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Abstract: We investigate an optimal reinsurance problem for an insurance company taking into
account subscription costs: that is, a constant fixed cost is paid when the reinsurance contract is
signed. Differently from the classical reinsurance problem, where the insurer has to choose an optimal
retention level according to some given criterion, in this paper, the insurer needs to optimally choose
both the starting time of the reinsurance contract and the retention level to apply. The criterion is
the maximization of the insurer’s expected utility of terminal wealth. This leads to a mixed optimal
control/optimal stopping time problem, which is solved by a two-step procedure: first considering
the pure-reinsurance stochastic control problem and next discussing a time-inhomogeneous optimal
stopping problem with discontinuous reward. Using the classical Cramér–Lundberg approximation
risk model, we prove that the optimal strategy is deterministic and depends on the model parameters.
In particular, we show that there exists a maximum fixed cost that the insurer is willing to pay for the
contract activation. Finally, we provide some economical interpretations and numerical simulations.

Keywords: optimal reinsurance; mixed control problem; optimal stopping; transaction cost

MSC: 93E20; 91B30; 60G40; 60J60

1. Introduction

The insurance business requires the transfer of risks from the policyholders to the
insurer, who receives a risk premium as a reward. In some cases, it could be conve-
nient to cede these risks to a third party, which is the reinsurance company. From the
operational viewpoint, a risk-sharing agreement helps the insurer reducing unexpected
losses, stabilizing operating results, increasing business capacity and so on. By means of
a reinsurance treaty, the reinsurance company agrees to indemnify the primary insurer
(cedent) against all or part of the losses which may occur under policies which the latter
issued. The cedent will pay a reinsurance premium in exchange for this service. Roughly
speaking, this is an insurance for insurers. When subscribing a reinsurance treaty, a natural
question is to determine the (optimal) level of the retained losses. Optimal reinsurance
problems have been intensively studied by many authors under different criteria, especially
through expected utility maximization and ruin probability minimization (see, e.g., [1–6]
and references therein).

The main novelty of this article is that subscription costs are considered. Transaction
costs represent the bureaucratic fixed costs necessary to run and manage an insurance
company. The empirical impact of these costs on insurances choices has been highlighted
in the actuarial literature (see, e.g., [7,8]). In practice, in the reinsurance context, when the
agreement is signed, a fixed cost is usually paid in addition to the reinsurance premium.
This aspect has not been investigated by nearly all the studies, except for those in [9,10].
In the former work, the authors discussed the reinsurance problem subject to a fixed cost
for buying reinsurance and a time delay in completing the reinsurance transaction. They
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solved the problem considering a performance criterion with linear current reward and
showed that it is optimal to buy reinsurance when the surplus lies in a bounded interval
depending on the delay time. In the latter paper, under the criterion of minimizing the
ruin probability, the original problem is reduced to a time-homogeneous optimal stopping
problem. In particular, the authors showed that the fixed cost forces the insurer to postpone
buying reinsurance until the surplus process hits a certain level.

Hence, the presence of a fixed cost is closely related to the possibility of postponing
the subscription of the reinsurance agreement. This, in turn, involves an optimal stopping
problem, which is attached to the optimal choice of the retention level, which is a well
known stochastic control problem. The novelty of our paper consists in considering this
mixed stochastic control problem under the criterion of maximizing the expected utility
of terminal wealth. The strategy of the insurance company consists of the retention level
of a proportional reinsurance and the subscription timing. When the contract is signed,
a given fixed cost is paid and the optimal retention level is applied. For the purpose of
mathematical tractability, we use a diffusion approximation to model the insurer’s surplus
process (see [11]). The insurance company has exponential preferences and is allowed to
invest in a risk-less bond.

As already mentioned, this setup leads to a combined problem of optimal stopping
and stochastic control with finite horizon, which we solve by a two-step procedure. For the-
oretical studies on mixed control-stopping problems, we refer to, e.g., the works in [12–14].
First, we provide the solution of the pure reinsurance problem (with starting time equal to
zero). Next, we discuss an optimal stopping time problem with a suitable reward function
depending on the value function of the pure reinsurance problem. Differently to the works
in [9,10], the associated optimal stopping problem turns out to be time-inhomogeneous
and with discontinuous stopping reward with respect to the time. We provide an explicit
solution, also showing that the optimal stopping time is deterministic. Moreover, we find
that there are only two possible cases, depending on the model parameters. When the
fixed cost is greater than a suitable threshold (whose analytical expression is available),
the optimal choice is not to subscribe the reinsurance; otherwise, the insurer immediately
subscribes the contract.

A recent related research can be found in [15] (see also references therein), where the
problem of optimal dividends and reinsurance is formulated as a mixed classical-impulse
stochastic control problem. The authors considered a fixed transaction cost when the divi-
dends are paid out and solved the problem using the method of quasi-variational inequalities.

The paper is organized as follows. In Section 2, we describe the model and formulate
the problem as a mixed stochastic control problem, i.e., a problem which involves both
optimal control and stopping. In Section 3, we discuss the pure reinsurance problem
(without stopping) by solving the associated Halmilton–Jacobi–Bellman equation. Section 4
is devoted to the reduction of the original (mixed) problem to a suitable optimal stopping
problem, which is then investigated in Section 5. Here, we provide a verification theorem
and solve the associated variational inequality. In Section 6, we give the explicit solution to
the original problem and we discuss some economic implications of our results. Finally,
in Section 7, some numerical simulations are performed in order to better understand the
economic interpretation of our findings.

2. Problem Formulation
2.1. Model Formulation

Let T > 0 be a finite time horizon and assume that (Ω,F ,P,F) is a complete probabil-
ity space endowed with a filtration F .

= {Ft}t∈[0,T] satisfying the usual conditions.
Let us denote by R = {Rt}t∈[0,T] the surplus process of an insurance company. There

is a wide range of risk models in the actuarial literature (see, e.g., [11,16]). In the Cramér–
Lundberg risk model, the claims arrival times are described by the sequence of claims
arrival times {Tn}n≥1, with Tn < Tn+1 P-almost everywhere ∀n ≥ 1, while the correspond-
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ing claim sizes are given by {Zn}n≥1. In particular, the number of occurred claims up to
time t ≥ 0 is equal to

Nt = ∑
n=1

1{Tn≤t},

and it is assumed to be a Poisson process with constant intensity λ > 0, independent of
the sequence {Zn}n≥1. Moreover, {Zn}n≥1 are independent and identically distributed
random variables with common probability distribution function FZ(z), z ∈ (0,+∞),
having finite first and second moments denoted by µ > 0 and µ2 > 0, respectively. In this
context, the surplus process is given by

R0 + ct−
Nt

∑
n=1

Zn, R0 > 0, (1)

where R0 is the initial capital and c > 0 denotes the gross risk premium rate. We can show
that for any t ≥ 0

E
[ Nt

∑
n=1

Zn

]
= λµt and var

[ Nt

∑
n=1

Zn

]
= λµ2t.

In this paper, we use the diffusion approximation of the Cramér–Lundberg model
(1) (see, e.g., [16]). Precisely, we assume that the surplus process follows this stochastic
differential equation (SDE):

dRt = p dt + σ0 dWt, R0 > 0,

where W = {Wt}t∈[0,T] is a standard Brownian motion, σ0 =
√

λµ2 and p denotes the
insurer’s net profit, that is p = c− µλ. In particular, under the expected value principle
(see, e.g., [11]), we have that c = (1 + θi)µλ and hence p = θiµλ, with θi > 0 representing
the insurer’s safety loading.

We allow the insurer to invest her surplus in a risk-free asset with constant interest
rate R > 0:

dBt = BtRdt, B0 = 1,

hence the wealth process X = {Xt}t∈[0,T] evolves according to

dXt = RXtdt + p dt + σ0 dWt, X0 = R0 > 0. (2)

The explicit solution of the SDE (2) is given by the following equation:

Xt = R0eRt +
∫ t

0
eR(t−s)pds +

∫ t

0
eR(t−s)σ0dWs, t ∈ [0, T]. (3)

Now, let τ denote an F-stopping time. At time τ, the insurer can subscribe a propor-
tional reinsurance contract with retention level u ∈ [0, 1], transferring part of her risks
to the reinsurer. More precisely, u represents the percentage of retained losses, so that
u = 0 means full reinsurance, while u = 1 is equivalent to no reinsurance. To buy a
reinsurance agreement, the primary insurer pays a reinsurance premium q(u) ≥ 0. When
the reinsurance contract is signed at time t = 0, the Cramér–Lundberg risk model (1) is
replaced by the following equation:

R0 + (c− q(u))t−
Nt

∑
n=1

uZn, R0 > 0.

Under the expected value principle, we have that q(u) = (1 + θ)(1− u)µλ, u ∈ [0, 1],
with the reinsurer’s safety loading θ satisfying θ > θi (preventing the insurer from gaining
a risk-free profit).
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Let us denote by Ru = {Ru
t }t∈[0,T] the reserve process in the Cramér–Lundberg ap-

proximation associated with a given reinsurance strategy {ut}t∈[0,T] when the reinsurance
contract is signed at time t = 0. Following Eisenberg and Schmidli [17], under the expected
value principle, Ru follows

dRu
t = (p− q + qut) dt + σ0ut dWt, Ru

0 = R0, (4)

where q = θλµ denotes the reinsurer’s net profit. We set q > p (non-cheap reinsurance).
The wealth process under the strategy {ut}t∈[0,T] evolves according to this SDE:

dXu
t = RXu

t dt + dRu
t , Xu

0 = R0, (5)

which admits this explicit representation:

Xu
t = R0eRt +

∫ t

0
eR(t−s)(p− q + qus) ds +

∫ t

0
eR(t−s)σ0us dWs. (6)

We assume that a constant fixed cost K > 0 is paid when the reinsurance contract is
subscribed. The insurer decides when the reinsurance contract starts and which retention
level is applied. Hence, the insurer’s strategy is a couple α = (τ, {ut}t∈[τ,T]), with τ ≤ T.
Let Ht = I{τ≤t} be the indicator process of the contract starting time. For τ < T P-a.s., the
total wealth Xα = {Xα

t }t∈[0,T] associated with a given strategy α is given by

dXα
t = (1− Ht)dXt + HtdXu

t − KdHt, Xα
0 = R0 > 0, (7)

while on the event {τ = T} we have that

dXα
t = dXt, Xα

0 = R0 > 0, (8)

where X satisfies Equation (2).
Equation (7) can be written more explicitly as

dXα
t =

{
dXt, t < τ, X0 = R0,
dXu

t , τ < t ≤ T, Xu
τ = Xτ − K,

(9)

where X and Xu satisfy Equations (2) and (5), respectively.
In our setting, the null reinsurance corresponds to the choice τ = T, P-a.s., to which

we associate the strategy αnull = (T, 1) and

Xαnull
t = Xt, t ∈ [0, T].

2.2. The Utility Maximization Problem

The insurers’ objective is to maximize the expected utility of the terminal wealth:

sup
α∈A

E
[
U(Xα

T)
]
, (10)

where U : R→ [0,+∞) is the utility function representing the insurer’s preferences and A
the class of admissible strategies (see Definition 1).

We focus on CARA (Constant Absolute Risk Aversion) utility functions, whose general
expression is given by

U(x) = 1− e−ηx, x ∈ R,

where η > 0 is the risk-aversion parameter. This utility function is highly relevant in
economic science and particularly in insurance theory. Indeed, it is commonly used for
reinsurance problems (e.g., see [5] and references therein).
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The optimization problem is a mixed optimal control problem. That is, the insurer’s
controls involve the timing of the reinsurance contract subscription and the retention level
to apply.

Definition 1 (Admissible strategies). We denote by A the set of admissible strategies α =
(τ, {ut}t∈[τ,T]), where τ is an F-stopping time such that τ ≤ T and {ut}t∈[τ,T] is an F-predictable
process with values in [0, 1]. Let us observe that the null strategy αnull = (T, 1) is included in A.
When we want to restrict the controls to the time interval [t, T], we use the notation At.

Proposition 1. Let α ∈ A, then
E
[
e−ηXα

T
]
< +∞.

Proof. Using Equations (6) and (9), we have that

E
[
e−ηXα

T
]
= E

[
e−ηXT I{τ=T}

]
+E

[
e−η(Xτ−K)eR(T−τ)

e−η
∫ T

τ eR(T−s)(p−q+qus)dse−η
∫ T

τ eR(T−s)σ0usdWs I{τ<T}
]
.

Taking into account the expression (3), we get

E
[
e−ηXT I{τ=T}

]
≤ E

[
e−ηR0eRT

e−η
∫ T

0 eR(t−s)pdse−η
∫ T

0 eR(t−s)σ0dWs
]

≤ E
[
e−η

∫ T
0 eR(t−s)σ0dWs

]
= e

η2
2
∫ T

0 e2R(t−s)σ2
0 ds < +∞,

and denoting by C a generic constant (possibly different from each line to another)

E
[
e−η(Xτ−K)eR(T−τ)

e−η
∫ T

τ eR(T−s)(p−q+qus)dse−η
∫ T

τ eR(T−s)σ0usdWs I{τ<T}
]

≤ C×E
[
e−η(Xτ−K)eR(T−τ)

e−η
∫ T

τ eR(T−s)σ0usdWs I{τ<T}
]

≤ C×
(
E
[
e−2η(Xτ−K)e2R(T−τ)

I{τ<T}
]
+E

[
e−2η

∫ T
τ eR(T−s)σ0usdWs I{τ<T}

])
≤ C×

(
E
[
e−2ηXτe2R(T−τ)]

+E
[
e−2η

∫ T
τ eR(T−s)σ0usdWs I{τ<T}

])
≤ C×

(
E
[
e−2ηe2R(T−τ)

∫ τ
0 eR(t−s)σ0dWs

]
+E

[
e2η2 ∫ T

τ e2R(T−s)σ2
0 u2

s I{τ<T}ds])
≤ C×

(
e2η2e4RT ∫ T

0 e2R(t−s)σ2
0 ds + e2η2 ∫ T

0 e2R(T−s)σ2
0 ds
)
< +∞.

Let us introduce the value function associated to our problem (10):

V(t, x) = inf
α∈At

E
[
e−ηXα,t,x

T
]
, (t, x) ∈ [0, T]×R, (11)

where Xα,t,x = {Xα,t,x
s }s∈[t,T] denotes the wealth given in Equation (9) with initial condition

(t, x) ∈ [0, T]×R, that is Xα,t,x
t = x. We notice that

V(T, x) = e−ηx ∀x ∈ R, (12)

because Xα,T,x
T = x ∀α ∈ A.
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3. The Pure Reinsurance Problem

To have a self-contained article, in this section, we briefly investigate a pure rein-
surance problem, which corresponds to the problem (10) with fixed starting time t = 0.
Precisely, we deal with

inf
u∈U

E
[
e−ηXu

T
]
,

where U denotes the class of admissible strategies u = {ut}t∈[0,T], which are all the F-
predictable processes with values in [0, 1]. Let us denote by V̄(t, x) the value function
associated to this problem, that is

V̄(t, x) = inf
u∈Ut

E
[
e−ηXu,t,x

T
]
, (t, x) ∈ [0, T]×R, (13)

with Ut denoting the restriction of U to the time interval [t, T] and {Xu,t,x
s }s∈[t,T] denotes

the process satisfying Equation (5) with initial data (t, x) ∈ [0, T]×R. It is well known
that the value function (13) can be characterized as a classical solution to the associated
Hamilton–Jacobi–Bellman (HJB) equation:{

minu∈[0,1] LuV̄(t, x) = 0 ∀(t, x) ∈ [0, T)×R
V̄(T, x) = e−ηx ∀x ∈ R,

(14)

where, using Equations (4) and (5), the generator of the Markov process Xu is given by

Lu f (t, x) =
∂ f
∂t

(t, x)+ (Rx+ p− q+ qu)
∂ f
∂x

(t, x)+
1
2

σ2
0 u2 ∂2 f

∂x2 (t, x), f ∈ C1,2((0, T)×R),

with C1,2((0, T)×R) denoting the class of continuous functions, with continuous first-order
partial derivative with respect to the first (time) variable and continuous second-order
derivative with respect to the second (space) variable.

Under the ansatz V̄(t, x) = e−ηxeR(T−t)
φ(t), the HJB equation reads as

φ′(t) + Ψ(t)φ(t) = 0, φ(T) = 1,

where
Ψ(t) = min

u∈[0,1]
{−ηeR(T−t)(p− q + qu) +

1
2

σ2
0 u2η2e2R(T−t)}.

Solving the minimization problem, we find the unique minimizer:

u∗(t) =
q

ησ2
0

e−R(T−t) ∨ 1, t ∈ [0, T].

Under the additional condition

q < ησ2
0 , (15)

u∗(t) simplifies to

u∗(t) =
q

ησ2
0

e−R(T−t) ∈ (0, 1), t ∈ [0, T]. (16)

Using this expression, we readily obtain that

Ψ(t) = ηeR(T−t)(q− p)− 1
2

q2

σ2
0

. (17)
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By classical verification arguments, we can verify that the value function given in (13)
takes this form:

V̄(t, x) = e−ηxeR(T−t)
e
∫ T

t Ψ(s)ds

= e−ηxeR(T−t)
e

η(q−p)
R (eR(T−t)−1)e

− 1
2

q2

σ2
0
(T−t)

,
(18)

and, under the condition (15), Equation (16) provides an optimal reinsurance strategy.

Remark 1. Comparing the optimal strategy u∗(s), s ∈ [t, T], to the null reinsurance u(s) = 1,
s ∈ [t, T], by means of (13), we get that

V̄(t, x) ≤ E
[
e−ηXt,x

T
]

∀(t, x) ∈ [0, T]×R. (19)

Moreover, by Equation (2), we have that

g(t, x) .
= E

[
e−ηXt,x

T
]
= E

[
e−ηxeR(T−t)

e−η
∫ T

t eR(T−s)pdse−η
∫ T

t eR(T−s)σ0dWs
]

= e−ηxeR(T−t)
e−

η
R (eR(T−t)−1)pe

1
4R η2σ2

0 (e
2R(T−t)−1).

(20)

Defining

h(t) .
= ηeR(T−t)(1

2
ηeR(T−t)σ2

0 − p
)
, (21)

we can write
g(t, x) = e−ηxeR(T−t)

e
∫ T

t h(s)ds. (22)

Hence, using (17) and (18), inequality (19) reads as

∫ T

t
[Ψ(s)− h(s)] ds

=
ηq
R
(eR(T−t) − 1)− 1

2
q2

σ2
0
(T − t)− 1

4R
η2σ2

0 (e
2R(T−t) − 1) ≤ 0 ∀t ∈ [0, T]. (23)

4. Reduction to an Optimal Stopping Problem

We can show that the mixed stochastic control problem (11) can be reduced to an
optimal stopping problem. Let us denote by Tt,T is the set of F-stopping times τ such that
t ≤ τ ≤ T.

Theorem 1. We have that

V(t, x) = inf
τ∈Tt,T

E
[
V̄(τ, Xt,x

τ − K)I{τ<T} + e−ηXt,x
τ I{τ=T}

]
∀t ∈ [0, T]×R, (24)

where V̄ is given in (13) and Xt,x = {Xt,x
s }s∈[t,T] denotes the wealth process given in Equation (2),

with initial data (t, x) ∈ [0, T]×R. Moreover, let τ∗t,x ∈ Tt,T an optimal stopping time for problem
(24). Then, α∗ = (τ∗t,x, {u∗s }s∈[τ∗t,x ,T]), with u∗ = {u∗t }t∈[0,T] given in (16), is an optimal strategy
for problem (11), with the convention that on the event {τ∗t,x = T} we take α∗ = (T, 1).

Proof. We first prove the inequality

V(t, x) ≥ inf
τ∈Tt,T

E
[
V̄(τ, Xt,x

τ − K)I{τ<T} + e−ηXt,x
τ I{τ=T}

]
.

For any arbitrary strategy α = (τ, {us}s∈[τ,T]) ∈ At, we have that τ ∈ Tt,T and by (9)

E
[
e−ηXα,t,x

T
]
= E

[
e−ηXu,τ,Xt,x

τ −K
T I{τ<T} + e−ηXt,x

τ I{τ=T}
]
=
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E
[
E
[
e−ηXu,τ,Xt,x

τ −K
T |Fτ

]
I{τ<T} + e−ηXt,x

τ I{τ=T}
]
≥

E
[
V̄(τ, Xt,x

τ − K)I{τ<T} + e−ηXt,x
τ I{τ=T}

]
.

Taking the infimum over α ∈ At on both side leads to the desired inequality. The other
side of the inequality is based on the fact that there exists u∗ = {u∗t }t∈[0,T] ∈ U , given in
(16) optimal for the problem (13). Indeed, consider the strategy ᾱ = (τ, {u∗s }s∈[τ,T]) ∈ At
where τ is arbitrary chosen in Tt,T . Then,

V(t, x) ≤ E
[
e−ηXᾱ,t,x

T
]
= E

[
e−ηXu∗ ,τ,Xt,x

τ −K
T I{τ<T} + e−ηXt,x

τ I{τ=T}
]
=

E
[
V̄(τ, Xt,x

τ − K)I{τ<T} + e−ηXt,x
τ I{τ=T}

]
.

Taking the infimum over τ ∈ Tt,T on the right-hand side gives that

V(t, x) ≤ inf
τ∈Tt,T

E
[
V̄(τ, Xt,x

τ − K)I{τ<T} + e−ηXt,x
τ I{τ=T}

]
∀t ∈ [0, T]×R,

and hence the equality (24).
Finally, letting τ∗t,x ∈ Tt,T be an optimal stopping time for the problem (24) and

α∗ = (τ∗t,x, {u∗s }s∈[τ∗t,x ,T]), with u∗ = {u∗t }t∈[0,T] given in (16), we get that

V(t, x) = E
[
V̄(τ∗t,x, Xt,x

τ∗t,x
− K)I{τ∗t,x<T} + e

−ηXt,x
τ∗t,x I{τ∗t,x=T}

]
= E

[
e−ηXα∗ ,t,x

T
]
,

and this concludes the proof.

According to Theorem 1, we can solve the original problem given in (11) in two steps:
after investigating the pure reinsurance problem (13) (see Section 3), we can analyze the
optimal stopping problem (24), which is the main goal of the next section.

5. The Optimal Stopping Problem

In this section, we discuss the optimal stopping problem (24):

V(t, x) = inf
τ∈Tt,T

E
[
V̄(τ, Xt,x

τ − K)I{τ<T} + e−ηXt,x
τ I{τ=T}

]
t ∈ [0, T]×R.

Let us observe that
V(T, x) = e−ηx ∀x ∈ R,

while choosing τ = t < T and τ = T on the right-hand side of (24), we get that

V(t, x) ≤ V̄(t, x− K) and V(t, x) ≤ E
[
e−ηXt,x

T
]
= g(t, x) ∀(t, x) ∈ [0, T]×R, (25)

respectively.

Now, denote by L the Markov generator of the process Xt,x:

L f (t, x) =
∂ f
∂t

(t, x) +
(

Rx + p
)∂ f

∂x
(t, x) +

1
2

σ2
0

∂2 f
∂x2 (t, x), (26)

with f ∈ C1,2((0, T)×R).
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Remark 2. From the theory of optimal stopping (see, e.g., [18]), when the cost function G(t, x) is
continuous and the value function

W(t, x) = inf
τ∈Tt,T

E
[
G(τ, Xt,x

τ )], t ∈ [0, T]×R

is sufficiently regular, it can be characterized as a solution to the following variational inequality:

min{LW(t, x), G(t, x)−W(t, x)} = 0, (t, x) ∈ (0, T)×R. (27)

This is a free-boundary problem, whose solution is the function W(t, x) and the so-called
continuation region, which is defined as

C = {(t, x) ∈ (0, T)×R : W(t, x) < G(t, x)}. (28)

Moreover, it is known that the first exit time of the process Xt,x from the region C

τ∗t,x
.
= inf{s ∈ [t, T] : (s, Xt,x

s ) /∈ C}.

provides an optimal stopping time.
In our optimal stopping problem (24), the cost function is

V̄(t, x− K)I{t<T} + e−ηx I{t=T}, t ∈ [0, T]×R,

which is not continuous on [0, T]×R, hence the classical theory on optimal stopping problems does
not directly apply.

In view of the preceding remark, we now prove a verification theorem which applies
to our specific problem.

Theorem 2 (Verification Theorem). Let ϕ : [0, T]×R→ R be a function satisfying the assump-
tions below and C (the continuation region) be defined by

C = {(t, x) ∈ (0, T)×R : ϕ(t, x) < V̄(t, x− K)}. (29)

Suppose that the following conditions are satisfied.

1. There exists t∗ ∈ [0, T) such that C = (t∗, T)×R.
2. ϕ ∈ C([0, T]×R), ϕ is C1 w.r.t t in (0, t∗) and (t∗, T), separately, and C2 with respect to

x ∈ R;
3. ϕ(t, x) ≤ V̄(t, x− K) ∀(t, x) ∈ [0, T]×R and ϕ(T, x) = e−ηx ∀x ∈ R;
4. ϕ is a solution to the following variational inequality{

Lϕ(t, x) ≥ 0 ∀(t, x) ∈ (0, t∗)×R
Lϕ(t, x) = 0 ∀(t, x) ∈ C = (t∗, T)×R.

(30)

5. The family {ϕ(τ, Xτ); τ ∈ T0,T} is uniformly integrable.

Moreover, let τ∗t,x be the first exit time from the region C of the process Xt,x, that is

τ∗t,x
.
= inf{s ∈ [t, T] : (s, Xt,x

s ) /∈ C}.

with the convention τ∗t,x = T if the set on the right-hand side is empty. Then, ϕ(t, x) = V(t, x) on
[0, T]×R and τ∗t,x is an optimal stopping time for problem (24).

Proof. For any (t, x) ∈ [0, T)×R, let us take the sequence of stopping times {τn}n≥1 such
that τn

.
= inf{s ≥ t | |Xt,x

s | ≥ n}. We first prove that ∀τ ∈ Tt,T

ϕ(t, x) ≤ E[ϕ(τ ∧ τn, Xt,x
τ∧τn)], ∀(t, x) ∈ [0, T)×R. (31)
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Due to the specific form of the continuation region, we have two cases. If t ≥ t∗,
since ϕ ∈ C1,2((t∗, T)×R), applying Dynkin’s formula (notice that we use a localization
argument, so that τ ∧ τn is the first exit time of a bounded set and, as a consequence, ϕ
is not required to have a compact support (see [18], Theorem 7.4.1)), we get that for any
arbitrary stopping time τ ∈ Tt,T

ϕ(t, x) = E[ϕ(τ ∧ τn, Xt,x
τ∧τn)]−E

[∫ τ∧τn

t
Lϕ(s, Xt,x

s ) ds
]
= E[ϕ(τ ∧ τn, Xt,x

τ∧τn)].

If t < t∗, we have again by Dynkin’s formula, since ϕ ∈ C1,2((0, t∗)×R), that

ϕ(t, x) = E[ϕ(τ ∧ τn ∧ t∗, Xt,x
τ∧τn∧t∗)]−E

[∫ τ∧τn∧t∗

t
Lϕ(s, Xt,x

s ) ds
]

≤ E[ϕ(τ ∧ τn ∧ t∗, Xt,x
τ∧τn∧t∗)]

and, similarly, since ϕ ∈ C1,2((t∗, T)×R),

E[ϕ(τ ∧ τn ∧ t∗, Xt,x
τ∧τn∧t∗)] = E[ϕ(τ ∧ τn, Xt,x

τ∧τn)]−E
[∫ τ∧τn

τ∧τn∧t∗
Lϕ(s, Xt,x

s ) ds
]

= E[ϕ(τ ∧ τn, Xt,x
τ∧τn)],

hence (31) is proved.
Now, letting n → +∞ in (31), recalling that ϕ ∈ C([0, T] × R), and using Fatou’s

Lemma, we get that

ϕ(t, x) ≤ E[ϕ(τ, Xt,x
τ )] ≤ E[V̄(τ, Xt,x

τ − K)I{τ<T} + e−ηXt,x
τ I{τ=T}] ∀τ ∈ Tt,T ,

hence ϕ(t, x) ≤ V(t, x), ∀(t, x) ∈ [0, T)×R. To prove the opposite inequality, we consider
four different cases.

1. If the stopping region is not empty, that is t∗ ∈ (0, T), ∀(t, x) ∈ (0, t∗) × R, we
know that ϕ(t, x) = V̄(t, x − K) ≥ V(t, x), hence ϕ(t, x) = V(t, x), which implies
V(t, x) = V̄(t, x− K) and τ∗t,x = t is optimal for problem (24).

2. If the stopping region is not empty, for t = 0, we have that ϕ(0, x) = V̄(0, x − K)
∀x ∈ R, otherwise, by continuity of both the functions, if ϕ(0, x) > V̄(0, x− K) (or
ϕ(0, x) < V̄(0, x− K)), the same inequality holds in a neighborhood of (0, x), which
contradicts that ϕ(t, x) = V̄(t, x− K), ∀(t, x) ∈ (0, t∗)×R. Then, ϕ(0, x) = V(0, x)
∀x ∈ R and τ∗0,x = 0 is optimal for problem (24).

3. If the continuation region is not empty, that is t∗ ∈ [0, T), ∀(t, x) ∈ [t∗, T) × R,
repeating the localization argument with the stopping time τ∗t,x = T, we get

ϕ(t, x) = E[ϕ(T, Xt,x
T )]−E

[∫ T

t
Lϕ(s, Xt,x

s ) ds
]

= E[ϕ(T, Xt,x
T )] = E[e−ηXt,x

T ] ≥ V(t, x),

as a consequence ϕ(t, x) = V(t, x) = E[e−ηXt,x
T ] and τ∗t,x = T is optimal for problem (24).

4. Finally, for t = T, by assumption, ϕ(T, x) = e−ηx = V(T, x), ∀x ∈ R, τ∗T,x = T is
optimal for problem (24) and this concludes the proof.

Lemma 1. Let g be as defined in Equation (22). The families {V̄(τ, Xτ − K); τ ∈ T0,T} and
{g(τ, Xτ); τ ∈ T0,T} are uniformly integrable.



Mathematics 2021, 9, 295 11 of 20

Proof. Recalling that V̄(t, x) ≤ g(t, x) by (19), we have that V̄(t, x − k) ≤ eηKeRT
g(t, x),

hence the statement follows by the uniformly integrability of the family

{g(τ, Xτ) : τ ∈ T0,T}.

It is well known that, if for any arbitrary δ > 0 and any stopping time τ ∈ T0,T ,

E[g(τ, Xτ)
1+δ] < +∞,

then the proof is complete. To this end, we observe that

E[g(τ, Xτ)
1+δ] = E[e(1+δ)

∫ T
τ h(s)dse−η(1+δ)eR(T−τ)Xτ ]

≤ e
1

4R (1+δ)η2σ2
0 e2RT

e−η(1+δ)R0eRTE[e−η(1+δ)
∫ τ

0 eR(T−s)σ0dWs ]

≤ e
1

4R (1+δ)η2σ2
0 e2RT

e−η(1+δ)R0eRT
e

1
4R (1+δ)2η2σ2

0 (e
2RT−1) < +∞.

The guess for the continuation region C given in Assumption 1 of the verification
Theorem follows by the next result.

Lemma 2. The set
A .
= {(t, x) ∈ (0, T)×R : LV̄(t, x− K) < 0} (32)

is included in the continuation region, that is

A ⊆ C = {(t, x) ∈ (0, T)×R : V(t, x) < V̄(t, x− K)}.

Moreover, the following equation holds:

A = (tA, T)×R,

where

tA
.
= 0∨

[
T − 1

R
log
(

q + RK +
√
(q + RK)2 − q2

ησ2
0

)]
∧ T. (33)

In particular, only three cases are possible, depending on the model parameters:

1. If

y∗ :=
q + RK +

√
(q + RK)2 − q2

ησ2
0

≥ eRT ,

then tA = 0 and LV̄(t, x− K) < 0 ∀(t, x) ∈ (0, T)×R, so that A = (0, T)×R, implying
that C = (0, T)×R.

2. If

1 < y∗ =
q + RK +

√
(q + RK)2 − q2

ησ2
0

< eRT ,

then 0 < tA < T and LV̄(t, x − K) < 0 ∀(t, x) ∈ (tA, T) × R; in this case A =
(tA, T)×R.

3. If

y∗ =
q + RK +

√
(q + RK)2 − q2

ησ2
0

≤ 1,

then tA = T and LV̄(t, x− K) ≥ 0 ∀(t, x) ∈ (0, T)×R, so that A = ∅.

Proof. First, let us observe that V̄(t, x−K) ∈ C1,2((0, T)×R)∩C([0, T]×R) and the family
{V̄(τ, Xτ − K); τ ∈ T0,T} is uniformly integrable by Lemma 1. Now, choose (t̄, x̄) ∈ A and
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let B ⊂ A be a neighborhood of (t̄, x̄) with τB < T, where τB denotes the first exit time of
X t̄,x̄ from B. Then, by Dynkin’s formula

V̄(t̄, x̄− K) = E[V̄(τB, X t̄,x̄
τB
− K)]−E

[∫ τB

t̄
LV̄(s, X t̄,x̄

s − K) ds
]

> E[V̄(τB, X t̄,x̄
τB
− K)] ≥ V(t̄, x̄).

Hence, (t̄, x̄) ∈ C and A ⊆ C.
Next, recalling (26), we have that

LV̄(t, x− K) = V̄(t, x− K)
(
−Ψ(t)− ηeR(T−t)(p + RK) +

1
2

η2e2R(T−t)σ2
0
)
,

so that LV̄(t, x− K) < 0 if and only if

Ψ(t) >
1
2

η2e2R(T−t)σ2
0 − ηeR(T−t)(p + RK), (34)

that is, using (17),

1
2

η2e2R(T−t)σ2
0 − ηeR(T−t)(q + RK) +

1
2

q2

σ2
0
< 0.

Using a change of variable z = eR(T−t), we can rewrite the inequality as

1
2

η2σ2
0 z2 − η(q + RK)z +

1
2

q2

σ2
0
< 0.

Since η2[(q + K)2 − q2] > 0, the associated equation admits two different solutions, so
that the inequality (34) is satisfied by

q + RK−
√
(q + RK)2 − q2

ησ2
0

< z <
q + RK +

√
(q + RK)2 − q2

ησ2
0

.

Recalling (15), we can verify that

q + RK−
√
(q + RK)2 − q2

ησ2
0

<
q

ησ2
0
< 1,

so that the inequality reads as

tA = T − 1
R

log
(

q + RK +
√
(q + RK)2 − q2

ησ2
0

)
< t < T.

Depending on the model parameters, we can see that only the three cases above are
possible. Equivalently, LV̄(t, x− K) < 0 if and only if tA < t < T.

Remark 3. As consequence of Lemma 2, recalling (21), in Cases 1 and 2, that is when 0 ≤ tA < T,
we have that

Ψ(t)− h(t) + ηRKeR(T−t) > 0, ∀t > tA

(see Equation (34)), which implies, ∀t ≥ tA∫ T

t
(Ψ(s)− h(s))ds +

∫ T

t
ηRKeR(T−s)ds > 0,



Mathematics 2021, 9, 295 13 of 20

equivalently ∫ T

t
(Ψ(s)− h(s))ds + ηKeR(T−t) > ηK

for all t ∈ [tA, T). In Case 3, that is when tA = T, since

Ψ(t)− h(t) + ηRKeR(T−t) < 0, ∀t ∈ [0, T),

we have that ∫ T

t
(Ψ(s)− h(s))ds + ηKeR(T−t) < ηK,

for all t ∈ [0, T).

We need the following preliminary result to provide an explicit expression for the
value function of the problem (24).

Lemma 3. The function Ṽ(t, x) = Cg(t, x), (t, x) ∈ (0, T)×R, with C any positive constant and
g as given in Equation (22), is a solution to the partial differential equation (PDE) LṼ(t, x) = 0,
(t, x) ∈ (0, T)×R.

In particular, g is a solution to the PDE with boundary condition g(T, x) = e−ηx ∀x ∈ R.

Proof. Using the ansatz Ṽ(t, x) = e−ηxeR(T−t)
γ(t), we can reduce the PDE LṼ(t, x) = 0 to

the following equation:

e−ηxeR(T−t)
γ′(t)− ηeR(T−t)V(t, x)p +

1
2

η2e2R(T−t)V(t, x)σ2
0 = 0,

which is equivalent to this ordinary differential equation (ODE):

γ′(t) + h(t)γ(t) = 0, (t, x) ∈ (0, T)×R,

where the function h is given in (21).

Since the solution of the ODE is γ(t) = C e
∫ T

t h(s) ds, we get the expression of Ṽ as above.
Finally, setting C = 1, g satisfies the PDE above with the terminal condition g(T, x) = e−ηx

∀x ∈ R.

Before proving the main result of this section, which is Theorem 3, we compare g(t, x),
given in (22), with V̄(t, x− K).

Lemma 4. Let

H(t) =
∫ T

t
(Ψ(s)− h(s))ds + ηKeR(T−t), t ∈ [0, T], (35)

then we distinguish two cases:

1. If H(0) ≥ 0, then g(t, x) < V̄(t, x− K) ∀(t, x) ∈ (0, T]×R.
2. If H(0) < 0, then there exists t∗ ∈ (0, tA) such that g(t∗, x) = V̄(t∗, x− K) ∀x ∈ R and

g(t, x) < V̄(t, x− K) ∀(t, x) ∈ (t∗, T]×R.

Proof. Let us observe that the inequality g(t, x) < V̄(t, x− K) can be written as

e−ηxeR(T−t)
e
∫ T

t h(s) ds < e−η(x−K)eR(T−t)
e
∫ T

t Ψ(s)ds,

that is

e
∫ T

t (Ψ(s)−h(s)) dseηKeR(T−t)
> 1⇔

∫ T

t
(Ψ(s)− h(s)) ds + ηKeR(T−t) = H(t) > 0.
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We distinguish three cases:

(i) When 0 ≤ tA < T, we have that H(t) ≥ ηK > 0 ∀t > tA by Remark 3 and it easy to
verify that H is increasing in [0, tA], while it is decreasing in [tA, T]. Hence, it takes
the maximum value at t = tA. As a consequence, if H(0) ≥ 0 we have that H(t) > 0
∀t ∈ (0, T], being H(T) = ηK > 0.
Otherwise, if H(0) < 0 there exists t∗ ∈ (0, tA) such that H(t∗) = 0, that is g(t∗, x) =
V̄(t∗, x − K) ∀x ∈ R, and H(t) > 0 ∀(t, x) ∈ (t∗, T], that is g(t, x) < V̄(t, x − K)
∀(t, x) ∈ (t∗, T]×R.

(ii) When tA = T, by Lemma 2 we get that H is increasing in [0, T] and we can repeat the
same arguments as in the previous case to distinguish the two casese H(0) ≥ 0 and
H(0) < 0, obtaining the same results.

(iii) When tA = 0, by Remark 3, we know that H is decreasing in [0, T], so that H(t) ≥
ηK > 0 ∀t ∈ [0, T], that is g(t, x) < V̄(t, x− K), ∀(t, x) ∈ (0, T]×R. Moreover, in this
case, H(0) ≥ 0.

Summarizing, we obtain our statement.

We now prove some properties of the continuation region.

Proposition 2. Let

C = {(t, x) ∈ (0, T)×R : V(t, x) < V̄(t, x− K)}. (36)

Then, we distinguish two cases:

1. If H(0) ≥ 0, then C = (0, T)×R.
2. If H(0) < 0, then (t∗, T)×R ⊆ C, where t∗ ∈ (0, tA) is the unique solution to equation

H(t) =
∫ T

t
(Ψ(s)− h(s))ds + ηKeR(T−t) = 0.

Proof. We apply Lemma 4. In Case 1, we have that V(t, x) ≤ g(t, x) < V̄(t, x−K) ∀(t, x) ∈
(0, T)×R, that is C = (0, T)×R. In Case 2, we have that V(t, x) ≤ g(t, x) < V̄(t, x− K)
∀(t, x) ∈ (t∗, T)×R, which implies (t∗, T)×R ⊆ C, and this concludes the proof.

Now, we are ready for the main result of this section.

Theorem 3. Let H be given in (35). The solution of the optimal stopping problem (24) takes
different forms, depending on the model parameters. Precisely, we have two cases:

1. If H(0) =
∫ T

0 (ψ(s)− h(s))ds + ηKeRT ≥ 0, then the continuation region is C = (0, T)×
R, the value function is

V(t, x) = g(t, x) = e−ηxeR(T−t)
e
∫ T

t h(s) ds, (t, x) ∈ [0, T]×R

and τ∗t,x = T is an optimal stopping time.

2. If H(0) =
∫ T

0 (ψ(s)− h(s))ds + ηKeRT < 0, then C = (t∗, T)×R, where t∗ ∈ (tA, T) is
the unique solution to H(t) = 0, the value function is

V(t, x) =

{
V̄(t, x− K) = e−η(x−K)eR(T−t)

e
∫ T

t Ψ(s)ds (t, x) ∈ [0, t∗]×R
g(t, x) = E

[
e−ηXt,x

T ] = e−ηxeR(T−t)
e
∫ T

t h(s) ds (t, x) ∈ (t∗, T]×R
(37)

and τ∗t,x, given by

τ∗t,x =

{
t (t, x) ∈ [0, t∗]×R
T (t, x) ∈ (t∗, T]×R,

(38)

is an optimal stopping time.
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Proof. We prove the two cases separately, applying Theorem 2 to each one.

Case 1
The continuation region is C = (0, T)×R by Proposition 2, hence Assumption 1 of

Theorem 2 is fulfilled. Moreover, τ∗t,x = T. Observing that

g(t, x) = e−ηxeR(T−t)
e
∫ T

t h(s) ds ∈ C1,2((0, T)×R) ∩ C([0, T]×R),

Assumption 2 of Theorem 2 is clearly matched. Assumption 3 is implied by Lemma 4.
Moreover, the variational inequality (30) (Assumption 4) is fulfilled by Lemma 3. Finally,
by Lemma 1, the last condition in Theorem 2 is fulfilled.

Case 2
C = (t∗, T)×R clearly satisfies the first assumption of Theorem 2. Taking

ϕ(t, x) =

{
V̄(t, x− K) = e−η(x−K)eR(T−t)

e
∫ T

t Ψ(s)ds (t, x) ∈ [0, t∗]×R
g(t, x) = E

[
e−ηXt,x

T ] = e−ηxeR(T−t)
e
∫ T

t h(s) ds (t, x) ∈ (t∗, T]×R,

observing that Lemma 4 ensures the existence of t∗ ∈ (0, tA) such that g(t∗, x) = V̄(t∗, x−
K) when H(0) < 0, the smoothness conditions of the second assumption are matched.
Moreover, according to Lemma 4, g(t, x) < V̄(t, x− K) ∀(t, x) ∈ (t∗, T] and Assumption
3 is fulfilled. That the variational inequality (30) is satisfied by ϕ is a consequence of the
results of Section 3 and Lemma 3. Finally, Lemma 1 implies Assumption 5 of Theorem 2
and the proof is complete.

6. Solution to the Original Problem

As a direct consequence of the results obtained in the previous section and Theorem 1,
we provide an explicit solution to the optimal reinsurance problem under fixed cost given
in (11).

Theorem 4. Let us define

K∗ = − q
R
(1− e−RT) +

1
2

q2

ησ2
0

Te−RT +
1

4R
ησ2

0 (e
RT − e−RT) > 0. (39)

Two cases are possible, depending on the model parameters:

1. If K ≥ K∗, then the value function given in (11) is

V(t, x) = g(t, x) = E
[
e−ηXt,x

T ]

and the optimal strategy is α∗ = (T, 1), that is no reinsurance is purchased.
2. If K < K∗, then the value function is

V(t, x) =

{
V̄(t, x− K) = e−η(x−K)eR(T−t)

e
∫ T

t Ψ(s)ds (t, x) ∈ [0, t∗]×R
g(t, x) = E

[
e−ηXt,x

T ] = e−ηxeR(T−t)
e
∫ T

t h(s) ds (t, x) ∈ (t∗, T]×R,

where t∗ ∈ (0, T) is the unique solution to the equation

η(
q
R
+ K)eR(T−t) − 1

2
q2

σ2
0
(T − t)− 1

4R
η2σ2

0 (e
2R(T−t) − 1)− ηq

R
= 0,

and the optimal strategy is α∗ = (τ∗t,x, { q
ησ2

0
e−R(T−s)}s∈[τ∗t,x ,T]), with τ∗t,x given in (38).
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Proof. Let us observe that, using Remark 1,

H(t) =
∫ T

t
(Ψ(s)− h(s))ds + ηKeR(T−t)

=
ηq
R
(eR(T−t) − 1)− 1

2
q2

σ2
0
(T − t)− 1

4R
η2σ2

0 (e
2R(T−t) − 1) + ηKeR(T−t).

and the condition H(0) ≥ 0 is equivalent to

K ≥ − 1
η

e−RT
∫ T

0
(Ψ(s)− h(s))ds = K∗,

while the condition H(0) < 0 can be written as K < K∗. Thus, K∗ > 0 follows by Remark 1.
Then, the statement is a consequence of Theorem 3.

Let us briefly comment the two cases of Theorem 4. Case 1 corresponds to no reinsur-
ance. That is, the insurer is not willing to subscribe a contract at any time of the selected
time horizon. Besides the insurer, this result is relevant for the reinsurance company.
We prove that there exists a threshold K∗ > 0 (see Equation (39)), which represents the
maximum initial cost that the insurer is willing to pay to buy reinsurance. If the reinsurer
chooses a subscription cost higher than K∗, then the insurer will not buy protection from her.

In Case 2, at any time t ∈ [0, T], the insurer immediately subscribes to the reinsurance
agreement if the time instant t∗ has not passed, applying the optimal retention level from
that moment on; otherwise, if t > t∗, no reinsurance will be bought.

We notice that it is never optimal to wait for buying reinsurance. That is, it is conve-
nient either to immediately sign the contract, or not to subscribe at all.

In particular, at the starting time t = 0, given an initial wealth R0 > 0, we have these cases:

1. If K ≥ K∗, then α∗ = (T, 1), that is no reinsurance is purchased.
2. If K < K∗, then α∗ = (0, { q

ησ2
0

e−R(T−s)}s∈[0,T], that is the optimal choice for the insurer

consists in stipulating the contract at the initial time, selecting the optimal retention
level (as in the pure reinsurance problem).

By Expression (39), we can show that K∗ is increasing with respect to η and σ0, while
it is decreasing with respect to q. More details are given in the next section by means of
numerical simulations.

Another relevant result for the reinsurance company is the following.

Proposition 3. For any fixed cost K > 0, there exists q∗ ∈ (0,+∞) (depending on K) such that

1. If q > q∗, then

V(t, x) = g(t, x) = E
[
e−ηXt,x

T ]

and α∗ = (T, 1), that is no reinsurance is purchased.
2. Otherwise,

V(t, x) =

{
V̄(t, x− K) = e−η(x−K)eR(T−t)

e
∫ T

t Ψ(s)ds (t, x) ∈ [0, t∗]×R
g(t, x) = E

[
e−ηXt,x

T ] = e−ηxeR(T−t)
e
∫ T

t h(s) ds (t, x) ∈ (t∗, T]×R,

where t∗ ∈ (0, T) is the unique solution to the equation

η(
q
R
+ K)eR(T−t) − 1

2
q2

σ2
0
(T − t)− 1

4R
η2σ2

0 (e
2R(T−t) − 1)− ηq

R
= 0,

and α∗ = (τ∗t,x, { q
ησ2

0
e−R(T−s)}s∈[τ∗t,x ,T]), with τ∗t,x is given in (38).
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Proof. Following Theorem 4 and its proof, we can write the condition H(0) ≤ 0 as

T
2σ2

0
q2 + (1− eRT)

η

R
q +

η2σ2
0

4R
(e2RT − 1)− ηKeRT ≥ 0.

To simplify our computations, let us consider this inequality for any q ∈ R. The
discriminant ∆ must be positive, otherwise the existence of K∗ > 0 in Theorem 4 is no long
guaranteed. The solutions of the associated equations are

q1,2 =
ησ2

0
T
( eRT − 1

R
±
√

∆
)
, q1 < q2.

Since

q2 >
ησ2

0 (e
RT − 1)

RT
> ησ2

0 ,

only q1 is relevant because of Condition (15). q1 ∈ (0,+∞) is a consequence of the existence
of K∗ > 0 in Theorem 4. If q1 was not positive, then H(0) > 0 for any value of q > 0 and
this would contradict Theorem 4. Setting q∗ = q1 concludes the proof.

The last result is interesting for the reinsurer. In Section 3, we state that the condition
q < ησ2

0 (see Equation (15)) is required in order that the reinsurance agreement is desirable.
In presence of a fixed initial cost, we now know that there exists a threshold q∗, which is
smaller than ησ2

0 , such that the insurer will never subscribe the contract if q > q∗.

Remark 4. Recalling that q = θλµ (see Section 2), we can give a deeper interpretation of the
previous result. Indeed, we prove the existence of a maximum safety loading θ∗ > 0, which cannot
be exceeded by the reinsurer, otherwise the reinsurance contract will not be subscribed.

7. Numerical Simulations

In this section, we use some numerical simulations to further investigate the results
obtained in Section 6. Unless otherwise specified, all simulations are performed according
to the parameters of Table 1 below.

Table 1. Model parameters.

Parameter Value

T 10
η 0.5
σ0 0.5
q 0.1
R 0.05

We illustrate above how the threshold K∗ in Equation (39) is relevant for the insurer
as well as for the reinsurer. Indeed, K∗ turns out to be the maximum subscription cost
that the insurer is willing to pay. The next pictures show how this threshold is influenced
by the model parameters. As expected, if the reinsurer increases her net profit q, then the
fixed cost should decrease (see Figure 1). In practice, recalling that q = θλµ, if the reinsurer
increases her safety loading θ, the subscription cost should be selected from a smaller range
(0, K∗). Otherwise, no reinsurance contract will be stipulated. Let us notice that, according
to Equation (16), any increase of θ implies a larger retention level as well.
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Figure 1. The effect of the reinsurer’s net profit q on K∗.

As illustrated in Figure 2, when the insurer is more risk averse, she is willing to pay a
higher fixed cost. This result reinforces the practical implications of Equation (16), which
implies that the more risk averse is the insurer, the larger protection she will buy.

Figure 2. The effect of the risk-aversion parameter η on K∗.

Figure 3 shows the effect of the potential losses. When they increase, that is σ0 is high,
then the insurer is going to pay high fixed cost in order to obtain protection.

Figure 3. The effect of the volatility parameter σ on K∗.

Finally, Figure 4 show that the larger the insurer’s time horizon is, the higher the fixed
cost will be.
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Figure 4. The effect of the time horizon T on K∗.

8. Conclusions

We investigate the optimal reinsurance problem under the assumption that a trans-
action cost is paid when the agreement is signed. The insurer has to choose the optimal
starting time of the reinsurance contract, as well as the optimal retention level to be applied
from that moment on. We solve the resulting mixed optimal control/optimal stopping
time problem using a two-step procedure. We find that the optimal strategy is determin-
istic (see Theorem 4). Moreover, we prove the existence of a maximum fixed cost K∗ (see
Equation (39)) that the insurer is willing to pay. That is, whenever a fixed cost K > K∗ is
chosen by the reinsurer, the insurer will retain all her losses. In the last section, we further
analyze how the model parameters affect that maximum subscription cost.

Some future research could be focused on the study of the optimal reinsurance problem
with fixed cost under either different optimization criteria or different types of contract.
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