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Abstract

We prove existence and uniqueness of solutions to a class of stochastic semilinear evolution
equations with a monotone nonlinear drift term and multiplicative noise, considerably extending
corresponding results obtained in previous work of ours. In particular, we assume the initial datum
to be only measurable and we allow the diffusion coefficient to be locally Lipschitz-continuous.
Moreover, we show, in a quantitative fashion, how the finiteness of the p-th moment of solutions
depends on the integrability of the initial datum, in the whole range p ∈]0,∞[. Lipschitz continuity
of the solution map in p-th moment is established, under a Lipschitz continuity assumption on the
diffusion coefficient, in the even larger range p ∈ [0,∞[. A key role is played by an Itô formula
for the square of the norm in the variational setting for processes satisfying minimal integrability
conditions, which yields pathwise continuity of solutions. Moreover, we show how the regularity
of the initial datum and of the diffusion coefficient improves the regularity of the solution and, if
applicable, of the invariant measures.
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1 Introduction

We consider semilinear stochastic partial differential equations on a smooth bounded domain D ⊆ R
d

of the form
dX(t) +AX(t) dt+ β(X(t)) dt ∋ B(t,X(t)) dW (t), X(0) = X0, (1.1)

where A is a coercive maximal monotone operator on (a subspace of) H := L2(D), β is a maximal
monotone graph in R×R defined everywhere, W is a cylindrical Wiener process on a separable Hilbert
space U , and B is a process taking values in the space of Hilbert-Schmidt operators from U to L2(D)
satisfying a (local) Lipschitz continuity condition. Precise assumptions on the data of the problem are
given in §2 below.

Assuming that the initial datum X0 has finite second moment and the diffusion coefficient B is
globally Lipschitz continuous, we proved in [24] that equation (1.1) admits a unique solution, in a
generalized variational sense, whose trajectories are weakly continuous in H . The contribution of this
work is to extend these results in several directions. In fact, we show that the solution X is pathwise
strongly continuous in H , rather than just weakly continuous. This is possible thanks to an Itô-type
formula, interesting in its own right, for the square of the H-norm of processes satisfying minimal
integrability conditions, in a variational setting extending the classical one by Pardoux [26]. The
pathwise strong continuity of solutions to stochastic equations with singular drift is often a difficult
problem, and it was left as an open problem both in the case of semilinear equations (see [3]) as well
as of porous media equations (see [5]). This trajectorial regularity result is essential to prove that the
Markovian semigroup generated by the solution to (1.1) is strongly continuous, for which we refer to [20].
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Moreover, the pathwise strong continuity allows us to prove that existence and uniqueness of solutions
to (1.1) continues to hold under much weaker assumptions on the initial datum and on the diffusion
coefficient. In particular, X0 needs only be measurable and B can be locally Lipschitz-continuous with
linear growth. Denoting by Ω the underlying probability space, the solution map X0 7→ X is thus
defined on L0(Ω;H), with codomain contained in L0(Ω;E), where E is a suitable path space. By the
results of [24] we also have that the solution map restricted to L2(Ω;H) has codomain contained in
L2(Ω;E). As a further result, we extrapolate these mapping properties to the whole range of exponents
p ∈ [0,∞[, that is, we show that if X0 ∈ Lp(Ω;H) then X ∈ Lp(Ω;E) for every positive finite p, and
we provide an explicit upper bound on the Lp(Ω;E)-norm of the solution in terms of the Lp(Ω;H)-
norm of the initial datum. If, in addition, B is Lipschitz-continuous, we show that the solution map
is Lipschitz-continuous from Lp(Ω;H) to Lp(Ω;E) for all p ∈ [0,∞[. In the particular case p = 0,
this implies that solutions converge uniformly on [0, T ] in probability if the corresponding initial data
converge in probability.

The existence of higher moments of the solution in suitable path spaces is essential for various ap-
plications, for instance in optimal control problems of stochastic evolution systems of reaction-diffusion
type with singular terms. Problems of this type arise naturally in phase-transition modelling and
tumor-growth dynamics (see, e.g.,[9, 10, 28]). Indeed, a classical way to prove first-order conditions for
optimality of a certain given cost functional is to study the differentiability of the so-called control-to-
state map. This can be obtained provided that a refined continuous dependence result on the controls
holds. To this end, due to the high nonlinearity of the equations involved, one is usually forced to
prove boundedness of the solutions in function spaces with higher integrability in Ω (see, e.g., [28]). For
these reasons, the possibility of relating the existence of moments (in probability) of the solutions to
the integrability of the data is fundamental. However, while higher-moment estimates are well known
for equations with well-behaved nonlinearities, in case of singular potentials as in (1.1) no result is
currently available in literature. The possibility of including multivalued graphs β as in (1.1) is crucial
in diffuse-interface and phase-change modelling, and the results proved in this paper hence constitute a
first reference in this direction. Let us also mention that the availability of an Lp-theory is also crucial
in the context of numerical approximation of SPDEs, as for example the convergence rate and the choice
of the discretization scheme usually depend on the integrability properties of the solutions (see, e.g., in
the context of numerical discretization of SPDEs, [17, Introduction], [14], and [1].

Finally, we show how the smoothness of the solution improves (as well as of invariant measures, if
they exist) if the initial datum and the diffusion coefficient are smoother, without any further regularity
assumption on the (possibly singular) monotone drift term β. For example, if A (better said, the part of
A in H) is self-adjoint, the solution has paths belonging to the domain of A in H if X0 and B, roughly
speaking, take values in the domain of A1/2. This implies that X is a strong solution in the classical
sense, not just in the variational one. In particular, if (1.1) represents the abstract formulation of
an initial-boundary value problem on D, our result provides sufficient conditions on the data implying
higher regularity in space of the solution. The main novelty is that this extra regularity can be obtained
irrespectively of the bahaviour of the nonlinear term β, meaning that one can obtain higher regularity in
space (thus also better compactness properties) without necessarily “smoothing” out the singularities
of β. Such a result is new in the literature, to the best of our knowledge, and is essential in the context
of optimal control problems of stochastic systems in phase-field modelling (see [28]). In fact, on the one
hand, equations with singular β are necessary to model phase-change phenomena, and, on the other
hand, the possibility of proving necessary conditions for optimality hinges on the availability of spatial
regularity results. For this reason, our contribution is a first step in this direction, apart of providing
new results in the regularity theory of singular dissipative stochastic PDEs.

Let us comment now more in detail on the current available literature.
In the classical variational theory of SPDEs, existence and uniqueness of solutions under a local

Lipschitz condition on B and measurability of X0 were obtained by Pardoux in [26]. Our results
do not follow from his, however, as equation (1.1) cannot be cast in the usual variational setting.
Stochastic equations where all nonlinear terms are locally Lipschitz-continuous have been considered in
the semigroup approach (see, e.g., [19] and references therein), but our existence results are not covered,
as β can be discontinuous and have arbitrary growth. Moreover, the properties of the solution map
between Lp(Ω;H) and Lp(Ω;E) do not seem to have been addressed even in the classical variational
setting. On the other hand, the continuity of the solution map in the case p = 0 for ordinary SDEs in
R

n with Lipschitz coefficients has been studied, also with very general semimartingale noise (see, e.g.,
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[8]).
The techniques used to obtain the above results are mostly classical: we truncate the initial datum

and the diffusion coefficient in a suitable way, so that existence of solutions can be proved locally
(i.e. on a stochastic interval). Uniform estimates on local solutions allow then to extend them to
the whole interval [0, T ]. It is however worth stressing the fact that these arguments are relatively
simple only when applied to classes of equations for which existence of strong solutions with continuous
trajectories is known (e.g. to equations with a polynomially growing drift). On the other hand, in the
case of singular nonlinearities as in (1.1) several non-trivial difficulties appear: for instance, if only weak
pathwise continuity is known (as is the case for (1.1), as well as for other equations – cf. the already
mentioned [5, 24]), it is not clear at all how to define local solutions.

The theory of stochastic evolution equations with monotone drift has considerably developed since
the initial contributions by Pardoux, Krylov and Rozovskĭı [18, 26]. In fact, while in the deterministic
case general well-posedness theories for evolution equations with m-accretive or maximal monotone
operators are available (see, e.g., [4]), the picture is much less complete in the stochastic setting, where
a general well-posedness theory is currently out of reach. Nonetheless, several results are available
for specific classes of equations. For instance, existence of strong solution has been proved in [11] for
stochastic equations on a Hilbert space whose drift is the subdifferential of a potential satisfying a
sub-homogeneity assumption (an exponentially growing drift is then not allowed). Probabilistically
weak solutions, defined in terms of stochastic variational inequalities, have been shown to exist in [6],
with no restrictive assumptions on the potential. Let us also mention, parenthetically, that concepts of
solution based on stochastic variational inequalities have been proposed also for equations with drift in
divergence form and of fast-diffusion type (see [12, 13]).

All of the above results are not applicable to semilinear equations such as (1.1), if neither growth nor
coercivity assumptions on β are assumed. Well-posedness in the strong sense and ergodicity properties
for this class of equations have been obtained in [20, 22, 24], where no growth conditions on the drift are
needed. Several analogous results have also been obtained for fully nonlinear equations in divergence
form with singular drift, again without any growth assumptions, in [23, 21, 27].

The rest of the text is organized as follows. In §2 we state the main assumptions and we recall
the well-posedness result for (1.1) obtained in [24]. In §3 we prove a generalized Itô formula for the
square of the norm, as well as the strong pathwise continuity of solutions. In §4 we prove existence and
uniqueness of strong variational solutions to (1.1) assuming first that B is locally Lipschitz-continuous
with linear growth and that X0 is square integrable, hence removing the latter assumption in a second
step, allowing X0 to be merely measurable. While in the former case solutions have finite second
moment, in the latter case one needs to work with processes that are just measurable (in ω), so that
uniqueness has to be proved in a much larger space. This is achieved by a suitable application of the
Itô formula of §3 and stopping arguments. In §5 we show that X0 having finite p-th moment implies
that the solution belongs to a space of processes with finite p-moment as well, with explicit control of
its norm. The Lipschitz continuity of the solution map is then established in a particular case. Further
regularity of the solution and of invariant measures is obtained in the last section, under additional
regularity assumptions on X0 and B.
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2 Assumptions and preliminaries

2.1 Notation and terminology

Given a Banach space E, its (topological) dual will be denoted by E′. Given a further Banach space
F , the (Banach) space of linear bounded operators from E to F will be denoted by L (E,F ). If E and
F are Hilbert spaces, L 2(E,F ) stands for the space of Hilbert-Schmidt operators from E to F . We
recall that Hilbert-Schmidt operators form a two-sided ideal on linear bounded operators.
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A graph γ in E is a subset of E × E and the domain of γ is defined as D(γ) := {x ∈ E : ∃ y ∈ E :
(x, y) ∈ γ}. We shall identify linear unbounded operators between Banach spaces with their graphs, as
usual. If E is a Hilbert space, γ is monotone if (x1, y1), (x2, y2) ∈ γ implies 〈y2 − y1, x2 − x1〉E ≥ 0,
where 〈·, ·〉E is the scalar product in E. The notion of maximal monotone graph is immediate once
graphs are ordered by inclusion.

We shall use the standard notation of stochastic calculus (see, e.g., [25]). In particular, given a
càdlàg process Y with values in a separable Banach space E, the process Y ∗ is defined as Y ∗(t) :=
sups∈[0,t]‖Y (s)‖. For notational convenience, we shall also denote the time index as a subscript rather

than within parentheses. Moreover, a process Y stopped at a stopping time S is denoted by Y S , and
the stochastic integral of K with respect to a local martingale M is denoted by K ·M .

2.2 Assumptions

Let D be a bounded domain in R
d with smooth boundary, and V a real separable Hilbert space densely,

continuously, and compactly embedded in H := L2(D). The scalar product and the norm of H will
be denoted by 〈·, ·〉 and ‖·‖, respectively. Identifying H with its dual H ′, the triple (V,H, V ′) is a
so-called Gelfand triple: the duality form between V and V ′ extends the scalar product of H , i.e.
〈v, w〉 = V 〈v, w〉V ′ for any v, w ∈ H . For this reason, we shall simply denote the duality form of V and
V ′ by the same symbol used for the scalar product in H .

The following assumptions on the linear operator A ∈ L (V, V ′) will be tacitly assumed to hold
throughout the whole text:

(i) there exists C > 0 such that 〈Av, v〉 ≥ C‖v‖2V for every v ∈ V ;

(ii) the part of A in H can be extended to an m-accretive operator A1 on L1(D);

(iii) for every δ > 0, the resolvent (I + δA1)
−1 is sub-Markovian, i.e. for every f ∈ L1(D) such that

0 ≤ f ≤ 1 a.e. on D, one has 0 ≤ (I + δA)−1f ≤ 1 a.e. on D;

(iv) there exists m ∈ N such that (I + δA1)
−m ∈ L (L1(D), L∞(D)).

We shall occasionally refer to hypothesis (i) as coercivity of A, and to hypothesis (iv) as ultracontrac-
tivity of the resolvent of A1.

Let us now state the assumptions on the nonlinear part of the drift: β ⊂ R × R is a maximal
monotone graph such that 0 ∈ β(0) and D(β) = R. Let j : R → [0,+∞) be the unique convex lower-
semicontinuous function such that j(0) = 0 and β = ∂j, where ∂ stands for the subdifferential in the
sense of convex analysis. We assume that

lim sup
|r|→∞

j(r)

j(−r) <∞.

Denoting the Moreau-Fenchel conjugate of j by j∗, the fact that D(β) = R is equivalent to the super-
linearity of j∗ at infinity, i.e. to

lim
|r|→∞

j∗(r)

|r| = +∞.

For a comprehensive treatment of maximal monotone operators and their connection with convex anal-
ysis we refer to, e.g., [4]. Here we limit ourselves to recalling that, for any maximal monotone graph γ
on a Hilbert space E, its resolvent and Yosida approximation of γ are defined as (I + λγ)−1 and

γλ :=
1

λ

(

I − (I + λγ)−1
)

,

respectively, that both are continuous operators on E, and that the former is a contraction, while the
latter is Lipschitz-continuous with Lipschitz constant bounded by 1/λ.

Let (Ω,F ,P) be a probability space, endowed with a right-continuous and completed filtration
(Ft)t∈[0,T ], on which a cylindrical Wiener process W on a real separable Hilbert space U is defined.
The diffusion coefficient

B : Ω× [0, T ]×H → L 2(U,H)

4



is assumed to be such that B(·, ·, x) is progressively measurable for every x ∈ H , and to grow at most
linearly in its third argument, uniformly with respect to the others. That is, we assume that there
exists a constant N such that

∥

∥B(t, ω, x)
∥

∥

L 2(U,H)
≤ N

(

1 + ‖x‖
)

for all (ω, t, x) ∈ Ω× [0, T ]×H . In addition to this, we shall consider two different assumptions, namely

(B1) B is Lipschitz continuous in its third argument, uniformly with respect to the others, i.e.

∥

∥B(ω, t, x)−B(ω, t, y)
∥

∥

L 2(U,H)
≤ N‖x− y‖

for all (ω, t) ∈ Ω× [0, T ] and x, y ∈ H .

(B2) B is locally Lipschitz continuous in its third argument, uniformly with respect to the others, i.e.
there exists a function R 7→ NR : R+ → R+ such that

∥

∥B(ω, t, x)−B(ω, t, y)
∥

∥

L 2(U,H)
≤ NR‖x− y‖

for all (ω, t) ∈ Ω× [0, T ] and x, y ∈ H with ‖x‖, ‖y‖ ≤ R.

Finally, X0 is assumed to be an H-valued F0-measurable random variable.

Let us now define the concept of solution to equation (1.1).

Definition 2.1. A strong solution to (1.1) is a pair (X, ξ), where X is a V -valued adapted process and

ξ is an L1(D)-valued predictable process, such that, P-almost surely,

X ∈ L∞(0, T ;H) ∩ L2(0, T ;V ), ξ ∈ L1(0, T ;L1(D)),

ξ ∈ β(X) a.e. in (0, T )×D,

and

X(t) +

∫ t

0

AX(s) ds+

∫ t

0

ξ(s) ds = X0 +

∫ t

0

B(s,X(s)) dW (s)

in V ′ ∩ L1(D) for all t ∈ [0, T ].

It is convenient to introduce the family of sets (Jp)p≥0 as follows:

Jp ⊂
(

Lp(Ω;C([0, T ];H)) ∩ Lp(Ω;L2(0, T ;V ))
)

× Lp/2(Ω;L1((0, T )×D)

formed by processes (φ, ψ) such that φ is adapted with values in V , ψ is predictable with values in
L1(D), ψ ∈ β(φ) a.e. in Ω× (0, T )×D, and j(φ) + j∗(ψ) ∈ Lp/2(Ω;L1((0, T )×D).

The following well-posedness result has been proved in [24]. Just for the purposes of this statement,
we shall denote the space J2 with L∞(0, T ;H) in place of C([0, T ];H) by J̃2.

Theorem 2.2. If X0 ∈ L2(Ω,F0;H) and B satisfies the global Lipschitz condition (B1), then there

exists a unique strong solution (X, ξ) to (1.1) belonging to J̃2. Furthermore, the trajectories of X are

weakly continuous in H and the solution map

L2(Ω;H) −→ L2(Ω;L∞(0, T ;H)) ∩ L2(Ω;L2(0, T ;V ))

X0 7−→ X

is Lipschitz-continuous.

Our main result is the following far-reaching extension of Theorem 2.2: under the more general local
Lipschitz continuity assumption (B2), for any X0 ∈ Lp(Ω,F0,P;H), p ∈ [0,∞[, there exists a strong
solution (X, ξ) belonging to Jp, which is unique in J0. In particular, the trajectories of X are strongly
continuous in H . Precise statements and proofs are given in §4.
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3 Pathwise continuity via a generalized Itô formula

In this section we prove that, under the assumptions of Theorem 2.2, the unique strong solution (X, ξ)
in J2 to (1.1) is such that X admits a modification with strongly continuous trajectories in H , rather
than just weakly continuous. To this purpose, we need a generalized Itô’s formula for the square of the
norm under minimal integrability assumptions, that will play a fundamental role throughout.

We first need some preparations. Let us recall that the part of A in H is the linear (unbounded)
operator on H defined by A2 := A ∩ (V ×H). In particular,

D(A2) =
{

u ∈ V : Au ∈ H
}

and A2u = Au ∀u ∈ D(A2).

It is well known (see, e.g., [2]) that A2 is closed and that D(A2) is a Banach space with respect to the
graph norm

‖u‖2
D(A2)

:= ‖u‖2 + ‖Au‖2.
Moreover, D(A2) is continuously and densely embedded in V .

Lemma 3.1. Let v ∈ V and vλ := (I + λA1)
−1v. Then vλ → v in V as λ→ 0.

Proof. Let v ∈ V and ε > 0: since D(A2) is densely embedded in V , we can choose u ∈ D(A2) such
that ‖v − u‖V < ε. Setting uλ := (I + λA1)

−1u, we have

‖v − vλ‖V ≤ ‖v − u‖V + ‖u− uλ‖V + ‖uλ − vλ‖V .

Since u, v ∈ V , we have uλ − vλ = (I + λA2)
−1(u − v), and recalling that A2 is the part of A in H we

have
(uλ − vλ) + λA(uλ − vλ) = u− v,

where the identity holds in V as well. Taking the duality product with A(uλ − vλ) ∈ V ′, by coercivity
and boundedness of A it follows that

V ′

〈

A(uλ − vλ), uλ − vλ
〉

V
+ λ

V ′

〈

A(uλ − vλ), A(uλ − vλ)
〉

V
≥ C

∥

∥uλ − vλ
∥

∥

2

V
+ λ

∥

∥A(uλ − vλ)
∥

∥

2

and

V ′〈A(uλ − vλ), u〉V ≤ ‖A‖L (V,V ′)‖uλ − vλ‖V ‖u‖V ,
hence

C‖uλ − vλ‖2V + λ‖A(uλ − vλ)‖2 ≤ ‖A‖L (V,V ′)‖uλ − vλ‖V ‖u‖V ,
which implies that there exists a constant N > 0, independent of λ, such that

‖uλ − vλ‖V ≤ N‖u− v‖V ,

or, equivalently, that (I + λA1)
−1 is uniformly bounded in V with respect to λ. This implies that

‖uλ − vλ‖V ≤ N‖u− v‖V ≤ Nε.

It remains to estimate the term ‖u− uλ‖V . Since u ∈ D(A2) and

uλ := (I + λA1)
−1u = (I + λA2)

−1u,

one has uλ ∈ D(A2
2), hence, recalling that A2 is the part of A in H ,

Auλ + λA(Auλ) = Au

in H →֒ V ′. Taking the duality pairing with Auλ ∈ D(A2) →֒ V , one has

V ′

〈

Auλ, Auλ
〉

V
+ λ

V ′

〈

A(Auλ), Auλ
〉

V
=

V ′

〈

Au,Auλ
〉

V
,

where

V ′

〈

Auλ, Auλ
〉

V
=

∥

∥Auλ
∥

∥

2
,

V ′

〈

A(Auλ), Auλ
〉

V
≥ C

∥

∥Auλ
∥

∥

2

V
,

V ′

〈

Au,Auλ
〉

V
=

〈

Au,Auλ
〉

≤ 1

2

∥

∥Au
∥

∥

2
+

1

2

∥

∥Auλ
∥

∥

2
,
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hence
∥

∥Auλ
∥

∥

2
+ λC

∥

∥Auλ
∥

∥

2

V
≤ 1

2

∥

∥Au
∥

∥

2
+

1

2

∥

∥Auλ
∥

∥

2
,

which implies that
√
λ
∥

∥Auλ
∥

∥

V
≤ N

∥

∥Au
∥

∥, with a constant N independent of λ. Therefore, since
u ∈ D(A2),

∥

∥uλ − u
∥

∥

V
= λ

∥

∥Auλ
∥

∥

V
≤ N

√
λ
∥

∥Au
∥

∥.

Choosing λ such that N
√
λ
∥

∥Au
∥

∥ < ε, one has then

‖vλ − v‖V < (2 +N)ε,

from which the conclusion follows by arbitrariness of ǫ.

We recall that (see, e.g., [16]) if two Banach spaces F and G are continuously embedded in a
separated topological vector space E, their sum F +G is defined as the subspace of E

F +G :=
{

u ∈ E : ∃f ∈ F, g ∈ G : u = f + g
}

.

Endowed with the norm
∥

∥u
∥

∥

F+G
:= inf

u=f+g

(

‖f‖F + ‖g‖G
)

,

F +G is a Banach space. Similarly, the intersection F ∩G is also a Banach space if endowed with the
norm

∥

∥u
∥

∥

F∩G
:= ‖u‖F + ‖u‖G.

Moreover, if F ∩ G is dense in both F and G, then F ′ and G′ are continuously embedded in (F ∩G)′,
and (F +G)′ = F ′ ∩G′. In the following we shall deal with F := L1(0, T ;H) and G := L2(0, T ;V ′), so
that as ambient space E one can simply take L1(0, T ;V ′). In this case F ∩ G is dense in both F and
G, hence, by reflexivity of V ,

(

L1(0, T ;H) + L2(0, T ;V ′)
)′

= L∞(0, T ;H) ∩ L2(0, T ;V ).

Theorem 3.2. Let Y , v and g be adapted processes such that

Y ∈ L0(Ω;L∞(0, T ;H) ∩ L2(0, T ;V )),

v ∈ L0(Ω;L1(0, T ;H) + L2(0, T ;V ′)),

g ∈ L0(Ω;L1(0, T ;L1(D))),

∃α > 0 : j(αY ) + j∗(αg) ∈ L0(Ω;L1((0, T )×D)).

Moreover, let Y0 ∈ L0(Ω,F0;H) and G be a progressive L 2(U,H)-valued process such that

G ∈ L0(Ω;L2(0, T ;L 2(U,H))).

If

Y (t) +

∫ t

0

v(s) ds+

∫ t

0

g(s) ds = Y0 +

∫ t

0

G(s) dW (s) ∀t ∈ [0, T ] P-a.s.

in V ′ ∩ L1(D), then

1

2
‖Y (t)‖2 +

∫ t

0

〈

v(s), Y (s)
〉

ds+

∫ t

0

∫

D

g(s, x)Y (s, x) dx ds

=
1

2
‖Y0‖2 +

1

2

∫ t

0

‖G(s)‖2
L 2(U,H) ds+

∫ t

0

Y (s)G(s) dW (s)

for all t ∈ [0, T ] with probability one.
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Proof. Since the resolvent of A1 is ultracontractive by assumption, there exists m ∈ N such that

(I + δA1)
−m : L1(D) → H ∀δ > 0.

Using a superscript δ to denote the action of (I + δA1)
−m, we have

Y δ(t) +

∫ t

0

vδ(s) ds+

∫ t

0

gδ(s) ds = Y δ
0 +

∫ t

0

Gδ(s) dW (s)

where gδ ∈ L1(0, T ;H), hence the classical Itô’s formula yields, for every δ > 0,

1

2
‖Y δ(t)‖2 +

∫ t

0

〈

vδ(s), Y δ(s)
〉

ds+

∫ t

0

∫

D

gδ(s, x)Y δ(s, x) dx ds

=
1

2
‖Y δ

0 ‖2 +
1

2

∫ t

0

‖Gδ(s)‖2
L 2(U,H) ds+

∫ t

0

Y δ(s)Gδ(s) dW (s).

Let us pass to the limit as δ → 0. Since the resolvent of A1 coincides on H with the resolvent of A2,
which converges to the identity in L (H) in the strong operator topology, we immediately infer that

Y δ(t) −→ Y (t) in H ∀t ∈ [0, T ],

gδ −→ g in L1(0, T ;L1(D)),

Y δ
0 −→ Y0 in H,

Gδ −→ G in L2(0, T ;L 2(U,H))

where the last statement, which follows by well-known continuity properties of Hilbert-Schmidt opera-
tors, also implies

∫ t

0

‖Gδ(s)‖2
L 2(U,H) ds −→

∫ t

0

‖G(s)‖2
L 2(U,H) ds.

Moreover, by the previous lemma we have

Y δ −→ Y in L2(0, T ;V ),

and Y ∈ L∞(0, T ;H) and the contractivity in H of the resolvent of A1 immediately imply, by the
dominated convergence theorem, that Y δ → Y weakly* in L∞(0, T ;H). Therefore, by reflexivity of V ,

Y δ −→ Y weakly* in L∞(0, T ;H) ∩ L2(0, T ;V ).

Since v ∈ L1(0, T ;H) + L2(0, T ;V ′), we have that v = v1 + v2, with v1 ∈ L1(0, T ;H) and v2 ∈
L2(0, T ;V ′). In this case vδ has to be interpreted as

vδ := (I + δA1)
−mv1 + (I + δA)−mv2.

Note that this is very natural since A1 and A coincide on D(A1)∩V . By the properties of the resolvent
it easily follows that

vδ1 −→ v1 in L1(0, T ;H).

Moreover, since A−1v2 ∈ L2(0, T ;V ) and A−1vδ2 = (I + δA2)
−mA−1v2, by Lemma 3.1 we have that

A−1vδ2 → A−1v2 in L2(0, T ;V ), hence also, by continuity of A,

vδ2 −→ v2 in L2(0, T ;V ′).

The convergences of vδ and Y δ just proved thus imply

∫ t

0

〈

vδ(s), Y δ(s)
〉

ds −→
∫ t

0

〈

v(s), Y (s)
〉

ds

for all t ∈ [0, T ].
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We are now going to prove that
(

(Y δGδ) ·W − (Y G) ·W
)∗

T
→ 0 in probability. Setting Mδ :=

(Y δGδ) ·W and M := (Y G) ·W , it is well known that it suffices to show that the quadratic variation
of Mδ −M converges to 0 in probability. One has

[

Mδ −M,Mδ −M
]

=
∥

∥Y δGδ − Y G
∥

∥

2

L2(0,T ;L 2(U,R))

≤
∥

∥Y δGδ − Y δG
∥

∥

2

L2(0,T ;L 2(U,R))
+
∥

∥Y δG− Y G
∥

∥

2

L2(0,T ;L 2(U,R))

≤ ‖Y ‖2L∞(0,T ;H)‖Gδ −G‖2L2(0,T ;L 2(U,H)) + ‖Y δG− Y G‖2L2(0,T ;L 2(U,R)),

where the convergence to zero of the first term in the last expression has already been proved, and

‖Y δG− Y G‖2L2(0,T ;L 2(U,R)) ≤
∫ T

0

∥

∥Y δ(s)− Y (s)
∥

∥

2∥
∥G(s)

∥

∥

2

L 2(U,H)
ds −→ 0,

by the dominated convergence theorem, because Y δ → Y pointwise in H and ‖Y δ − Y ‖ ≤ 2‖Y ‖ ∈
L∞(0, T ). We have thus shown that

∫ ·

0

Y δ(s)Gδ(s) dW (s) −→
∫ ·

0

Y (s)G(s) dW (s)

in probability, hence P-a.s. along a subsequence of δ.
Finally, it is clear that Y δgδ → Y g in measure in (0, T )×D, and that, thanks to the assumptions

on j,
±α2Y δgδ ≤ j(±αY δ) + j∗(αgδ) . 1 + j(αY δ) + j∗(αgδ),

where the second inequality follows from the fact that, thanks to the assumption on the growth of j at
∞, there exists a constant M > 0 such that

j(r) ≤M
(

1 + j(−r)
)

∀r ∈ R.

Jensen’s inequality for sub-Markovian operators (see, e.g., [15]) thus yields

j(αY δ) + j∗(αgδ) ≤ (I + δA1)
−m

(

j(αY ) + j∗(αg)
)

,

so that
α2

∣

∣Y δgδ
∣

∣ . 1 + (I + δA1)
−m

(

j(αY ) + j∗(αg)
)

.

Since j(αY ) + j∗(αg) ∈ L1((0, T )×D) by assumption, the contractivity of the resolvent in L1(D) and
the dominated convergence theorem imply that the right-hand side in the last inequality is convergent
in L1((0, T )×D). Hence (Y δgδ)δ is uniformly integrable and, by Vitali’s theorem,

∫ t

0

∫

D

gδ(s, x)Y δ(s, x) dx ds −→
∫ t

0

∫

D

g(s, x)Y (s, x) dx ds

for all t ∈ [0, T ]. The proof is thus completed.

As a first important consequence of the generalized Itô formula we show that (the first component
of) strong solutions are pathwise strongly continuous in H .

Theorem 3.3. Let (X, ξ) be the unique strong solution to (1.1) belonging to J2. Then X has strongly

continuous paths in H, i.e. there exists Ω′ ∈ F with P(Ω′) = 1 such that

X(ω) ∈ C([0, T ];H) ∀ω ∈ Ω′.

Proof. Let r ∈ [0, T ]. We have to prove that X(t) → X(r) in H as t → r, t ∈ [0, T ]. It follows from
Theorem 3.2 that for every t ∈ [0, T ] there exists Ω′ ∈ F0 with P(Ω′) = 1 such that

1

2
‖X(t)‖2 − 1

2
‖X(r)‖2 = −

∫ t

r

〈AX(s), X(s)〉 ds−
∫ t

r

∫

D

ξ(s)X(s) ds

+
1

2

∫ t

r

∥

∥B(s)
∥

∥

2

L 2(U,H)
+

∫ t

r

X(s)B(s,X(s)) dW (s)
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everywhere on Ω′. By the definition of strong solution, we can assume that X ∈ L∞(0, T ;H), AX ∈
L2(0, T ;V ′) and j(X)+j∗(ξ) ∈ L1((0, T )×D), as well as that B(·, X) ∈ L2(0, T ;L 2(U,H)), everywhere
on Ω′. Since Xξ = j(X) + j∗(ξ), it follows that the process

[0, T ] ∋ s 7−→ ψ(s) := −〈AX(s), X(s)〉 −
∫

D

ξ(s)X(s) +
1

2

∥

∥B(s,X(s))
∥

∥

2

L 2(U,H)

belongs to L1(0, T ) everywhere on Ω′. Therefore, writing

1

2
‖X(t)‖2 − 1

2
‖X(r)‖2 =

∫ t

r

φ(s) ds +

∫ t

r

X(s)B(s,X(s)) dW (s),

since ψ ∈ L1(0, T ) and the stochastic integral has continuous trajectories, we have, as t→ r,

‖X(t)‖2 − ‖X(r)‖2 → 0,

so that ‖X(t)‖ → ‖X(r)‖. Furthermore, X(t) → X(r) weakly in H as t → r by Theorem 2.2, hence,
since H is uniformly convex, we conclude that X(t) → X(r) in H (cf., e.g., [7, Proposition 3.32]).

4 Existence and uniqueness

We begin with a simple estimate that will be used several times.

Lemma 4.1. Let F and G be progressive process with values in H and L 2(U,H), respectively, such
that FG is integrable with respect to W . For any numbers p, ε > 0 and any stopping time S one has

∥

∥

(

(FG) ·W
)∗

S

∥

∥

Lp(Ω)
. ε

∥

∥F ∗
S

∥

∥

2

L2p(Ω)
+

1

ε

∥

∥G1[[0,S]]

∥

∥

2

L2p(Ω;L2(0,T ;L 2(U,H)))

Proof. The BDG inequality asserts that

∥

∥

(

(FG) ·W
)∗

S

∥

∥

Lp(Ω)
h

∥

∥[(FG) ·W, (FG) ·W ]
1/2
S

∥

∥

Lp(Ω)
,

where, by the ideal property of Hilbert-Schmidt operators and Young’s inequality,

[(FG) ·W, (FG) ·W ]
1/2
S =

(∫ S

0

∥

∥F (t)G(t)
∥

∥

2

L 2(U,R)
dt

)1/2

≤
(∫ S

0

∥

∥F (t)
∥

∥

2∥
∥G(t)

∥

∥

2

L 2(U,H)
dt

)1/2

≤ F ∗
S

(∫ S

0

∥

∥G(t)
∥

∥

2

L 2(U,H)
dt

)1/2

≤ εF ∗2
S +

1

ε

∫ S

0

∥

∥G(t)
∥

∥

2

L 2(U,H)
dt.

Therefore, taking the Lp(Ω)-(quasi)norm on both sides,

∥

∥

(

(FG) ·W
)∗

S

∥

∥

Lp(Ω)
. ε

∥

∥F ∗
S

∥

∥

2

L2p(Ω)
+

1

ε

∥

∥G1[[0,S]]

∥

∥

2

L2p(Ω;L2(0,T ;L 2(U,H)))

Let (X, ξ) and (Y, η) ∈ J0 be strong solutions, in the sense of Definition 2.1, to the equation

dX +AX dt+ β(X) dt ∋ B(·, X) dW

with initial conditions X0 and Y0, both elements of L0(Ω,F0,P;H), respectively. Here and throughout
this section we assume that B is locally Lipschitz-continuous in the sense of assumption (B2).

Let us also introduce the sequence of stopping times (Tn)n∈N defined as

Tn := inf
{

t ≥ 0 : ‖XΓ(t)‖ ≥ n or ‖YΓ(t)‖ ≥ n
}

∧ T.
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Here and in the following, for any Γ ∈ F0, we shall denote multiplication by 1Γ by a subscript Γ. Even
though the stopping times Tn depend on Γ, we shall not indicate this explicitly to avoid making the
notation too cumbersome.

The stopping times Tn are well defined because, by definition of J0, X and Y have continuous
paths with values in H . Moreover, Tn 6= 0 for sufficiently large n.

The estimate in the following lemma is an essential tool, from which, for instance, uniqueness and
a local property of solutions will follow as easy corollaries.

Lemma 4.2. Let Γ ∈ F0 be such that X0Γ, Y0Γ ∈ L2(Ω,F0,P;H). One has, for every n ∈ N,

E
(

XΓ − YΓ
)∗2

Tn
. E

∥

∥X0Γ − Y0Γ
∥

∥

2
,

with implicit constant depending on T and on the Lipschitz constant of B in the ball in H of radius n.

Proof. One has

(X − Y ) +

∫ t

0

A(X − Y ) ds+

∫ t

0

(ξ − η) ds = X0 − Y0 +

∫ t

0

(B(X)−B(Y )) dW.

We recall that, for any F0-measurable random variable ζ and any stochastically integrable process K,
one has ζ(K ·W ) = (ζK) ·W . Therefore

(X − Y )Γ +

∫ t

0

A(X − Y )Γ ds+

∫ t

0

(ξ − η)Γ ds = (X0 − Y0)Γ +

∫ t

0

(B(X)−B(Y ))Γ dW.

The Itô formula of Theorem 3.2 yields

∥

∥XΓ − YΓ
∥

∥

2
(t ∧ Tn) + 2

∫ t∧Tn

0

〈

A(XΓ − YΓ), XΓ − YΓ)
〉

ds+ 2

∫ t∧Tn

0

∫

D

((X − Y )(ξ − η))Γ ds

=
∥

∥X0Γ − Y0Γ
∥

∥

2
+

∫ t∧Tn

0

∥

∥(B(X)−B(Y ))Γ
∥

∥

2

L 2(U,H)
ds

+ 2

∫ t∧Tn

0

(X − Y )Γ(B(X)−B(Y ))Γ dW,

where (a) the second and term terms on the left-hand side are positive by monotonicity of A and β,
and by the assumption that ξ ∈ β(X), η ∈ β(Y ) a.e. in Ω× (0, T )×D; (b) one has

(B(X)−B(Y ))Γ = 1Γ

(

B(XΓ)−B(YΓ)
)

,

hence
1[[0,Tn]]

∥

∥(B(X)− B(Y ))Γ
∥

∥

2

L 2(U,H)
.n 1[[0,Tn]] 1Γ

∥

∥XΓ − YΓ
∥

∥.

Taking supremum in time and expectation,

E
(

XTn

Γ − Y Tn

Γ

)∗2

t
. E

∥

∥X0Γ − Y0Γ
∥

∥

2
+

∫ t

0

E
(

XTn

Γ − Y Tn

Γ

)∗2

s
ds

+ E sup
s≤t

∫ s∧Tn

0

(X − Y )Γ(B(X)−B(Y ))Γ dW,

where, by Lemma 4.1, the last term on the right-hand side is bounded by

εE
(

XTn

Γ − Y Tn

Γ

)∗2

t
+N(ε)E

∫ t∧Tn

0

∥

∥(B(X)−B(Y ))Γ
∥

∥

2

L 2(U,H)
ds

≤ εE
(

XTn

Γ − Y Tn

Γ

)∗2

t
+N(ε, n)

∫ t

0

E
(

XTn

Γ − Y Tn

Γ

)∗2

s
ds.

Choosing ε small enough, it follows by Gronwall’s inequality that

E
(

XΓ − YΓ
)∗2

Tn
= E

(

XTn

Γ − Y Tn

Γ

)∗2

T
. E

∥

∥X0Γ − Y0Γ
∥

∥

2
,

with an implicit constant that depends on T and on the Lipschitz constant of B on the ball in H of
radius n.
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Corollary 4.3. Uniqueness of strong solutions in J0 holds for (1.1).

Proof. Let (X, ξ), (Y, η) ∈ J0 be strong solutions to (1.1). For any Γ ∈ F0 such that X0Γ ∈ L2(Ω;H)

the previous lemma yields XTn

Γ = Y Tn

Γ for all n ∈ N, hence XΓ = YΓ. Writing

Ω =
⋃

k∈N

Ωk, Ωk :=
{

ω ∈ Ω : ‖X0(ω)‖ ≤ k
}

,

and choosing Γ as Ωk, it follows that X1Ωk
= Y 1Ωk

for all k, hence X = Y . By comparison, ξ = η a.e.
in Ω× (0, T )×D.

Remark 4.4. To prove the corollary, by inspection of the proof of Lemma 4.2 it is evident that one
may directly take Γ = Ω, as in this case X0 − Y0 = 0, whose second moment is obviously finite. This
immediately implies XTn = Y Tn for all n ∈ N, hence X = Y .

Corollary 4.5. Let Γ ∈ F0. If X0Γ = Y0Γ, then XΓ = YΓ, and ξΓ = ηΓ a.e. in Ω× (0, T )×D.

Proof. Write Ω =
⋃

k∈N
Ωk, where

Ωk :=
{

ω ∈ Ω : ‖X0(ω)‖ ≤ k
}

∩
{

ω ∈ Ω : ‖Y0(ω)‖ ≤ k
}

.

Then X01Γ∩Ωk
, Y01Γ∩Ωk

∈ L2(Ω;H), and Lemma 4.2 implies that XΓ∩Ωk
= YΓ∩Ωk

for all k ∈ N, hence
XΓ = YΓ, as well as, again by comparison, ξΓ = ηΓ a.e. in Ω× (0, T )×D.

Now that uniqueness is cleared, we turn to the question of existence of strong solutions. For this we
need some preparations. For R > 0, let us consider the truncation operator σR : H → H defined as

σR : x 7−→
{

x, ‖x‖ ≤ R,

Rx/‖x‖, ‖x‖ > R.

We shall then define

BR : Ω× [0, T ]×H −→ L 2(U,H)

(ω, t, x) 7−→ B(ω, t, σR(x)).

Let us check that BR is Lipschitz-continuous for every R > 0. The progressive measurability of BR

follows from the one of B and the fact that σR : H → H is (Lipschitz) continuous. Moreover, since σR
is 1-Lipschitz continuous, thanks to the local Lipschitz continuity and the linear growth of B, for every
ω ∈ Ω, t ∈ [0, T ] and x, y ∈ H one has

‖BR(ω, t, x)−BR(ω, t, y)‖L 2(U,H) ≤ NR‖σR(x)− σR(y)‖ ≤ NR‖x− y‖

as well as
‖BR(ω, t, x)‖L 2(U,H) ≤ N(1 + ‖σR(x)‖) ≤ N(1 + ‖x‖).

Thanks to Theorems 2.2 and 3.3, as well as Lemma 4.2, the equation

dXn +AXn dt+ β(Xn) dt = Bn(Xn) dW, Xn(0) = X0, (4.1)

admits a strong solution (Xn, ξn), which belongs to J2 and is unique in J0, for every n ∈ N.1 Moreover,
by the strong continuity of the paths of Xn, one can define the increasing sequence of stopping times
(τn)n∈N by

τn := inf
{

t ∈ [0, T ] : ‖Xn(t)‖ ≥ n
}

,

as well as the stopping time
τ := lim

n→∞
τn = sup

n∈N

τn.

As first step we show that the sequence of processes (Xn, ξn) satisfies a sort of consistency condition.

1Note that Theorem 2.2 only shows that (Xn, ξn) is unique in J2, while Lemma 4.2 yields uniqueness in the larger
space J0.
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Lemma 4.6. One has Xτn
n+1 = Xτn

n for all n ∈ N, as well as ξn1[[0,τn]] = ξn+11[[0,τn]] in L
0(Ω× (0, T )×

D).

Proof. Itô’s formula yields, in view of the monotonicity of A and β,

∥

∥Xn+1 −Xn

∥

∥

2
(t ∧ τn) .

∫ t∧τn

0

(Xn+1 −Xn)
(

Bn+1(Xn+1)−Bn(Xn)
)

(s) dW (s)

+

∫ t∧τn

0

∥

∥Bn+1(Xn+1(s)) −Bn(Xn(s))
∥

∥

2

L 2(U,H)
ds.

Note that Bn+1 = Bn on the ball of radius n in H , hence Bn(Xn) = Bn+1(Xn) on [[0, τn]]. Therefore,
since Bn+1 is Lipschitz continuous,

E
(

Xτn
n+1 −Xτn

n

)∗2

t
. E

(

((Xn+1 −Xn)(Bn+1(Xn+1)−Bn+1(Xn))) ·W
)∗

t∧τn

+

∫ t

0

E
(

Xτn
n+1 −Xτn

n

)∗2

s
ds,

where the first term on the right-hand side can be estimated, thanks to the BDG inequality and the
ideal property of Hilbert-Schmidt operators, by

E

(∫ t∧τn

0

∥

∥Xn+1 −Xn

∥

∥

2
(s)

∥

∥Bn+1(Xn+1(s))−Bn+1(Xn(s))
∥

∥

2

L 2(U,H)
ds

)1/2

.n E
(

Xτn
n+1 −Xτn

n

)∗

t

(∫ t

0

∥

∥Xτn
n+1 −Xτn

n

∥

∥

2
(s)

)1/2

.n εE
(

Xτn
n+1 −Xτn

n

)∗2

t
+

1

ε

∫ t

0

E
(

Xτn
n+1 −Xτn

n

)∗2

s
ds.

Choosing ε small enough, Gronwall’s inequality implies

E
(

Xτn
n+1 −Xτn

n

)∗2

t
= 0

for all t ≤ T , hence Xτn
n+1 = Xτn

n . The first claim is thus proved.
In order to prove the second claim, note that it holds

Xτn
n+1(t) +

∫ t∧τn

0

AXn+1 ds+

∫ t∧τn

0

ξn+1 ds = X0 +

∫ t∧τn

0

Bn+1(Xn+1) dW,

Xτn
n (t) +

∫ t∧τn

0

AXn ds+

∫ t∧τn

0

ξn ds = X0 +

∫ t∧τn

0

Bn(Xn) dW,

where Bn(Xn) on the right-hand side of the second identity can be replaced by Bn+1(Xn+1) because
the paths of Xτn

n+1 remain within a ball of radius n in H and Xτn
n+1 = Xτn

n . This identity also yields,
by comparison,

∫ t

0

ξn+11[[0,τn]] ds =

∫ t∧τn

0

ξn+1 ds =

∫ t∧τn

0

ξn ds =

∫ t

0

ξn1[[0,τn]] ds,

which implies the second claim.2

The lemma implies that one can define processes X and ξ on [[0, τ ]] by the prescriptions X := Xn

and ξ := ξn on [[0, τn]] for all n ∈ N, or equivalently (but perhaps less tellingly), as X = limn→∞Xn

and ξ = limn→∞ ξn.

We are now going to show that the linear growth assumption on B implies that τ = T . We shall
first establish a priori estimates for the solution to equation (4.1).

2The argument in fact proves the following slightly stronger statement: setting Ξn :=
∫
·

0
ξn ds, the processes Ξτn

n+1

and Ξτn
n are indistinguishable for all n.
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Lemma 4.7. There exists a constant N > 0, independent of n, such that

E
∥

∥Xn

∥

∥

2

C([0,T ];H)
+ E

∥

∥Xn

∥

∥

2

L2(0,T ;V )
+ E

∥

∥ξnXn

∥

∥

L1((0,T )×D)
< N

(

1 + E‖X0‖2
)

.

Proof. The Itô formula of Theorem 3.2 yields

‖Xn(t)‖2 + 2

∫ t

0

〈AXn(s), Xn(s)〉 ds + 2

∫ t

0

∫

D

ξn(s)Xn(s) dx ds

= ‖X0‖2 +
∫ t

0

∥

∥Bn(s,Xn(s))
∥

∥

2

L 2(U,H)
ds+ 2

∫ t

0

Xn(s)Bn(s,Xn(s)) dW (s),

where, recalling that Bn = B(·, ·, σn(·)) and σn is a contraction in H , and that B grows at most linearly,

∫ t

0

∥

∥Bn(s,Xn(s))
∥

∥

2

L 2(U,H)
. T +

∫ T

0

‖Xn(s)‖2 ds.

Denoting the stochastic integral on the right-hand side byMn, taking supremum in time and expectation
we get, by the coercivity of A,

E
∥

∥Xn

∥

∥

2

C([0,T ];H)
+ E

∥

∥Xn

∥

∥

2

L2(0,T ;V )
+ E

∥

∥ξnXn

∥

∥

L1((0,T )×D)

. 1 + E‖X0‖2 + E

∫ T

0

‖Xn(s)‖2 ds+ EM∗2
T ,

where the implicit constant depends on T . By Lemma 4.1 we have, for any ε > 0,

EM∗2
T . εE

∥

∥Xn

∥

∥

2

C([0,T ];H)
+N(ε)E

∫ T

0

‖Xn(s)‖2 ds,

therefore, choosing ε sufficiently small,

E
∥

∥Xn

∥

∥

2

C([0,T ];H)
+ E

∥

∥Xn

∥

∥

2

L2(0,T ;V )
+ E

∥

∥ξnXn

∥

∥

L1((0,T )×D)

. 1 + E‖X0‖2 + E

∫ T

0

‖Xn(s)‖2 ds.

Since this inequality holds also with T replaced by any t ∈]0, T ], we also have

E
∥

∥Xn

∥

∥

2

C([0,t];H)
. 1 + E‖X0‖2 +

∫ T

0

E
∥

∥Xn

∥

∥

2

C([0,s];H)
ds,

hence, by Gronwall’s inequality,

E
∥

∥Xn

∥

∥

2

C([0,T ];H)
. 1 + E‖X0‖2,

with implicit constant depending on T . Since C([0, T ];H) is continuously embedded in L2(0, T ;H), one
easily deduces

E
∥

∥Xn

∥

∥

2

C([0,T ];H)
+ E

∥

∥Xn

∥

∥

2

L2(0,T ;V )
+ E

∥

∥ξnXn

∥

∥

L1((0,T )×D)
. 1 + E‖X0‖2.

Lemma 4.8. One has

P

(

lim sup
n→∞

{τn ≤ T }
)

= 0.

In particular, τ = T .

Proof. By Markov’s inequality and the previous lemma,

P
(

‖Xn‖C([0,T ];H) ≥ n
)

≤ 1

n2
E‖Xn‖2C([0,T ];H) .

1

n2

(

1 + E‖X0‖2).
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Since the event {‖Xn‖C([0,T ];H) ≥ n} coincides with {τn ≤ T }, one has

∞
∑

n=1

P
(

τn ≤ T
)

<∞,

thus also, by the Borel-Cantelli lemma,

P





⋂

n∈N

⋃

k≥n

{τk ≤ T }



 = 0.

In other words, the sequence (τn) is ultimately constant: for each ω in a subset of Ω of P-measure one,
there exists m = m(ω) such that τn(ω) = T for all n > m. In particular, τ = T P-almost surely.

This lemma implies that the processes X and ξ defined immediately after the proof of Lemma 4.6
are indeed defined on the whole interval [0, T ].

We can now prove the first existence result.

Theorem 4.9. Assume that X0 ∈ L2(Ω,F0,P;H). Then equation (1.1) admits a unique strong solu-

tion, which belongs to J2.

Proof. Uniqueness of strong solutions is proved, in more generality, by Corollary 4.3. Let us prove
existence. By stopping at τn, one has

Xτn
n (t) +

∫ t∧τn

0

AXn(s) ds+

∫ t∧τn

0

ξn(s) ds = X0 +

∫ t∧τn

0

Bn(Xn(s)) ds,

where, by definition of X , Xτn
n = Xτn, as well as, by definition of Bn,

∫ t∧τn

0

Bn(Xn(s)) ds =

∫ t∧τn

0

B(X(s)) ds.

Similarly, by definition of ξ it follows that
∫ t∧τn

0

ξn(s) ds =

∫ t∧τn

0

ξ(s) ds,

hence that

Xτn(t) +

∫ t∧τn

0

AX(s) ds+

∫ t∧τn

0

ξ(s) ds = X0 +

∫ t∧τn

0

B(X(s)) ds.

Since this identity holds for all n ∈ N and τn → T as n→ ∞, we infer that

X(t) +

∫ t

0

AX(s) ds+

∫ t

0

ξ(s) ds = X0 +

∫ t

0

B(X(s)) ds

for all t ∈ [0, T ] P-a.s.. Moreover, for every n ∈ N, ξn ∈ β(Xn) a.e. in Ω × (0, T ) × D, hence
ξn1[[0,τn]] ∈ β(Xn)1[[0,τn]], thus also ξ1[[0,τn]] ∈ β(X)1[[0,τn]] a.e. in Ω× (0, T )×D. Recalling that τn → T
as n→ ∞, this in turn implies ξ ∈ β(X) a.e. in Ω× (0, T )×D.

Moreover, since (X, ξ) is the almost sure limit of (Xn, ξn), we immediately infer that X and ξ are
predictable H-valued and L1(D)-valued processes, respectively. The a priori estimates of Lemma 4.7
and Fatou’s lemma then yield

X ∈ L2(Ω;C([0, T ];H)) ∩ L2(Ω;L2(0, T ;V )), ξ ∈ L1(Ω× (0, T )×D).

Similarly, ξn ∈ β(Xn) implies Xnξn = j(Xn) + j∗(ξn), hence

E

∫ T

0

∫

D

(

j(Xn) + j∗(ξn)
)

. 1 + E‖X0‖2

for all n ∈ N, and again by Fatou’s lemma, as well as by the lower-semicontinuity of convex integrals,
one obtains

j(X) + j∗(ξ) ∈ L1(Ω;L1(0, T ;L1(D))).

We have thus proved that (X, ξ) ∈ J2, so the proof is completed.
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The second existence result, which allows X0 to be merely F0-measurable, follows by a further
“gluing” procedure.

Theorem 4.10. Assume that X0 ∈ L0(Ω,F0,P;H). Then equation (1.1) admits a unique strong

solution.

Proof. Uniqueness of strong solutions has already been proved in Corollary 4.3. It is hence enough to
prove existence. Let us define the sequence (Γn)n∈N of elements of F0 as

Γn :=
{

ω ∈ Ω : ‖X0‖ ≤ n
}

.

It is evident that (Γn) is a sequence increasing to Ω, and that X0Γn = X01Γn ∈ L2(Ω;H). Therefore,
by the previous theorem, for each n ∈ N there exists a unique strong solution (Xn, ξn) to (1.1) with
initial condition X0Γn . By the local property of solutions established in Corollary 4.5, we have that
Xn+11Γn and Xn1Γn are indistinguishable, and ξn+11Γn = ξn1Γn a.e. in Ω× (0, T )×D. Since (Γn) is
increasing, it makes sense to define the processes X and ξ by

X1Γn = Xn1Γn , ξ1Γn = ξn1Γn

for all n ∈ N. This amounts to saying that X and ξ are the P-a.s. limits ofXn and ξn, respectively, which
immediately implies that X and ξ are predictable processes with values in H and L1(D), respectively.
Moreover, by construction, we also have

X ∈ L0(Ω;C([0, T ];H) ∩ L2(0, T ;V )), ξ ∈ L0(Ω;L1(0, T ;L1(D)))

In fact, writing E := C([0, T ];H)∩L2(0, T ;V ) for compactness of notation, by the previous theorem we
have Xn ∈ L2(Ω;E) and ξ ∈ L1(Ω× (0, T )×D), and for any arbitrary but fixed ω in a subset of Ω of
probability one, there exists n = n(ω) such that (X(ω), ξ(ω)) = (Xn(ω), ξn(ω)) ∈ E × L1((0, T )×D).
Furthermore, since ξn ∈ β(Xn) a.e. for all n ∈ N, it is easy to see that

ξ1Γn = ξn1Γn ∈ β(Xn)1Γn = β(Xn1Γn)1Γn = β(X)1Γn

for all n ∈ N, so that ξ ∈ β(X) a.e. because Γn ↑ Ω. Similarly,

j(Xn)1Γn = j(1ΓnXn)1Γn = j(X)1Γn

as well as, by the same reasoning, j∗(ξn)1Γn = j∗(ξ)1Γn . Since, by the previous theorem, j(Xn) +
j∗(ξn) ∈ L1(Ω;L1((0, T )×D) for all n ∈ N, it follows that

(

j(X) + j∗(ξ)
)

1Γn ∈ L1(Ω;L1((0, T )×D) ∀n ∈ N,

hence j(X) + j∗(ξ) ∈ L0(Ω;L1((0, T )×D).

5 Moment estimates and dependence on the initial datum

We are now going to show that the integrability of the solution is determined by the integrability of
the initial condition.

Theorem 5.1. Let p ≥ 0. If X0 ∈ Lp(Ω,F0,P;H), then the unique strong solution to equation (1.1)
belongs to Jp.

Proof. Itô’s formula yields

‖X(t)‖2 + 2

∫ t

0

〈AX(s), X(s)〉 ds+ 2

∫ t

0

∫

D

ξ(s)X(s) dx ds

= ‖X0‖2 +
∫ t

0

∥

∥B(s,X(s))
∥

∥

2

L 2(U,H)
ds+ 2

∫ t

0

X(s)B(s,X(s)) dW (s).
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For any α > 0, it follows by the integration-by-parts formula that

e−2αt‖X(t)‖2 + 2α

∫ t

0

e−2αs‖X(s)‖2 ds+ 2

∫ t

0

e−2αs〈AX(s), X(s)〉 ds

+ 2

∫ t

0

∫

D

e−2αsξ(s)X(s) dx ds

= ‖X0‖2 +
∫ t

0

e−2αs
∥

∥B(s,X(s))
∥

∥

2

L 2(U,H)
ds+ 2

∫ t

0

e−2αsX(s)B(s,X(s)) dW (s).

Let M denote the stochastic integral on the right-hand side, and Y (t) := e−αtX(t). Since X has
continuous paths in H , one can introduce the sequence of stopping times (Tn)n∈N, increasing to T , as

Tn := inf
{

t ≥ 0 : ‖X(t)‖ ≥ n
}

∧ T.

It follows by the local Lipschitz-continuity property of B that

‖Y Tn(t)‖2 + 2α

∫ t∧Tn

0

‖Y (s)‖2 ds+ 2C

∫ t∧Tn

0

‖Y (s)‖2V ds+ 2

∫ t∧Tn

0

∫

D

e−2αsξ(s)X(s) dx ds

≤ ‖X0‖2 +
∫ t∧Tn

0

e−2αs
∥

∥Bn(s,X(s))
∥

∥

2

L 2(U,H)
ds+ 2MTn(t).

Recalling that Bn = B(·, ·, σn(·)) and σn is a contraction in H , and that B grows at most linearly, one
has

e−2αs
∥

∥Bn(s,X(s))
∥

∥

2

L 2(U,H)
. e−2αs + ‖Y (s)‖2,

hence
∫ t∧Tn

0

e−2αs
∥

∥Bn(s,X(s))
∥

∥

2

L 2(U,H)
ds .

1

2α
+

∫ t∧Tn

0

‖Y (s)‖2 ds. (5.1)

Taking supremum in time and the Lp/2(Ω)-(quasi)norm, recalling the BDG inequality and the fact that
e−αtξnXn ≥ e−αT ξnXn, we are left with

∥

∥Y ∗
Tn

∥

∥

2

Lp(Ω)
+ α

∥

∥Y 1[[0,Tn]]

∥

∥

2

Lp(Ω;L2(0,T ;H))
+
∥

∥Y 1[[0,Tn]]

∥

∥

2

Lp(Ω;L2(0,T ;V ))

+ e−αT
∥

∥ξX1[[0,Tn]]

∥

∥

Lp/2(Ω;L1((0,T )×D))

.
∥

∥X0

∥

∥

2

Lp(Ω;H)
+

1

2α
+
∥

∥Y 1[[0,Tn]]

∥

∥

2

Lp(Ω;L2(0,T ;H))
+
∥

∥[M,M ]
1/2
Tn

∥

∥

Lp/2(Ω)
.

Lemma 4.1 and (5.1) yield

[M,M ]
1/2
Tn

. εY ∗2
Tn

+
1

ε

(

1

2α
+
∥

∥Y 1[[0,Tn]]

∥

∥

2

L2(0,T ;H)

)

,

hence
∥

∥[M,M ]
1/2
Tn

∥

∥

Lp/2(Ω)
. ε

∥

∥Y ∗
Tn

∥

∥

2

Lp(Ω)
+

1

ε

∥

∥Y 1[[0,Tn]]

∥

∥

2

Lp(Ω;L2(0,T ;H))
+

1

2αε
,

where the implicit constant is independent of α and of an arbitrary ε > 0 to be chosen later. We thus
have

∥

∥Y ∗
Tn

∥

∥

2

Lp(Ω)
+ α

∥

∥Y 1[[0,Tn]]

∥

∥

2

Lp(Ω;L2(0,T ;H))
+
∥

∥Y 1[[0,Tn]]

∥

∥

2

Lp(Ω;L2(0,T ;V ))

+ e−αT
∥

∥ξX1[[0,Tn]]

∥

∥

Lp/2(Ω;L1((0,T )×D))

.
∥

∥X0

∥

∥

2

Lp(Ω;H)
+ ε

∥

∥(Y Tn)∗T
∥

∥

2

Lp(Ω)
+ (1 + 1/ε)

∥

∥Y 1[[0,Tn]]

∥

∥

2

Lp(Ω;L2(0,T ;H))
+

1

2α
(1 + 1/ε).

Since the implicit constant is independent of α and ε, one can take ε small enough and α large enough
so that

∥

∥Y ∗
Tn

∥

∥

2

Lp(Ω)
+
∥

∥Y 1[[0,Tn]]

∥

∥

2

Lp(Ω;L2(0,T ;V ))
+
∥

∥ξX1[[0,Tn]]

∥

∥

Lp/2(Ω;L1((0,T )×D))
. 1 +

∥

∥X0

∥

∥

2

Lp(Ω;H)
.
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As the implicit constant is independent of n and Tn increases to T , we get

∥

∥Y
∥

∥

2

Lp(Ω;C([0,T ];H))
+

∥

∥Y
∥

∥

2

Lp(Ω;L2(0,T ;V ))
+
∥

∥ξX
∥

∥

Lp/2(Ω;L1((0,T )×D))
. 1 +

∥

∥X0

∥

∥

2

Lp(Ω;H)
.

The proof is completed noting that, for E := C([0, T ];H) ∩ L2(0, T ;V ),

‖X‖E ≤ eαT ‖Y ‖E.

If B is Lipschitz-continuous, related arguments show that the solution map is Lipschitz-continuous
between spaces with finite p-th moment in the whole range p ∈ [0,∞[. We consider the cases p > 0 and
p = 0 separately.

Proposition 5.2. Let p > 0. If B is Lipschitz-continuous in the sense of assumption (B1), then the

solution map

Lp(Ω;H) −→ Lp(Ω;C([0, T ];H)) ∩ Lp(Ω;L2(0, T ;V ))

X0 7−→ X

is Lipschitz-continuous.

Proof. Let X0, Y0 ∈ Lp(Ω;H). The previous theorem asserts that the (unique) strong solutions (X, ξ)
and (Y, η) to (1.1) with initial condition X0 and Y0, respectively, belong to Lp(Ω;E), where, as before,
E stands for C([0, T ];H) ∩ L2(0, T ;V ). By Itô’s formula,

‖X − Y ‖2 + 2

∫ t

0

〈A(X − Y ), X − Y 〉 ds+ 2

∫ t

0

∫

D

(ξ − η)(X − Y ) ds

= ‖X0 − Y0‖2 +
∫ t

0

∥

∥B(X)−B(Y )
∥

∥

2

L 2(U,H)
ds

+ 2

∫ t

0

(X − Y )(B(X)−B(Y )) dW,

where the third term on the left-hand side is positive by monotonicity of β. Let α > 0 be a constant
to be chosen later, and set Xα := Xe−α·, Yα := Y e−α·. It follows by the integration-by-parts formula,
in complete analogy to the proof of the previous theorem, by the Lipschitz continuity of B, and by the
coercivity of A, that

‖Xα − Yα‖2 + α

∫ t

0

‖Xα − Yα‖2 ds+
∫ t

0

‖Xα − Yα‖2V ds

. ‖X0 − Y0‖2 +
∫ t

0

∥

∥Xα − Yα
∥

∥

2
ds+M,

whereM :=
(

e−2α·(X−Y )(B(X)−B(Y ))
)

·W . Taking supremum in time and the Lp/2(Ω)-(quasi)norm
yields

∥

∥Xα − Yα
∥

∥

2

Lp(Ω;C([0,T ];H))
+ α

∥

∥Xα − Yα
∥

∥

2

Lp(Ω;L2(0,T ;H))
+
∥

∥Xα − Yα
∥

∥

2

Lp(Ω;L2(0,T ;V ))

.
∥

∥X0 − Y0
∥

∥

2

Lp(Ω;H)
+
∥

∥Xα − Yα
∥

∥

2

Lp(Ω;L2(0,T ;H))
+
∥

∥M∗
T

∥

∥

Lp/2(Ω)
,

where, by Lemma 4.1,

∥

∥M∗
T

∥

∥

Lp/2(Ω)
. ε

∥

∥Xα − Yα
∥

∥

2

Lp(Ω;C([0,T ];H))
+N(ε)

∥

∥Xα − Yα
∥

∥

2

Lp(Ω;L2(0,T ;H))

for any ε > 0. Choosing first ε small enough, then α sufficiently large, we obtain

∥

∥Xα − Yα
∥

∥

2

Lp(Ω;C([0,T ];H))
+
∥

∥Xα − Yα
∥

∥

2

Lp(Ω;L2(0,T ;V ))
.

∥

∥X0 − Y0
∥

∥

2

Lp(Ω;H)
,

which completes the proof noting that ‖X − Y ‖E ≤ eαT ‖Xα − Yα‖E .
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Lipschitz continuity of the solution map can also be obtained in the case p = 0. As already seen,
the space E := C([0, T ];H) ∩ L2(0, T ;V ), equipped with the norm

∥

∥u
∥

∥

E
:=

∥

∥u
∥

∥

C([0,T ];H)
+
∥

∥u
∥

∥

L2(0,T ;V )
,

is a Banach space. Then L0(Ω;E), endowed with the topology of convergence in probability, is a
complete metrizable topological vector space. In particular, the distance

d(f, g) := E
(

‖f − g‖E ∧ 1
)

generates its topology.

Proposition 5.3. If B is Lipschitz-continuous in the sense of assumption (B1), then the solution map

L0(Ω;H) −→ L0(Ω;E)

X0 7−→ X

is Lipschitz-continuous.

Proof. Let X0, Y0 ∈ L0(Ω,F0,P;H), and (X, ξ), (Y, η) the unique solutions in J0 to equation (1.1)
with initial datum X0 and Y0, respectively. The stopping time

T1 := inf
{

t ≥ 0 : (X − Y )∗t +

(∫ t

0

‖X(s)− Y (s)‖2V ds
)1/2

≥ 1
}

∧ T.

is well defined thanks to the pathwise continuity of X and Y . For every α > 0, using the same notation
as in the previous proof, Theorem 3.2 yields, by monotonicity of β and coercivity of A,

(

Xα − Yα
)∗2

t
+

∫ t

0

‖Xα(s)− Yα(s)‖2V ds+ α

∫ t

0

‖Xα(s)− Yα(s)‖2 ds

. ‖X0 − Y0‖2 +
∫ t

0

∥

∥(B(X(s))−B(Y (s)))α
∥

∥

2

L 2(U,H)
ds

+
(

(Xα − Yα)(B(X)−B(Y ))α ·W
)∗

t

Raising to the power 1/2, stopping at T1, and taking expectation, we get, by the Lipschitz continuity
of B,

E
(

Xα − Yα
)∗

T1

+ E

(∫ T1

0

‖Xα(s)− Yα(s)‖2V ds
)1/2

+
√
αE

(∫ T1

0

‖Xα(s)− Yα(s)‖2 ds
)1/2

. E1[[0,T1]]‖X0 − Y0‖+ E

(∫ T1

0

‖Xα(s)− Yα(s)‖2 ds
)1/2

+ E
(

(Xα − Yα)(B(X)−B(Y ))α ·W
)∗1/2

T1

,

where, by Lemma 4.1 and Lipschitz continuity of B, the last term on the right-hand side is bounded by

εE
(

Xα − Yα
)∗

T1

+N(ε)E

(∫ T1

0

‖Xα(s)− Yα(s)‖2 ds
)1/2

for every ε > 0. Therefore, choosing ε small enough and α large enough, we are left with

E
(

X − Y
)∗

T1

+ E

(∫ T1

0

‖X(s)− Y (s)‖2V ds
)1/2

. E1[[0,T1]]‖X0 − Y0‖.

The proof is concluded noting that, by definition of T1,

(

X − Y
)∗

T1

+

(∫ T1

0

‖X(s)− Y (s)‖2V ds
)1/2

=
∥

∥X − Y
∥

∥

C([0,T ];H)∩L2(0,T ;V )
∧ 1,

and ‖X0 − Y0‖ ≤ 1 on [[0, T1]], hence

E1[[0,T1]]‖X0 − Y0‖ = E1[[0,T1]]

(

‖X0 − Y0‖ ∧ 1
)

≤ E
(

‖X0 − Y0‖ ∧ 1
)

.
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6 A regularity result

We are going to show that the regularity of the solution to equation (1.1) improves, if the initial datum
and the diffusion coefficient are smoother, irrespective of the (possible) singularity of the drift coefficient
β. In particular, we provide sufficient conditions implying that the variational solution to (1.1) is also
an analytically strong solution, in the sense that it takes values in the domain of the part of A in H
(see §3). If the solution to (1.1) generates a Markovian semigroup on Cb(H) admitting an invariant
measure, we also show that improved regularity of the solution carries over to further regularity of the
invariant measure, in the sense that its support is made of smoother functions.

Theorem 6.1. Assume that the hypotheses of §2.2 are satisfied, that A is symmetric and that

X0 ∈ L2(Ω,F0,P;V ), B(·, X) ∈ L2(Ω;L2(0, T ;L 2(U, V ))). (6.1)

Then the unique solution (X, ξ) to the equation (1.1) satisfies

X ∈ L2(Ω;C([0, T ];H)) ∩ L2(Ω;L∞(0, T ;V )) ∩ L2(Ω;L2(0, T ;D(A2))).

For the proof we need the following positivity result.

Lemma 6.2. Let Aλ and βλ be the Yosida approximations of A2 and β, respectively. One has
〈

Aλu, βλ(u)
〉

≥ 0 ∀u ∈ H.

Proof. Let jλ : R → R be the positive convex function defined as jλ(x) :=
∫ x

0 βλ(y) dy. Then, for any
u, v ∈ L2(D),

jλ(v)− jλ(u) ≥ j′λ(u)(v − u)

a.e. in D, hence, integrating over D,
∫

D

jλ(v) −
∫

jλ(u) ≥
〈

βλ(u), v − u
〉

.

Choosing v = (I + λA2)
−1u, one has u− v = λAλu, thus also

λ
〈

βλ(u), Aλu
〉

≥
∫

jλ(u)−
∫

jλ((I + λA2)
−1u).

Since A1 is an extension of A2 and u ∈ L1(D), Jensen’s inequality for sub-Markovian operators and
accretivity of A1 in L1(D) imply

∫

jλ((I + λA2)
−1u) ≤

∫

(I + λA2)
−1jλ(u) ≤

∫

jλ(u).

Proof of Theorem 6.1. For any λ > 0, let Jλ and Aλ be the resolvent and the Yosida approximations
of A2, the part of A in H , as defined in §3. That is,

Jλ := (I + λA2)
−1, Aλ :=

1

λ
(I − Jλ).

We recall that Jλ and Aλ are bounded linear operators on H , that Jλ is a contraction, and that
Aλ = AJλ.

Setting G := B(·, X), let us consider the equation

dXλ(t) +AλXλ(t) dt+ βλ(Xλ(t)) dt = G(t) dW (t), Xλ(0) = X0.

Since Aλ is bounded and βλ is Lipschitz-continuous, it admits a unique strong solution

Xλ ∈ L2(Ω;C([0, T ];H)),

for which Itô’s formula for the square of the H-norm yields

1

2
‖Xλ(t)‖2 +

∫ t

0

〈

AλXλ(s), Xλ(s)
〉

ds+

∫ t

0

∫

D

βλ(Xλ(s))Xλ(s) ds

=
1

2
‖X0‖2 +

1

2

∫ t

0

‖G(s)‖2
L 2(U,H) ds+

∫ t

0

Xλ(s)G(s) dW (s)
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for all t ∈ [0, T ] P-almost surely. Writing

Xλ = JλXλ +Xλ − JλXλ = JλXλ + λAλXλ

and recalling that Aλ = AJλ and that A is coercive, we have, after taking supremum in time and
expectation,

1

2
E
∥

∥Xλ

∥

∥

2

C([0,T ];H)
+ C E

∫ T

0

∥

∥JλXλ(s)
∥

∥

2

V
ds

+ λE

∫ T

0

‖AλXλ(s)‖2 ds+ E

∫ T

0

∫

D

βλ(Xλ(s))Xλ(s) ds

≤ 1

2
E‖X0‖2 +

1

2
E

∫ T

0

∥

∥G(s)
∥

∥

2

L 2(U,H)
ds+ E sup

t∈[0,T ]

∣

∣

∣

∣

∫ t

0

Xλ(s)G(s) dW (s)

∣

∣

∣

∣

,

where, by Lemma 4.1, the last term on the right-hand side is bounded by

εE‖Xλ‖2C([0,T ];H) + Cε E

∫ T

0

∥

∥G(s)
∥

∥

2

L 2(U,H)
ds,

so that, rearranging terms and choosing ε small enough, we deduce that there exists a constant N > 0
independent of λ such that

∥

∥Xλ

∥

∥

2

L2(Ω;C([0,T ];H))
+
∥

∥JλXλ

∥

∥

2

L2(Ω;L2(0,T ;V ))
+
∥

∥βλ(Xλ)Xλ

∥

∥

L1(Ω×(0,T )×D)
< N. (6.2)

Moreover, let us introduce the function

ϕλ : H −→ [0,+∞[,

u 7−→ 1

2
〈Aλu, u〉.

The linearity, boundedness and symmetry of Aλ immediately imply that ϕλ ∈ C2(H) with Dϕλ(u) =
Aλ, and, by linearity, D2ϕλ(u) = Aλ, for all u ∈ H (in the latter statement Aλ has to be considered
as an element of L2(H), the space of bounded bilinear maps on H). Itô’s formula applied to ϕλ(Xλ)
then yields

ϕλ(Xλ(t)) +

∫ t

0

∥

∥AλXλ(s)
∥

∥

2
ds+

∫ t

0

〈

AλXλ(s), βλ(Xλ(s))
〉

ds

= ϕλ(X0) +
1

2

∫ t

0

Tr
(

G∗(s)D2ϕλ(Xλ(s))G(s)
)

ds+

∫ t

0

AλXλ(s)G(s) dW (s)

for every t ∈ [0, T ] P-almost surely. Writing, as before, Xλ = JλXλ+λAλXλ, the coercivity of A implies
that

ϕλ(Xλ) =
1

2

〈

AλXλ, Xλ

〉

≥ C

2

∥

∥JλXλ

∥

∥

2

V
+

1

2
λ
∥

∥AλXλ

∥

∥

2
&

∥

∥JλXλ

∥

∥

2

V
.

The continuity of Jλ on V (see Lemma 3.1) instead implies

ϕλ(X0) =
〈

AJλX0, X0

〉

≤
∥

∥A
∥

∥

L (V,V ′)

∥

∥JλX0

∥

∥

V

∥

∥X0

∥

∥

V
.

∥

∥A
∥

∥

L (V,V ′)

∥

∥X0

∥

∥

2

V
.

Denoting a complete orthonormal basis of U by (uk)k, we have, recalling again the continuity of Jλ on
V and that D2ϕλ(u) = Aλ for all u ∈ H ,

Tr
(

G∗D2ϕλ(Xλ)G
)

=

∞
∑

k=0

〈

G∗D2ϕλ(Xλ)Guk, uk
〉

U
=

∞
∑

k=0

〈

AλGuk, Guk
〉

=

∞
∑

k=0

〈

AJλGuk, Guk
〉

≤
∥

∥A
∥

∥

L (V,V ′)

∞
∑

k=0

∥

∥JλGuk
∥

∥

V

∥

∥Guk
∥

∥

V

.
∥

∥A
∥

∥

L (V,V ′)

∞
∑

k=0

∥

∥Guk
∥

∥

2

V
=

∥

∥A
∥

∥

L (V,V ′)

∥

∥G
∥

∥

2

L 2(U,V )
.
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Moreover, by Lemma 4.1,

E
(

(AλXλG) ·W
)∗

T
. εE sup

t∈[0,T ]

∥

∥AλXλ(t)
∥

∥

2

V ′
+N(ε)E

∫ T

0

∥

∥G(s)
∥

∥

2

L 2(U,V )
ds

≤ ε
∥

∥A
∥

∥

2

L (V,V ′)
E sup

t∈[0,T ]

∥

∥JλXλ(t)
∥

∥

2

V
+N(ε)E

∫ T

0

∥

∥G(s)
∥

∥

2

L 2(U,V )
ds

for every ε > 0. Taking supremum in time and expectations in the Itô formula for ϕλ(Xλ), choosing ε
small enough we obtain, thanks to the previous lemma and hypothesis (6.1), that there exists a constant
N > 0 independent of λ, such that

∥

∥JλXλ

∥

∥

2

L2(Ω;L∞(0,T ;V ))
+
∥

∥AλXλ

∥

∥

2

L2(Ω;L2(0,T ;H))
< N. (6.3)

Reasoning as in [24], it follows by (6.2) that

Xλ −→ X weakly in L2(Ω;L2(0, T ;H)),

JλXλ −→ X weakly in L2(Ω;L2(0, T ;V )),

βλ(Xλ) −→ ξ weakly in L1(Ω× (0, T )×D),

where (X, ξ) is the unique solution to (1.1). Moreover, by (6.3) we have

JλXλ −Xλ = λAλXλ −→ 0 in L2(Ω;L2(0, T ;H)),

hence, P-almost surely and for almost every t ∈ (0, T ), JλXλ(t) converges to X(t) in H . Since the
function ‖·‖2V is lower semicontinuous on H , we infer that

‖X(t)‖2V ≤ lim inf
λ→0

∥

∥JλXλ(t)
∥

∥

2

V

for almost every t. Hence, taking supremum in time and expectation, we deduce that

X ∈ L2(Ω;L∞(0, T ;V )).

Moreover, by (6.3) we also have

AλXλ −→ η weakly in L2(Ω;L2(0, T ;H)),

hence, since JλXλ → X weakly in L2(Ω;L2(0, T ;V )), by the continuity and the linearity of A we
necessarily have η = AX . In particular, X ∈ L2(Ω;L2(0, T ;D(A2))).

As last result we show that if the solution to (1.1) generates a Markovian semigroup P = (Pt)t≥0 on
Cb(H) admitting an invariant measure, then the improved regularity of solutions given by Theorem 6.1
implies better integrability properties also for the invariant measures. Existence and uniqueness of
invariant measures, ergodicity, and the Kolmogorov equation associated to (1.1) were studied in [20].
In particular, we recall the following result (see [20, §5]). The set of invariant measures of P will be
denoted by M .

Proposition 6.3. Assume that the the hypotheses of §2.2 are satisfied, that X0 ∈ H is non-random,

and that B is non-random and time-independent. Then the solution X to (1.1) is Markovian and

its associated transition semigroup P admits an ergodic invariant measure. Moreover, there exists a

positive constant N such that

∫

H

‖u‖2V µ(du) +
∫

H

∫

D

j(u)µ(du) +

∫

H

∫

D

j∗(β0(u))µ(du) < N ∀µ ∈ M .

If β is superlinear, there exists a unique invariant measure for P , which is strongly mixing as well.
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Theorem 6.4. Assume that the hypotheses of §2.2 are satisfied, that A is symmetric and that

B : H → L 2(U, V ), ‖B(v)‖L 2(U,V ) . 1 + ‖v‖V .
Then there exists a positive constant N such that

∫

H

‖Au‖2 µ(du) < N ∀µ ∈ M .

In particular, every invariant measure µ is concentrated on D(A2), that is µ(D(A2)) = 1.

Proof. For every x ∈ V , let (Xx, ξx) be the unique strong solution to (1.1) with initial datum x. Setting
G := B(Xx), Itô’s formula for ϕλ(Xλ) as in the proof of the previous theorem yields

ϕλ(Xλ(t)) +

∫ t

0

∥

∥AλXλ(s)
∥

∥

2
ds+

∫ t

0

〈

AλXλ(s), βλ(Xλ(s))
〉

ds

= ϕλ(x) +
1

2

∫ t

0

Tr
(

G∗(s)D2ϕλ(Xλ(s))G(s)
)

ds+

∫ t

0

AλXλ(s)G(s) dW (s).

Since AλXλ ∈ L2(Ω;L∞(0, T ;H)) and G ∈ L2(Ω;L2(0, T ;L 2(U,H))), the last term on the right
hand side is a martingale; hence, taking expectations and recalling that ϕλ(x) . ‖x‖2V , it follows by
Lemma 6.2 and by the estimates obtained in the proof of the previous theorem that

E

∫ t

0

∥

∥AλXλ(s)
∥

∥

2
ds . ‖x‖2V + E‖G‖2L2(0,t;L 2(U,V )).

Since this holds for every λ > 0, letting λ → 0 and recalling that, as in the proof of the previous
theorem, AλXλ converges to AX weakly in L2(Ω;L2(0, T ;H)), a weak lower semicontinuity argument
and the linear growth assumption on B yield

E

∫ t

0

∥

∥AXx(s)
∥

∥

2
ds . 1 + ‖x‖2V (6.4)

for every t ∈ [0, T ] and x ∈ V . Let us introduce the function F : H → [0,+∞] defined as

F (u) :=

{

‖Au‖2 if u ∈ D(A2),

+∞ if u ∈ H \ D(A2),

and the sequence of functions (Fn)n∈N, Fn : H → [0,+∞), defined as

Fn(u) :=
∥

∥A1/nu
∥

∥

2 ∧ n2.

It is easily seen that Fn ∈ Cb(H) for all n ∈ N and that Fn converges pointwise to F from below.
Therefore, for any invariant measure µ, it follows by Fubini’s theorem that

∫

H

Fn(x)µ(dx) =

∫ 1

0

∫

H

Fn(x)µ(dx) ds =

∫ 1

0

∫

H

PsFn(x)µ(dx) ds

=

∫

H

∫ 1

0

E
(∥

∥A1/nX
x(s)

∥

∥

2 ∧ n2
)

ds µ(dx)

≤
∫

H

E

∫ 1

0

∥

∥A1/nX
x(s)

∥

∥

2
ds µ(dx)

Recalling that ‖Aλu‖ ≤ ‖Au‖ for all u ∈ H , it follows by (6.4) that
∫

H

Fn(x)µ(dx) . 1 +

∫

H

‖x‖2V µ(dx).

Since ‖·‖2V ∈ L1(H,µ) by [20, Theorem 5.3], we get
∫

H

Fn(x)µ(dx) . N

for a positive constant N , independent of n and µ. Letting n → ∞, by the monotone convergence
theorem we deduce that F ∈ L1(H,µ), hence F is finite µ-almost everywhere in H , and in particular
µ(D(A2)) = 1.
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