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Abstract
We perform discrete element simulations of freely cooling, dense granular materials, previously sheared at a constant rate. 
Particles are identical, frictional spheres interacting via linear springs and dashpots and the solid volume fraction is constant 
and equal to 60% during both shearing and cooling. We measure the average and the distributions of contacts per particle 
and the anisotropy of the contact network. We observe that the granular material, at the beginning of cooling, can be shear-
jammed, fragile or unjammed. The initial state determines the subsequent evolution of the dense assembly into either an 
anisotropic solid, an isotropic or an anisotropic fluid, respectively. While anisotropic solids and isotropic fluids rapidly reach 
an apparent final steady configuration, the microstructure continues to evolve for anisotropic fluids. We explain this with 
the presence of vortices in the flow field that counteract the randomizing and structure-annihilating effect of collisions. We 
notice, in accordance with previous findings, that the initial fraction of mechanically stable particles permits to distinguish 
between shear-jammed, fragile or unjammed states and, therefore, determine beforehand the fate of the freely evolving 
granular materials. We also find that the fraction of mechanically stable particles is in a one-to-one relation with the average 
number of contacts per particle. The latter is, therefore, a variable that must be incorporated in continuum models of granular 
materials, even in the case of unjammed states, where it was widely accepted that the solid volume fraction was sufficient 
to describe the geometry of the system.
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1 Introduction

Granular materials can be found in a rich variety of states, 
analogous or a proxy for well-known states of classic mate-
rials, such as gases (random assemblies of particles inter-
acting through nearly instantaneous collisions, [21]), liquid 
crystals (random assemblies of aspherical particles mani-
festing partial alignment, [5, 6]) and solid crystals (regularly 
ordered assemblies of particles [3, 35]).

More exotic states, often suggested to be proxy for molec-
ular [17] or colloidal glasses [16], are characterized by the 
presence of random assemblies of particles manifesting a 
network of enduring, force-carrying contacts that extends 
over the entire domain. Jammed and shear-jammed states 
are both characterized by the fact that the network of con-
tacts spans uniformly the domain, with the resulting particle 
stress tensor either isotropic or anisotropic [2, 9, 24, 26], 
respectively. In the presence of force chains, the stress ten-
sor has a rate-independent component, revealing a solid-like 
behaviour of jammed and shear-jammed granular systems. If 
the anisotropy of the contact network is such that the force 
chains span the domain only along one direction, buckling 
is more likely and the granular material is termed to be in 
a fragile state [7–9, 22, 38, 50]. In the absence of a stable 
contact network spanning the entire domain, the granular 
material is unjammed and behaves like a fluid, with a rate-
dependent stress tensor.

Understanding the different states of granular materials 
and, in particular, the transitions from one state to another 
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seems crucial in view of realistic mathematical models able 
to deal with engineering applications [12, 18, 28, 29, 31, 33, 
34, 39–41, 45].

Grains in a silo are jammed until they start to flow like 
a gas in the proximity of the outlet [43]. Transitions from 
jamming to flow and from flow to jamming characterize the 
onset and the arrest of landslides and debris flows [13]. Also, 
in landslides or sediment transport in general, the solid par-
ticles typically flow over a substrate composed of the same 
flowing particles that can be mobilized, recently indicated 
to be in a fragile state [7]. Finally, it has been suggested 
that transitions from jammed/crystalline to fragile states can 
explain certain intermittent behaviour of intruders in granu-
lar materials [3, 51].

Many works have been devoted to identify the most 
suitable state variables to characterize phase transitions 
in granular matter. A famous phase diagram for the transi-
tion between jammed and unjammed states [26], recently 
extended to include also shear-jammed and fragile states [9], 
makes use of the solid volume fraction and the shear stress. 
These variables have the advantage of being easily measured 
in experiments as well as in numerical simulations. On the 
other hand, their critical values at the transition cannot be 
derived from first principles, but need to be experimentally 
fit.

Indeed, rather than the solid volume fraction, the average 
number of contacts per particle, the coordination number, 
seems more fundamental, given its link to the number of 
degrees of freedom that need to be saturated to obtain a 
mechanically stable assembly of particles [2]. Unfortunately, 
even for the coordination number, its critical value at jam-
ming is known a priori only for frictionless and infinitely 
frictional spheres: numerical simulations are needed for the 
intermediate cases [39]. It has also been suggested [2, 9, 
22] that the fraction of non-rattlers grains, that is the num-
ber of particles with a minimum number of force-bearing 
contacts over the total number of particles, actually controls 
the transition between unjammed, fragile and shear-jammed 
states. It is intriguing that both the coordination number and 
the fraction of non-rattlers can be predicted, at least in the 
case of isotropic compression and shearing without rotation 
of frictionless particles, through a model that employs an 
history-dependent value of the critical volume fraction at 
jamming [22]. This seems to indicate that critical coordina-
tion number and critical solid volume fraction are, indeed, 
interchangeable concepts.

The role of the coordination number has been investi-
gated also in a recent work [46], in which we have performed 
numerical simulations of unsteady, dense, homogeneous 
shearing at constant volume fraction. During the transient, 
the coordination number increased from zero to its value 
at steady state, and the granular material experienced the 
transition from an unjammed (fluid-like) to a shear-jammed 

(solid-like) behaviour at constant solid volume fraction. 
The phase transition was suggested to be characterized by 
a critical value of the coordination number, independent of 
the imposed volume fraction and the shear rate. The criti-
cal value of coordination number was found to be about the 
same that marks the development of rate-independent com-
ponents of the stresses in steady, homogeneous shearing [12, 
41, 46].

In our previous work [46], we distinguished the fluid-like 
from the solid-like behaviour based on the influence of the 
shear rate on the fluctuations of the coordination number 
during the transient. One question that we asked ourselves 
was whether the supposedly solid states retain their rigidity 
once we remove the applied shear and let the system relax.

Here, we perform discrete numerical simulations in 
which we, first, homogeneously shear an initially margin-
ally jammed assembly of identical spheres. Then, we stop 
shearing at different times and let the system relax and dis-
sipate its fluctuation kinetic energy (cooling). The value of 
the solid volume fraction is kept constant and equal to 0.6 
during both shearing and cooling. The relaxation process of 
granular materials has been largely studied in the literature, 
and different volume fractions and initial conditions have 
been considered [27, 30, 32, 36, 37]. In this work, relaxa-
tion is allowed at different time steps of a time-evolving 
shearing simulation, so that the initial state of each cool-
ing is characterized by the same volume fraction and shear 
rate, but different internal structure of the system. Depend-
ing on when we stop the shearing and start the cooling, we 
will show three different possible evolutions of the contact 
network and the velocity field, that we will associate to the 
dense granular material being, at the beginning of cooling, 
in a shear-jammed, fragile or unjammed state. We will also 
show that either the coordination number or the fraction of 
non-rattler grains are appropriate state variables to charac-
terize the initial state and, therefore, determine the fate of 
dense granular materials.

2  Simulations

We use a freely available code, Mercury-DPM (www.mercu 
rydpm .org) [42, 48], to perform discrete element simula-
tions in a cubic box with 5000 identical spheres of mass 
density �p and diameter d. The side of the box, L, is adjusted 
so that the solid volume fraction � , i.e., the total volume 
of the particles inside the box divided by the volume of 
the box itself, has the desired value. The particles interact 
through linear springs and dashpots in both the normal and 
the tangential direction with respect to the line connecting 
the centres of the spheres in contact. The normal, en , and 
tangential, et , coefficients of collisional restitution are the 
negative ratios of post- to pre-collisional relative velocities 

http://www.mercurydpm.org
http://www.mercurydpm.org
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of the interacting particles. Sliding occurs whenever the ratio 
of the normal to the tangential force at contact exceeds the 
friction coefficient, � . The stiffness of the tangential spring, 
kt , is 2/7 the stiffness of the normal spring, kn . In all simula-
tions, we employ en = et = 0.7 and � = 0.3 . In the following, 
all variables are made dimensionless using the particle mass 
density, diameter and normal stiffness, so that velocities 
and times are given in units of 

(

knd∕�p
)1∕2 and 

(

�pd∕kn
)1∕2 , 

respectively. The simulations are performed using a dimen-
sionless time step equal to 0.032, corresponding to 1/50th 
of the contact duration. However, data are stored at intervals 
of 1000 time steps, that is 32 units of dimensionless time, to 
reduce memory usage.

We employ periodic boundary conditions and, after a 
preparation, perform a two-stage simulation procedure 
(shearing and cooling). In has been shown that a system size 
of 2000 particles (and here we employ 5000 particles) is suf-
ficient to get size-independent measurements when periodic 
domains are employed [10, 41]. We checked and confirmed 
the size-independence by performing the preparation and 
some of the subsequent simulations using both 2000 and 
5000 particles. The simulations performed with 2000 parti-
cles (not shown here for brevity) are only characterized by a 
large scattering in the measured quantities.

2.1  Preparation

We prepare the granular system by following a widely-
used three-step procedure [20, 23], as illustrated in Fig. 1.

(P1) At first, we randomly place the spheres in the box 
at a solid volume fraction � = 0.58 . In this stage, we use 
frictionless ( � = 0 ) and elastic ( en = 1 ) spheres, whose 
non dissipative nature guarantees homogeneous condi-
tions. Then (P2), we set � = 0.3 , en = 0.7 and isotropically 
compress the box to increase the solid volume fraction 
to 0.6 and (P3) let the system to relax to a configuration 
where the residual kinetic energy of the particles is below 
a certain threshold. As explained in previous works [40, 
47], the rate at which the isotropic compression is per-
formed determines the state of the assembly at the end of 
stage (P3).

Quick and slow compressions lead to jammed and 
unjammed states, respectively, despite the fact that the 
solid volume fraction is the same (0.6) and larger than the 
value at jamming (0.596 for friction 0.3, through inter-
polation of the measurements of Silbert [39] on granu-
lar packings). Unjammed states are characterized by zero 
coordination number, Z, and zero pressure, while jammed 
states by Z > 4 and nonzero pressure.

(b)

(a)

(c)

Fig. 1  a Sequence of stages in the preparation (P1–P3) and subsequent numerical simulation (S–C). Also shown are the imposed values of b 
solid volume fraction and c upper boundary velocity as functions of time
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2.2  Shearing and cooling

After the preparation, the simulation procedure starts at 
t = 0 . In the first stage, we shear the system (S) by setting 
the upper and lower boundaries in motion with constant tan-
gential velocities equal to V = 2.6 ⋅ 104 and −V , respectively, 
by employing Lees-Edwards [25] periodic boundary condi-
tions along the direction perpendicular to the flow. Except 
for a short interval at the beginning of the stage (see later), 
the shearing is homogeneous and the dimensionless shear 
rate, �̇� , is equal to 3.16 ⋅ 10−5 . We checked that decreasing 
the value of V (or that of �̇� ) by one order of magnitude, that 
is, equivalently, using stiffer particles, has no qualitative 
influence on the results. Starting from an unjammed state, 
at a constant volume fraction of 0.6, the granular material 
experiences, during shearing, a fluid-to-solid transition [4]. 
Starting from a marginally jammed state, instead, two phase 
transitions can be observed: a solid-to-fluid followed by a 
fluid-to-solid [47]. Here, we focus on the latter situation, 
because it provides a larger variety, in terms of properties 
of the contact network, of initial configurations for the last 
stage of our simulations.

Finally (C), at different times, tC , during the shearing, 
we stop the boundaries and let the system cool down, i.e., 
decrease its granular temperature—one-third of the mean 
square of the particle velocity fluctuations [14]—through 
inelastic collisions. Operatively, we take different configura-
tions during the shearing as corresponding initial states for 
the cooling. We perform 34 cooling stages, whose charac-
teristics are summarized in Table 1.

The sequence of stages employed in our numerical simu-
lations, together with the associated imposed values of solid 
volume fraction � and boundary velocity V, are depicted in 
Fig. 1.

We checked the homogeneity of the system during both 
shearing and cooling. The temporal evolution of the normal-
ized profiles along the gradient direction, z, of the velocity 
in the flow direction, x, vx∕V  , and the local solid volume 
fraction, �loc∕0.6 , during shearing are plotted in Fig. 2a and 
b, respectively. The same profiles during the cooling simu-
lations C34 and C14 are illustrated in Fig. 2c, d and e, f, 
respectively. Here and in what follows, the measurements 
are the results of coarse-graining [49].

During shearing (Fig. 2a), the instantaneous application 
of a relative velocity between the boundaries is not immedi-
ately transmitted within the system and the velocity profiles 
are initially nonlinear. After a short time interval ( t < 960 ), 
however, the shearing can be considered homogeneous [4]. 
Due to some difficulties of averaging in the proximity of 
the Lees-Edwards boundaries, measurements of volume 
fraction in regions of thickness 0.3L at the top and the bot-
tom of the cubic box are not considered. In the rest of the 
domain ( 0.3 < z∕L < 0.7 ), the local solid volume fraction 

slightly varies along z, with deviations from its mean value 
0.6 smaller than 1% (Fig. 2b).

During cooling, once the boundaries are arrested at t = tC , 
the motion of the particles suddenly stops in some cases 
(Fig. 2c), or slowly decelerates giving rise to a pronounced 
nonlinear distribution of the flow velocity in others (Fig. 2e). 
As explained in more details later, we use these behaviours 
to distinguish between initially jammed and unjammed 
states, respectively. In any case, the local volume fraction 
remains always rather homogeneous, with deviations smaller 
than 1% from 0.6 (Fig. 2d, f).

We characterize the contact network through the fabric 
tensor, that gives a macroscopic measure of the contact ori-
entation distribution. Sun and Sundaresan [41] defined the 
fabric tensor as a symmetric traceless tensor:

where I is the identity matrix, Ntc is the total number of 
force-carrying contacts and �(�) is the unit contact normal 
vector of the � th contact. Here, we prefer to use the defini-
tion of the fabric tensor, � , suggested by Weinhart et al. [49] 
and valid in the case of mono-dispersed particles, which 
has a nonzero trace equal to the product of the solid volume 
fraction and the coordination number. In our configuration, 
� is simply related to � through

During shearing, as already noticed [41], the only non-neg-
ligible off-diagonal component of the fabric tensor is Fxz , 
where, as mentioned, x and z are the flow and gradient direc-
tions, respectively (y is the vorticity direction). This compo-
nent represents, therefore, a good measure of the degree of 
anisotropy of the contact network [15, 20].

3  Results

We report the temporal evolution of the coordination number 
and the shear component of the fabric tensor during shear-
ing (stage S) in Fig. 3 (black crosses). As previously stated, 
we take t = 0 at the beginning of shearing, when the system 
is isotropic ( Fxz = 0 ) and jammed (Z slightly less than 5, 
but well above 4.5, i.e., roughly the minimum value at jam-
ming obtained from interpolating the data of Silbert [39]). 
As soon as the shearing is imposed, the coordination num-
ber decreases and the fabric anisotropy increases. Around 
t = 2000 , there is a sharp decrease in the coordination 
number, which reaches a minimum of 0.5. This first (solid-
to-fluid) transition is accompanied by a sharp decrease in 
the fabric anisotropy. Then, both Z and Fxz increase over 

(1)� =
1

Ntc

Ntc
∑

�=1

�
(�)
�
(�) −

1

3
�,

(2)� = �Z� +
�Z

3
�.
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time and, eventually, when the coordination number is large 
enough, the granular material manifests a rate-independent 
behaviour as shown by Vescovi et al. [46], a signature of 
a second (fluid-to-solid) transition. More details about the 
above mentioned transient during shearing and a proposal 
for a mathematical continuum model to reproduce it are 
reported elsewhere [47].

As mentioned, here we formally interrupt the shearing 
at different times tC during the transient and let the system 
cool down (stage C). The states at the beginning of cooling 
are marked as symbols of large size in Fig. 3, whereas small 
symbols refer to the subsequent evolution during cooling.

Figures 4 and 5 illustrate the contact network and the 
velocity field (with the associated content of kinetic energy) 
in the x-z plane, respectively, for the three different behav-
iours (rows). Columns from left to right show the evolution 
of the configurations from the beginning of cooling, t = tC , 
to the end of simulation, t = tF (after 16,000 units of time, 
i.e. tF = tC + 16, 000 ). We identify three different behaviours 
of the system during cooling. For the sake of clarity, for each 
kind of behaviour, we plot only a couple of representative 
cooling simulations in Fig. 3 and only one in Figs. 4 and 5. 
The same considerations apply nonetheless to all the simula-
tions reported in Table 1. At the largest values of the initial 

Table 1  List of cooling (C) 
simulations

SJ, F, MSJ and UJ stand, respectively, for initially Shear-Jammed, Fragile, Marginally Shear-Jammed and 
UnJammed states. For each simulation, initial and final cooling time ( tC and tF ), coordination number ( ZC 
and ZF ) and fraction of non-rattlers ( f C

NR
 and f F

NR
 ) are reported

ID Initial status Symbol tC 
[

×103
]

ZC f C
NR

tF 
[

×103
]

ZF f F
NR

C1 SJ 0.95 4.61 0.95 16.76 4.57 0.94
C2 SJ 1.26 4.54 0.94 17.08 4.45 0.93
C3 SJ 1.58 4.44 0.94 17.39 4.36 0.92
C4 SJ 1.64 4.42 0.94 17.46 4.29 0.92
C5 F 1.68 4.39 0.93 17.49 0.01 0
C6 F 1.71 4.39 0.93 17.52 0.03 0
C7 F 1.74 4.33 0.93 17.55 0.08 0
C8 F 1.77 4.28 0.93 17.58 0.09 0
C9 UJ 1.80 4.25 0.92 17.61 0.16 0.02
C10 UJ 1.83 4.19 0.92 17.65 0.20 0.04
C11 UJ 1.87 4.13 0.91 17.68 0.32 0.07
C12 UJ 1.90 4.00 0.90 17.71 0.32 0.07
C13 UJ 2.21 0.58 0.16 18.03 0.39 0.09
C14 UJ 2.53 0.83 0.25 18.34 0.34 0.08
C15 UJ 2.85 1.42 0.47 18.66 0.36 0.09
C16 UJ 3.16 2.18 0.64 18.97 0.36 0.08
C17 UJ 3.48 2.61 0.73 19.29 0.35 0.08
C18 UJ 3.79 2.98 0.79 19.61 0.30 0.06
C19 UJ 4.11 2.98 0.80 19.92 0.30 0.06
C20 UJ 4.43 3.13 0.82 20.24 0.30 0.06
C21 UJ 4.74 3.60 0.87 20.55 0.31 0.07
C22 UJ 5.06 3.72 0.88 20.87 0.33 0.08
C23 UJ 5.38 4.00 0.91 21.19 0.34 0.08
C24 UJ 5.69 3.96 0.90 21.50 0.35 0.07
C25 UJ 6.01 3.86 0.89 21.82 0.32 0.07
C26 UJ 6.32 4.15 0.92 22.14 0.37 0.09
C27 UJ 6.36 4.18 0.92 22.17 0.34 0.08
C28 UJ 6.48 4.22 0.92 22.29 0.21 0.04
C29 F 6.58 4.30 0.93 22.39 0.07 0
C30 F 6.61 4.31 0.93 22.42 0.03 0
C31 F 6.64 4.32 0.93 22.45 0.02 0
C32 F 6.96 4.40 0.93 22.77 0.02 0
C33 MSJ 7.27 4.39 0.93 23.08 0.01 0

C34 SJ 7.59 4.48 0.94 23.40 4.36 0.92
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(a) (b)

(c) (d)

(e) (f)

Fig. 2  Temporal evolution of the profiles of the normalized a velocity in the flow direction and b local solid volume fraction during shearing. c, 
d Same profiles during the cooling simulation C34 and e, f simulation C14
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(a) (b)

Fig. 3  a Coordination number and b shear component of the fabric 
tensor during shearing (black crosses) and some examples of cool-
ing (red circles, purple diamonds, blue triangles and green squares 

represent initially Shear-Jammed (SJ), Fragile (F), Marginally Shear-
Jammed (MSJ) and UnJammed (UJ) states, respectively). The large 
size symbols represent the initial configurations for the cooling stages

Fig. 4  Maps in the x-z plane 
of the lines connecting the 
centres of particles in contact 
at the beginning (left column), 
after 32 (central column) and 
after 16,000 (right column) 
units of time during cooling. 
Top to bottom row: initially 
Shear-Jammed, Fragile and 
UnJammed states (simulations 
C34, C31 and C14, respec-
tively). The lines are shaded 
according to interpenetration of 
particles at contact, i.e., inten-
sity of contact force, from low 
(blue) to high (red)
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coordination number (red circles in Fig. 3a), irrespective of 
the anisotropy of the fabric (Fig. 3b), the contact network 
quickly reaches a steady state in which both the coordination 
number, always larger than 4 (signature of solid configu-
ration), and the fabric anisotropy are constant and slightly 
less than the values at the beginning of cooling (Fig. 3). 
This behaviour is associated with initially Shear-Jammed 
(SJ) states in which a strong contact network that spans the 
entire domain persists during cooling (Fig. 4). The presence 
of this contact network causes the almost immediate arrest 
of all the particles once the shearing is interrupted (Fig. 5).

For a narrow range of initial coordination numbers 
(blue triangles in Fig. 3a), no matter what the anisotropy is 
(Fig. 3b), the granular material experiences a catastrophic 
collapse of the entire contact network and rapidly reaches 
a seemingly steady, isotropic state with almost zero coor-
dination number (signature of fluid configuration), the 
homogeneous cooling state of granular gases [14]. At first, 

the contact network spans the entire domain (Fig. 4), as 
for initially Shear-Jammed states, and is strong enough to 
almost immediately arrest the motion of the particles in the 
x-direction after shearing is removed (Fig. 5). The contact 
network is, however, Fragile (F) and therefore unstable to 
perturbations, such as those associated with the particle 
velocity fluctuations that still persist during cooling. After 
the collapse, most of the contacts are wiped out (Fig. 4).

In some cases, the state at the beginning of cooling is 
Marginally Shear-Jammed (MSJ), a critical condition 
between Shear-Jammed and Fragile (purple diamonds in 
Fig. 3). The contact network first relax to an apparently 
solid configuration, that is, however, unstable. Indeed, after 
a certain amount of time, the network suddenly collapses as 
for initially Fragile states (Fig. 3).

At the lowest values of the initial coordination number 
(green squares in Fig. 3a), once again with no apparent 
dependence on Fxz (Fig. 3b), the system quickly reaches 

Fig. 5  Maps in the x-z plane of particle velocity vectors, coarse-
grained along the vorticity-direction, at the beginning (left column), 
after 32 (central column) and after 16000 (right column) units of time 
during cooling. Top to bottom row: initially Shear-Jammed, Fragile 

and UnJammed states (simulations C34, C31 and C14, respectively). 
The plots are shaded according to kinetic energy, from low (light) to 
high (dark)
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non negligible, but less than unity, values of the coordina-
tion number (if the coordination number at the beginning of 
cooling, ZC , was not already in that range) and small, but 
nonzero, values of the fabric anisotropy. Then, both Z and 
Fxz slowly decays with time, without apparently reaching a 
steady state (Fig. 3). We were not able to observe a steady 
configuration of the contact network even when we increased 
of an order of magnitude the total simulation time (not 
shown here for brevity). We associate the above described 
behaviour with initially UnJammed (UJ) states in which the 
contact network is much weaker than in Shear-Jammed or 
Fragile states (Fig. 4). Indeed, the particle velocity persists 
even after the removal of shearing (Figs. 2e and  5). Due to 
the inelastic, randomizing collisions, the contact network 
progressively disappears (Fig. 4), accompanied by the devel-
opment of long-lasting vortices (Fig. 5) (sometimes, present 
since the beginning of cooling), as previously observed in 

freely cooling granular gases at low and high volume frac-
tion [27, 30] and inside shear bands [44]. The presence of 
these meso-structures slows down the energy dissipation and 
the obliteration of the contact network, although a final iso-
tropic state at vanishingly small coordination number will 
likely be asymptotically reached.

Table 1 summarizes the values of the coordination num-
ber at the beginning ( t = tC ) and at the end ( t = tF ) of the 
cooling stage, ZC and ZF , respectively, for the entire set of 
simulations. In the next section we measure the distributions 
of contacts during cooling and propose a quantitative crite-
rion to classify the different initial states.

3.1  Distribution of contacts during cooling

Figure  6 shows examples of the temporal evolution 
of the distribution of contacts during cooling, for the 

(a) (b)

(c) (d)

Fig. 6  Fractions of particles having c contacts as functions of time during cooling ( t − tC ) for initially a Shear-Jammed, b Fragile, c Marginally 
Shear-Jammed, and d UnJammed states (simulations C34, C31, C33 and C14, respectively)
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representative cases of initially Shear-Jammed (C34), 
Fragile (C31), Marginally Shear-Jammed (C33) and 
UnJammed (C14) states. Although the quantitative char-
acterization of the contacts, as discussed in what follows, 
certainly depends on the properties of the particles (fric-
tion and restitution coefficients) and their size distribution, 
we do expect that the qualitative trends are universal.

The distribution of contacts is measured through the 
contact fraction:

where N = 5000 is the total number of particles and Nc is 
the number of particles having c contacts, for c = 0 and 1. 
Also shown is the case c < 2 , for which the contact fraction 
fc coincides with fR , the fraction of rattlers, i.e., particles 
having less than 2 contacts which makes them mechanically 
unstable [1]:

with

The fraction of rattlers is trivially related to the fraction of 
non-rattlers,

which, as already mentioned, was previously suggested to 
control the transition between unjammed, fragile and shear-
jammed states in 2D configurations [2, 9]. We point out that 
the choice of the maximum number of contacts in the rattler 
definition is somehow arbitrary for particles with finite fric-
tion. Other possibilities, such as including also particles with 
2 and 3 contacts among rattlers, would not qualitatively alter 
the following considerations.

It seems reasonable that systems with a larger fraction 
of non-rattlers, or, equivalently, a smaller fraction of rat-
tlers, behave more like a solid than like a fluid and are 
more stable against perturbations. Figure 6a indicates that, 
for initially Shear-Jammed states, the initial fraction of rat-
tlers is lower than roughly 5% (the initial fraction of non-
rattlers is higher than roughly 95%), and the fractions of 
contacts remain nearly constant during cooling. Almost all 
rattlers are floaters (particles with zero contacts), whereas 
the contribution of particles with one contact is negligible.

Instead, for initially Fragile states (Fig. 6b), the starting 
fraction of rattlers is about 5%, but almost immediately 
jumps to 100%, mainly consisting of floaters, in accord-
ance with the annihilation of the contact network shown 
in Fig. 4. There is a certain amount of particles having one 

(3)fc =
Nc

N
,

(4)fR =
NR

N
,

(5)NR = Nc<2 = N0 + N1.

(6)fNR = 1 − fR,

contact which, however, slowly decreases over time and 
reaches a seemingly steady value of 0.2%.

For initially Marginally Shear-Jammed states (Fig. 6c), 
the starting fraction of rattlers is about 5% (the initial frac-
tion of non-rattlers is about 95%) and slightly increases dur-
ing cooling until it reaches a value of about 10%. Then, there 
is a sudden jump to 100% at t − tC ≈ 2500 , like for initially 
Fragile states. Before and after the transition, the qualita-
tive distributions of the fractions of contacts resemble those 
in initially Shear-Jammed (Fig. 6a) and Fragile (Fig. 6b) 
states, respectively. The fact that fR immediately before the 
jump in the number of floaters in Fig. 6c is higher that the 
initial fraction of rattlers in initially fragile states (Fig. 6b) 
suggests that there is not a unique critical value of fR , or, 
equivalently, fNR , at which there is a solid-to-fluid transition. 
We conjecture that the stability of the contact network is 
also influenced by the amount of fluctuation kinetic energy 
in the system (a measure of it is the granular temperature). 
More energetic systems need larger fractions of non-rattlers 
to remain stable (or, equivalently, remain stable at smaller 
fractions of rattlers). Given that the granular temperature 
decreases over time during cooling, this might explain why 
granular materials destabilize at larger values of fR in the 
case of initially Marginally Shear-Jammed systems.

For initially UnJammed states (Fig. 6d), the fraction of 
rattlers is higher than 75% and slowly increases during cool-
ing up to 90%. Unlike the case of Fig. 6b, there is a signifi-
cant amount of particles with one contact besides floaters. 
Also, it is clear that the system is still evolving and has not 
yet reached a steady configuration of contacts.

The values of fraction of non-rattlers at the beginning 
and at the end of cooling, f C

NR
 and f F

NR
 , for the entire set of 

Fig. 7  Coordination number Z as a function of the fraction of non-
rattlers fNR , during both shearing and cooling (black dots). States at 
the beginning of cooling ( ZC vs f C

NR
 ) are represented with the same 

symbols and colours as in Fig.  3. Also shown (dashed lines) are 
the approximate limits of existence of initially fragile states, that is 
0.92 ≤ f C

NR
≤ 0.94 and 4.2 ≤ ZC ≤ 4.4
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simulations, are reported in Table 1. As in previous works 
[2, 9], we found a one-to-one relation between the coordi-
nation number and the fraction of non-rattlers during both 
shearing and cooling (Fig. 7). This is in accordance with the 
suggestion that a common hidden state variable determines 
both Z and fNR [22] and is also somehow reassuring: the 
fraction of non-rattlers has a clear physical link with the 
stability of granular materials in a solid-like state, but the 
coordination number is a variable that is probably easier to 
incorporate in continuum models that include the micro-
structure evolution of the contact network [41]. In Fig. 7, 
we also show that the initially fragile states cover a narrow 
range of values of both Z and fNR . However, as mentioned, 
the granular temperature of the system at the beginning of 
cooling is likely to have an influence on that range.

4  Conclusions

We have performed discrete element simulations of identi-
cal, soft, frictional spheres in which an isotropically com-
pressed cubic box with a fixed number of particles was first 
sheared at a constant rate. Then, the shear was suddenly 
removed and the granular material progressively dissipated 
its kinetic energy.

Despite the fact that the solid volume fraction was kept 
constant and equal to 0.6, we have observed that the granular 
material, during cooling, can evolve into either (i) an ani-
sotropic solid, (ii) an isotropic or (iii) an anisotropic fluid, 
depending on the characteristics of the contact network once 
shearing is interrupted.

Anisotropic solids, characterized by coordination num-
bers higher than four and nonzero shear components of 
the fabric tensor, derive from initially Shear-Jammed (SJ) 
states, in which the fraction of mechanically stable particles 
exceeds 95%. The chains of particles in contact span the 
entire domain and induce the rapid arrest of the flow after 
the removal of shearing. Their persistence explains the solid-
like behaviour of the assembly.

Isotropic fluids, in which the coordination number and 
the anisotropy of the fabric tensor are practically zero, origi-
nate from initially Fragile (F) states, in which the fraction 
of mechanically stable particles is in the range 92–94%. 
Although the contact network spans the entire domain and 
is able to rapidly arrest the particle flow during cooling, the 
residual kinetic energy associated with the particle velocity 
fluctuations is seemingly sufficient to destabilize the network 
and cause its catastrophic collapse. The subsequent, freely 
evolving state strongly resembles the homogeneous cooling 
state of granular gases, although, to our knowledge, the latter 
have never been observed at such large volume fractions.

Anisotropic fluids, in which the coordination number is 
less than four and the anisotropy of the fabric is nonzero, 

follow initially UnJammed (UJ) states, in which the fraction 
of mechanically stable particles is less than 90%. In this case, 
the contact network cannot rapidly arrest the flow during cool-
ing. We have observed that vortex instabilities develop and 
are able to slow down the energy dissipation and the destruc-
tion of the contact chains by random, inelastic collisions. As 
a consequence, we have not been able to reach a final, steady 
configuration for these anisotropic fluids.

We have determined a one-to-one relation between the 
coordination number and the fraction of mechanically stable 
particles. Hence, the thresholds for the classification of the 
initial states, which the fate of granular materials during cool-
ing depends on, can be rephrased in terms of average number 
of contacts per particle, a more commonly adopted variable 
in continuum models based on the microstructure evolution 
of the fabric.

The present work reinforces the idea that the solid volume 
fraction is not enough to determine the state of granular mate-
rials and the microstructure of the contact network must be 
included in mathematical models, at least when dealing with 
unsteady problems. Although this might have been obvious 
to some in situations where the particle stresses are rate-inde-
pendent [11, 19, 24, 41], it has been recently shown that it is 
crucial also near the fluid-solid transition, where the particle 
stresses have also a rate-dependent component [22, 46]. Here, 
we have shown that even when the granular material behaviour 
is far from solid-like, the volume fraction is not sufficient to 
characterize the geometry of the assembly, at least in dense 
situations.

It remains to investigate, in more detail, (i) the influence of 
the granular temperature on the range of existence of initially 
fragile states and, more generally, on the different granular 
dynamics during cooling; and (ii) the roles played by the solid 
volume fraction and the particle properties (coefficients of slid-
ing friction and collisional restitution).

In any case, reproducing the results of the present simula-
tions will be a severe test for future, comprehensive models of 
granular materials.
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