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A Homotopic Approach for Robust Low-Thrust Trajectory Design through Convex
Optimization

Andrea Carlo Morelli1, Christian Hofmann2, Francesco Topputo3

The space industry has recently witnessed a significant decrease of the overall costs of space missions, thanks to
the miniaturization of satellites and their components. CubeSats have granted institutions and small companies
access to space. However, space operations are still entirely performed from ground, limiting the potentiality of
such spacecraft. Enhancing the autonomy of satellites, for example enabling on-board guidance, represents thus
an interesting research challenge. The low control authority and little on-board resources of CubeSats require
a new trajectory design paradigm. Optimization methods can be compared in terms of computational effort,
optimality (the quality of the solution found), and feasibility (the capability of converging to a feasible solution).
State-of-the-art approaches lack of computational efficiency, as powerful computers can be used to design the
fuel-optimal trajectory of a spacecraft offline. Convex optimization represents instead a sustainable approach when
real-time applications are considered due to the limited resources required to solve convex programs. This technique
has been recently applied to different space-related problems, including powered descent and landing, entry and
low-thrust trajectory optimization. This paper presents a sequential convex programming algorithm based on
a Legendre–Gauss–Lobatto discretization scheme with nonlinear control interpolation to solve the minimum-fuel
space trajectory optimization problem. Moreover, an adaptive second-order trust region radius change mechanism
is developed to reduce the overall computational time. Finally, the sequential convex programming is combined
with the homotopic approach to increase robustness of the method. The effectiveness of the approach is shown by
means of numerical simulations with poor initial guesses.

1 Introduction

In recent years, CubeSats have allowed a significant re-
duction of space missions development costs [1], result-
ing in an increasing number of launches. On the other
hand, operating a miniaturized satellite is as expensive
as operating a conventional spacecraft [2]. Increasing the
level of autonomy and shifting flight-related tasks such
as the guidance design on-board is therefore a desirable
goal for future missions. These developments require
new trajectory design approaches.
The solution of the minimum-fuel optimal control prob-
lem is obtained by means of algorithms that can be com-
pared in terms of computational effort (how many com-
putational resources are needed), feasibility (capability
of converging even when a poor initial guess is provided)
and optimality (minimization of some cost function) [3].
The current paradigm of how space missions are oper-
ated allows engineers to repeatedly recompute trajecto-
ries during an interplanetary transfer using high-power
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computers: the focus is thus on optimality. On the other
hand, scenarios like autonomous guidance require com-
putationally fast and robust techniques that are able to
find (near) optimal solutions in little time and with the
available on-board resources.
The most common state-of-the-art methods used to solve
the low-thrust space trajectory optimization problem
can be divided in direct and indirect approaches. Clas-
sical direct methods that solve the full nonlinear op-
timization problem are in general not suitable for on-
board applications due to their computational complex-
ity and poor robustness [4, 5]. Likewise, indirect meth-
ods that make use of the calculus of variations are of-
ten not a viable option as they have poor convergence
properties [6]. Convex optimization has been recently
used to solve several space-related optimization prob-
lems, including powered descent and landing, entry, and
low-thrust trajectory optimization [7, 8, 9]. This is
because convex problems can be solved by means of
polynomial-time algorithms and limited computational
resources [10, 11, 12], and thus are perfectly suitable for
real-time optimization. As the majority of the engineer-
ing problems are nonconvex, they are transformed into
convex programs with two specific techniques: lossless
convexification [13, 14] (also called exact convex relax-
ation [15]) and successive convexification [16]; the orig-
inal nonconvex problem is then solved by means of an
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iterative technique called Sequential Convex Program-
ming (SCP) [17].
The control associated with the solution of the
minimum-fuel low-thrust trajectory optimization prob-
lem is discontinuous. For this reason, current methods
often lack strong convergence properties [5]. In indi-
rect optimization, smoothing techniques and homotopic
approaches are used to overcome this issue; a sequence
of simpler, smooth problems is solved first and a con-
tinuation is performed until the original, discontinuous
problem is eventually solved. A logarithmic smoothing
function and a hyperbolic tangent function were consid-
ered in [18] and [19], respectively. In [20, 21], an energy-
to-fuel continuation was used to generate minimum-fuel
low-thrust trajectories. In [22], a cubic function of the
thrust was used as homotopic path , while in [23, 24]
the performance of additional smoothing functions was
compared. In [25], a double-homotopy technique was de-
veloped to find the minimum-fuel transfer in the circular
restricted three-body problem.
This work combines a homotopic approach with the
SCP algorithm. The low-thrust trajectory optimization
problem is discretized by means of an arbitrary-order
Legendre–Gauss–Lobatto (LGL) quadrature scheme,
and a nonlinear control interpolation is exploited to en-
hance the accuracy of the solution. Moreover, an adap-
tive second-order trust-region mechanism is developed
to speed up the convergence process.
The paper is structured as follows. Section 2 states
the convex low-thrust space trajectory optimization
problem. Section 3 describes the arbitrary-order LGL
quadrature and the nonlinear control interpolation. Sec-
tion 4 details the combination of the homotopic approach
and convex programming. Section 5 shows the efficacy
of our strategy through several numerical simulations.
Finally, Section 6 concludes the work.

2 Problem Formulation

The minimum-fuel space trajectory optimization (STO)
problem aims to find the trajectory between two given
points with minimum propellant expenditure. Consid-
ering two-body dynamics only, the equations of motion
in Cartesian coordinates are given by

ẋ =

 ṙ
v̇
ṁ

 =

 v
−µr/r3 + ũα/m
−T/(Ispg0)

 (1)

where r = [rx, ry, rz]>, v = [vx, vy, vz]>, and m are the
position vector, the velocity vector and the mass of the
spacecraft, respectively. µ is the standard gravitational
parameter of the primary body in the two-body prob-
lem, ũα = [Tx, Ty, Tz]>, T = ‖ũα‖2, and ũ = [ũα, T ]>

is the control vector. Isp and g0 are the specific im-
pulse and gravitational acceleration, respectively. Eq.
(1) is nonlinear and nonconvex; moreover, the state and
control variables are coupled through the term ũα/m.
Therefore, we transform the original minimum-fuel STO
problem into a convex one [3, 5]:

min
u
J0 =

∫ tf

t0

τ(t)dt (2)

subject to:

ẋ = ff (x∗) + A(x∗)(x− x∗) + Bu (3a)
τ2
x + τ2

y + τ2
z ≤ τ2 (3b)

0 ≤ τ ≤ e−w
∗
[1− (w − w∗)] (3c)

xl ≤ x ≤ xu (3d)
uα,l ≤ uα ≤ uα,u (3e)
‖x− x∗‖1 ≤ R (3f)

x(t0) = x0, r(tf ) = rf , v(tf ) = vf (3g)

with states x = [r,v, w]> and controls u =
[τx, τy, τz, τ ]>. Note that a change of variables has been
exploited to replace the mass m and the thrust T such
that w = lnm and τ = T/m (τx, τy and τz are de-
fined accordingly). Eqs. (2) and (3) represent the convex
STO problem, which will be referred to as CXP (Con-
vex Problem) throughout this paper. The dynamics in
Eq. (1) have been linearized to obtain (3a) where the su-
perscript (·)∗ denotes the reference trajectory. In (3a),

ff = [vx, vy, vz,−rx/r3,−ry/r3,−rz/r3, 0]> (4)

denotes the vector of the natural two-body dynamics,
A = ∂ff/∂x the Jacobian matrix and B is such that

B =

 03×4

I3×3 03×1

01×3 b

 (5)

where b = 1/(Ispg0). The relationship between the com-
ponents of the control vector has been convexified in Eq.
(3b); the inequality constraint on τ in Eq. (3c) has been
linearized due to the change of variables [3]. The lower
(subscript l) and upper bounds (subscript u) of states
and controls are given in Eq. (3d) and Eq. (3e), respec-
tively. The trust-region constraint in Eq. (3f) is used to
keep the solution close to the reference and hence, the
linearization valid. Initial x0 and final (rf ,vf ) boundary
conditions are given in Eq. (3g).
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3 Convex Abritrary-Order

Legendre–Gauss–Lobatto
Quadrature

CXP in Eqs. (2) and (3) represents an infinte-
dimensional optimal control problem. There are sev-
eral discretization schemes to transform it into a finite-
dimensional parameter optimization problem [26]. A
popular choice are pseudospectral methods because of
their spectral convergence rate for smooth problems [5].
Yet, the discretized problem is often less sparse com-
pared to local methods such as the trapezoidal rule (lin-
ear interpolation of states and controls) and higher order
methods like the Hermite–Simpson scheme (cubic inter-
polation of states and linear interpolation of controls).
A generalization of Hermite–Simpson is the arbitrary-
order Gauss–Lobatto collocation method that is widely
used to solve nonlinear programs (NLP) [27]. In this
paper, we use the Legendre–Gauss–Lobatto points for
both the nodes and the collocation points. To the best
of the authors’ knowledge, this is the first time that an
arbitrary-order Legendre–Gauss–Lobatto method is ap-
plied to convex programs.

3.1 State Discretization

The arbitrary-order Gauss–Lobatto collocation method
approximates the state variables by means of an
arbitrary-order polynomial and is therefore an extension
of the Hermite–Simpson scheme. The total time of flight
(ToF) is divided into I subintervals. Each time interval
[ti, ti+1] is mapped into the interval [−1, 1] through the
transformation

t → h

2 ξ + ti+1 + ti
2 (6)

where ξ ∈ [−1, 1] and h = ti+1 − ti is the time step.
Inside the i-th subinterval, the state x(i)(ξ) ∈ Rnx×1

(nx = 7) is approximated as:

x(i)(ξ) ≈ a(i)
0 + a(i)

1 ξ+ · · ·+ a(i)
n ξn, i = 1, . . . , I (7)

where the column vectors of coefficients a(i)
m ∈ Rnx×1,

m = 0, . . . , n are unknowns that are used to approx-
imate the state at the nodal point θ. The idea is to
find the values of the coefficients a(i)

m using the infor-
mation of the states and dynamics at the nodes (the
so-called Hermite interpolation) and eventually express
the constraints at the collocation points. In this paper,
nodes and collocation points are defined according to the
Legendre–Gauss–Lobatto points, which are the roots of
the derivative of the (n− 1)-th degree Legendre polyno-
mial [27]. The n-th degree Legendre polynomial is given

by the Rodrigues formula as [28]

Pn(ξ) = (−1)n

2nn!
dn

dξn (1− ξ2)n (8)

and the LGL points are then

ξ̂ = [ξ̂1 = −1, ξ̂2, . . . , ξ̂i, . . . , ξ̂n−1, ξ̂n = 1] (9)

where ξ̂i (i = 2, . . . , n−1) is the i-th root of the polyno-
mial dPn−1(ξ)/dξ. The nodes θj and collocation points
ζj are defined as [26]

θj = ξ̂2j−1, j = 1, . . . , (n+ 1)/2 (10)

and

ζj = ξ̂2j , j = 1, . . . , (n− 1)/2 (11)

Note that only odd orders of polynomials n ≥ 3 can be
considered, since the number of collocation points inside
each interval is (n− 1)/2 [27].
Considering the information at the nodes, the follow-
ing linear system can be written for the i-th trajectory
segment [27? ]:

Inx . . . θn1 Inx

...
...

...
Inx . . . θnnp

Inx

0nx . . . nθn−1
2 Inx

...
...

...
0nx . . . nθn−1

np
Inx


︸ ︷︷ ︸

θ



a(i)
0
...

a(i)
np

...
a(i)
n−1

a(i)
n


︸ ︷︷ ︸

a(i)

=



x(i)(θ1)
...

x(i)(θnp )
h
2 f (i)
l (θ1)

...
h
2 f (i)
l (θnp )


︸ ︷︷ ︸

b(i)

(12)

where θj are the positions of the nodal points as in Eq.
(10), np = (n+1)/2 is the number of nodes in each time
interval, Inx is the nx × nx identity matrix and 0nx the
nx × nx null matrix. Note that fl(θj) is the two-body
dynamics as given in (3a) and thus

fl(θj) = ff (x∗j ) + A(x∗j )(xj − x∗j ) + Buj (13)

where the subscript (·)j indicates that the considered
quantity is evaluated at the node θj and the superscript
(·)(i) has been dropped for simplicity. This linearization
is required due to our convex approach. The linear sys-
tem in (12) can be written in compact form as θa(i) =
b(i) and hence a(i) = θ−1b(i), with θ ∈ R2nxnp×2nxnp ,
a(i) ∈ R2nxnp×1 and b(i) ∈ R2nxnp×1. The state at the
collocation points is defined as

x(i)(ζ) = [x(i)(ζ1), . . . ,x(i)(ζnc )]> ∈ Rncn×1 (14)

where nc = (n−1)/2 is the number of collocation points
in one subinterval. Considering Eq. (7) and recalling
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that a(i) = θ−1b(i), the state can be calculated as

x(i)(ζ) =


Inx ζ1Inx . . . ζn1 Inx

Inx ζ2Inx . . . ζn2 Inx

...
...

...
...

Inx ζnc Inx . . . ζnnc
Inx


︸ ︷︷ ︸

ζ


a(i)

0

a(i)
1
...

a(i)
n


︸ ︷︷ ︸

a(i)

= ζθ−1b(i) = φb(i)

(15)

where ζ ∈ Rncnx×nxn and φ ≡ ζθ−1. The derivative
of the state at the collocation points can therefore be
written as

dx(i)(ζ)
dξ =


0nx Inx . . . nζn−1

1 Inx

0nx Inx . . . nζn−1
2 Inx

...
...

...
...

0nx Inx . . . nζn−1
nc

Inx


︸ ︷︷ ︸

ζ′


a(i)

0

a(i)
1
...

a(i)
n


︸ ︷︷ ︸

a(i)

= ζ′θ−1b(i) = φ′b(i)

(16)

Note that the left-hand side of the overlying equation
indicates the derivative of the state with respect to the
independent variable ξ at the collocation points ζ.
These expressions can easily be extended to all trajec-
tory segments by defining the vectors of unknown coef-
ficients â and constant terms b̂ as

â = [a(1), . . . ,a(i), . . . ,a(I)]>

b̂ = [b(1), . . . ,b(i), . . . ,b(I)]>
(17)

Note that the first node of the i-th subsegment and the
last node of the (i− 1)-th subsegment are equal. Conse-
quently, the vectors x(i)(θ1) and f (i)

l (θ1) in b(i) are the
same as the vectors x(i−1)(θnp ) and f (i−1)

l (θnp ) in b(i−1)

for i = 2, . . . , I − 1. Extending the linear system in Eq.
(12) to all trajectory segments yields

ΘΘΘâ = b̂ ⇐⇒ â = ΘΘΘ−1b̂ (18)

where ΘΘΘ ∈ R2Inxnp×2Inxnp is a diagonal matrix with
θθθ on the main diagonal. Defining x̂(ζ) = [x(1)(ζ),
x(2)(ζ), . . .x(i)(ζ), . . . ,x(I)(ζ)]> as the column vector of
concatenated states at the collocation points, we obtain

x̂(ζ) = ZΘΘΘ−1︸ ︷︷ ︸
ΦΦΦ

b̂ ≡ ΦΦΦb̂ (19)

dx̂(ζ)
dξ = Z′ΘΘΘ−1︸ ︷︷ ︸

ΦΦΦ′
b̂ ≡ ΦΦΦ′b̂ (20)

Z and Z′ are diagonal matrices with ζζζ and ζζζ′ on the
main diagonal, respectively. These expressions are now

used to write the defect constraints ∆∆∆ in a compact way:

∆∆∆ = ΦΦΦ′b̂− h

2 [f̂f + Â(ΦΦΦb̂−ΦΦΦb̂∗)] + B̂û(ζ) = 0 (21)

with

f̂f = [f (1)
f,1 , . . . , f

(1)
f,nc

, . . . , f (I)
f,1 , . . . f

(I)
f,nc

]> (22)

Â =


A(ζ1) 0 . . . 0

0 A(ζ2)
...

...
. . .

...
0 . . . . . . A(ζp)



B̂ =


B 0 . . . 0

0 B
...

...
. . .

...
0 . . . . . . B


(23)

p = Inc is the total number of collocation points and
A(ζj) = A(x(ζj)). The concatenated control vector
û(ζ) will be described in the next section.

Remark 1 : Different from the conventional LGL scheme,
we include the initial and final points in the optimiza-
tion to easily account for the initial and final boundary
conditions.

3.2 Nonlinear Control Interpolation
Unlike the state, the control variables are often linearly
interpolated in direct collocation methods [26]. As this
may result in a poor approximation, we approximate
the controls u(i)(θ) ∈ R4×1 in the i-th subinterval as a
polynomial of degree np − 1:

u(i)(θ) ≈ a(i)
0 + a(i)

1 θ + · · ·+ a(i)
np−1θ

np−1 (24)

Similar to (15), the controls at the collocation points are

u(i)(ζ) =


Inu ζ1Inu . . . ζ

np−1
1 Inu

Inu ζ2Inu . . . ζ
np−1
2 Inu

...
...

...
...

Inu ζnc Inu . . . ζ
np−1
nc Inu


︸ ︷︷ ︸

ζζζu


a(i)

0

a(i)
1
...

a(i)
np−1


︸ ︷︷ ︸

a(i)
u

= ζζζuθθθ
−1
u b(i)

u = φφφub(i)
u

(25)

where nu = 4 is the number of control variables
and the subscript (·)u refers to expressions related
to controls instead of states. Combining the con-
trols at all collocation points into one vector û(ζ) =
[u(1)(ζ),u(2)(ζ), . . .u(i)(ζ), . . . ,u(I)(ζ)]>, we can write

û(ζ) = ZuΘΘΘ−1
u b̂u = ΦΦΦub̂u (26)
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with similar notation as in Section 3.1. Eq. (21) can
now be rewritten to obtain

∆∆∆ = ΦΦΦ′b̂− h

2 [f̂f + Â(ΦΦΦb̂−ΦΦΦb̂∗)] + B̂ΦΦΦub̂u = 0 (27)

Remark 2: Our simulations show that due to numeri-
cal reasons, only LGL orders for which the interpolating
polynomial is of odd degree (i.e. when np − 1 is an odd
number) can be considered.

4 Homotopic Approach and Convex
Programming

In this section, we present the sequential convex pro-
gramming algorithm combined with a homotopic ap-
proach that considers continuation from the minimum-
energy to the minimum-fuel problem to enhance the
overall robustness. This method is similar to the one
employed in literature to improve numerical convergence
of indirect methods (see for example [23]).

4.1 Sequential Convex Programming
The original nonconvex problem is solved by iteratively
solving a sequence of convex subproblems. As the dy-
namical and thrust constraints have been linearized, the
resulting problem may become infeasible even though
the original problem is feasible. To avoid this artificial
infeasibility, we add unconstrained slack variables ν and
η in Eqs. (3a) and (3c) to obtain [5]

ẋ = ff (x∗) + A(x∗)(x− x∗) + Bu + ν (28)

0 ≤ τ ≤ e−w
∗
[1− (w − w∗)] + η (29)

Note that ν and η must be zero at the end of the op-
timization process so that the constraints are satisfied.
Therefore, the objective function J0 in (2) is augmented
with two terms [5]

J = J0 +
∑
i∈Ieq

µi||νi||1+
∑

i∈Iineq

λi max(0, ηi) (30)

where µi and λi are two sufficiently large parameters.
Ieq and Iineq are the set of equality and inequality con-
straints, respectively.
One key feature of the SCP algorithm is the trust-region
mechanism to keep the solution close to the reference
and thus the linearization valid. The ratio of the ac-
tual cost reduction ∆φk = φk−1 − φk to the predicted
cost reduction ∆φ̂k = φ̂k−1 − φ̂k (with k denoting the
current iteration) serves as a measure to decide whether

the step is to be accepted or not. At each iteration, the
merit functions φk and φ̂k are calculated as [29]

φk = J0 +
∑
j∈Ieq

µj ||hj ||1+
∑

j∈Iineq

λj max(0, gj)

(31)

φ̂k = J0 +
∑
j∈Ieq

µj ||νj ||1+
∑

j∈Iineq

λj max(0, ηj)

+
∑

j∈Iineq

λj max(0, σj)

(32)

hj and gj are the constraint violations of the equality
and inequality constraints, respectively, of the original,
nonconvex problem. In contrast, (32) refers to the viola-
tions of the convex problem with σj = τ2

x,j +τ2
y,j +τ2

z,j−
τ2
j . The interested reader is referred to [5, 17] for a more

detailed description of the standard SCP algorithm.

4.2 Homotopic Sequential Convex
Programming

Instead of solving the minimum-fuel problem directly, a
sequence of simpler and smoother problems is solved first
in a homotopic approach. These solutions serve as initial
guesses for the next subproblem where the complexity
gradually increases until the original problem is even-
tually solved. One of the most common continuations
is the energy-to-fuel homotopy which uses the objective
function [20]

Jγ ≡ J(γ) =
∫ tf

t0

[(1− γ)τ + γτ2] dt (33)

with some parameter γ ∈ [0, 1] that defines the homo-
topic path from the minimum-energy (γ = 1) to the
minimum-fuel (γ = 0) problem. τ is the acceleration
magnitude defined in Section 2. As it will be pointed out
in Section 5, we used a convex solver that requires the
problem to be a Conic Linear Program (CLP) [11]; con-
sequently, it was necessary to reformulate the objective
function to make it a linear function of the optimization
variables. The interested reader is invited to consult [30]
for more information.
In this work, we start solving the minimum-energy prob-
lem; then, γ is gradually decreased until feasibility with
respect to the original nonlinear constraints is reached.
Note that we change the homotopic parameter γ only
when a step is accepted; however, to speed up conver-
gence, if the maximum nonlinear constraint violation
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cmax reaches the value of 103εc (where εc is the con-
vergence threshold) before the maximum number of ho-
motopic steps is reached, we set γ = 0 anyway.
The definition of the quantities φk and φ̂k in Eqs. (31)
and (32) includes the objective function J0; however, the
values of J0 cannot be compared while γ is still chang-
ing, simply because they refer to different problems. To
avoid that the algorithm gets stuck for this reason, we
substitute the term related to the objective function in-
side Eqs. (31) and (32) with a term associated with the
final spacecraft mass. The aforementioned quantities are
thus redefined as

φMk = µm(ew0 − ewf ) +
∑
j∈Ieq

µj ||hj ||1+

∑
j∈Iineq

λj max(0, gj)

(34)

φ̂Mk = µm(ew0 − ewf ) +
∑
j∈Ieq

µj ||νj ||1

+
∑

j∈Iineq

λj max(0, ηj)

+
∑

j∈Iineq

λj max(0, σj)

(35)

where µm is a parameter such that 1 < µm � µi, λi.

4.3 Adaptive Second-Order Trust-Region
Radius Change

In standard trust-region methods such as in [3, 17], a
step is rejected if ρk ≡ ∆φk/∆φ̂k < ρ0 because this
indicates that there is no (sufficiently large) progress.
When a solution is accepted, the trust region is updated
as follows:

Rk+1 =


Rk/α if ρ0 ≤ ρk < ρ1

Rk if ρ1 ≤ ρk < ρ2

βRk if ρk ≥ ρ2

(36)

where α and β are two constants greater than 1 and
0 < ρ0 < ρ1 < ρ2 < 1. Updating the trust-region radius
like this often works well, but it is not particularly flex-
ible for two reasons. First, the constants α and β must
be selected by the user and are fixed during the opti-
mization process. Secondly, the update only depends on
the value of the parameter ρ at the current iteration k,
without considering some potentially useful information
from previous iterations.
We extend the work in [29] and propose an improved
method where α and β can vary based on the values of
ρ in the current k and previous iteration k − 1. Intro-
ducing the new constant parameter δ with 1 < δ < α, β,
we define the update mechanism of α and β as follows:

1. If ρk ≥ ρ0 and ρk−1 ≥ ρ0 (that is, both the current
and the previous steps are accepted), then βk =
δβk−1 and αk = αk−1/δ. Our rationale is that if
two subsequent steps are accepted, the algorithm
will benefit from a larger increase of the trust region
in the next iteration.

2. If ρk ≥ ρ0 and ρk−1 < ρ0 (that is, the current step
is accepted but the previous was not), then βk =
βk−1/δ and αk = δαk−1. This suggests to stay
closer to the current solution to avoid a rejected
step in the next iteration.

3. If ρk < ρ0 and ρk−1 ≥ ρ0 (that is, the current step
is rejected whereas the previous one was accepted),
then αk = αk−1 and βk = βk−1. If on one hand the
current iteration is rejected, on the other hand the
previous step was accepted, it is thus convenient to
neither increase nor decrease the parameters.

4. If ρk < ρ0 and ρk−1 < ρ0 (that is, both the current
and the previous steps are rejected), then αk =
δαk−1 to stay closer to the reference solution and
speed up convergence.

The parameters α and β increase the degrees of freedom
of the algorithm and become part of the optimization
process. Note that we impose αmin < α < αmax and
βmin < β < βmax. The effectiveness of this approach is
shown in Section 5.

5 Simulations and Results

We have already stated that the contribution of this
work is threefold: the introduction of an adaptive trust
region radius update; the development of a LGL dis-
cretization scheme applied to convex environments; the
inclusion of an energy-to-fuel homotopic path. We thus
perform three different analyses to show how our strate-
gies are effectively increasing the performance of the
standard SCP algorithm.
The minimum-fuel transfer from Earth to Venus is con-
sidered in this work. This problem is shown for the sake
of comparison with previous works [5]. We formulated
the problem in standard form so that it could be solved
using the embedded conic solver ECOS [11]. . We con-
sider two-body dynamics without any additional pertur-
bations, assume a constant specific impulse and use the
gravitational constant µ = 1.32712440018 × 1020 m3/s2

and gravitational acceleration at sea level g0 = 9.80665
m/s2. The problem is scaled with the quantities given
in Tab. 2. Relevant parameters of the Earth to Venus
transfer and the SCP algorithm are given in Tabs. 3 and
1, respectively. In particular, the quantities εc and εφ
in Tab. 1 refer to the thresholds that must be overcome
by the maximum constraint violation and the quantity

IAC-21.C1.3.6.x65881 Page 6 of 11



72nd International Astronautical Congress (IAC) – 25-29 October 2021.
Copyright ©2021 by Mr. Andrea Carlo Morelli. Published by the IAF, with permission and released to the IAF to publish

in all forms.
∆φ for the algorithm to converge, respectively. We use a
simple cubic interpolation approach to generate the ini-
tial guess. This method requires the user to specify the
number of revolutions. In this paper, the nominal case
with Nrev = 2 is considered. In all robustness analyses,
we perturb the nominal initial guess by slightly chang-
ing the value of Nrev (with random perturbations inside
the interval [−10−2, 10−2]). Figs. 1a and 1b show the
typical thrust profile and transfer trajectory obtained
with the SCP algorithm. The thrust profile has a bang-
bang structure, indicating that the obtained solution is
at least suboptimal. The final spacecraft mass in the
nominal case is 1035 kg, consistent with the values in
literature [5].

Parameter Value

Penalty weights λ, µ 100
Penalty weight µm 3
Trust region r0 100
ρ0, ρ1, ρ2 0.01, 0.25, 0.9
α0, β0 1.4
δ 1.3
αmin, βmin 1.01
αmax, βmax 5.2
εc 10−5

εφ 10−3

Max. iterations 200

Tab. 1: Parameters of the algorithm.

5.1 Adaptive Trust-Region Radius Update
Analysis

Throughout this section, SCP refers to the standard al-
gorithm with fixed α and β for the trust-region mech-
anism whereas SCPATR uses the adaptive second-order
trust-region update described in Section 4.3. We use
an Hermite–Simpson discretization method (equivalent
to a LGL scheme with n = 3) to perform a robustness
analysis on both the SCP and SCPATR algorithms and
compare their performances. In particular, Tab. 4 shows
that the SCPATR algorithm was able to converge 34%
more times than the simple SCP. The CPU time and
iterations required by the SCPATR algorithm are only
≈ 20% the ones required by the standard SCP. Moreover,
the SCPATR found slightly lower final masses; however,
we recall that optimality is less relevant with respect
to robustness and computational efficiency considering
on-board guidance scenarios.

5.2 Legendre–Gauss–Lobatto Analysis
Section 5.1 pointed out how the adaptive trust-region
radius update outperforms the standard SCP method
in terms of convergence rate and computational effort;
however, it also highlighted that a simple Hermite–
Simpson interpolation may be inappropriate when com-
plex trajectories need to be designed, since only 35%
of the considered cases converged to a feasible solution.
Therefore, a robustness analysis on the arbitrary-order
LGL discretization with 100 perturbed cases and using
the newly-developed SCPATR algorithm was performed.
Results show that higher-orders polynomial interpola-
tion can effectively increase the convergence rates of the
algorithm: remarkably, higher-order LGL interpolation
increased convergence by 59% − 65%. This was at the
expense of a higher computational time, which may be
due to the fact that the matrices defined in Section 3
are denser as n increases. The optimality of the solu-
tions remains approximately constant when changing n.
Note that if the order of the interpolating polynomials
becomes too high, the obtained thrust profiles become
less accurate, i.e. they present shapes that are far from
being bang-off-bang; for this reason, we stopped our ro-
bustness analysis at n = 15.

5.3 Homotopic Approach Analysis
We address the efficacy of the proposed homotopic ap-
proach performing a robustness analysis with 100 per-
turbed cases using a 3rd-order LGL discretization. This
is because we do not want the LGL order to interfere
with the efficacy of the homotopic strategy we devel-
oped. We compare the results obtained solving the
minimum-energy problem (associated with γ = 1), the
homotopic minimum-fuel problem with a number of ho-
motopic steps s = 20 and the pure minimum-fuel prob-
lem. Fig. 3 illustrates the thrust profiles associated with
different values of the smoothing parameter γ. It can
be observed that the minimum-energy thrust profile is
smooth, and that the smoothness decreases as the ho-
motopic parameter approaches zero. Note that the fig-
ures show the profiles obtained by solving the associated
problems without any homotopy.
Results are presented in Fig. 2 and Tab. 6 where the con-
verged cases, average final mass, average iterations and
average CPU time are compared. Solving the minimum-
energy problem always resulted in a converged solution;
moreover, the homotopic approach was able to increase
the convergence rate of the minimum-fuel problem by
12%. Iterations and computational time are similar for
the minimum-energy and minimum-fuel problems, while
they are considerably higher for the homotopic problem.
This may be due to the way we defined the transition be-
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Physical Quantity Normalization Factor Value

Length (m) LU = 1 AU 1.49597870× 1011

Velocity (m/s) VU =
√
µ/LU 2.97846918× 104

Time (s) TU = LU/VU 5.022642856× 106

Acceleration (m/s2) ACU = VU2/LU 5.930083× 10−3

Mass (kg) MU = m0 1500
Force (N) FU = Tmax 0.33

Tab. 2: Physical quantities of the problem.
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Fig. 1: Thrust profile and transfer trajectory of the Earth to Venus transfer.

Parameter Value

r0 = [rx, ry, rz]>0 (LU) [0.9708, 0.2376, 0]>
v0 = [vx, vy, vz]>0 (VU) [−0.2545, 0.9687, 0]>
m0 (MU) 1
rf = [rx, ry, rz]>f (LU) [−0.3277, 0.6389, 0.0277]>
vf = [vx, vy, vz]>f (VU) [−1.0509,−0.5436, 0.0532]>
Tmax (FU) 1
Isp (TU) 7.5657× 10−4

ToF (days) 1000

Tab. 3: Parameters of Earth to Venus transfer.

tween the minimum-energy and the minimum-fuel prob-
lem (see Section 4.2). Still, only few seconds are required
to solve the considered problems. The final spacecraft
mass obtained by the different problems are very simi-
lar, even though the minimum-fuel problem performed
best among the others.

6 Conclusions

The objective of this paper was to present strategies to
improve the robustness and the computational efficiency
of the standard SCP algorithm. Results show that the
high-order LGL discretization scheme increases the con-
vergence rate of the simple Hermite–Simpson rule; more-

Fig. 2: Performance of SCPATR for minimum-fuel,
minimum-energy and homotopic minimum-fuel prob-
lems with perturbed initial guesses.

over, the newly-developed adaptive trust-region radius
update has shown superiority in terms of computational
time with respect to the standard approach; finally, the
combination of a homotopic approach with convex pro-
gramming also increased the convergence properties of
the minimum-fuel space trajectory optimization prob-
lem.
Overall, the proposed algorithm represents a promising
alternative to standard nonlinear programming meth-
ods in scenarios like deep-space cruise where robustness
and convergence are more important than high accuracy.
The rapid speed makes our method an ideal choice for
preliminary studies and also real-time applications.
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Algorithm Iters. m(tf ) CPU time (s) Convergence (%)

SCP 84 1037.1 6.94 1
SCPATR 16 1031.6 1.27 35

Tab. 4: Comparison of SCP and SCPATR algorithms.

n I N Iters. m(tf ) (kg) CPU time (s) Convergence (%)

3 119 120 16 1031.6 1.27 35
7 40 121 19.8 982.3 3.55 94
11 24 121 19.1 1037.4 3.55 100
15 17 120 19.4 1016.7 5.51 96

Tab. 5: Comparison of different LGL orders.

Problem Iters. m(tf ) CPU time (s) Convergence(%)

Minimum-energy 17.7 1013.8 1.65 100
Homotopic 53.7 999.8 4.76 47
Minimum-fuel 16 1031.6 1.27 35

Tab. 6: Comparison of minimum-energy, homotopic and minimum-fuel algorithms.
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Fig. 3: Thrust profiles obtained with γ = 1 (dashed
line), γ = 0.5 (dashed-dotted line), γ = 0.1 (solid line),
and γ = 0 (solid bold line).
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