
An Eulerian Single-Phase Transport
Model for Solid Fission Products in the
Molten Salt Fast Reactor:
Development of an Analytical Solution
for Verification Purposes
Andrea Di Ronco1,2, Stefano Lorenzi 1, Francesca Giacobbo1 and Antonio Cammi1,2*

1Department of Energy, Politecnico di Milano, Milano, Italy, 2Sezione di Milano-Bicocca, Istituto Nazionale di Fisica Nucleare
(INFN), Milano, Italy

Nuclear reactor modeling has been shifting, over the last decades, towards full-core
multiphysics analysis due to the ever-increasing safety requirements and complexity of the
designs of innovative systems. This is particularly true for liquid-fuel reactor concepts such
as the Molten Salt Fast Reactor (MSFR), given their strong intrinsic coupling between
thermal-hydraulics, neutronics and fuel chemistry. In the MSFR, fission products (FPs) are
originated within the liquid fuel and are carried by the fuel flow all over the reactor core and
through pumping and heat exchange systems. Some of FP species, in the form of solid
precipitates, can represent a major design and safety challenge, e.g., due to deposition on
solid boundaries, and their distribution in the core is relevant to the design and safety
analysis of the reactor. In this regard it is essential, both for the design and the safety
assessment of the reactor, the capability to model the transport of solid FPs and their
deposition to the boundary (e.g., wall or heat exchanger structures). To this aim, in this
study, models of transport of solid FPs in the MSFR are developed and verified. An Eulerian
single-phase transport model is developed and integrated in a consolidated multiphysics
model of the MSFR based on the open-source CFD library OpenFOAM. In particular,
general mixed-type deposition boundary conditions are considered, to possibly describe
different kinds of particle-wall interaction mechanisms. For verification purposes, analytical
solutions for simple case studies are derived ad hoc based on the extension of the classic
Graetz problem to linear decay, distributed source terms and mixed-type boundary
conditions. The results show excellent agreement between the two models, and
highlight the effects of decay and deposition phenomena of various intensity. The
resulting approach constitutes a computationally efficient tool to extend the capabilities
of CFD-based multiphysics MSFR calculations towards the simulation of solid fission
products transport.
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1 INTRODUCTION

Liquid-fuel reactor concepts have gained renewed interest over
the last years. Among them, the Molten Salt Reactor (MSR) and,
in particular, the fast-spectrum MSFR (Molten Salt Fast Reactor)
has obtained a prominent role thanks to the selection as one of the
Generation IV reference technologies (Serp et al., 2014). The
adoption of a circulating liquid fuel, in conjunction with the fast
neutron spectrum, makes the MSFR system unique from the
design and modeling viewpoints. Internal heat generation, fuel
thermal feedback and transport of delayed neutron precursors
and fission products lead to a strong intrinsic coupling between
thermal-hydraulics, neutronics and fuel chemistry. Reactor
modeling efforts have therefore shifted towards full-core and
multiphysics analysis to meet the requirements and complexity of
physical and computational models for the MSFR. A
comprehensive account of state-of-the-art multiphysics
modeling tools for the MSFR can be found in the work of
Tiberga et al. (2020).

In the MSFR, fission products (FPs) that are originated within
the fuel as the result of fission reactions are not retained by solid
fuel elements and are therefore free to be carried by the liquid fuel
flow within the primary circuit. The presence of mobile FPs
represents a major design and safety challenge, as some of them
are not expected to form stable compounds with the constituents
of the fuel salt mixture (Grimes, 1970; Baes, 1974) and therefore
give rise to separate phases, either in the form of solid precipitates
or gas bubbles. In the case of solid FPs, precipitates are likely to
deposit on reactor solid surfaces (Kedl, 1972; Compere et al.,
1975) with potential issues such as formation of localized decay
heat sources as well as deterioration of heat exchanger
performance. Surface deposits might also pose a serious
radiological threat in inspection/maintenance operations.
Despite the analysis of FPs transport in recent MSFR studies
is still limited, information on their distribution over the reactor
core has great relevance for the design of the reactor, and in
particular for the analysis of removal/reprocessing (Delpech et al.,
2009) and bubbling (Cervi et al., 2019b) units. In this regard, there
has been focus on modelling the behavior and effects of Xenon
transport in MSRs (Price et al., 2020). Concerning metallic FPs,
their analysis in the context of a multiphysics system code for the
study of the Molten Salt Reactor Experiment has been recently
addressed by Walker and Ji (2021). The aim of this work is the
development of models of transport of solid FPs and their
integration in state-of-the-art multiphysics tools adopted for
MSFR analysis. To this aim, a single-phase Eulerian transport
modeling approach is chosen, which represents a common and
versatile choice for particle transport modeling in complex
turbulent flows, and allows for the direct implementation in
consolidated MSFR codes. A similar approach has been
recently employed for the coupling of CFD and equilibrium
chemistry calculations with application to localized-corrosion
modeling in lead-cooled reactors (Marino et al., 2020). The
development platform is the C++ open-source finite-volume
CFD library OpenFOAM (OpenFOAM, 2021).

A preliminary implementation is here described and verified
against analytical solutions for simplified test cases. The analytical

solutions are derived from the well-knownGraetz problem, which
is here formulated for a general case with distributed source
terms, linear decay and mixed-type boundary conditions. To the
authors knowledge, such form of the Graetz problem has not been
addressed in detail in the literature, and therefore the complete
derivation is here reported. The influence of some key model
parameters is discussed, and corresponding solutions from the
OpenFOAM and analytical models are presented and compared.

The paper is organized as follows. The adopted multiphysics
approach is briefly described in Section 2.1. In Section 2.2, the
proposed FPs transport model implemented in the OpenFOAM
solver is described in detail. The analytical solution against which
the OpenFOAM FPs transport model is verified is presented in
Section 2.3. Section 3 presents the results of the verification
together with some discussion. Conclusive remarks are finally
reported in Section 4.

2 MATERIALS AND METHODS

2.1 The Multiphysics Model
The OpenFOAM library, based on standard finite-volume
methods for CFD calculations, is used to develop the
numerical solver used in the present work. Originally
developed for the transient analysis of the MSFR (Aufiero
et al., 2014), the adopted multiphysics solver was recently
extended to allow for the study of compressibility effects
during super-prompt-critical transients (Cervi et al., 2019b)
and of the bubbling system (Cervi et al., 2019a). The version
employed in this work features single-phase incompressible
thermal-hydraulics, multi-group neutron diffusion and
transport equations for delayed neutron and decay heat
precursors. Transport equations for fission products are solved
alongside the other physical modules, to provide a fully-coupled
multiphysics simulation. All model equations are solved by
means of finite-volume discretization, following an iterative
segregated coupling approach.

2.1.1 Thermal-Hydraulics Model
Continuity, momentum and energy (in temperature form)
conservation equations are expressed in a single-phase
incompressible formulation:

∇ · u � 0 (1)

zu
zt

+ ∇ · (uuT) � −1
ρ
∇p + [1 − βT(T − T0)]g

+ ∇ · []eff (∇u + (∇u)T)] (2)

zT
zt

+ ∇ · (uT) � ∇ · (αeff∇T) + q
ρcp

(3)

where the quantities u, p and T, which correspond to velocity,
pressure and temperature, respectively, are intended as averaged
in the sense of Reynolds-Averaged Navier-Stokes modeling. It
follows that turbulence modeling is performed by means of
standard eddy-viscosity based closure models, such as the
well-known k-ε model (Launder and Spalding, 1974), for
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which effective momentum and thermal diffusivities can be
expressed as the sum of a laminar and a turbulent contribution:

]eff � ] + ]t (4)

αeff � α + αt � ]
Pr

+ ]t
Prt

(5)

where Pr and Prt are the Prandtl and turbulent Prandtl numbers,
respectively. Momentum and energy equations are coupled
thanks to the Boussinesq approximation, for which the density
value driving the buoyancy term in Eq 2 is linearized around a
reference temperature T0 and βT represents the volumetric
thermal expansion coefficient of the fluid. Except for what
concerns density in the linearized buoyancy term, constant
average values are used for thermophysical properties to keep
the numerics and the coupling between different physics as
simple as possible. Finally, q represents a volumetric energy
source which includes internal heat generation (both prompt
and delayed) and optionally other energy sinks to model heat
removal systems.

Pressure-velocity coupling is performed through the standard
SIMPLE/PISO algorithms (Patankar and Spalding, 1972; Issa,
1986).

2.1.2 Neutronics Model
The multi-group diffusion model is adopted for neutron flux
calculations (Hébert, 2010). Despite some limitations, it is widely
employed in standard nuclear reactor analysis. Thanks to its
relative simplicity and limited computational effort, it has found
several successful applications especially for multiphysics analysis
(Aufiero et al., 2014; Fiorina et al., 2016). More recent works have
also proposed the extension of OpenFOAM-based multiphysics
codes to more advanced neutron transport approaches, e.g. the
SP3 model (Fiorina et al., 2017; Cervi et al., 2019b). The diffusion
equation for the gth group-integrated neutron flux φg reads:

1
vg

zφg

zt
� ∇ · (Dn,g∇φg) − Σa,g φg − ∑

h≠ g

Σs,g→ h φg

+ (1 − βd) χp,g ]g
keff

Σf ,g φg + Sn,g (6)

where Sn,g is the explicit neutron source of the gth group,
constituted by prompt fission and scattering neutrons from
other groups and delayed neutron precursors decay:

Sn,g � (1 − βd)∑
h≠ g

χp,h
]h
keff

Σf ,h φh + ∑
h≠ g

Σs,h→ g φh + χd,h ∑
k

λkck

(7)

The presence of φh in the explicit source term Sn,g couples the
transport equations for different energy groups, which are
therefore dealt with following a segregated iterative approach.
Most symbols have straightforward meaning and are listed in the
Nomenclature section. It is worth mentioning that keff acts as a
tunable multiplication factor to model a prescribed reactivity
insertion. A power-iteration routine based on the k-eigenvalue
method is also included for steady-state simulation, which allows

for the iterative adjustment of keff to attain criticality at a specified
power level.

Due to the circulating nature of the fuel, transport equations
are formulated also for delayed neutron and decay heat
precursors. The transport equation for the concentration of
delayed neutron precursors of the kth family ck reads:

zck
zt

+ ∇ · (u ck) � ∇ · (Deff ∇ck) − λk ck + βd,k∑
g

]g Σf ,g φg (8)

A discussion on the diffusion coefficient Deff is given in
Section 2.2. We omit here for brevity the transport equation
for the decay heat precursors, which is entirely analogous.

Group constants are adjusted as functions of local temperature
around reference values to account for Doppler and fuel density
effects. For a generic neutron reaction r occurring in the gth
energy group:

Σr,g � (Σ0
r,g + A0

r,g log
T
TΣ
0

) 1 − βT (T − T0)
1 − βT(TΣ

0 − T0) (9)

where Doppler effects are modeled by means of a logarithmic
term where Σ0

r,g and A0
r,g , respectively represent the cross-section

and a corresponding logarithmic coefficient at a reference
temperature TΣ

0 , whereas density effects are taken into account
through a linear correction consistently with the buoyancy term.
The reference temperature for cross-sections can be chosen
independently from T0. An analogous approach is employed
for the correction of the intra-group neutron diffusion
coefficient Dn,g . The quantities Σ0

r,g and A0
r,g are evaluated by

means of the Monte Carlo reactor physics and burnup code
SERPENT 2 (Leppänen et al., 2015).

2.2 Fission Products Transport Model
Similarly to other transported scalar quantities, each fission
product specie is modelled as a continuous scalar
concentration field subject to advection, dispersion and decay
mechanisms:

zc
zt

+ ∇ · (u c) � ∇ · (Deff∇c) − λ c + S (10)

where c is the concentration of the species under consideration,
expressed in number of particles per unit volume. Deff is the total
particle diffusivity, u is the carrier velocity field and λ and S
represent the decay constant and source of a fission product
specie, respectively. When chemical interactions between species
and formation of separate phases are neglected, the source term
can be simply related to the fission rate through a suitable yield
coefficient yf :

S � yf∑
g

Σf ,g φg (11)

As previously mentioned, this modeling choice is motivated by
the need to limit the overall complexity and computational
requirements of the MSFR, and to easily integrate such models
in state-of-the-art MSFR codes. The single-phase Eulerian
approach can still represent a valid approximation, provided
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that some conditions are met. Theoretical and experimental
analysis has suggested that Fick’s diffusion law only applies
when inertial effects are negligible, and that particles inertia
plays an increasingly dominant role in transport mechanisms
as particles size increases (Liu and Agarwal, 1974; Guha,
2008). Little information is known about the expected size
of fission product particles in the MSFR, but previous
experience with MSRs suggests formation of colloidal
suspensions (i.e., with particle diameters approx. between
10–9 and 10–6 m) should be expected (Compere et al., 1975)
and that simple diffusion laws may apply, at least as a first
approximation. The other main condition requires the
particle concentration in the carrier fluid to be sufficiently
low to make all interactions between each particle and the
fluid, or among particles themselves, negligible. Provided that
such conditions are met, the adoption of more sophisticated
approaches, e.g., Eulerian-Eulerian multiphase or Eulerian-
Lagrangian, may prove little benefit at the expense of a much
more complex modeling framework.

As regards the particle diffusivity, it is commonly assumed that
the diffusivity coefficientDeff may be separated in a laminar and a
turbulent contribution, analogously to Eq 5:

Deff � D + Dt � ]
Sc

+ ]t
Sct

(12)

where Sc and Sct are Schmidt and turbulent Schmidt numbers,
respectively. An alternative expression for the laminar diffusivity
D is given by the so-called Einstein equation:

D � kBT
3πρ]dp

(13)

which is derived under the assumption of large Schmidt number
Sc (Balboa Usabiaga et al., 2013). kB is the Boltzmann constant
and dp is the particle diameter. For monodisperse particles in
isothermal bulk flow, D can therefore be regarded as a constant.
As already stated, the inverse proportionality from Eq 13 between
the particle flux and dp only holds for small values of dp, even in
full-laminar flows.

2.2.1 Deposition Modeling
Besides particle transport in the bulk flow, transport mechanisms
which lead to deposition need to be addressed separately. First of
all, when particle-wall interaction in the boundary layer is
considered, a variable diffusion coefficient can be introduced
to model hydrodynamic interactions between particles and solid
walls (Brenner, 1961). In such case, Deff is assumed as a function
of the particle-wall distance:

Deff � Deff (y) (14)

where y denotes the wall-distance in the normal direction in a
boundary layer flow. Moreover, it is commonly accepted that Deff

is mostly constant in the bulk of the flow and abruptly decreases
in a very small layer close to walls. For this reason it can be
assumed

Deff (y) � FD(y)D∞
eff (15)

where D∞
eff is a constant bulk diffusivity and FD(y) a correction

factor which is always comprised within 0 and 1 (Brenner, 1961).
Moreover, to model deposition mechanisms and formulate

appropriate boundary conditions for the particle concentration
field, one possible approach is the inclusion in the transport
equation of a particle-wall interaction forcing term based on an
interaction potential energy ϕ (Ruckenstein and Prieve, 1973;
Bowen et al., 1976). Since boundary layer flows are inherently
two-dimensional, close to a generic wall the steady-state transport
equation reads

Deff (y) z2c
zx2

+ z

zy
(Deff (y) zc

zy
+ Deff (y)

kT
dϕ
dy

c) − u(y) zc
zx

− λ c + S � 0

(16)

where x and y here denote the longitudinal and transversal
directions. This approach is general but introduces significant
complication in the general problem. It is therefore beneficial,
when possible, to decouple the advection-diffusion and
deposition problems.

When the energy potential ϕ and the hydrodynamic
interaction effects are significant only over distances of the
order of the particle size, this can be effectively achieved by
dividing the boundary layer in two regions (Figure 1): the bulk
region, where advection occurs and interactions are negligible,
and a very thin wall region, where advection is negligible and
deposition processes take place. The two regions are subject to an
interface condition, which equates the particle concentration
c(δϕ) and its flux at a certain distance δϕ from the wall (with
δϕ chosen such that ϕ(δϕ) is arbitrarily small). It has been shown
that, under fairly general hypotheses on ϕ, the coupled solution of
the two regions may be approximated such that the wall region
influence is collapsed in a first-order reaction boundary condition
for the bulk region (Ruckenstein and Prieve, 1973; Prieve and
Ruckenstein, 1976):

D∞
eff

zc
zy

� c c, y � 0 (17)

where

c � D∞
eff[∫ δϕ

0
(FD(y)−1eϕ(y)/kT − 1)dy]−1

(18)

The coefficient c is therefore a constant depending on F and ϕ.
In principle its value might also depend on the integration limit
δϕ, but it has been shown that in many circumstances its influence
on the value of the integral is relatively small over a relatively
broad range (Prieve and Ruckenstein, 1976). It should be noted
that these results are derived under the assumption of negligible
axial diffusion (which is commonly the case) and in absence of
source terms and decay. They are, however, representative of a
broad class of particle-wall interaction problems and it is here
assumed that internal sources or decay phenomena do not alter
significantly such behavior.

In the general three-dimensional case, the wall boundary
condition can be written as

−D∞
eff∇c · n � c c (19)
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for any point on the wall boundary, where n denotes the outward
pointing wall-normal direction. Since particle-wall interactions
are modeled with a simple first-order boundary condition, the
deposited quantities can easily be tracked by solving

zcd
zt

� −λ cd + c c (20)

where cd represents the surface concentration of deposited
particles on the wall boundary, expressed in number of
particles per unit area. In this simple model, wall adsorption
of FP particles is modeled through a single deposition parameter
c, which has the physical dimensions of a velocity. Desorption
mechanisms can be included as well by adding a corresponding
term Eq 20,

zcd
zt

� −(λ + δ)cd + c c (21)

with δ being the desorption rate constant (Wood et al., 2004).

2.3 Test Case
In this Section the results of the verification of the implemented
FP transport model are described. A simple test case with an
analytical solution has been chosen. A two-dimensional channel
between parallel plates is considered (Figure 2). The particle

transport model is decoupled from neutronics and heat transfer
models. The source term S from Eq 10 is therefore specified
explicitly, and a steady-state isothermal laminar flow is
considered.

The problem here considered resembles the well-known
Graetz problem, for which different solutions are available in
the literature. An exhaustive treatment of the Graetz theory
applied to particle transport problems is given by Bowen et al.
(1976), although it doesn’t consider linear decay or distributed
source terms. It is indeed difficult to find, in the literature, realistic
applications which consider simultaneously, as in the case under
consideration, distributed internal sources, decay reactions and
mixed type boundary conditions. Corresponding analytical
solutions for this specific problem are not found in the
literature, and are therefore derived in the following.

2.3.1 Momentum Equation
Analytical solutions of the momentum equation can be found
only for simple steady-state fully-developed laminar flow
problems. In such a case, the well known parabolic solution reads

u � [ u(y)
0

] (22)

with

FIGURE 1 | Decoupling of the transport and deposition problems: solutions for the wall region (cw ) and the bulk region (cw) are obtained separately and joined by
imposing interface continuity on particle concentration and particle flux at y � δϕ. The wall region thickness δϕ ≪H is defined as the distance at which ϕ(δϕ) becomes
arbitrarily small.

FIGURE 2 | Parallel plates geometry: with respect to the flow, the x and y coordinates denote the longitudinal and transversal directions. Inlet and outlet boundaries
are located at x � 0 and x � L respectively, while wall boundaries are located at y � ± H.
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u(y) � um(1 − y2

H2
) (23)

where um is the maximum profile velocity and H is half the
channel width as depicted in Figure 2.

2.3.2 Particle Concentration Equation
The boundary value problem then becomes, in explicit cartesian
coordinates,

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

D(z2c
zx2

+ z2c
zy2

) − u(y) zc
zx

− λ c + S � 0

−(λ + δ)cd + c c � 0, y � ± H

∓D zc
zy

� c c − δ cd , y � ± H

(24)

where D is used, from now on, to denote the constant bulk
diffusivity. Boundary conditions for the x-direction are discussed
later. The problem is conveniently re-scaled by defining
appropriate non-dimensional quantities:

x̂ � x
L

ŷ � y
H

û(ŷ) � u(Hŷ)
um

� 1 − ŷ2

ĉ(x̂, ŷ) � c(Lx̂,Hŷ)
c0

ĉd(x̂) � cd(Lx̂)
Hc0

Ŝ(x̂, ŷ) � H2

D
S(Lx̂,Hŷ)

c0

where c0 is a concentration value typical of the problem. The
equations are then rewritten as

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

f 2
z2ĉ
zx̂2

+ z2ĉ
zŷ2

− f Pe û(ŷ) zĉ
zx̂

− Da ĉ + Ŝ � 0

ĉd � Sh
Da + Δ ĉ, ŷ � ± 1

∓ zĉ
zŷ

� Da Sh
Da + Δ ĉ, ŷ � ± 1

(25)

where non-dimensional groups are defined as

Re � umH
]

(Reynolds number)
Sc � ]

D
(Schmidt number)

Pe � Re Sc � umH
D

(Péclet number)

Da � λH2

D
(Damköhler number)

Sh � cH
D

(Sherwood number)

Δ � δH2

D
(desorption number)

f � H
L

(aspect ratio)
Longitudinal diffusion is neglected to allow for separation

of variables. This assumption is reasonable in all cases where
diffusion is negligible compared to advection, i.e., if Pe≫ f .
Since the order of the equation with respect to x is now
reduced, a single (inlet) boundary condition for x is
required. As a further simplification, full symmetry of the
problem with respect the x-axis is assumed. The full problem
now reads

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

z2ĉ
zŷ2

− f Pe û(ŷ) zĉ
zx̂

− Da ĉ + Ŝ � 0

ĉd � Sh
Da + Δ ĉ, ŷ � ± 1

−zĉ
zŷ

� Da Sh
Da + Δ ĉ, ŷ � 1

zĉ
zŷ

� 0, ŷ � 0

ĉ � ĉin � cin
c0
, x̂ � 0

(26)

where cin specifies a uniform inlet condition for c(0, y).
For the following discussion, it is convenient to assume that

the distributed source can be expressed as

S(x, y) � S~S(x, y) (27)

where S is a representative value of the source, e.g., its
average value over the domain. The choice of c0 is purely
a matter of convenience. A meaningful definition, however,
is not trivial to find in the general case, given the interplay of
several physical phenomena. In the simplest case with no
internal source, concentration profiles become self-similar
far from the inlet but no fully-developed solutions can be
attained (in presence of removal mechanisms such as
deposition and decay). In such case, the definition is
straightforward:

c0 � cin (28)

On the other hand, when a distributed source is present, the
inlet contribution is forgotten as the fully-developed
concentration profile is attained and therefore a more
meaningful choice should be based on the relative intensity of
generation and removal mechanisms. When radioactive decay is
dominant, a good definition reads

c0 � S
λ

(29)

When decay is negligible, the reference concentration c0 can be
chosen as
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c0 �
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

H2S
D

, Sh≫ 1

HS
c
, Sh≪ 1

(30)

These values are useful to identify correct scaling with respect
to the dominant removal mechanisms. Similar expressions are
easily found when solving for the centerline concentration in
fully-developed profiles with uniform source.

Solutions of the boundary value problem Eq 26 can be found
by separation of variables:

ĉ(x̂, ŷ) � ∑∞
n�1

Xn(x̂)Yn(ŷ) (31)

2.3.3 Derivation of the Analytical Solution
The functions Yn(ŷ) coincide with the eigenfunctions of the
associated Sturm-Liouville problem found by isolating the ŷ
part of the equation. This can be highlighted by inserting
Eq 31 in Eq 26 and after some manipulation:

∑∞
n�1

[f Pe Yn
dXn

dx̂
− 1
û(ŷ) (d

2Yn

dŷ2
− DaYn)Xn] � Ŝ(x̂, ŷ)

û(ŷ) (32)

The eigenvalue problem is therefore stated as

LYn � β2n Yn (33)

where

L � − 1
û(ŷ) ( d2

dŷ2
− Da) (34)

and β2n being the eigenvalue associated to the eigenfunction Yn.
The problemmust be equipped with the corresponding boundary
conditions:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

d2Yn

dŷ2
+ (β2n − Da − β2n ŷ

2)Yn � 0

− dYn

dŷ
� Da Sh
Da + ΔYn, ŷ � 1

dYn

dŷ
� 0, ŷ � 0

(35)

It is easily verified that βn � 0 is not an eigenvalue. Then,
through the simple change of variable η � ���

2βn
√

ŷ, Eq 35 can be
recast into one form of the parabolic cylinder equation (DLMF,
2020, Ch. 12):

d2Yn

dη2
− [η2

4
− βn

2
(1 − Da

β2n
)]Yn � 0 (36)

Yn(ŷ) � A1,nY1,n(ŷ) + A2,nY2,n(ŷ) (37)

where

Y1,n(ŷ) � e−βnŷ
2/2M(1 − βn

4
+ Da
4βn

,
1
2
; βn ŷ

2) (38)

Y2,n(ŷ) � ���
2βn

√
ŷ e−βnŷ

2/2M(3 − βn
4

+ Da
4βn

,
3
2
; βn ŷ

2) (39)

are two linearly independent solutions. M(·, ·; ·) is the confluent
hypergeometric function of the first kind (DLMF, 2020, Ch. 13),
which can be expressed as the following power series expansion:

M(a, b; z) � 1 + a
b
z + a(a + 1)

b(b + 1)
z2

2!
+ . . . � ∑∞

k�0

(a)k
(b)k

zk

k!
(40)

where

(a)k � a(a + 1)/(a + k − 1) � ∏k
s�1

(a + s − 1) (41)

denotes the so-called Pochhammer symbol, or rising factorial. The
eigenvalue problem must be solved by imposing the associated
boundary conditions. By means of the following properties
of M(a, b; z),

M(a, b; 0) � 1 (42)

d
dz

M(a, b; z) � a
b
M(a + 1, b + 1; z), (43)

it can be easily shown that the symmetry condition at ŷ � 0
implies A2,n � 0. The wall boundary condition requires

Da Sh
Da + ΔY1,n(1) + Y ′

1,n(1) � 0 (44)

which gives the βn values that correspond to the non-trivial
solutions of the eigenvalue problem. Solutions of Eq 44 have to
be found numerically; more detailed numerical considerations can
be found in the Supplementary Appendix. The eigenfunctions are
therefore determined (up to an arbitrarymultiplicative constant) as

Yn(ŷ) � Y1,n(ŷ) (45)

whose general solution (back in terms of ŷ) can be expressed as
The separated Eq 32 now reads

∑∞
n�1

(dXn

dx̂
+ β2n
f Pe

Xn)Yn � 1
f Pe

Ŝ(x̂, ŷ)
û(ŷ) (46)

The eigenfunctions Yn are orthogonal with respect to the scalar
product defined as

〈f , g〉 � ∫+1

−1
û(ŷ)fgdŷ (47)

with

〈Ym,Yn〉 � ∫+1

−1
û(ŷ)YmYn dŷ � Cnδm,n (48)

Cn � 〈Yn,Yn〉 � ∫ +1

−1
û(ŷ)Y2

n dŷ (49)

This is exploited to transform Eq 46 into

dXn

dx̂
+ β2n
f Pe

Xn � 1
f Pe

Sn(x̂) (50)

whose general solution is
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Xn(x̂) � exp( − β2n
f Pe

x̂)[Xn(0) + 1
f Pe

∫̂x

0
exp( β2n

f Pe
ξ)Sn(ξ)dξ]

(51)

To obtain this last form, Ŝ has been expanded as

Ŝ(x̂, ŷ) � û(ŷ)∑
n�1

∞

Sn(x̂)Yn (52)

Sn(x̂) � 1
Cn

∫+1

−1
Ŝ(x̂, ŷ)Yn dŷ (53)

and the arbitrary constants Xn(0) have been determined from the
remaining inlet boundary condition (expanded as well):

Xn(0) � 1
Cn

∫+1

−1
û(ŷ)ĉinYn dŷ � Dn

Cn
ĉin (54)

where

FIGURE 3 | Dependence of the 1st eigenvalue β1 on model parameters Sh and Da.

FIGURE 4 | Dependence of the 2nd eigenvalue β5 on model parameters Sh and Da.
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Dn � 〈1,Yn〉 � ∫ +1

−1
û(ŷ)Yn dŷ (55)

The normalization constantsCn andDn can be found by numerical
integration of Eqs 49, 55, respectively. More details on their
computation are reported in the Supplementary Appendix.

FIGURE 5 | Dependence of the 5th eigenvalue β5 on model parameters Sh and Da.

FIGURE 6 | Dependence of the 10th eigenvalue β10 on model parameters Sh and Da.

TABLE 1 | Values of Da and Sh selected for verification cases.

Case n° 1 2 3 4 5 6 7 8 9

Da 0.1 0.1 0.1 1.0 1.0 1.0 10 10 10
Sh 0.1 1.0 10 0.1 1.0 10 0.1 1.0 10
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3 RESULTS AND DISCUSSION

In this Section, results of the verification of the implemented
models against the analytical solutions are presented. In Section
2.3.3 it is shown that, if the effect of desorption is negligible
compared to decay, the βn are the roots of

TABLE 2 | Model parameters used in all verification cases.

Re Sc Pe Δ f

500 1 500 0 0.025

FIGURE 7 | Comparison of concentration profiles obtained with the
proposed transport model implemented in OpenFOAM (+) and the
corresponding analytical solutions (−) for cases 1, 2 and 3 (from top to
bottom).

FIGURE 8 | Comparison of concentration profiles obtained with the
proposed transport model implemented in OpenFOAM (+) and the
corresponding analytical solutions (−) for cases 4, 5 and 6 (from top to
bottom).
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Sh Yn(1) + Y ′
n(1) (56)

with

Yn(ŷ) � e−βnŷ
2/2M(1 − βn

4
+ Da
4βn

,
1
2
; βn ŷ

2) (57)

It is therefore evident that the inclusion of a linear decay term in
the transport equation affects the concentration profiles shape by
shifting the eigenvalues. As shown in Figures 3–6, the influence
of the decay parameterDa is significant. For dominant modes, the
increase of Da tends to flatten the βn curves, resulting in a
vanishing influence of Sh in determining the shape of the
concentration field. On the contrary, higher-order modes are
less affected, with the eigenvalue shift due to linear decay
decreasing as n increases.

In the following, results from the comparison between the
OpenFOAM model described in Section 2.2 and the
corresponding analytical solutions are discussed. To highlight
the role of decay and deposition phenomena, the selected
parameters are Da and Sh, with values ranging in [0.1,1,10]
for both. Case study parameter values are listed in Table 1,
while other relevant parameters of the problem are listed in
Table 2.

To simplify the analysis, the inlet concentration is set to zero
(cin � 0). Furthermore, to allow for a direct comparison between
different test cases, the reference concentration value has been
selected as

c0 � H2S
D

(58)

It follows that

Ŝ(x̂, ŷ) � S(Lx̂,Hŷ)
S

� ~S(Lx̂,Hŷ) (59)

Therefore in dimensionless form the solution does not depend
on the source term average value, but only on its shape. For the
present analysis, a cosine-shaped source term has been selected to
resemble the typical shape of fission rate profiles in simplified
reactor geometries such as the one here considered:

~S(Lx̂,Hŷ) � π

2
cos(π

2
ŷ) (60)

Concentration profiles obtained for the nine test cases
(Table 1) are shown in Figures 7–9.

Results show excellent agreement between the proposed
transport model and the analytical solutions, proving a
successful verification of the implemented transport models
in OpenFOAM. The influence of decay is evidenced from the
decrease in concentration profiles from Da � 0.1 to Da � 10.
Besides the average value, the effect of decay is also evident on
the shape itself as also pointed out by the analysis of the
eigenvalues. With increasing Da, particles can diffuse less
before decaying, and therefore the concentration profiles tend
to resemble more the shape of the source term. The same effect
can be seen on the combined effect of deposition: as previously
said, the effect of Sh on the profiles is more evident for smaller
values of Da, while profiles tend to become more similar as Da
increases.

We finally report here some brief computational information
regarding the verification. All simulations were performed on a
structured orthogonal mesh, constituted by 5 × 104 hexahedral
volumes, with respectively 500 and 100 divisions on the
longitudinal and transversal directions. All 9 cases shown
similar convergence behavior, with approximately 5 × 104

FIGURE 9 | Comparison of concentration profiles obtained with the
proposed transport model implemented in OpenFOAM (+) and the
corresponding analytical solutions (−) for cases 7, 8 and 9 (from top to
bottom).
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pseudo-transient iterations needed to ensure tight convergence for
the particle concentration field. Computational times are
comparable among all cases, showing no significant dependence
on the physical parameters within the selected range (Table 3).

4 CONCLUSION

In this paper, the preliminary development of transport models for
the solid fission products in the MSFR was discussed. Simplified
transportmodels based on a Eulerian single-phase framework were
implemented in consolidated MSFR multiphysics simulation tools
based on the open-source finite-volume library OpenFOAM. The
resulting model has been verified against analytical solutions for
simplified test cases, based on an extended version of the Graetz
problem. Results show the good agreement between the two
models, proving the correct implementation of the transport
and deposition mechanisms considered and the capability of
OpenFOAM in treating coupled deposition and decay
phenomena of different relative intensities, albeit on a simplified
reference problem. The proposed approach constitutes a
computationally efficient framework to extend the capabilities of
CFD-based multiphysics MSFR calculations towards the
simulation of solid fission products transport.

The analytical model used for verification has been developed
specifically for this application. The simultaneous presence of
distributed internal generation, radioactive decay and mixed
deposition boundary condition in a Graetz problem represents
an original contribution, and the resulting analytical model could
therefore constitute a useful benchmark for future developments
of the FPs migration model and for other similar MSFR
applications. Future work will include the analysis of the
integration of FPs transport in a full reactor simulation. In
this regard, turbulent transport in more complex geometries
may lead to large concentration gradients close to walls, with
the need for mesh refinement. The extension to reactor
simulation might therefore lead to numerical and/or
computational issues to be addressed. Among other possible
limitations of the current modelling approach, we highlight

the adoption pure concentration-driven diffusive transport. As
already mentioned, such approximation is strictly valid only for
particles of very small size. Further study will be needed to assess
the validity of such assumption for MSFR applications and to
possibly extend the methodology to more advanced particle
transport models.
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NOMENCLATURE

Latin symbols
A0
r,g reference gth group, rth neutron reaction cross-section log. coeff.

c particle (vol.) concentration

ĉ non-dim. particle (vol.) concentration

ĉd non-dim. deposited particle (surf.) conc.

ĉin non-dim. inlet particle (vol.) concentration

c0 ref. particle (vol.) concentration

cd deposited particle (surf.) concentration

ck kth family del. neutron prec. (vol.) concentration

cp specific heat capacity

cin inlet particle (vol.) concentration

D laminar particle diffusivity

dp particle diameter

Dt turbulent particle diffusivity

Deff effective particle diffusivity

D‘
ef f bulk effective particle diffusivity

Dn,g gth group neutron diffusion coefficient

Da Damköhler number

f channel aspect ratio

FD particle diffusivity correction factor

g gravitational acceleration

H channel half-width

kB Boltzmann constant

keff effective multiplication factor

L channel length

M confluent hypergeometric function

p pressure

Pe Péclet number

Pr Prandtl number

Prt turbulent Prandtl number

q vol. energy source

Re Reynolds number

S particle (vol.) source

S average particle (vol.) source

Ŝ non-dim. particle (vol.) source

~S unit-average particle (vol.) source

Sc Schmidt number

Sct turbulent Schmidt number

Sh Sherwood number

T temperature

T0 reference temperature (buoyancy)

TΣ
0 reference temperature (cross-sections)

u longitudinal velocity comp.velocity

û non-dim. longitudinal velocity comp.

u longitudinal velocity comp.velocity

um maximum profile velocity

vg avg. gth group neutron velocity

x longitudinal coordinate

x̂ non-dim. longitudinal coord.

y transversal coord.

ŷ non-dim. transversal coord.

yf fission yield of transported fission product

Greek symbols
α laminar thermal diffusivity

αt turbulent thermal diffusivity

αeff effective thermal diffusivity

βd total delayed neutrons fraction (∑kβd,k)
βd,k kth family delayed neutrons fraction

βn (square root of) nth eigenvalue

βT vol. thermal expansion coeff.

Δ desorption number

δ desorption rate constant

δϕ wall region thickness

γ deposition velocity

λ particle decay constant

λk kth family del. neutron prec. decay constant

ρ fluid density

Σa,g gth group absorption cross-section

Σf ,g gth group fission cross-section

Σr,g gth group, rth neutron reaction cross-section

Σ0
r,g reference gth group, rth neutron reaction cross-section

Σs,g→ h g-to-h-th group scattering cross-section

χd,g gth energy group delayed neutron spectrum

χp,g gth energy group prompt neutron spectrum

νg avg. gth group neutrons emitted per fission

ν laminar kinematic viscosity

νef f effective kinematic viscosity

νt turbulent kinematic viscosity

ϕ particle-wall interaction potential

φg gth group integrated neutron flux
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