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Linear stability of the steady flow
past rectangular cylinders

A. Chiarini, M. Quadrio and F. Auterif

Dipartimento di Scienze e Tecnologie Aerospaziali, Politecnico di Milano, via La Masa 34,
20156 Milano, Italy

(Received xx; revised xx; accepted xx)

The primary instability of the flow past rectangular cylinders is studied to comprehen-
sively describe the influence of the aspect ratio AR and of rounding the leading- and/or
trailing-edge corners. Aspect ratios ranging between 0.25 and 30 are considered. We
show that the critical Reynolds number (Re.) corresponding to the primary instability
increases with the aspect ratio, starting from Re. ~ 34.8 for AR = 0.25 to a value of
Re, =~ 140 for AR = 30. The unstable mode and its dependence on the aspect ratio
are described. We find that positioning a small circular cylinder in the flow modifies
the instability in a way strongly depending on the aspect ratio. The rounded corners
affect the primary instability in a way that depends on both the aspect ratio and
the curvature radius. For small AR, rounding the leading-edge corners has always a
stabilising effect, whereas rounding the trailing-edge corners is destabilising, although
for large curvature radii only. For intermediate AR, instead, rounding the leading-edge
corners has a stabilising effect limited to small curvature radii only, while for AR > 5
it has always a destabilising effect. In contrast, for AR > 2 rounding the trailing-edge
corners consistently increases Re.. Interestingly, when all the corners are rounded, the
flow becomes more stable, at all aspect ratios. An explanation for the stabilising and
destabilising effect of the rounded corners is provided.

Key words: Linear stability, bluff bodies, rectangular cylinder

1. Introduction

The flow past bluff bodies has attracted the attention of many scholars for decades
(Braza et al. 1986; Schumm et al. 1994; Saiki & Biringen 1996; Williamson et al.
1996; Sohankar et al. 1998; Kumar & Mittal 2006; Pralits et al. 2010; Jiang & Cheng
2018) because of its relevance, that goes beyond a fundamental interest to encompass
industrial applications, especially in the field of vortex-induced oscillations (Williamson
& Govardhan 2008). The pressure and friction distributions produce net forces on the
body. With the onset of the first two-dimensional instability, i.e. the primary instability,
pressure and friction start fluctuating, due to the vortex shedding. Since large fluctuations
may cause acoustic noise and structural damages, understanding the instability of such
flows is of interest for the fluid mechanics community, driven by the goal of controlling
it.

The circular cylinder is the natural prototype of a bluff body, owing to its simple
geometry, and it has been extensively investigated (see e.g. Zdravkovich 1997). At a

1 Email address for correspondence: franco.auteri@polimi.it



2 A. Chiarini, M. Quadrio and F. Auteri

critical Reynolds number of Re. =~ 47 the flow undergoes a Hopf bifurcation from a
symmetric steady state towards a time-periodic non-symmetric state (Provansal et al.
1987; Sreenivasan et al. 1987; Noack & Eckelmann 1994). While a global instability has
been found to be responsible for the onset of the vortex shedding (Jackson 1987), a
complete understanding of the physical mechanism is still lacking. In this respect, an
important theoretical advancement has been the concept of wave maker (Monkewitz
et al. 1993). In particular, when the interest lies in damping the global instability, it is
important to identify the so-called wave-maker region, i.e. the region in the flow where
the instability mechanism acts to produce the self-sustained oscillations. Giannetti &
Luchini (2007) first proposed the structural sensitivity as a way to locate the wave maker
in a global instability. They applied it to the two-dimensional flow around a circular
cylinder, showing that the wave-maker region is characterised by two lobes symmetrically
placed across the separation bubble, i.e. the closed region delimited by two streamlines
separating from the body surface. Active and passive control techniques have been tested
to control vortex shedding past a circular cylinder. For passive control, Strykowski &
Sreenivasan (1990) have experimentally shown that a small control cylinder delays the
onset of the primary instability when correctly placed within the flow. Similar results
were obtained then numerically by Mittal & Raghuvanshi (2001) via Direct Numerical
Simulations, and by Morzyniski et al. (1999) via linear stability analysis. Marquet et al.
(2008) provided the theoretical framework to explain the modification of the vortex
shedding observed experimentally. They introduced the concepts of sensitivity to base
flow modification and sensitivity to a steady force, which quantify how a perturbation of
the base flow and a steady force alter the onset of the primary instability, the results for
the circular cylinder being in good agreement with experiments.

The rectangular cylinder has received less attention than its circular counterpart.
Nevertheless, the study of rectangular cylinders is of great interest from the point of
view of applications, as many structures, such as buildings, bridges, pylons, typically
have rectangular or nearly rectangular cross sections (Tamura et al. 1998). Despite
the simple geometry, the problem is interesting from a fundamental viewpoint too.
Indeed, the flow around rectangular cylinders presents peculiar features that characterise
flows around bodies of more complex shape: corner-induced separations, shear layer
instability, recirculating flow regions, an unstable wake, (see e.g. Almeida et al. 2008,
and the references therein). Depending on its aspect ratio AR (the ratio between the
streamwise length L and the cross-stream dimension D of the body), a rectangular
cylinder spans a whole range of bluff blunt bodies, from a flat plate placed normal to
the flow (AR = 0) to a square cylinder (AR = 1), and, finally, to a flat plate parallel to
the flow (AR — o0). Features of the cross-flow, pressure and friction distributions bear
a significant dependence upon the aspect ratio. For intermediate Reynolds numbers, i.e.
Re = 300 — 400, the main features and their dependence on AR have been thoroughly
investigated. For small AR, i.e. AR < 2, the flow does not reattach after the separation
at the leading edge (LE), and vortex shedding only occurs at the LE. For intermediate
AR, ie. 2 < AR < 3, an intermittent reattachment on the longitudinal side takes place.
For larger AR, the flow reattaches permanently, and eventually separates again at the
trailing edge (TE). For these AR, vortex shedding occurs from the shear layers at both
LE and TE. The phenomenon has a unique frequency, since the two shedding processes
are interlocked as a result of the impinging shear-layer instability that interacts with
the TE vortex shedding (Nakamura & Nakashima 1986; Hourigan et al. 1993, 2001;
Mills et al. 2002, 2003). This interlocking mechanism leads to a stepwise dependence
on AR of the Strouhal number based on the cylinder longitudinal length; it has been
observed by several authors both numerically and experimentally for Reynolds numbers
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up to 2000 (Ozono et al. 1992; Nakamura & Nakashima 1986; Okajima 1982; Tan et al.
1998). Similarly, several works have studied the three-dimensional instability of this flow.
Robichaux et al. (1999); Blackburn & Lopez (2003); Sheard et al. (2009); Blackburn &
Sheard (2010) and others investigated the wake instability behind a square cylinder via
Floquet stability analysis, observing a quasi-periodic unstable mode that has been found
also in the wake of a circular cylinder (Blackburn et al. 2005). The effect of AR was
also assessed: for example, we mention the works by Choi & Yang (2014) and Jiang
& Cheng (2018), who studied the three-dimensional instability from the limit AR — 0
(corresponding to a flat plate normal to the flow) to AR = 1 via Floquet analysis and DNS
simulations, and that by Hourigan et al. (2001), who investigated the three-dimensional
patterns in the boundary layer along rectangular cylinders with AR up to 13. However,
for the low Reynolds number associated with the primary two-dimensional instability, to
the best of the authors’ knowledge, a comprehensive study encompassing the whole range
of AR is still missing. Indeed, all the studies at such low Reynolds number focus on the
square cylinder. For this aspect ratio, AR = 1, the onset of the primary instability closely
resembles the one for the circular cylinder with the flow undergoing a Hopf bifurcation,
but occurs at a lower Reynolds number, even though the reported data are scattered
according to Jiang & Cheng (2018), who themselves measure Re. = 46. For example
Sohankar et al. (1999) report Re. = 47 £ 2, Saha et al. (2000) set it at Re, = 45, and
Park & Yang (2016) mention Re. = 44.7.

It should be mentioned that perfectly sharp corners are just an idealisation, since the
corners of real bodies are always rounded to some extent. It is known that rounding the
corners of bluff bodies can significantly impact the flow properties (Park & Yang 2016;
Cimarelli et al. 2020; Rocchio et al. 2020). For rounded corners, despite the number
of studies assessing the large-Reynolds number case (see for example Cao & Tamura
2017; Lamballais et al. 2008, 2010), few works have considered the dependence of the
onset of the instabilities on the corner curvature. Park & Yang (2016) determined, via
linear stability analysis, how the primary two-dimensional and the three-dimensional
instabilities are affected by rounding the four corners of a rectangular cylinder with
AR = 1, exploring the shapes ranging between the square cylinder with sharp edges
and the circular cylinder. They observed that the primary instability onset changes with
corner curvature, finding that Re. does not change monotonically with the curvature
and that the most stable configuration is an intermediate configuration between the
circular and the square cylinder. For the three-dimensional instability, instead, they found
noticeable changes in terms of both unstable modes and range of unstable spanwise
wavelengths.

The aim of the present numerical study is to provide a comprehensive overview of
the primary two-dimensional instability past rectangular cylinders in a wide range of
AR. Both sharp and/or rounded corners are considered, with 0.25 < AR < 30. The
onset of the primary instability is addressed, and the unstable modes and wave-maker
regions are identified. Sensitivity to either base-flow modifications or steady forces are
evaluated to assess how the onset of the instability can be delayed via suitable placement
of a small control cylinder. The paper is organised as follows. After this introduction, a
brief description of the mathematical formulation and of the numerical method adopted
is presented in §2. §3 studies the rectangular cylinders with sharp corners in terms of
primary instability and structural sensitivities. In §4 the dependence of the primary
instability on the rounding of the LE and/or TE corners is addressed. Concluding remarks
are drawn in §5.
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FI1GURE 1. Sketch of the computational domain with the geometry of the rectangular cylinder.

2. Mathematical formulation
2.1. Flow configuration

The incompressible flow over two-dimensional, rectangular cylinders with aspect ratio
0.25 < AR < 30 is considered. Figure 1 shows the geometry, the reference system and the
notation. A Cartesian coordinate system is used, with origin at the leading edge of the
cylinder, with the z axis being the symmetry axis aligned with the free-stream direction,
and the y axis denoting the cross-stream direction. The cylinder has length L and cross-
stream size D, and is placed in a uniform flow with velocity Uy. The computational
domain has dimensions L, and L,. The Reynolds number is Re = Uy, D /v. The flow is
governed by the incompressible Navier—Stokes equations:

ou 1
E+u~Vuf7Vp+EAu+F,

V.-u=0,

where F' denotes a volume forcing.

(2.1)

2.2. Modal stability analysis

The onset of the instability is classically studied in linear theory by using a normal-
mode analysis (Theofilis 2003, 2011). The field {u, p} of velocity and pressure is decom-
posed into the sum of a time-independent base flow {U, P} and an unsteady contribution
{u/,p’} with small amplitude e, as:

u(w,t) =U(z) +eu'(z,t), p(=,t) = P(@)+ep/(,1). (2.2)

Using this decomposition in the Navier—Stokes equations (2.1), separate equations for
the spatial structure of the base flow and the temporal evolution of the perturbation are
obtained. The base flow is governed by the steady version of (2.1), whereas the pertur-
bation field is described by the linearised unsteady Navier—Stokes equation (LNSE):

/
881; Y L{U, Re}’ = —Vp,

V-u' =0,

(2.3)

where L stands for the linearised Navier—Stokes operator:

L{U,Re}u' =U - Vu' +u' - VU — éAu’. (2.4)
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The differential problem (2.3) is completed by initial and boundary conditions. The
perturbation velocity field is set to zero on the boundary of the computational domain,
except at the outlet boundary, where outflow boundary conditions

pPn—Re 'Vu' -n=0

are used, where m is the normal vector.
We are interested in the global modes of the linearised Navier—Stokes equations, i.e.
non-trivial solutions of the system (2.3) of the form

(1) = p(z)e™. (2.5)

Here A is a complex number, while the complex field {@,p} satisfies:

' (x,t) = a(x)e,

. o
{)\u+ {U, Re}a+ Vp =0, 26)

V.4 =0.

Solving the generalised eigenvalue problem for the complex frequency A leads one to
ascertain the flow stability, which requires all the eigenvalues to have negative real part.

2.3. Structural sensitivity

A better understanding of the instability mechanisms can be obtained thanks to the
structural sensitivity, a concept introduced by Giannetti & Luchini (2007) for the primary
instability and then extended by Giannetti et al. (2010) to the secondary instability.
Structural sensitivity is based on the interplay between direct and adjoint modes.

The adjoint LNSE (see for example Giannetti & Luchini 2007) are:

_ofT + LU, Re} f* —Vmt =0
ot ’ ’ (2.7)
Vv-ft=o.
where LT{U, Re} is the adjoint of the linearised Navier-Stokes operator:
1
LYHU,Re}fT=—(U-V)fT+(VU) - fF - Ev%# (2.8)

The solution of the adjoint equations can be useful to study the receptivity of the modes
to an external forcing, as the receptivity of a mode to a periodic forcing in the momentum
and/or continuity equation is proportional to the local magnitude of the adjoint fields
ftand mt.

Since our interest lies in the primary instability of the flow, we will seek non-trivial
solutions of the adjoint LNSEs (2.7) of the form:

frx,t) = frx)e ™, mt(xt)=mt(x)e M. (2.9)

If {a(x)eM, p(x)eM} is a global mode of the LNSE corresponding to the eigenvalue A,
{fH(x)e= it (x)e~ M} is the non-trivial solution of the adjoint LNSEs corresponding
to the same eigenvalue.

With direct and adjoint perturbation modes available, one knows the spatial location
of the largest perturbation amplitude and of the largest receptivity. These two pieces
of information are brought together by computing the structural sensitivity .S, which
identifies the region where the instability mechanisms is at work. After defining the
employed inner product of two complex vector fields w4 and wp as the inner product of
L?(D): (ua,up) = fD (u* -up)df?2, with * denoting the complex conjugate, S is defined
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by Giannetti & Luchini (2007) as:

_ 1 @) et (@)
(ft.a)

where ||.| represents the usual R? vector norm. Large values of S identify the region of

the flow where disturbance amplification and receptivity combine at their best to trigger
the instability.

S(x) , (2.10)

2.4. Sensitivity to base-flow modifications and to steady forces
A small variation dU of the base flow leads to a variation of the complex eigenpairs
(0,4, D), as discussed for the circular cylinder by Marquet et al. (2008). The variation of
the eigenvalues, do, and the perturbation of the base flow, U, are linked by the following
inner product:
0o = (Vyo,ol), (2.11)

where Vo denotes the sensitivity of o to base-flow modifications. Similarly, variations
of the growth rate )\ and frequency dw may be expressed as:

oA =(VyAdU), ow=(Vyw,iU), (2.12)
where Vy A and Vyw denote the corresponding sensitivities:
Vu)\ = RG{VUU}, VUw = —Im{VUo'}.
As described by Marquet et al. (2008), Vyo is linked with the direct and adjoint
eigenmodes by:
—(Va)t . fr+vFit . a
Jo@* - fran
where the superscript ¥ designates the transconjugate.
Once again, large values of |[VyA| and |Vyw| identify regions in the flow where A or w
are most sensitive to a modification U of the base flow. Unlike the sensitivity .S, these
quantities are vector fields, therefore providing directional information too.
Analogously, an eigenvalue o may be viewed as a function of a steady force F'. A small

variation 6 F' of the steady force F induces a variation dU of the base flow. The variation
do can be linked to 6 F via:

VUO' =

; (2.13)

dc = (Vpo,iF), (2.14)

where V po is the sensitivity to a modification of the steady force, and, as before:
VF)\:RG{VFU}, VF(JJ = —Im{VFO'}
Marquet et al. (2008) demonstrate that V po equals the adjoint base-flow velocity.

2.5. Numerical details

The base flow is obtained by solving the two-dimensional version of the steady Navier—
Stokes equations (2.1) using the Newton algorithm. The spatial discretisation is based
on a finite-element formulation using quadratic elements (P2) for the velocity and linear
elements (P1) for the pressure. This numerical method is implemented in the non-
commercial software FreeFem++ (Hecht 2012). A symmetric mesh with respect to the
x axis has been used for all the configurations to avoid introducing asymmetries in the
flow. The size and the spatial distribution of the triangles has been chosen to properly
refine the mesh around the cylinders and in the wake. The number of triangles changes



AR 0.25 0.5 0.75 1 1.5 2 2.5 3 3.5
Re. 34.80 37.44 40.65 44.56 53.80 63.20 71.41 78.31 84.17
fs 0.1061  0.1058  0.1050 0.1045 0.1049 0.1063 0.1075 0.1083  0.1085

AR 4 4.5 5 6 8 10 15 20 30
Re. 89.35 94.16 98.79 107.5 117.49 12340 131.99 137.12  138.99
fs 0.1083 0.1080 0.1076  0.1070  0.1059  0.1022  0.0941  0.0908  0.0821

TABLE 1. Critical Reynolds number Re. of the primary instability and corresponding
frequency fs for rectangular cylinders with 0.25 < AR < 30.

with the mesh and therefore with AR, and ranges from a minimum of approximately
40 x 10 to a maximum of 60 x 103. The eigenvalue problem (2.6) is then solved with
the Arnoldi iterative algorithm by calling the ARPACK package (Lehoucq et al. 1998).
When a single eigenvalue is required, a simple shift-invert method (Saad 2011) is used.

The computational domain used in the present analysis changes with the aspect ratio
of the rectangular cylinders. For AR < 5 the domain extends for —25D < z < 50D
in the streamwise direction and for —20D < y < 20D in the cross-stream direction
corresponding to a size of (L, L,) = (75D,40D), whereas for larger AR it is enlarged up
to (Lg, Ly) = (100D, 60D) extending from —25D < z < 75D and —30D < y < 30D in
the two directions; the rectangular cylinder is placed at 0 < # < Land —D/2 < y < D/2.

We have validated the results by varying both the grid resolution and the domain size.
The tests reported in Appendix A confirm the reliability of the present results.

3. Rectangular cylinders with sharp corners
3.1. Base Flow

The base flows are very similar over the whole range of considered AR. In figure
2, the spatial distribution of the vorticity w, = 9V/0x — dU/dy is plotted, which is
antisymmetric with respect to the centerline y = 0, and presents its largest values near
the upstream corners of the cylinder. As an example, the base flows for AR = 3 and
AR = 6 are shown in figure 2 at a Reynolds number corresponding to the first onset of
the instability, i.e. Re = 78.3 and Re = 107.6, as discussed later. In both cases, two shear
layers detach from the corners, one on the upper side, and one on the lower side, with
vorticity of opposite sign. These shear layers delimit a symmetric separation bubble after
the body tail. However, for the larger AR = 6, a second, smaller recirculation bubble
appears just downstream of the LE of the cylinder: the separated flow reattaches on
the cylinder walls, before separating again at the TE. As indicated in figure 2(c), the
secondary bubble only appears for AR > 6, and its size increases with AR. In contrast,
the length of the main separation bubble downstream of the trailing edge does not depend
monotonically on AR. Indeed, as shown in panel (d), the length generally decreases with
AR but presents a localised increase in the range 1 < AR < 2.

3.2. Global modes

The global stability of the base flow is studied by looking for the leading global mode
{@,p}, i.e. the global mode with the largest growth rate A. Figure 3 plots in panel (a)
the evolution with AR of the critical Reynolds number Re. of the primary instability,
i.e. the Reynolds number at which the growth rate crosses the real axis; panel (b) plots
the corresponding frequency fs = w/27. Numerical values are also reported in table 1.
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FIGURE 2. Top: Base flow for AR = 3 at Re = 78.31 (a) and for AR = 6 at Re = 107.6,
with the zoom on the upstream separated region in the inset (b). Streamlines are shown on top
of a vorticity map; the dashed line denotes U = 0. Bottom: streamwise coordinate x, of the
reattachment point (c) and length [, of the main recirculating bubble (d) as a function of AR,
measured at the Reynolds number corresponding to the first onset of the instability. The inset
in panel (d) shows a zoom of I, for 0.25 < AR < 2.5; the different lines highlight the effect of
rounding the trailing-edge corner: they refer to the sharp configuration (red), D/R = 8 (blue),
D/R = 4 (grey) and D/R = 2 (green), respectively, where R is the radius of curvature of the
rounded corner.

For AR = 1, the flow is stable at Re = 44.5 and unstable at Re = 44.6, with Re. =
44.56 resulting by linear interpolation to obtain A = 0. This is in good agreement with
existing results for the square cylinder. Yoon et al. (2010) and Saha et al. (2000) found
Re. = 45, Sohankar et al. (1998) determine Re. = 47 4+ 2, Park & Yang (2016) with
Re, = 44.7, and Jiang & Cheng (2018) report Re. = 46. Moreover, figure 3(a) shows
that increasing AR immediately leads to a more stable flow, i.e. a flow with larger Re..
The increase of Re. with AR is quick at first, but the sensitivity of Re. to AR decreases as
AR is increased. The frequency fs does not show a monotonic trend: it generally decreases
with AR, but it increases for 1 < AR < 3.5, hence presenting a local minimum at AR = 1
and the absolute maximum at AR = 3.5. The dependence of f; on AR recalls that of
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panel in the inset. Panel (¢) shows the A(Re) curve for AR =1,2,3,4,5.

the size of the main recirculating bubble (see figure 2(d)) only incidentally, since the
change in slope occurs for different AR in the two cases. Additional information is found
in figure 3(c), where the growth rate A is plotted as a function of the Reynolds number
for AR =1,2,3,4,5. The slope of the curve A(Re) decreases by increasing AR, including
when Re — Re.. This implies that, as AR is increased, the rectangular cylinder becomes
less sensitive to a variation of the Reynolds number, as long as the primary instability is
considered.

The increase of Re. with AR is associated with the progressive diffusion of the shear
layers that separate from the LE corners. Indeed, owing to viscous diffusion, the two
shear layers that produce the instability become thicker in the instability region as AR
is increased, since the pockets of instability positioned on the two sides of the separation
bubble move downstream with respect to the LE where the shear layers are produced;
see figure 6. This is confirmed by a progressive reduction of the minimum reverse-flow
speed within the separation bubble. Since the reverse-flow speed has a strong impact on
the growth rate of the unstable mode (Hammond & Redekopp 1997), the instability
mechanism becomes less intense as AR increases, and the critical Reynolds number
progressively increases. For AR > 2, the same phenomenon (i.e. the increasing diffusion
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of the separated shear layers) is responsible for a reduction of the length of the separation
bubble, see figure 2(d). The non-monotonic behaviour of I, comes from the interaction
of the fore region of the shear layer separating from the LE with the aft corners for
low AR. By plotting the pressure over a line slightly above or below the rectangle, a
negative pressure peak is visible in the position of the aft corners (not shown here for
brevity). For AR < 2 the pressure peak interacts with the fore portion of the shear layer
which faces a strong adverse pressure gradient, while for AR > 2 it interacts with the
aft part of the shear layer. This hypothesis is confirmed by the fact that rounding the
TE corners progressively eliminates the non-monotonic behaviour, as shown in the inset
of figure 2(d). The minimum speed in the recirculation bubble and its length are the
most important scales in the instability phenomenon. The former directly impacts the
local amplification of the unstable wave packets, while the second one dictates the spatial
extent of the absolute instability (Chomaz 2005), thus affecting the global stability of
the flow. This observation is confirmed by considering the Reynolds number defined as
Re = |Umin|l,/v and plotting its critical value Re.(AR). Figure 3(a) shows that the
relative variation of Re.(AR) is smaller by an order of magnitude with respect to that
of Re.(AR). This scaling is not perfect, as Re, should be ideally constant with AR, but
is far more accurate than that based on the cylinder thickness D and on the free stream
velocity Uy . For sufficiently large AR, the same phenomenon leads the frequency of the
instability to decrease, as observed in figure 3(b), since the length scale of the instability
increases and the flow speed decreases. The non-monotonic behaviour observed for small
AR, however, seems not related to the interaction of the main shear layers with the TE
corners, since it is insensitive to rounding the TE corners. Its origin remains elusive.

The spatial shape of the leading unstable global mode remains qualitatively similar
across the considered aspect ratios. In figure 4 the mode computed for AR = 6 and
Re = Re. = 107.5 is shown as example. For all the considered AR, the leading global
mode propagates downstream and is antisymmetric, as for the circular cylinder (Marquet
et al. 2008). The y-averaged perturbation energy grows spatially downstream, reaching
a maximum, for example, at x ~ 38,48,48,49 for AR = 1,2, 3,5 respectively. Although
the position of the maximum approaches the outlet for AR = 3,5, the results are
independent from the length of the computational domain, as shown in appendix A
where the independence of the results on both the grid resolution and domain size for
AR =5 is demonstrated; see also Giannetti & Luchini (2007), where the dependence of
the leading global mode on the domain length is investigated.

The adjoint (fT,m") of the leading global mode for AR = 6 and Re = 107.5 is
shown in figure 5. Like the direct modes, the adjoint modes are antisymmetric. They
show spatial oscillations upstream of the rectangular cylinder; the same was observed
for the adjoint modes for the circular cylinder (Marquet et al. 2008). Unlike 4, the
largest magnitude of f'+ is reached very close to the downstream corners, for example at
(z,y) = (1.05,0,6),(2.02,0.6), (3.07,0.6), (5.03,0.6) for AR = 1,2,3,5, and it is almost
null at a distance downstream from TE which depends on AR (e.g. for AR = 6, ftis
negligible for > 10 as shown in figure 5). The different localisation of the direct and
adjoint global modes (downstream for the former and upstream for the latter) results
from the opposite transport of perturbations by the base flow in the direct and adjoint
operators (Chomaz 2005).

3.3. Structural sensitivity
Figure 6 shows the structural sensitivity S for rectangular cylinders with AR = 1
and AR = 6, as representative of the overall range of AR considered. The sensitivity S
identifies the region of the flow where generic structural modifications of the stability
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FIGURE 4. Real part of the direct eigenmode for AR = 6 and Re = 107.5

problem produce the strongest drift of the leading eigenvalue: the so-called wavemaker
region. The spatial distribution of S for the square cylinder resembles that of the circular
cylinder described by Giannetti & Luchini (2007), with the largest values occurring in
two lobes symmetrically located across the separation bubble, indicated by the green
dashed line in the figure. Everywhere else in the flow domain, as for the circular cylinder,
the product of the adjoint and direct modes is small. Therefore, the core of the primary
instability for non-elongated bodies is located just downstream, near the end of the
recirculating region. The small recirculation that arises near the upstream corners for
larger AR is not involved in the primary instability, since S remains negligible there.
However, when AR is increased, the lobes with the largest S shift further downstream,
and tend to only affect the area outside the recirculating region. The distribution of S
explains how the chosen streamwise length of the computational domain is enough to
capture the instability dynamics (see Giannetti & Luchini 2007).

3.4. Sensitivity to base-flow modifications
Figures 7 and 8 report the growth rate sensitivity Vy A and the frequency sensitivity
Vyw for rectangular cylinders with AR = 0.25,1,5,6 at their critical Reynolds number
Re.. They represent the complete range of AR studied in this work. Both Vy A and
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FIGURE 6. Structural sensitivity. AR =1 at Re = 44.6 (left) and AR = 6 at Re = 107.5 (right).
The green dashed line denotes the streamlines drawn for zero streamfunction, ¥(z,y) = 0,
and delimit the separated region or coincide with the symmetry axis. The blue dashed line
corresponds to U = 0 and marks the extent of the reverse-flow region.

Vuyw are two-dimensional real vector fields: their field lines provide the local orientation
of the sensitivity field, whereas their magnitude provides its intensity.

Let us first focus on VA in figure 7. First we observe that Viy A always vanishes far
from the cylinder, owing to the spatial segregation of the direct and adjoint modes, and for
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AR > 3, it becomes negligible also on the horizontal sides of the cylinder. Vi A strongly
depends on the aspect ratio: at small AR, it is qualitatively similar to the results found
for the circular cylinder by Marquet et al. (2008), but for larger AR qualitative changes
are observed. For AR = 0.25, the largest values of |V A| are observed close to the TE
corners, and within the reverse-flow region, with a maximum placed on the centerline at
x = 0.976. For AR = 1, the sensitivity in the reverse-flow region becomes stronger. The
peak is shifted downstream at x = 3.60. Interestingly, for this AR, two additional regions
of large sensitivity appear in the separation bubble, starting from the rear corners just
outside the reverse-flow region. At larger AR the picture changes again. As shown in
the bottom panels of figure 7 for AR = 5 and AR = 6, the sensitivity decreases in the
core of the reverse-flow region dropping almost to zero for AR = 5. The largest values
are instead observed in four lobes placed symmetrically with respect to the y = 0 axis.
For AR = 5, the first pair of lobes is placed just outside the reverse-flow region, i.e.
above the U = 0 line, whereas the other pair is placed above it. The first pair moves just
outside the recirculation bubble for AR = 6, while the second pair moves downstream.
Quantitatively, the sensitivity maximum is placed at the end of the separation bubble,
ie. at (z,y) =~ (8.03,0) for AR =5 and (z,y) =~ (9.01,0) for AR = 6, confirming that at
large AR the largest changes of A are observed for base flow modifications occurring in
the separation bubble or just downstream of its end.

The effect of AR is also observed on the field lines of Vi A. Indeed, at the lower aspect
ratios, AR = 0.25 and AR = 1, similarly to what is observed for the circular cylinder,
the field lines in the reverse-flow region are directed upstream. Therefore, increasing
the reverse flow will enhance the instability. This makes sense, since a stronger reverse
flow increases the instability feed-back. The instability is also enhanced by a thinner
separation bubble. For larger AR, instead, in the portion of the reverse-flow region that
is near to the cylinder, the field lines point downstream. A further difference is close to the
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FIGURE 8. Vyw. Panels as in figure 7.

TE corners, where for AR < 1 the lines are directed towards y = 0 from the outer region
of the flow, whereas for larger AR they switch direction pointing from the centreline
outwards. This provides evidence that the same base flow modification leads to different
effects depending on AR. For example, a U which increases the backflow velocity in
the recirculating region has a strong destabilising effect (i.e. A > 0) for AR < 1, but a
much lower effect for larger AR. On the contrary, a base flow modification dU > 0 in the
separated region has a strong destabilising effect for AR > 1, but an almost negligible
effect for smaller AR.

Let us now observe Vyw in figure 8. Like VA, it vanishes far from the cylinder,
and depends on AR. For AR = 0.25, the largest values are observed in four different
regions: just downstream of the TE, on the U = 0 line, in two lobes at the edge of the
reverse-flow region and in two other lobes outside the recirculation bubble. For AR > 1,
the sensitivity progressively decreases just behind the TE, while it increases in the other
regions. The two lobes just outside the reverse-flow region move farther with respect to
the symmetry axis, while those located outside the recirculation bubble gradually move
downstream. The field lines of Vyw also depend on AR. Indeed, for AR = 0.25 they
are directed upstream in the region behind the trailing edge, where |Vyw| is maximum,
whereas for larger AR the lines are directed downstream in the reverse-flow region. This
means that a U which increases the backflow in this region leads to different effects
depending on the aspect ratio: dw > 0 for AR = 0.25 and dw < 0 for AR > 1.

3.5. Sensitivity to a steady force

Figures 9 and 10 plot the growth rate sensitivity Vg and the frequency sensitivity
V rw to a steady force for rectangular cylinders with AR = 0.25,1,5,6 at their critical
Reynolds number Re.. They are representative of the complete range of AR studied in
this work.

Let us first focus on the growth-rate sensitivity depicted in figure 9. For low aspect
ratios (AR = 0.25,1) |V g | is largest near the rear corners and in the reverse-flow region.
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For AR = 0.25, two further lobes are barely visible outside the recirculation bubble; by
increasing AR they first disappear, then reappear with slightly larger intensity. Near the
rear corners the sensitivity is still strong, while it decreases substantially on the symmetry
axis in the reverse-flow region becoming stronger on its boundary near the U = 0 line.
Interestingly, unlike |V A|, [V Al is non-negligible on the top and bottom sides of the
cylinder up to the LE, especially at the lower AR. This suggests that a localised steady
force applied on the top/bottom of the cylinders may be effective in altering the flow
stability.

The field lines of Vg are directed upstream in the recirculation region, and have
an elliptical shape outside the separated region. For large AR, a second region with
lines directed upstream appear above the separated region. Moreover, along the top and
bottom edges of the cylinder with AR > 5 the lines are directed upstream rotating anti-
clockwise close to the LE corners, implying that here a localised steady force may have
a stabilising or destabilising effect depending on the distance from the cylinder wall.

The sensitivity V pw, plotted in figure 10, shows a stronger dependence on AR. It is
consistently large close to the TE corners and within the reverse-flow region, with the
field lines directed downstream for all AR. For AR > 5, the field lines locally switch
direction and direct upstream in the region just outside the separation bubble, where,
however, the sensitivity is low. It is quite large along the sides of the rectangle, at a
distance which slightly grows with AR, and for AR > 1 outside the recirculation bubble,
with the maximum value reached at a distance from the bubble which increasing with
AR.

Overall, a downstream-directed steady force applied within the reverse-flow region, or
in the region close to the TE corners, is predicted to have a stabilising effect, producing
6A < 0 and dw > 0. On the other hand, a downstream force applied above or below the
reverse-flow region at y =~ +1 has a destabilising effect, producing A > 0 but still leading
to dw > 0. Interestingly, for AR > 3 an upstream force along the streamwise edges of the
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FIGURE 10. V pw. Panels as in figure 7

cylinder has a stabilising effect with 6\ < 0 when placed near the cylinder surface, i.e.
yo =~ 0.5, but a destabilising effect at larger y. This is verified below.

3.6. Passive control of the primary instability

It is known (Strykowski & Sreenivasan 1990) that a small control cylinder placed in
the wake of a bluff body can alter or even suppress vortex shedding. For the circular
cylinder, and for a Reynolds number close to Re., they determined where the control
cylinder, with a radius one tenth of that of the main cylinder, should be placed in the
flow to suppress the shedding. Here, we extend the analysis done by Marquet et al.
(2008) for the circular cylinder, and determine the optimal placement of a small control
cylinder to suppress shedding from square cylinders with different aspect ratios (AR =
0.25,1,2,3,5,6) at Re ~ Re.. The presence of the control cylinder is modelled by a point
source of momentum F' in the Navier—Stokes equations, applied at the centre (o, yo) of
the control cylinder. Owing to the low Reynolds number, the wake of the control cylinder
is always steady, regardless of its placement. Hence, the control cylinder is modelled as
a localised force acting in a direction opposite with respect to that of the base flow, with
modulus proportional to the square of the base-flow speed:

0F(x) = —aUU é(x — xo), (3.1)
with 0 < a < 1. The resulting changes in growth rate and frequency are written as:

0A=—-aUVgA-U,

3.2
ow=—-aUVrw- -U. (3:2)

Since Re ~ Re. and the flow is marginally stable, i.e. A = 0, A < 0 implies a stabilisation
of the flow.

Figure 11 shows how the normalised growth-rate change 6/« varies with the location
of the control cylinder. For every AR, putting a control cylinder in the region just outside
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FIGURE 11. Variations of the growth rate A/« as a function of the position of the control
force 3.2, for different values of AR. For the symbols in the low left panel see section 3.6.1

the shear layer separating from the LE corners, and down to the TE corners of the
rectangle, has a destabilising effect, i.e. A > 0, whereas a cylinder inserted just outside
the separation bubble has a stabilising effect. For AR > 3 a second destabilising region
emerges, located outside the stabilising one near the separation bubble, and connects
with the other destabilising region for AR > 5. This new destabilising region ensues
because of the field lines of V g\, which for such aspect ratios are directed upstream in
this region. For the largest aspect ratio, a thin stabilising region emerges in the shear
layer separating from the LE corners.

The normalised frequency change dw/a due to a control cylinder is shown in Fig. 12 for
the same AR and Re considered in figure 11. The main effect of the control cylinder, for
every AR, is to decrease the frequency of the instability. The most sensitive region is near
the LE corners. The sensitivity decreases moving downstream. A slight increase in the
frequency can be obtained by inserting the control cylinder far from the axis of rectangle,
in the outer region for y ~ 1.9 and = corresponding to the separation bubble, or just
outside it, but only for AR > 5. Again, differences between these region are explained
by the different direction of the field lines of V pw.

These results are useful for a deeper understanding of the instability mechanism. We
first observe that the control cylinder always introduces a viscous drag force, opposed to
the base flow. Therefore it is most effective in the high-speed regions, and this is why
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3.2. Results are computed at Re. for AR = 0.25 (top left), AR =1 (top right), AR = 2 (centre
left), AR = 3 (centre right), AR =5 (bottom left), AR = 6 (bottom right). For the symbols in
the low left panel see section 3.6.1.

the largest effects of the control cylinder are observed above and below the cylinder, in
the high-speed region, while it is marginal in the separation bubble. The control cylinder
acts by reducing the speed locally while increasing it in the surrounding region by the
blockage effect. Concerning the growth rate of the instability, we notice that the control
cylinder stabilises the flow when placed just outside the recirculation bubble. Reducing
the flow speed here reduces the amplification mechanism of the shear layer, thus leading
to a more stable flow. The blockage effect is probably the reason why the control cylinder
enhances the instability when placed in the regions above and below the rectangle. We
observe that the positive and negative sensitivity regions are adjacent to each other,
thus suggesting that the underlying mechanism in both regions is the decrease/increase
of the shear-layer intensity. The cylinder can act either directly, by reducing the flow
speed, or indirectly, by enhancing the flow speed through blockage. For what concerns
the frequency of the instability, the control cylinder seems to act reducing the speed in
the high-speed region of the base flow. A simple dimensional analysis indicates that this
leads to a corresponding reduction in the instability frequency.
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C1 C2 C3 Cq Cs Ce cr
(ze,ye) (1,0.9) (4.579,0.79) (4.632,1.502) (4.649,1.068) (6,0.9) (7.5,1.98) (7.05,1.18)
SA 0.233 0.0330 0.0019 —0.0418 ~ —0.0463 —0.0193  —0.0299
Sw —0.1144  —0.0527 —0.0274 —0.0281  —0.0448 0.0175  —0.0043

TABLE 2. Variations of the growth rate d\ and of the frequency dw for AR =5 and Re. = 98.8
when a circular control cylinder with diameter d = D/100 is placed in the flow. Seven significant
positions (z.,y.) are chosen as shown in the lower left panel of figure 11 and 12.

3.6.1. Passive control via a control cylinder

The validity of such results is additionally checked by a linear stability analysis, for
AR = 5 and Re = Re. = 98.8, in which an actual control cylinder of circular cross-
section and very small diameter d = D /100 is placed in the flow. A set of seven significant
positions for the control cylinder is chosen, as shown in the lower left panel of figure 11
and 12.

As summarised in table 2, the results of the force-based analysis above have been
confirmed for six of the seven points considered, i.e. ¢; — c¢g. Indeed, both the growth
rate and the frequency change in the same direction predicted by the linear stability
analysis. Note, moreover, that this analysis confirms the prediction of the positions that
yield the largest changes of both the growth rate and the frequency. Indeed the largest
0\ and dw are found for the control cylinder ¢; that is placed in the shear layer close
to the upstream corner, where the force-based sensitivity predicts the largest values of
both dA/a and dw/«. Point ¢7, with coordinates (z,y) = (7.05,1.18), is the sole position
where a stabilising effect (albeit very small) is computed, but a destabilising effect was
predicted by the force-based sensitivity. However, this may be due to nonlinear effects
owing to the finite diameter of the control cylinder.

To verify the working mechanism of the control cylinder explained before, we compare
the unperturbed base flow with the perturbed base flows computed for two different
positions of the control cylinder, one stabilising (¢5) and one destabilising (c2). Two small
symmetric cylinders with diameter d = D/100 have been used in both controlled cases
to preserve the symmetry of the flow and to facilitate the analysis. Comparing the panels
in figure 13, we observe that the stabilising cylinder perturbs the base flow by decreasing
the flow speed in the high speed region that drives the shear layer, thus reducing the
shear layer intensity and the instability, as explained before. The destabilising cylinder, in
contrast, reduces the flow speed near the cylinder and, by its blockage, enhances the flow
speed in the high-speed region, leading to an increase of the shear-layer intensity and to
a more unstable flow. It is worth noting that consistently with the previous discussions,
in the destabilising case (cz) the presence of the control cylinder leads to an increase of
both the length of the recirculating bubble I, and the minimum negative velocity |Umin|,
resulting in a larger Re., while the opposite occurs in the stabilising case (cs).

4. Rectangular cylinders with rounded corners

For the sole aspect ratio AR = 1, Park & Yang (2016) have studied the primary
instability when the LE and TE of a square cylinder are rounded, with a radius of
curvature R. They found that Re. has a non-monotonic dependence on the parameter
D/R. The most stable configuration was found at D/R = 4. The goal of this section is
to expand their study to elucidate the effect of the radius of curvature on the primary
instability at different AR. The following values of D/R have been considered: D/R =
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FIGURE 13. Base flow for AR = 5 and Re. = 98.8 with and without a circular control cylinder
with diameter d = D/100 placed in the flow. The blue-to-red symmetric map is for U and the
dashed line denotes U = 0. Top: no control cylinder. Centre: case cz in table 2, with the control
cylinder placed at (z¢,y.) = (4.579,0.79). Bottom: case cs in table 2 with the control cylinder
placed at (z¢,y.) = (6,0.9).

2,4,8,16, 32,64, 128. It is worth noting that D/R = 2 denotes a cylinder with a semicircle
at the LE and/or TE and D/R = oo is the limit of sharp corners. This justifies the
asymptotic behaviour of figure 14 and 16.

In figure 14 and 16, the dependence of Re. and f, on D/R is shown for AR =
0.25,0.5,1,2,3,4,5,8. Rounding the LE corners only (red lines in the figure) produces
effects which change across the observed aspect ratios. For AR < 1, rounding has a
stabilising effect that decreases with D/R. We notice however that the largest curvature
radii are not considered in the cases with AR = 0.25,0.5. For 1 < AR < 3, a
non-monotonic dependence of Re. on D/R is observed. At AR = 1, rounding has a
stabilising effect for all the D/R with the maximum Re. occurring at D/R = 4. For
intermediate aspect ratios, i.e. AR = 2,3, the effect can be stabilising or destabilising
depending on D /R, with destabilisation occurring for very small D/R, whereas marginal
stabilisation occurs for D/R > 4. By increasing the aspect ratio, the peak becomes less
prominent and slightly shifted towards larger D/R. Finally, for AR > 5, LE rounding
has a destabilising effect for all the D/R, with the most destabilising configuration
corresponding to D/R = 2.

When the TE corners are rounded (black lines in the figure), a different scenario
arises. For AR > 2, rounding the LE corners has a stabilising effect for all the D/R,
with the most stable configuration corresponding to the largest rounding radius. For
AR < 1, instead, rounding has a destabilising effect for sufficiently large curvature radii
and stabilising otherwise. The maximum stabilising effect is observed at D/R = 8 for
AR = 1 and higher for AR = 0.5 and 0.25. The crossover point, where Re. does not
change, is shifted towards smaller D/R as AR increases, up to a point where rounding
the TE is always stabilising. Rounding the TE has a larger effect on Re. than rounding
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FIGURE 15. Qualitative description of the stabilising/destabilising effect of the LE (left) and
TE (right) rounding for 0.25 < AR < 8 and 2 < D/R < 128. Green circles indicate stabilising
configurations, while red circles the destabilising ones.

the LE for AR > 2. This is consistent with the structural sensitivities, that show that the
leading eigenvalue is more sensitive to flow modifications occurring in the wake region
and less sensitive to modifications occurring close to the LE when AR is large enough.
In contrast, for small AR, the effect of rounding the LE is found to dominate. Figure 15
qualitatively summarises the stabilising/destabilising effects of the LE and TE rounding,
shown by green/red circles.

Finally, when both LE and TE corners are rounded (LE4+TE, blue lines in the figure), a
stabilising effect is consistently observed for all AR and D/R. However, some differences
among the considered aspect ratios can be observed. Indeed, as found by Park & Yang
(2016), for AR = 1, Re. has a non-monotonic dependence on D/R, with the most
stabilising configuration corresponding to D/R = 4. For AR < 1 and AR > 1, instead,
a monotonic (decreasing) dependence is recovered. Interestingly, due to nonlinearity, the
effect of LE and TE rounding is not additive: for instance, at AR = 3 LE rounding
is destabilising, TE rounding is stabilising, but rounding both is more stabilising than
rounding the TE alone.

The effect of the rounded corner on the frequency f, of the leading eigenvalue is shown
in fig. 16, and is qualitatively the same at every AR. Indeed, f, is consistently increased
by rounding the corners. For every AR, the largest drift is observed in the LE4+TE
configuration. When either LE or TE are considered, LE produces dominant changes for
small AR, but when AR > 4 the opposite occurs, and TE rounding leads to the largest
effects.

The changes of A (or equivalently of Re.) and f observed for the rounded-corner
configurations can be associated with the sensitivities to base flow modifications Vy A
and Vyw shown in section 3.4. In this analysis, AR = 1, 2, 3,5 and 8 have been examined,
with D/R = 2,16 and 32. The sensitivity results match the physical observations
for all cases, with the exception of the low aspect ratios AR < 3 with the smallest
D/R = 2. In this region of the parameter space, indeed, the modification of the base flow
cannot be considered a small perturbation. Therefore, the linearised theory is no longer
accurate enough, and second-order sensitivities should be considered. In the following,
the cases with AR = 3 at Re = 78.4 and AR = 8 at Re = 107.5 are considered as an
example, investigating the changes produced in the eigenvalues by rounding the TE or
LE corners with D/R = 16. These values of AR and D/R have been chosen because of
the significant changes in A and w. Moreover, this choice enables us to compare two cases
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in figure 14.
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FIGURE 17. Effect of rounding the LE corners with D/R = 16 for AR = 3 at Re = 78.4 (top
four panels) and forAR = 8 at Re = 117.5 (bottom four panels), plotted over the sharp-corner
geometry. The panels of each group are organised as follows. Top: base flow modifications §U
(left) and 0V (right). Bottom: A = VyA - 06U (left) and dw = Vyw - 6U (right).The black
dashed line indicates U = 0.

that have different behaviours with respect to an intermediate value of the LE radius,
with stabilising effect for AR < 5 and destabilising elsewhere, see figure 14.

In figure 17, the configuration with rounded LE corners is considered. The four upper
panels report the base flow modifications éU (top, left) and §V (top, right) due to
rounding the LE corners and the normalised quantities dA/|dA|mqe (bottom, left) and
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0w/|0w|maz (bottom, right), computed in the sharp-corner configuration for AR = 3. In
the same figure, the four lower panels show the same information for AR = 8. §\ and dw
are defined as

dw(z,y) = Vyw(x,y) - U (z,y).

Rounding the LE corners leads to an increase of the streamwise velocity component,
0U > 0, upstream of the cylinder and in the separated region that originates at the
leading edge; 0V is antisymmetrical w.r.t. the y axis, it is positive just upstream of the
LE top corner, and becomes negative in the separated region. Although not visible in
the figure, rounding the LE corners affects the base flow downstream of the cylinder
too, with a slightly stronger backflow in the reverse-flow region, 6U < 0. For AR < 4,
however, an increase of the streamwise velocity is observed at the end of the reverse-
flow region, U > 0. This difference is due to the fact that the accelerated shear layers
separating from the LE affect the region behind the cylinder further downstream as AR
is increased, owing to their interaction with the TE corner. It is worth reporting that the
portion of the reverse-flow region with U > 0 increases for the smallest AR. Overall,
these changes of U lead to variations of A that depend on the considered flow region.
For the present cases, a tiny region with dA > 0 is observed just upstream of the LE
corners, with a region of opposite sign just downstream. Notably, the largest changes
of 0\ take place downstream of the cylinder. These regions with 6\ > 0 are located
outside the separation bubble. This area is surrounded by zones of negative d\, both
inside the separation bubble and far from it. Although changes of the base flow are quite
small behind the cylinder, the expected variation 0\ is not negligible because Vy A is
large there. Due to the different sign observed at the end of the reverse-flow region and
immediately downstream for §U for the two AR, as described above, d\ assumes large
negative values in this region for AR = 3, while positive or slightly negative values for
AR = 8. Counsistently with dU, the area with negative JA at the end of the reverse-flow
region increases as AR is reduced.

The variations dA assume both signs in the domain. Notably, this is in accordance
with the prediction of the stability analysis, which suggests a globally stabilising effect
for AR = 3 and a globally destabilising effect for AR = 8. Indeed, by taking the volume
integral of the changes d\ over the computational domain f2:

A/\:/ oAd (2,
Q

AN < 0 is obtained for AR = 3 and A\ > 0 for AR = 8. This holds true also for the other
AR and intermediate D/R, with A\ < 0 for AR < 4 and AX > 0 for AR > 5. Hence, for
the largest AR, the destabilising effect associated with rounding the LE corners is mainly
due to the flow acceleration dU occurring outside the separation bubble downstream of
the TE and to the acceleration of the LE shear layers close to the upstream corners. An
explanation is that increasing the velocity outside the separation bubble increases the
vorticity in the shear layers, with a consequent destabilising effect. For the smallest AR,
instead, the same rounding has a stabilising effect due to the positive U at the end of
the reverse-flow region and immediately downstream.

Changes of dw are also symmetric w.r.t. y = 0, and are mainly observed in two different
regions of the flow: near the LE corners and outside the separation bubble, in the rear
end of the cylinder. Above the top LE corner, there is a small region of positive values
surrounded by a larger negative area that marks the LE separation. The most evident
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changes are again downstream, with relatively large regions with dw of either sign flanking
the border of the separation bubble. As for §\, the differences between the two AR
considered is associated with the different U at the end of the reverse-flow region. Here,
dw is positive for AR = 3 and negative for AR = 8. Also, the integral of these changes
confirms the linear stability analysis, as for both AR

Aw :/ owdf2 > 0.
1)

However, the integral is larger for AR = 3 than for AR = 8, owing to the positive
contribution of the reverse-flow region; this is consistent with the results of the linear
stability analysis, predicting smaller dw as AR increases, see Fig. 16.

Figure 18 is structured as Fig. 17, but TE corners are rounded in this case, with a
stabilising effect. The base flow modifications are smaller w.r.t. the previous case and
propagate up to the LE. In particular, §U > 0 has its maximum close to the TE corners,
but its value is not negligible in a large area, especially near the cylinder sides and in
the wake. 0V, in contrast, is quite localised at the LE and TE corners. Small AR feature
a lower 6U > 0 in the reverse-flow region and in general over the y = 0 line. As above,
this is due to the different interaction between the LE shear layer and the TE corners.
Unlike the previous case, however, significant )\ and dw are only observed downstream.
A thick region with )\ < 0 is seen close to the U = 0 line starting from the TE corners,
whereas dA > 0 is flanking it, in the reverse-flow region and in the external region. For
AR = 8 this region of negative d\ has larger intensity, due to the larger U > 0. The
integral of these changes leads to AX < 0 for both the AR considered, as confirmed
by the linear stability analysis. The larger negative §\ over the U = 0 line leads to a
more negative A\ for AR = 8, consistently with what shown in Fig. 14. Differently,
for both AR, an area with large dw > 0 is observed in the reverse-flow and external
regions, separated by dw < 0. Overall, Aw is positive, confirming once again the result
of the linear stability analysis. This indicates that the stabilising effect associated with
rounding the TE corners is due to U > 0 occurring close to the rear corners and to
the U = 0 line delimiting the reverse-flow region; the increased value of the frequency is
associated with the reduced backflow occurring in the same region, and to the U > 0 in
the outer region downstream of the cylinder.

The stabilising/destabilising effect of rounding the corners is consistent with the
changes of Re.. Again, we refer to the above considered cases for AR = 3 and AR = 8
with D/R = 64. For AR = 3 the LE rounding results in a stabilising effect and, therefore,
to a decrease of Re.. In this case |Umin| slightly increases as witnessed by the negative
06U < 0 within the reverse-flow region, and the decrease of Re. is due to the decrease of Iy,
visible in the top left panel of figure 17 by the positive 6U > 0 at the end of the reverse-
flow region. For AR = 8 the LE rounding has a destabilising effect, with an increase
of Re.. Unlike for smaller AR, in this case the dominant effect is the slight increase
of |Umin|. Indeed, I, is almost unchanged owing to the interaction of the accelerated
shear layer separating from the LE with the TE corners. Rounding the TE corners has a
stabilising effect for both AR, and Re, decreases. In this case this is due to a combination
of the decrease of both |Upyin| and I,., as indicated by the positive 6U > 0 in the overall
reverse-flow region.

5. Conclusions

The flow past rectangular cylinders is of paramount interest from both academic and
applied viewpoints, especially in the field of vortex-induced vibrations. The present work
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FIGURE 18. Effect of rounding the TE corners with D/R = 16 for AR = 3 at Re = 78.4 (top
four panels) and forAR = 8 at Re = 117.5 (bottom four panels), plotted over the sharp-corner
geometry. The panels of each group are organised as follows. Top: base flow modifications §U
(left) and 0V (right). Bottom: A = VyA - 06U (left) and dw = Vyw - 6U (right).The black
dashed line indicates U = 0.

has thoroughly investigated, for the first time, the properties of the primary instability
of the flow past rectangular cylinders as a function of the aspect ratio AR and of the
rounding of the body corners, highlighting strong qualitative and quantitative changes.

Several properties of the primary instability have been shown to depend on the aspect
ratio. The primary instability is invariably the result of a Hopf bifurcation, as for the



28 A. Chiarini, M. Quadrio and F. Auteri

circular cylinder. However, the critical Reynolds number Re. is an increasing function of
the aspect ratio, starting from Re. ~ 34.8 at very small AR, increasing to Re. = 44.5
for the square cylinder at AR = 1 and to a value of Re. ~ 140 for AR = 30. The
instability has been fully characterised and explained through the whole range of aspect
ratios. Interestingly, the wave-maker region is always localised in two separated lobes
symmetrically placed across the separation bubble in the wake, showing that the smaller
recirculations appearing near the upstream corners for AR > 6 are not involved in
triggering the primary instability. The core of the primary instability moves downstream
by increasing AR and it only involves the area just outside the separation bubble at the
largest AR.

The aspect ratio also affects the sensitivity to base-flow modifications and to external
forcing. The sensitivity to steady forces has been used to compute the proper positioning
of a small control cylinder intended to modify the onset of the primary instability; again
a quantitative and qualitative dependence on AR is observed. For all the aspect ratios, a
control cylinder placed in the region above the shear layer that separates from the leading-
edge corners, or downstream the trailing-edge corners, has been found to destabilise the
flow; when placed above the reverse-flow region, the control cylinder has a stabilising
effect. However, for AR > 3 an additional destabilising region has been identified outside
the wake. An explanation for the stabilising/destabilising effects has been provided.

Rounding the corners affects the primary instability in a non-trivial way that depends
on the aspect ratio and on the curvature radius R. We have extended the work of
Park & Yang (2016), who only studied a square cylinder and rounded all the corners
simultaneously — i.e. changing from a square to a circle —, by considering the whole
range of AR and rounding the fore/aft corners independently. Rounding all the corners
simultaneously always stabilises the flow. However, the same does not hold true when
only the leading-edge or trailing-edge corners are rounded. Indeed, rounding the leading-
edge corners consistently stabilises the flow for AR < 1 and destabilises it for AR > 5.
For intermediate ARs, instead, its effect strongly depends on the curvature radius: it is
destabilising for large R and stabilising for small R. In contrast, rounding the trailing-
edge corners has a stabilising effect for all AR and R, with the exception of AR < 1
when the largest curvature radii are considered. We provided an explanation of these
phenomena, observing that such stabilising and destabilising effects are related to the
base-flow modifications with respect to the sharp-corner configuration.

Finally, we highlighted the important role of the minimum speed in the reverse flow
region and of the length of the recirculation bubble to predict the stability of the flow as
a function of AR and of the radius of curvature of the corner fillets.

Appendix A. Sensitivity of the results to domain size and resolution

In this section, the sensitivity of the leading eigenvalue to domain size and grid
resolution is briefly investigated. This is done by performing the stability computations
for the rectangular cylinder with AR = 5 on seven additional meshes (M; — My). This
value of the aspect ratio has been chosen as it is the most delicate, since for larger AR
the domain size is increased. Results of the sensitivity study are summarised in table 3.

Five meshes (M; — M5) have been used to investigate the sensitivity to the cross-stream
extent of the domain, varying L, in the range 20D < L, < 80D. The number of triangles
is changed to maintain the resolution almost constant. The cross-stream extent of the
domain mainly affects (o) as it is sensitive to the confinement effect. By increasing L,
from 20D to 80D the change of S(o.) is about 4%. For the chosen value of L, = 40D, Re,
and (o) are within 0.26% and 0.89% the values predicted for L, = 60D and within
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Mo M, Mo M3 My Ms Me M~
L, 40D 20D 30D 50D 60D 80D 40D 40D
Ly 75D 75D 75D 75D 75D 75D 95D 75D
Re. 98.79 98.68 98.96 98.57 98.53 98.46 98.68 98.81
S(oe) 0.676 0.710 0.685 0.673 0.670 0.669 0.676 0.676

TABLE 3. Variations of the critical Reynolds number Re. and frequency S(o.) for the unstable
global mode of the rectangular cylinder with AR = 5 on seven different meshes M1 — M~. My
indicates the mesh used for the stability computations in this work. M; — Ms indicate the meshes
with different cross-stream extension L,. Mg is the mesh with larger streamwise extension L,
of the domain. M7 is the mesh with finer grid resolution.

0.34% and 1.04% of those predicted for the largest cross-stream extension considered,
L, = 80D. Mesh Mg has been used to investigate the sensitivity to the stream-wise
extent of the domain. The position of the outlet is shifted downstream with the domain
extending —25 < z < 70, and — in this case too — the number of triangles is increased
to guarantee the same spatial resolution. With the longer domain Re,. is within 0.12% of
the value predicted by the the used mesh My, while S(o.) is unchanged up to the third
significant digit. Lastly, mesh M7 has been used to investigate the sensitivity to the grid
resolution. The same domain as My is used, but the number of triangles is increased of
about 50%, mainly increasing the resolution near the cylinder and in the wake region.
Again both Re. and $(o.) are almost insensitive to this increase of the resolution as
their change is respectively of 0.02% and less than 0.01%.
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