.525 0.375 0.750 1.000 0.500

0.300 1.125 0.750 0.150 0.225 0.1875 0.500 1.75

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

Σ3 =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00

0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00

0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00

0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00

0.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00

0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00

0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

Thresholds [0, 1, 2, 3]
Separated groups

Mean Vectors μ1 = [−1, 3.5, 1.5, 0,−2, 3, 3, 5]
μ2 = [2, 0, 4.5, 5, 3, 7,−2, 0]
μ3 = [0,−2,−1,−2, 5,−3, 0,−3]

Non-separated groups

Mean Vectors μ1 = [−1, 3.5, 1.5, 0,−2, 3, 0, 5]
μ2 = [2, 1, 3, 1.5, 0, 2,−2, 2]
μ3 = [0,−1, 0,−0.5, 2,−1, 1.5,−1]
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Table 2 Simulation results: ARI values for different clustering methods across the eight scenarios
with N = 100, 500, groups with high (H) or low (L) level of separation and number of ordinal
variables equal to 3 or 5 with G = 3. The Gower distance methods, Gower + PAM (G-PAM) and
k-means were initialized using 10 (10) random starting points

3 Ordinal Variable and 5 Continuous Variables

N = 100 & H Mixed Naive G-PAM (10) k-means (10)

Mean 0.7997 0.2310 0.5966 0.6566

Median 0.7684 0.1886 0.5947 0.6539

Std 0.1235 0.2209 0.0091 0.0085

N = 500 & H Mixed Naive G-PAM (10) k-means (10)

Mean 0.9444 0.2618 0.5962 0.6538

Median 0.9663 0.2925 0.5967 0.6544

Std 0.0517 0.1917 0.0064 0.0092

N = 100 & L Mixed Naive G-PAM (10) k-means (10)

Mean 0.6322 0.1456 0.5824 0.6501

Median 0.6202 0.1066 0.5865 0.6532

Std 0.1096 0.1164 0.0280 0.0121

N = 500 & L Mixed Naive G-PAM (10) k-means (10)

Mean 0.8953 0.2235 0.5957 0.6543

Median 0.8957 0.1046 0.5962 0.6550

Std 0.0832 0.2416 0.0064 0.0090

5 Ordinal Variable & 3 Continuous Variables

N = 100 & H Mixed Naive G-PAM (10) k-means (10)

Mean 0.6895 0.2223 0.5921 0.6125

Median 0.6354 0.1437 0.5891 0.6095

Std 0.1547 0.2271 0.0124 0.0124

N = 500 & H Mixed Naive G-PAM (10) k-means (10)

Mean 0.8181 0.3725 0.5898 0.6124

Median 0.8435 0.3511 0.5882 0.6089

Std 0.1096 0.2735 0.0088 0.0151

N = 100 & L Mixed Naive G-PAM (10) k-means (10)

Mean 0.6073 0.1080 0.5545 0.6458

Median 0.5634 0.0113 0.5553 0.6438

Std 0.1321 0.1877 0.0254 0.0120

N = 500 & L Mixed Naive G-PAM (10) k-means (10)

Mean 0.8069 0.2027 0.5454 0.6432

Median 0.8150 0.1255 0.5413 0.6423

Std 0.1442 0.2342 0.0130 0.0080
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distance is equal to: 19.00 considering g = 1, 2, 26.27 considering g = 1, 3and34.27
considering g = 2, 3 when the groups are well separated; 5.96 considering g = 1, 2,
12.98 considering g = 1, 3 and 11.24 considering g = 2, 3 when the groups are not
well separated. In the simulation study, the number of groups is kept fixed. Indeed,
the purpose of the study is to assess the ability of the algorithm to capture the cluster
structure. In Table2 we report the simulation results.

Analyzing the results in Table2, we note that all clustering methods improve their
performances as N increases and the level of separation between groups is higher,
as expected. In almost all scenarios, the mixture model for mixed-type data seems
to behave better than others. Indeed, we note that in terms of mean or median the
mixture model for mixed-type data is the best, followed by the k-means and PAM
based on the Gower distance matrix. The poorest performances are shown by the
naive approach. In terms of mean or median, the mixture model for mixed-type
data is not always the best compared to the non-model-based approaches. More
specifically, when N = 100 and the groups are not well separated, it seems that
it is more affected by the issue of local maxima. Furthermore, we note that when
there are more ordinal variables than continuous variables, ARI values decrease,
although when N increases the worsening is not significant. This is expected, since
more ordinal variables we have, more information is losing about the cluster structure
underlying the data. Finally, although it is still common to treat ordinal data asmetric,
we have shown that it can lead to wrong results, especially when the groups are not
well separated.

5 Concluding Remarks

In this paper, we compared the model-based approach and Gower distance methods
to cluster mixed-type data. From the simulation study, it is possible to conclude
that when the groups are less separated, the clustering performances of the Gower
distance methods seem to be more affected by the choice of the random starting
points. The model-based for mixed type of data as N increases becomes the best
one both in terms of means and median. However, it is important to note that larger
sample sizes could cause some computational problems. On one hand, for larger N
it is possible to compute the Gower matrix, but its storage may become infeasible.
On the other hand, this leads to a higher number of bivariate integrals involved in the
composite likelihood. However, this increase remains linear, and thus still feasible.
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Exploring the Gender Gap in Erasmus
Student Mobility Flows

Marialuisa Restaino, Ilaria Primerano, and Maria Prosperina Vitale

Abstract The present contribution aims at exploring the Erasmus student mobility
flows across European countries given the relevant role played by the international-
isation process in the implementation of university policies. In particular, the main
purpose is to confirm the presence of a gender gap across countries in the Erasmus
programme according to the related literature. Mobility data and socio-demographic
indicators are collected from the European Union Open Data Portal and the Eurostat
website. Information on student flows are then considered to define network data
structures in which the nodes are the countries and the incoming and outgoing links
represent the number of students exchanged between countries. Results show that
the number of females involved in Erasmus programme is greater than the number
of males, even if the position of countries in terms of centrality scores in the network
structure remains similar.

Keywords Gender gap · Erasmus student mobility · European open data ·
Network measures · Clustering

1 Introduction

The internationalisation could be defined as “the process of integrating an interna-
tional, intercultural or global dimension into the purpose, functions or delivery of
post-secondary education” [12]. Among others, the degree of internationalisation
in higher education is measured by the reception of foreign students and the send-
ing of students abroad. In fact, universities consider the number of foreign students
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they attract as an indicator of the attractiveness and the reputation of their education
provisions.

The most famous mobility programme developed by the European Union (EU)
to promote the exchange of cultural, professional and personal experiences within
EU countries is the European Region Action Scheme for the Mobility of University
Student, that is the Erasmus programme. The participation in this programme has
increased from 3,000 participants in 1987 to 272,497 in 2013–2014, and within the
new Erasmus+ for the period 2014–2020, the number of participants has increased
to 796,761 for Key Action 1 in 2017.

The benefits of participating in study abroad programme are mainly related to the
personal and professional growth of students. The development of learning expe-
rience with intercultural and linguistic improvement skills and the enhancement of
job prospects and opportunities after graduation are the main factors explored for
students involving in this international experience [1, 11, 13–15].

Within this scenario, the analysis of how gender might relate to the international
student mobility trajectories is taken up by some authors, showing as female students
are often overrepresented in Erasmus [2, 5]. This tendency of a “strong gender bias
in favour of female students” is discussed in the recent contribution of De Benedictis
and Leoni [see [9] and references therein].

The present contribution aims at analysing the gender (in)equality in Erasmus
mobility by investigating if there exists any differences in incoming–outgoing flows
of students between European countries in six academic years, from 2008–2009
to 2013–2014. To capture the structural features and patterns of Erasmus mobility
flows by gender, the adoption of network measures [3, 4, 8] along with clustering
techniques is able to identify groups of good importers and good exporters countries
involved in this process.

The data under study are gathered from the European Union Open Data Portal,
and network data structures are defined in order to analyse and describe relationships
among countries. Moreover, educational indicators are collected from the Eurostat
website to describe the investments of European countries in higher education in the
period under analysis and to better clarify the role of each country in the internation-
alisation process of higher education system.

The contribution is organised as follows. Section2 briefly describes the data and
the methodological approach for exploring international student mobility data and
country indicators. Section3 reports the main findings and some suggestions for
further developments.

2 Data and Methods

The data on Erasmus student mobility flows are downloaded by the official European
Commissionwebsite on Erasmus-Statistics1 for six academic years, from2008–2009

1For details see https://data.europa.eu/euodp/en/data/publisher/eac.

https://data.europa.eu/euodp/en/data/publisher/eac
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Table 1 List of indicators gathered from the Eurostat website

Index

Enrolment in tertiary education

Expenditure on tertiary as a percentage of government expenditure on education

Net flow ratio of internationally mobile students (inbound - outbound)

School-age population, tertiary education

Government expenditure on education as a percentage of GDP

Gross enrolment ratio, tertiary education

Graduates from tertiary education

Expenditure on education as a percentage of total government expenditure

Government expenditure on tertiary education as a percentage of GDP

Teachers in tertiary education programmes

Inbound mobility rate

Expenditure on tertiary as a percentage of total government expenditure

Total outbound internationally mobile tertiary students studying abroad

Total inbound internationally mobile students

Outbound mobility ratio

Gross outbound enrolment ratio

to 2013–2014. Two types of Erasmus mobility of students enrolled at higher educa-
tion institutions are collected: the Student Mobility for Studies (SMS) that enables
students to spend a study period in another country, and the Student Mobility for
Placement (SMP) that enables students to spend a placement period (traineeship or
internship) in an enterprise/organisation in another country. The information avail-
able in the datasets are ID of sending and hosting Partner Erasmus; sending and
hosting countries; students’ gender; subject area code; type of mobility (SMS or
SMP); level of study (first cycle, second cycle, third cycle and short cycle); duration
of mobility in months.

The Erasmus data are used to defined network structures over time represented by
a weighted digraph G (V ,L ,W ), where V is the set of countries (vertices), L ⊆
V × V is the set of arcs (directed lines) and W is the set of weights, w : L → �,
i.e. the number of students exchanged between pairs of countries. The corresponding
adjacencymatrixA is both not symmetric,with a directed link from the origin country
to the destination country, andweighted, with elements ai j = w(vi , v j ) = wi j greater
than 0 if there is a link between country vi and country v j , and ai j = 0 otherwise.

In addition, to inspect the attractiveness of universities, several indicators down-
loaded from the Eurostat website and related to specific features of the Tertiary
Education System2 are added as further information in the analysis (Table1).

Social Network Analysis (SNA) tools and exploratory data analysis methods are
then considered as a strategy of analysis to capture the structural characteristics and

2For details see https://ec.europa.eu/eurostat/statistics-explained/index.php.

https://ec.europa.eu/eurostat/statistics-explained/index.php
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patterns of student mobility flows in the Erasmus programme in order to confirm
whether a gender gap exists. First, to study the temporal changes and the networks’
characteristics for the six academic years under analysis, weighted directed adja-
cency matrices are defined. Each matrix describes the student’s flows among coun-
tries involved in the Erasmus programme for each academic year by type of Erasmus
programme and by gender. Then, to identify countries who play a central role, the
hub and authority centrality scores [10] are adopted to determine which countries
are good exporters (i.e. countries with good hub points to many other countries)
and/or good importers (i.e. countries with a high authority score is linked by many
different hubs). The peculiar structure of student mobility flows by gender is consid-
ered to discover potential differences in the Erasmus country destinations of males
and females. Second, the network results are enriched by considering exploratory
data analysis methods (i.e. principal component analysis and hierarchical clustering)
applied to both higher educational indicators and network measures, to reveal con-
nections between the roles played by countries in the student mobility network and
their investments in education as a key element of institutions’ attractiveness.

In Sect. 3, we report the main findings showing the trend of the Erasmus mobility,
and the temporal changes and the networks’ characteristics to underline the differ-
ences in Erasmus country destinations of males and females.3

3 Results

The Erasmus mobility networks have mainly changed in terms of number of students
involved in the programme over time. In general, the number of males and females
students who joined the Erasmus programme increased. A remarkable difference
between the networks of SMS and SMP for males and females is observed. The
number of students who moved for study is greater than the number of students who
moved for placement. Moreover, the number of females who go abroad for study and
for placement is greater than that of men. These results are shown in Table2, where
the distribution of Erasmus students by gender for SMS and SMP and over time is
displayed.

In particular, the number of students goes up from 168,193 in 2008–2009 to
212,208 in 2013–2014 for the SMS network (+26.2%) and from 30,330 in 2008–
2009 to 60,289 in 2013–2014 for the SMP (+98.8%) (Table2). The number ofwomen
increases from 101,982 in 2008–2009 to 127,782 in 2013–2014 in SMS (+25.3%)
and from 18,609 in 2008–2009 to 37,107 in 2013–2014 for the SMP (+99.4%). Then,
the number of men becomes larger from 66,211 in 2008–2009 to 84,426 in 2013–
2014 in SMS (+27.5%) and from 11,721 in 2008–2009 to 23,182 in 2013–2014 for
the SMP (+97.8%) (Table3).

3The analysis is performed by the open-source R packages “sna”, “igraph” and “blockmodeling”
[6, 7, 16].
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Table 2 Distribution of Erasmus Student Mobility networks for Studies (SMS) and for Placement
(SMP) by gender from 2008–2009 to 2013–2014

Year Total number #. of exchanges % of females

of exchanges SMS SMP SMS SMP

2008–2009 198,523 168,193 30,330 60.6 61.4

2009–2010 213,266 177,705 35,561 61.1 60.9

2010–2011 231,408 190,495 40,913 60.9 61.8

2011–2012 252,827 204,744 48,083 60.6 61.1

2012–2013 268,143 212,522 55,621 60.6 61.9

2013–2014 272,497 212,208 60,289 60.2 61.6

Our elaboration based on Erasmus Facts, Figures and Trends, European Commission website

The structure of the temporal networks shows in the six academic years under anal-
ysis a little increase in terms of involved countries and links among them (Table3).
Specifically, the number of countries for the SMS and SMP networks increases from
31 in 2008–2009 to 33 and 34 in 2013–2014 for males and females. Moreover, for
females the number of links goes up from 769 links in 2008–2009 to 896 links in
2013–2014 in the SMS network and from 591 links in 2008–2009 to 796 links in
2013–2014 for the SMP network. Then, for males the number of links goes up from
760 links in 2008–2009 to 874 links in 2013–2014 in the SMS network and from
569 links in 2008–2009 to 761 links in 2013–2014 for the SMP network.

Looking at the number of outgoing and incoming students, countries are classified
as good exporters and/or good importers by means of the hub and authority network
centrality indexes. These classifications are drawn up for males and females and
for SMS and SMP. We note that the ranking for SMS network is stable across the
years. In particular, Spain, France, United Kingdom, Italy and Germany are always
the most favourite destinations. The other five positions (from 6 to 10) show a little
change between males and females. For example, Denmark is a destination chosen
by men in the first two years. The women prefer Belgium. This difference should be
related to the fields of study. In fact, looking at the raw data for these two countries,
it emerges that the males studied Economics and Engineering in Denmark, while the
females went to Belgium to study Political Sciences, Foreign Languages and Health.
This result is in line with those showed in [9], where the authors analysed the gender
bias in Erasmus mobility by looking at the fields of study. For SMP network the
ranking is stable over the period, also if we look at the gender level.

Then, for the SMS network, the best importing countries obtaining high values
for authority scores are Spain, France and United Kingdom; while Germany and
France show the highest hub scores. Looking at the gender level, it emerges that the
best importing countries are different between females and males. In particular, for
females Spain and France are always in the first two positions for all years, while for
males only Spain confirms its first position, and the second position changes over the
time. For almost all the years, Spain is both the best authority and hub country in the
SMS network. In both rankings, Italy is always in the top five positions. In particular,
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it is in a better position in the hub score rankings, showing a better exporting than
importing behavior in the SMS network. Poland appears to be a good exporting
country for both females and males. Moreover, in the last three years also Turkey
enters in the top five positions.

Furthermore, for the SMP network, the rankings of countries obtained by the
authorities scores show that the best importing countries for Erasmus placement are
United Kingdom and Spain. Looking at the ranking with respect to gender, we see
that the best two importing countries for females are United Kingdom and Spain,
while formales the first two importing countries change in 2011–2012. In fact, United
Kingdom is replaced by Germany. At the same time, the best exporting countries
are France and Germany, showing the highest values of the hubs score. Italy has a
marginal role in the SMP network, since it is between the fifth and -sixth position.
Considering the ranking for females, we note that the best three exporting countries
are France, Germany and United Kingdom, even if the order changes over the period
considered. The three best countries for males are Denmark, Germany and Spain,
except in last year when Italy ascends the ranking getting the third position.

To better describe the structure of student mobility flows, Principal Component
Analysis (PCA) and Hierarchical Clustering are performed on Erasmus data col-
lected in the academic year 2013–14 by considering the hub and authority centrality
measures and some indicators of Tertiary Education System described in Table3.
The analysis considers separately the type of Erasmus programme and the gender.
Starting from the PCA results,4 the agglomerative hierarchical clusteringwithWard’s
criterion is performed to identify the presence of groups of countries. For all cases,
three clusters have been identified (see Figs. 1 and 2).

The 34 countries joining the Erasmus programme for studies and for placement,
considering males, are grouped as follows:

• cluster 1 (7 countries): Germany, Spain, France, Italy, Poland, Turkey and the
United Kingdom;

• cluster 2 (24 countries): Austria, Belgium, Bulgaria, Czech Republic, Denmark,
Estonia, Finland, Greece, Croatia, Hungary, Ireland, Iceland, Lithuania, Latvia,
Macedonia, Malta, The Netherlands, Norway, Portugal, Romania, Sweden, Slove-
nia, Slovakia and Switzerland;

• cluster 3 (3 countries): Cyprus, Liechtenstein and Luxembourg.

As for the females, there is a difference in the first and second cluster. For both
-SMS and -SMP networks, Cluster 1 is made up of 6 countries, while cluster 2 of
25 countries. The country moving from cluster 1 to cluster 2 is Poland. However,
the countries in cluster 1 are the most central ones in the SMS and SMP networks
for males and females, showing the highest hub and authority scores. The countries
in cluster 3 are the less central ones in the networks, showing the lowest scores. In
cluster 2 there are the less influential countries in the Erasmus programme, with hub
and authority scores closer to 0.

4The results of PCA are available upon request.
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(a) 2013-2014 - SMS - Female (b) 2013-2014 - SMS - Male

Fig. 1 Factorial map of the first two principal components on educational indicators in Erasmus
student mobility for studies (SMS) for females and males. Countries are coloured according to the
three clusters’ solutions. AT = Austria; BE = Belgium; BG = Bulgaria; CH = Switzerland; CY
= Cyprus; CZ = Czech Republic; DE = Germany; DK=Denmark; EE = Estonia; ES = Spain;
FI = Finland; FR = France; GR = Greece; HR = Croatia; HU = Hungary; IE = Ireland; IS =
Iceland; IT = Italy; LI = Liechtenstein; LT = Lithuania; LU = Luxembourg; LV = Latvia; MK =
Macedonia; MT = Malta; NL = Netherlands; NO = Norway; PL = Poland; PT = Portugal; RO =
Romania; SE = Sweden; SI = Slovenia; SK = Slovakia; TR = Turkey; UK = United Kingdom

(a) 2013-2014 - SMP - Female (b) 2013-2014 - SMP - Male

Fig. 2 Factorial map of the first two principal components on educational indicators in Erasmus
Student Mobility for Studies (SMS) and for Placement (SMP) for females and males. Countries are
coloured according to the three clusters’ solutions. AT = Austria; BE = Belgium; BG = Bulgaria;
CH = Switzerland; CY = Cyprus; CZ = Czech Republic; DE = Germany; DK = Denmark;
EE=Estonia; ES = Spain; FI = Finland; FR = France; GR = Greece; HR = Croatia; HU =
Hungary; IE = Ireland; IS = Iceland; IT = Italy; LI = Liechtenstein; LT = Lithuania; LU =
Luxembourg; LV = Latvia; MK = Macedonia; MT = Malta; NL = Netherlands; NO = Norway;
PL = Poland; PT = Portugal; RO = Romania; SE = Sweden; SI = Slovenia; SK = Slovakia; TR
= Turkey; UK = United Kingdom



Exploring the Gender Gap in Erasmus Student Mobility Flows 181

Summarising, even if the number of all students who joined the Erasmus pro-
gramme increased from 2008–2009 to 2013–2014, we note that the number of
females involved in the SMS and -SMP is greater than the number of males. This
result is in line with the results reported in related literature. As a justification of this
gender bias persisting over time across countries, we can consider the effect of the
fields of study as discussed in De Benedictis and Leoni [9]. The authors using the
same data of the EU open data portal but at university level justify the advantage
of female participation over male in this programme given the denser network of
connections involving female students. These latter prevail in fields such as Arts and
Humanities, Education and Social Sciences, Journalism and Information; whereas
the bias in favour of female students is strongly reduced in fields such as Information
and Communication Technologies and Engineering, Manufacturing and Construc-
tion. The position of countries according to the hub and authority scores for SMS
and SMP, instead, is similar at gender level.

As further lines of research, we are interested in analysing the configuration of
Erasmus student network over time with respect to the attractiveness of each country
to better investigate the gender gap in the internationalisation process, by adding some
information on the tourism behavior in the European countries, such as number of
trips, overnight stays, and the values for travel expenditures.
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