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Abstract 
This study investigates the robustness of orbital motion in the vicinity of the asteroid 469219 
Kamo'oalewa (2016 HO3) considering the uncertainties of its mass and the solar radiation pressure. By 
applying the automatic domain splitting algorithm, these uncertainties are propagated and their 
effects on orbits with different geometries are investigated. Moreover, the bounds of the state flow 
are also evaluated along the propagation as an indicator of the motion sensitivity to uncertainties. An 
analysis of the results obtained shows that polar orbits are more robust to these uncertainties than 
equatorial and inclined orbits. Specifically, the solar terminator orbit is bounded within a small range 
and has the best robustness among all the polar orbits, thus can be used for practical mission purposes. 
Our studies prove that robust orbits exist even for very small bodies with weak gravity fields. Therefore, 
this work contributes to systematically identifying robust motions near an asteroid when uncertainties 
of the gravity and the SRP are simultaneously considered, addressing the challenge of real mission 
operations. 
Keywords: 469219 Kamo'oalewa (2016 HO3), gravity uncertainty, automatic domain splitting, 
uncertainty propagation, robustness, solar radiation pressure 
 
1 Introduction 

Small solar system bodies have become the popular targets of deep space missions, due to their 
scientific and technical advantages as near-Earth valuable natural resources. The recent and future 
missions include JAXA’s Hayabusha2 to the asteroid Ryugu (Watanabe et al., 2017), NASA’s OSIRIS-Rex 
to Bennu (Lauretta et al., 2017), NASA’s DART mission (Cheng et al., 2018) and ESA’s HERA mission 
(Pellacani et al., 2019) both to the binary asteroid Dydimos, and NASA’s Janus mission (Scheeres et al., 
2020) to two binary asteroid systems 1996 FG3 and 1991 VH. China is also planning its first asteroid 
mission and 2016 HO3 is a target (Zhang et al., 2019). 2016 HO3 is currently the smallest and closest 
quasi-satellite of Earth (de la Fuente Marcos & de la Fuente Marcos, 2016) with an estimated diameter 
of about 40 m and, as a consequence, a very weak surface gravity. The recent updated studies about 
its orbital evolution and physical properties can be found in Dora et al. (2018) and Gur'yanov and 
Galushina (2021). However, due to its small size and the limited amount of ground-based optical and 
radar observations, its shape and mass have been estimated with large uncertainties before the 
spacecraft’s arrival, which brings about uncertainty to mission orbit design and prediction. As a result 
of the weak gravity of 2016 HO3, the solar radiation pressure (SRP) is an important perturbation on 
the orbital motion around 2016 HO3 and it should be considered in the dynamics. Moreover, the SRP 
usually cannot be accurately modeled due to non-complete understanding of the reflection properties 
of all the surfaces of the spacecraft. Therefore, considering these uncertainties, identifying the robust 
region of motion in the vicinity of asteroid 2016 HO3 is paramount to the preliminary design of a 
mission.  
 
There are various methods of propagating uncertainty, including the linearized ones and the non-
linear ones, respectively. The former type generally applies the state transition matrix (STM) to map 
the deviation of the initial state of a trajectory to that of the final state. The eigenvalues of the STM 
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indicate the linear stability of this trajectory (Arnold, 1989). The latter type includes many different 
methods that address the deficiencies of the linearization. The Monte Carlo (MC) method is a 
commonly used one by performing point-wise numerical simulations of the fully nonlinear dynamics, 
providing statistics of the true trajectory. However, it is computationally intensive and the time 
consumption increases with the increasing number of samples (Maybeck, 1982). By approximating the 
arbitrary initial distribution with a limited number of samples, with a finite sum of weighted Gaussian 
distributions and with polynomial series, respectively, the unscented transformation (UT, Julier et al., 
1995), the Gaussian mixtures model (GMM, Terejanu et al., 2008) and the polynomial chaos expansion 
(PCE, Wiener, 1938) have been developed. They are classified as non-intrusive methods since they do 
not require access to the dynamical equations and treat them as a black box. Their main drawbacks 
are that the number of samples (e.g. UT) and the number of expansion terms (e.g. PCE) change linearly 
and exponentially with the dimension of input uncertainties respectively, which is computationally 
expensive for large-dimensional uncertainties of complex systems.  

An alternative way to deal with the nonlinearity is based on approximating the flow of the dynamics 
with Taylor or polynomial series. This method requires the dynamical equations of the system and is 
categorized as an intrusive method. In particular, the general polynomial algebra (GPA) was recently 
developed to approximate the flow of the dynamics in multivariate and generic polynomial expansions 
(Vasile et al., 2019). It performs well in propagating uncertainty sets through nonlinear dynamical 
systems. The differential algebra (DA) method relies on the computation of Taylor expansion of the 
flow of the dynamics up to arbitrary order with automatic differentiation (Berz, 1999). The final output 
of DA is a list of final state polynomials, each describing the evolution of the initial conditions i.e. 
mapping the entire initial domain into the final set. Moreover, instead of running thousands of point-
wise integrations of the Monte Carlo method, the integrations of DA are performed by the fast 
evaluation of the Taylor polynomials that are just algebra operations. Resultantly, the computational 
time is reduced considerably, while the accuracy can be tuned by adjusting the truncation order of the 
Taylor expansion. DA has been applied widely in the field of orbital dynamics, e.g. asteroid encounter 
analysis (Armellin et al., 2010) and orbit conjunction analysis (Morselli et al., 2014). These dynamics-
based methods are local and are difficult to efficiently handle dynamics with a large uncertainty set. 
They are also computationally intensive for high-order approximations of a high-fidelity system. For 
instance, DA fails when the high nonlinearity of dynamics, the large initial uncertainty set, and the 
long-term propagation prevent good convergence of the Taylor expansion, and a single Taylor 
expansion of the flow is usually not accurate enough to map the entire initial uncertainty domain. To 
overcome these problems, automatic domain splitting (ADS) was developed to automatically split the 
initial uncertainty domain into subdomains, over each of which a new Taylor expansion with good 
convergence is obtained (Wittig et al., 2015). ADS was firstly introduced by Wittig et al. (2015) and 
was applied to the orbital propagation of asteroid (99942) Apophis considering its initial state 
uncertainty. The non-impact and close-encounter regions of its state space with respect to Earth were 
identified and validated against point-wise simulations.  

Extensive research has been performed on the dynamics and stability of orbital motion around small 
bodies with deterministic models (Scheeres, 2012). In general, when considering the irregular gravity 
of an asteroid, the retrograde orbit is found to be more stable than the prograde orbit. When 
considering the SRP perturbation, the most stable orbit is the so-called solar terminator orbit (STO), a 
specific type of polar orbits whose orbital plane precession rate is equal to the rate of the mean orbital 
motion of the small body around the Sun, i.e. its orbital plane always faces towards or away from the 
Sun perpendicularly. An STO is preferred when the SRP perturbation is strong. Most of these studies 
investigated the stability of the orbital motion with respect to the perturbation or uncertainty of the 
initial conditions of the spacecraft. However, there are limited studies addressing the effects of 
uncertainties of either the gravity or the SRP on the dynamics or robustness of motion around small 
bodies. Using the MC method and with the sample asteroid Stein, Melman et al. (2013) investigated 
the effects of its uncertain gravity on the evolution of the STO. The sensitivity of the STO to the gravity 
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uncertainty was found to become stronger if the gravity of the asteroid is weaker. For the small 
asteroid Bennu with a weak gravity field, a frozen-STO was found to be more robust against the 
execution uncertainties or errors than a circular-STO (Hesar et al., 2017), based on the averaged 
dynamics and the MC simulations. These studies focused on the effect of uncertainties on the STOs, 
without investigating the effects of uncertainties on the non-STOs. However, studying orbits with 
different geometries requires a large number of samples for the MC simulations. Applying the DA 
method, Feng et al. (2019) propagated the uncertainty of the irregular gravity field of asteroid Stein 
and investigated its effect on the orbits with different orbital geometry. Retrograde orbits were found 
to be more robust than prograde ones.  
 
Very recent research demonstrates that 2016 HO3 is a fast rotator and probably has a rather elongated 
shape (Li and Scheeres, 2021). However, this information is not included in this study for two reasons. 
Firstly, its shape and rotation are not well determined, so are the irregular gravity and its influence on 
the orbital motion. Secondly, the purpose of this study is to investigate the robustness of orbital 
motion to the uncertainty of the asteroid mass and the SRP. A more detailed approach would use a 
high-fidelity force model that includes perturbations such as those associated to the irregular gravity 
field, and then to carry out the robustness analysis to specific uncertain parameters such as the 
asteroid’s mass or the SRP. However, since accurate information on the asteroid’s non-spherical 
gravity is missing, its effect on the orbital motion is neglected in this preliminary study. Since the SRP 
is generally non-negligible, the effect of its uncertainty on orbital motion should also be studied. 
Considering the highly nonlinear dynamics and the large number of orbits with different geometries, 
this study extends previous research by applying the ADS to investigate the effect of uncertainties on 
both the asteroid’s mass and the SRP on the general orbital motion around an extremely small body. 
The rest of this paper is organized as follows. Section 2 introduces the details of the ADS algorithm. 
Section 3 presents the dynamical model of orbital motion around 2016 HO3 and evaluates the 
magnitudes of different perturbations. Section 4 applies the ADS algorithm to propagate the 
uncertainties and to investigate the sensitivity of orbital geometry to the uncertainties of both the 
central gravity and the SRP by evaluating their first split time, and resultantly identifying the robust 
region. The results are validated against numerical simulations. Section 5 concludes this study and 
gives prospects for future work. 
 
2 The methodology of ADS 

The DA method computes Taylor expansions of the flow of the dynamics up to arbitrary orders with 
automatic differentiation. The main idea of ADS is to determine the time at which the flow expansion 
over a given initial set is not capable of describing the dynamics with the required accuracy anymore. 
Once this situation is detected, the domain of the original polynomial expansion is divided along one 
of the expansion variables into two domains of the same size. Then, the dynamics is re-expanded 
around the new center points of the two domains, respectively, resulting in two separate polynomial 
expansions. Since the new expansions do not change the order, each of the new polynomials is 
identical to the original ones on its respective domain. This process is illustrated in Fig.1, in which the 
error is the truncation error measuring the difference between the n+1 time differentiable function 
and its Taylor expansion of order n, which is an absolute value. The parameter ε is the required 
accuracy. Following such a split procedure, the integration continues on each subdomain in the same 
manner until further splits are required or the final integration time is reached. The result is a list of 
Taylor expansions approximating the final state, each covering a subset of the domain of initial 
conditions.  
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Figure 1 Illustration of the propagation process with ADS (Wittig et al., 2015).  

 
In general, it is difficult to answer when exactly a polynomial needs to be split, and the direction of 
the split for the case of multivariate polynomials. To address this problem, the following method was 
implemented. For n-th order Taylor expansions, the size of the n + 1 order terms of the polynomial is 
estimated based on an exponential fit of the size of all the known non-zero coefficients up to order n. 
If the size of this truncated order becomes too large (e.g. larger than ε), the polynomial is split. 
Similarly, if the size of this truncation error for one specific variable is the largest or contributes the 
most to the total truncation error of the polynomial, then the split occurs in the direction of this 
variable. This approach maximizes the impact of the splitting procedure on the reduction of the 
approximation error. 
 
During the splitting process, the split direction strongly depends on the parametrization of the initial 
conditions and can occur automatically along all variables that contribute to the truncation error. 
However, the initial condition can be parametrized such that the expansion splits mainly along a few 
or even just one of the directions, corresponding to the variables that the dynamics is more sensitive 
to. In addition, the number of the maximum split times and the minimum domain size can be 
predefined and modified, according to the requirements on the efficiency and accuracy. It is pointed 
out here that it is possible that some subdomain cannot be mapped to the end of the integration due 
to the limitation on the minimum domain size. Moreover, the earlier the splits occur and the more 
number of splits appear within a specific region, the stronger the nonlinearity of the dynamics is in 
this region, as strong nonlinearities are difficult to be managed with a single Taylor polynomial. For 
the DA-based numerical integration, the Dormand-Prince Runge-Kutta 7/8 integration scheme with 
the 7th order solution for step size control and the 8th order solution for propagation is used. The 
reader can refer to Wittig’s paper (Wittig et al., 2015) for a more detailed description and 
demonstration about ADS. 
 
3 Dynamical Modelling 

The equation of motion for an object located at 𝒓 = (𝑥, 𝑦, 𝑧) in an asteroid-centered inertial reference 
frame is given as  

			�̈� = 𝑭,-- = − /
01
𝒓 + 𝑭345 + 𝑭67809_;<9=                                           (1) 

where the first term on the right-hand side of the equation is the acceleration from the central 
gravitational force and 𝜇 = 𝐺𝑚 is the gravitational constant of the asteroid. The second and the third 
terms are the SRP perturbation and the third-body perturbation from the Sun and Earth, respectively. 
For the cannonball model of the s/c, 𝑭345 can be expressed as  

		𝑭345 = −(1 + 𝜂) ⋅ 𝜌E𝛥EG ⋅
3
H
⋅ I 𝜟

K1
L = −(1 + 𝜂) ∙ 𝜌E ∙

KNO

KO
⋅ 3
H
⋅ I𝜟

K
L                      (2)  

in which 𝜂 is the reflection coefficient of the s/c and 𝜂 = 1 is for the ideal mirror reflection, P
H

 is the 
area-to-mass ratio of the s/c, 𝜌E  is the solar radiation flux at the reference distance 𝛥E  (e.g. 𝜌E =
4.56 × 10WX Pa at a distance of 1 AU). And 𝜟 = 𝒓⨀ − 𝒓 is the relative position vector of the Sun to 
the s/c, as indicated in Fig.2. According to this cannonball model, the direction of the SRP perturbation 



5 
 

given in Eq.(2) is always parallel to the relative position vector of the Sun to the spacecraft. Therefore, 
the uncertainty is only considered on the magnitude of the SRP; i.e., the uncertainty on the SRP’s 
direction is neglected. 

 
Figure 2 Illustration of the geometry of the s/c and Sun in the asteroid-centered inertial frame. 

 
The third-body acceleration 𝑭67809_;<9= is given as  

𝑭67809_;<9= = −𝐺𝑀 I 𝒓[\]^_
0[\]^_1

− 𝜟
K1
L                                               (3) 

in which 𝐺𝑀 is the gravitational constant of the third body. 
 
For the convenience of the following numerical simulations, this dynamical system is normalized with 
the units of mass, length and time defined as 

[𝑀] = 𝑚bcd, [𝐿] = 𝑅bcd, [𝑇] = h
[𝐿]d

𝐺[𝑀] 

in which G𝑚bcd = 4.9781×10-11 km3/s2 and 𝑅bcd = 44.7  m are the gravitational constant and 
reference radius of 2016 HO3 (de la Fuente Marcos & de la Fuente Marcos, 2016), respectively. 
Accordingly, the value of the time unit is 1177 s. Therefore, the relationship between the normalized 
and the original accelerations can be obtained as 

[𝑎] =
𝑑G𝑟
𝑑𝜏G =

𝑑G 𝑅[𝐿]

𝑑 n 𝑡[𝑇]p
G =

[𝑇]G

[𝐿] ∙
𝑑G𝑅
𝑑𝑡G =

[𝑇]G

[𝐿] ∙ 𝑎 

Given the values of the area-to-mass ratio and reflection coefficient of the s/c to 0.02 m2/kg and 0.4, 
respectively, the magnitudes of the forces on the s/c around 2016 HO3 at different distances to 2016 
HO3 are obtained and given in Fig.3. 
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Figure 3 The magnitudes of the forces at different distances to 2016 HO3. 

 
It can be seen that the SRP is the dominant perturbation and becomes even larger than the central 
gravitation of 2016 HO3 when the orbital altitude approximately exceeds ten times the reference 
radius of 2016 HO3. The strength of the Sun’s third-body perturbation is about 4 or 5 orders of 
magnitude smaller that of the SRP, and the Earth’s third-body perturbation is even weaker and can be 
ignored. Therefore, the central gravitation, SRP and the Sun’s third-body perturbation are the forces 
considered in the following simulations. Since the DA-based ADS method is used to obtain the high-
order expansion of the state flow w.r.t. the uncertain parameters that are denoted as 𝒑, the first step 
is to initialize 𝒑 as a DA variable 

[𝒑] = 𝒑 + 𝛿𝒑 
where 𝛿𝒑 represents the deviation from the nominal value of 𝒑. As discussed in the introduction, both 
the uncertainties of the central gravitation and the SRP are considered. Therefore, the uncertain 
parameter vector is specified as 𝒑𝟎 = (𝜇, 𝐹345) and 𝜹𝒑𝟎 = (𝛿𝜇, 𝛿𝐹345), and the 𝜇 and 𝐹345 terms are 
expressed as DA variables as 

v
[𝜇] = 𝜇 + 𝛿𝜇

[𝐹345] = 𝐹345 + 𝛿𝐹345
 

 
Since we do not consider the attitude of the s/c w.r.t. the Sun, we assume the direction of the SRP 
does not have uncertainty and we only consider the uncertainty of the magnitude of SRP in this study. 
Therefore, as a demonstration, the corresponding first-order expansion of the dynamics defined in 
Eq.(1) is given as 

�̈� = 𝑭,-- ≈ 𝑭,--(𝜇, 𝐹345) + 𝑭,--_/ ∙ 𝛿𝜇 + 𝑭,--_345 ∙ 𝛿𝐹345 
in which 𝑭,--(𝜇, 𝐹345)  is the dynamics without uncertainties and 𝑭,--_/  and 𝑭,--_345  are the 
derivatives of the total acceleration force 𝑭,--  w.r.t. 𝜇  and 𝐹345 , respectively. The high-order 
expansions are obtained based on auto-differentiation. 
 
4 Numerical Simulations 

4.1 The uncertainties of central gravity 𝜇 and SRP 

The heliocentric orbital elements of 2016 HO3 are given in Table 1 and they are used in the following 
simulations. According to (Jin et al., 2019), the best estimation of the gravitational parameter of 2016 
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HO3 is equal to 4.9781×10-11 ±1.1378×10-12  km3/s2, with a 3𝜎 error of 2.29% (1𝜎 at 0.76%). Since the 
uncertainty of the SRP is related to the shape and materials of the s/c, the 1𝜎 value of 𝜎345 is difficult 
to be determined accurately and therefore two values are used in the simulations, i.e. 8´10-4 
(corresponding to about 10% of the normalized SRP) and 8´10-5 (corresponding to about 1% of the 
normalized SRP). 

Table 1 Heliocentric orbital elements of 2016 HO3 at epoch 2459600.5 (2022-Jan-21.0) TDB1 
Elements Value 1𝜎 

Uncertainty 
Elements Value 1𝜎 

Uncertainty 
a (AU) 1.001137344063433 3.0786´10-9 𝛺 (deg) 66.0142959682462   1.5236´10-5 

e 0.1029843787386461   2.4307´10-7 𝜔 (deg) 305.6646720090911 2.2155´10-5 
i (deg) 7.788928644671124 1.6941´10-5 M (deg) 107.172338605596   2.3044´10-5 

Before proceeding to the systematic simulations and the analysis of their results, let us point out that 
the relationship between the expansion order and computational time consumption for different 
precisions is investigated and given in Fig.4. The example orbit with a semi-major axis at 1.4 and all 
other orbital elements at zero is propagated for the time interval of 40 dimensionless units (one 
dimensionless time unit corresponding to 1177 s), considering the 1𝜎 uncertainties of 𝜇 and the SRP 
at 0.76% and 1%, respectively. For the same precision, the 6th-order expansion requires more 
computational time than the higher orders, since the lower-order expansion requires more splits 
because of its lower accuracy. The 8th-order expansion needs slightly more computational time than 
the 10th-order expansion, except for a precision of 1×10-9. This phenomenon is caused by the 
interaction among the expansion order, the number of splits and the time interval of the integration. 
For this research, the expansion order of 8 and the error tolerance or precision ε of 1×10-8 is a good 
balance of both efficiency (computational time) and precision, and therefore it has been selected to 
carry out the following simulations. 

 

Figure 4 The relation between the precision and the computational time for different expansion 
orders. 

4.2 Domain Split on the 𝜇-SRP plane 

In this section, by varying the semi-major axis and the propagation time of the orbital motion, the split 
of the initial uncertainty domain on the 𝜇-SRP plane is investigated to identify the sensitivity of the 
dynamics on the uncertainties of 𝜇 and the SRP, respectively. Given the nominal values of 𝜇 and SRP, 
the motion will escape rapidly for a semi-major axis larger than 4.76 (one unit corresponding to 44.7  
m), which is estimated by the formula {3𝜇 16𝑎345⁄  given in Scheeres (2012)2. Therefore, this paper 
focuses on the orbital motion with a semi-major axis 𝑎 smaller than this value.  
 
For the numerical simulations, values of 𝑎 of 1.4, 2.5, and 3.5 (one unit corresponding to 44.7 m) have 
been selected. All the other orbital elements are set to zero. Specifically, the initial eccentricity is set 

 
1 https://ssd.jpl.nasa.gov/tools/sbdb_lookup.html#/?sstr=3752445  
2 Chapter 12, Page 263 
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to zero as the circular orbit is more preferable for mission operation. The initial inclination is set to 
zero as the prograde orbit is generally very unstable and is prone to split. The time interval of 
integration is firstly set to be five times the orbital period for each orbit, corresponding to the actual 
simulation times of 26, 62 and 103 (one unit corresponding to 1177 s), respectively. Their domain 
splits on the 𝜇-SRP plane are given in Fig.5 and the numbers of splits are 1, 26 and 335, respectively. 
When the value of 𝑎 increases from 1.4 to 3.5, more splits occur along the 𝜇 axis mainly due to the 
accumulation of the truncation error of the Taylor expansion with time. Along the SRP axis, the domain 
starts splitting for 𝑎 = 2.5 and the splits number increases significantly for 𝑎 = 3.5, because with the 
increase of the semi-major axis the SRP plays an increasingly significant role and the effect of central 
gravitation gradually recedes.  
 

 
Figure 5 The domain split on the 𝜇-SRP plane for 𝑎 = 1.4, 2.5, 3.5 with the expansion order 8, the 
error tolerance 1×10-8, and integration time of five orbital periods, i.e. t=5P for each of them. The 

units of semi-major axis a and time are 44.7 m and 1177 s, respectively. 
 

 
Figure 6 The domain split on the 𝜇-SRP plane for 𝑎 = 1.4, 2.5, 3.5 with the expansion order 8, the 
error tolerance 1×10-8, and integration time t=55 for each of them. The units of semi-major axis a 

and time are 44.7 m and 1177 s, respectively. 
 

 
For direct comparison, all the three orbits are integrated for the same time interval of 55 and their 
domain splits are given in Fig.6. It can be seen that the orbit with 𝑎 = 1.4 has the most splits along 
the 𝜇 axis, indicating that the low-altitude motion is most sensitive to the uncertain central gravitation. 
For the orbit with 𝑎 = 3.5, the splits along the 𝜇 axis are obviously less but a few splits start appearing 
along the SRP axis due to the larger influence of the SRP on the high-altitude orbit. The domain splitting 
of the middle-altitude orbit with 𝑎 = 2.5 is the transition between those of the other two orbits. This 
phenomenon is in line with the fact that the low-altitude motion is dominated by the central 
gravitation and the high-altitude one is more influenced by the SRP perturbation. And the middle-
altitude motion is kind of a balance between the dynamics of the central gravitation and that of the 
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SRP perturbation (Scheeres, 2012) 3 . In summary, the number of splits mainly depends on the 
nonlinear dynamics and the time interval of the integration, both of which are closely related to the 
accuracy of the Taylor expansion. It also demonstrates that ADS is an indicator of the strong 
nonlinearity of the dynamics and sensitivities to the uncertain variables, and its role in identifying the 
region of robust motion will be discussed in the following section. 
 
4.3 Sensitivity analysis and regions of robust motion 

For mission applications, two kinds of orbits are mainly considered. One is the regular circular orbits 
(RCO), an orbital motion that is viable only if the s/c is very close to 2016 HO3. The other one is the 
STO mentioned in the introduction, which is obtained in the 2016 HO3-centered co-rotating frame that 
coincides with the 2016 HO3-centered inertial frame at the initial epoch in this study. Its initial 
condition is transformed back to the 2016 HO3-centered inertial frame for the following numerical 
simulations.  
 
4.3.1 Map of the first split time on the 𝑎 − 𝑖 plane of RCO  

To analyze the effects of the uncertain gravity field and SRP on orbits with different geometries, 
circular orbits with different combinations of a and i are simulated. For a circular orbit, given the 
inclination i, the ascending node 𝛺 and 𝑢 = 𝜔 + 𝑓 fully describe the orientation of this circular orbit 
and the position of the initial point on it, respectively. Since we mainly consider the orbital geometry 
for the simulations in this section, orbital elements a and i are gridded within the range of a ∈ [1, 4] 
(one unit corresponding to 44.7 m) and i ∈ [0, 180°], respectively, 𝑢 is set to zero and 𝛺 is sampled 
every 45° from 0° to 180°. For each orbit, the time epoch when the first split occurs is recorded and is 
normalized by the orbital period of this two-body orbit. The corresponding map of the first split time 
is generated on the 𝑎 − 𝑖 plane and is given in Fig.7, where all the plots A have the same value of SRP 
uncertainty at 8´10-5 and all the plots B have a larger value of 8´10-4. 
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   Figure 7 Map of the first split time on the 𝑎 − 𝑖 plane for different values of 𝜎345. The units of x 
and y axes are 44.7 m and 1°, respectively. The color bar is the integration time normalized by its 

orbital period when the first split occurs.  
 
For all the plots, the yellow region located closest to the asteroid that splits the latest is the most 
robust region in terms of orbital motion, due to the fact that the central gravitation of 2016 HO3 
dominates the dynamics in its vicinity and the SRP plays the role of a small perturbation. When moving 
further away from 2016 HO3, the orbital motion becomes less robust as indicated by the light green 
or light blue region with a smaller value of the average first split time, where the central gravitation 
becomes weak and the SRP perturbation is stronger. Further away, there is a large blue area on the 
right with the smallest average first split time, where the robustness of the motion is reduced further 
due to the very strong SRP perturbation. It can be seen that the general structure of the plot A is 
similar to that of plot B for the same initial conditions. However, there are also obvious differences 
between plots A and plots B mainly on the location and size of the colored-regions. For plot B with a 
large value of the SRP uncertainty, the yellow region or the most robust region is only restricted to the 
extremely close distance to 2016 HO3. This is due to the fact that, for the same accuracy requirement, 
larger uncertainty sets need the domain to be divided sooner because the radius of convergence in 
the SRP is fixed. 
 
Specifically, for both 𝛺 = 0° and 180°, the different colored-regions distribute vertically along the 
semi-major axis, indicating that orbits with the same inclination have similar robustness against the 
uncertainties and the robustness is only affected by the distance of the orbit to the body. For 𝛺 = 45°, 
90° and 145°, it is obviously seen that most of the colored regions near the polar region have bulges 
in the right direction, especially for the low- and middle- altitude orbits and for the case of 𝛺 = 90°. 
This indicates that the polar orbit has the best robustness for non-zero and non-180° ascending node 
cases. In addition, for all the plots of 𝛺 = 45°, 90° and 145°, the lower half is orange colored and the 
upper half is yellow colored. The yellow color indicates later splitting times. In general, the lower half 
has deeper color than the upper half, which indicates an earlier split and demonstrates that the 
retrograde orbits generally split slightly later than the prograde ones and are more robust. Compared 
with the conclusion in Feng et al. (2019) that the retrograde orbits are generally much more stable 
than the prograde ones, this conclusion is weakened due to the consideration of a much stronger SRP 
perturbation w.r.t. the weak gravity of 2016 HO3 (Scheeres, 2012)4. Finally, it is found that the first 
splitting time generally appears later for 𝛺 = 90° among all the cases. Therefore, the polar orbit with 
90° ascending node is the most robust, as will be investigated further in Section 4.3.3.  
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4.3.2 Numerical Integrations of the sample RCOs  

For a straightforward evaluation of stability of the orbit motion, nine sample orbits marked as squares 
are selected from plot A of 𝛺 = 45° in Fig.7 for numerical integrations, i.e. orbits with 𝑎 = 1.4, 2.5, 3.5 
(one unit corresponding to 44.7 m) and 𝑖 = 0°, 90°, 180° for each value of 𝑎, respectively. Since 𝑎, 𝑒 
and 𝑖 are the most relevant orbital elements and 𝑖 is found to have very slight variations, only the 
evolutions of 𝑎 and 𝑒 are shown in Fig.8 for each orbit with the integration time of 3, 5 and 1.5 orbital 
periods, respectively. It is seen that for the three different values of 𝑎, all the polar orbits indicated by 
the red lines have the smallest variational amplitudes in semi-major axis and also the smallest 
increasing rate of eccentricity, compared with those of the equatorial orbits with 𝑖 = 0° and 180°. The 
black dash-dot lines in each evolutionary plot of 𝑒 indicate the impact eccentricity for each specific 
value of 𝑎. The non-polar orbits always reach this line much earlier than the polar orbits. For the 
equatorial orbits with 𝑎 = 1.4, 2.5, 3.5, they can complete approximately three, two and one orbital 
revolutions, respectively, before impacting on the small body, due to the perturbation of the SRP. 
Therefore, the polar orbits stay closer to its initial or original trajectory, which are very useful or 
applicable to real mission operations that prefers free orbital motion (without maneuvers) meeting 
accuracy requirements of observations for radio or laser tracking and navigation (Hussmann et al., 
2012). In addition, it was also discovered in our previous study that the polar orbits are generally more 
stable. Orbital eccentricity of non-polar orbits, including the equatorial ones, can be excited to very 
large values which leads to impact with the asteroid (Feng and Hou, 2019). The results in Fig.8 also 
support this scenario. 
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Figure 8 The evolutions of semi-major axis and eccentricity of the sample orbits from Fig.7A. The 

units of semi-major axis a, the inclination i and time t are 44.7 m, 1° and 1177 s. 
 

4.3.3 Map of the first split time on the 𝑎 − 𝛺 plane of polar orbits and STO 

Following the above investigations, this section explores the polar motion in more detail. For polar 
orbits, as the ascending node 𝛺 determines the orientation of the orbit in space, a map of the first 
split time is generated on the 𝑎 − 𝛺 plane for the sensitivity analysis. The other orbital elements are 
set as	𝑒 = 0,𝜔 = 0°, 𝑖 = 	90° with the same uncertainty values of the gravity and the SRP as in the 
previous section.   
In Fig.9A, for 𝛺 < 90°, the rectangular region consists of four colour regions transiting from the yellow 
one in the upper left corner to the deep blue one in the lower right corner, i.e. from the most to the 
least robust motion. For 𝛺 > 90°, the structure of the map consists of three colour regions transiting 
from the yellow one in the lower left corner to the deep blue one in the upper right corner, i.e. from 
the most to the least robust motion. Since the first split time given in Fig.9A is the time normalized by 
the orbital period of the two-body orbit, we also give in Fig.9B the value of the first split time without 
normalization by the orbital period. It is seen that in general the orbit close to the body splits faster 
than that far away from the body due to influence of the gravity. However, this is obviously not a 
monotonous trend, e.g. for 𝛺 < 30°  the region near a=2 (pink ellipse) splits later than that near a=2.3 
(green ellipse), due to the perturbation of the SRP. For both Fig.9A and Fig.9B, at the same distance to 
the small body, the first split occurs very late if the orbit is closer to the region of 𝛺 = 90°  as 
demonstrated by the black dash-dot line, mainly due to the fact that this orbital geometry is more 
stable to the SRP perturbation. However, the normalized first split time is generally larger if the orbit 
is closer to the smaller body as shown in Fig.9A. Since the normalization by the orbital period partially 
removes the effect of the distance or the gravity, the influence of the SRP perturbation on orbits with 
different geometries is more obvious in the plots. In particular, the orbit closer to the body is less 
influenced by the SRP and therefore has a late (normalized) split time, as indicated both in Fig.9A and 
Fig.7.  
 
In addition, we also record the minimum distance to the asteroid before the first split occurs and the 
corresponding time epoch (also normalized by the orbital period) on the 𝑎 − 𝛺 plane as Fig.9C and 9D. 
For the same semi-major axis, Fig.9C shows that the minimum distance is generally the same for the 
low- and middle-altitude orbits and has a relatively larger value around 𝛺 = 0° and 90° for high-
altitude orbits. The minimum distance generally increases for larger altitudes of the orbit. It is seen 
that the structure of Fig.9D is very similar to that of Fig.9A, which means that the first split is closely 
related to the close encounter with the asteroid. However, they are not exactly the same due to the 
influence of the SRP. In addition, by comparing Fig.9B with Fig.9C, it is observed that in general the 
split occurs earlier when the minimum distance is smaller. However, they still have different patterns, 
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again indicating that the splitting behavior is not affected only by the achieved distances. To further 
investigate the role of the SRP on the splitting, the magnitude of the SRP perturbation is decreased to 
half of its original value, by reducing the area-to-mass ratio from 0.02 to 0.01, and the corresponding 
first split time plot is generated (also normalized by the orbital period) as reported in Fig.9E. Due to 
the weaker SRP perturbation, for the same uncertainty set as that of Fig.9A, the results in Fig.9E show 
a later split for the same combination of a and 𝛺, e.g. the shrinking of the two blue regions. This 
indicates that the domain splits later if the SRP perturbation is smaller. Therefore, the split is closely 
related to the close encounters with the asteroid and is essentially triggered by the nonlinearity 
caused by both the gravity and the SRP perturbation. 

 

 

 
Figure 9 The first split time normalized by its orbital period on the 𝑎 − 𝛺 plane for different 𝜎345.   
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The color bar is the integration time normalized by its orbital period when the first split occurs. The 
units of x and y axes are 44.7 m and 1°, respectively. 

 
The region in the vicinity of 𝛺 = 90° corresponds to the terminator orbit, in particular the circular STO 
that has been extensively studied with the initial condition given as  

𝑒E = 0, 𝑖E = 90°, ΩE = 90° 
In addition, there is another type of terminator orbit called the frozen STO with its eccentricity and 
pericenter staying frozen, i.e. �̇� = �̇� = 0. Its initial condition is given as (Scheeres, 2012)5    

	𝑒E = 𝑐𝑜𝑠Λ, 𝑖E = 90°, ΩE = ±90°, 𝜔E = ∓90° 
in which  

𝑡𝑎𝑛Λ =
3
2
(1 + 𝜂) ⋅ 𝜌E𝛥EG ∙

𝑠
𝑚 ∙ h

𝑎
𝜇𝜇P𝐴(1 − 𝐸G)

 

where 𝜌E𝛥EG is explained in Eq.(2),  𝑎 is the semi-major axis of the STO, A and E are the semi-major axis 
and eccentricity of the asteroid around the Sun. Due to the weak gravity of 2016 HO3, the frozen 
eccentricity 𝑒 as a function of 𝑎	is very small as shown in Fig.10. Therefore, the frozen STO is a near-
circular orbit for the scenario of 2016 HO3.  
As before, we select several sample polar orbits from Fig.9A marked with rectangular to simulate their 
orbital evolution for 𝑎 = 1.4, 2.5, 3.5 (one unit corresponding to 44.7 m) and 𝛺 = 0°, 90°, 180°. The 
other orbital elements e and i are fixed to zero and 90°, respectively. Given 𝛺 = 90°, 	𝜔 is set to 0° 
and -90° for the initial conditions of the circular and frozen STO, respectively. For other values of 𝛺, 𝜔 
is fixed to 0° for a generalized polar orbit.  

 
Figure 10 The eccentricity of a frozen STO at different semi-major axis. The unit of x axis is 44.7 m. 
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Figure 11  The evolutions of orbital elements 𝑎 and 𝑒 of the sample orbits from Fig.9. The units of 

semi-major axis a and time t are 44.7 m and 1177 s, respectively. 𝛺 is in radian. 
 
The evolutions of orbital elements 𝑎  and 𝑒  are given in Fig.11. The duration of the simulations is 
different for 𝑎 = 1.4, 2.5, 3.5, respectively, to cover at least one revolution of each orbit. For all the 
sample orbits with ΩE = 90°, i.e. the circular STO and frozen STO, they all have the smallest variations 
of both 𝑎 and 𝑒, as indicated by the blue and green lines in the plots, respectively. Nevertheless, these 
orbits have long-term stability and stay well bounded, in terms of not impacting 2016 HO3 and their 
distances to 2016 HO3 not varying significantly. They are ideal candidates for orbits of mission 
operations. For sample orbits either with ΩE = 0 (red lines) or 180° (black lines), their 𝑎 and 𝑒 have 
very large oscillations and after a short period of time their 𝑒 reaches the impact eccentricity marked 
by the black dash-dot line, indicating their strong instability. Moreover, the analysis of these 
simulations is consistent with the first split time obtained in Fig.9, which proves that the first split map 
of ADS is an efficient tool to measure the nonlinear dynamics that is closely related to the stability of 
the motion. 
For illustration, the sample orbits with 𝑎 = 2.5 in three-dimensional inertial space are given in Fig.12 
for the time interval of integration of 10P. It is seen that both the circular STO and frozen STO with 
ΩE = 90° are well bounded within a relatively small region, whereas the other two orbits spread 
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extensively in their original orbital plane and deviate far from the original orbits. Therefore, the STOs 
are recommended as robust orbits. 
 

 
Figure 12 The orbit integration of sample orbits with 𝑎 = 2.5 for the time interval of 10 orbital 

periods in the asteroid-centered inertia frame. The unit of a, x, y, z is 44.7 m. 𝛺 is in radian. 
 

4.4 Split history and bounds of the trajectory 

This section focuses on obtaining and analyzing the split history and the bounds of the trajectory along 
their orbital evolution, due to the uncertainties of 𝜇 and SRP. Large and small SRP uncertainties are 
used, corresponding respectively to 10% and 1% of the SRP, respectively. Since 10% is a bit too large 
for a real scenario, we select the small case 1% with the uncertainty value 8´10-5 for the simulations 
in this section. 
 
4.4.1  Split history of example polar orbits 

Taking the example orbits with 𝑎 = 2.5 (one unit corresponding to 44.7 m), 𝑖 = 	90°, 𝑒 = 0, 𝜔 = 0° 
and for 𝛺E = 0°  and 𝛺E = 90° , respectively, the evolutions of 𝑎  and 𝑒  of both the reference 
trajectories (no split occurs) and the split trajectories are given in Fig.13. For orbits with 𝛺E = 0°, we 
propagate till t=60 (one unit corresponding to 1177 s) that is the time after which many splits occur. 
It is seen that the first split occurs at about t=31.5. For orbits with 𝛺E = 90°, it is propagated till t=200 
and its first split occurs at about t=98 followed by two more splits at t=173 and t=180 as indicated by 
the blue and black lines. From the comparison of the first split time of these two orbits, it is proven 
that the terminator orbit is more robust to the uncertainties. In addition, comparing with the 
evolutions of 𝑎 and 𝑒 for 𝑎 = 2.5 in Fig.11, it is seen that the split trajectories stay close to and follow 
the tendency of the reference trajectory.  
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Figure 13 The split history of 𝑎 and 𝑒 for orbits with 𝑎 = 2.5, and ΩE = 0° and ΩE = 90°. The units 

of semi-major axis a and time are 44.7 m and 1177 s, respectively. 
 

4.4.2 The bounds of the sample orbits 

This section investigates the robustness of the polar motion by studying the bounds of the spacecraft 
distance to the asteroid, due to the uncertainties of both gravity and the SRP. The distance of the 
reference trajectory to the asteroid is named as reference distance. The uncertainty values of gravity 
and the SRP are 2.29% (3𝜎) and 8´10-5 (1𝜎), respectively. The following simulations are performed for 
all the example orbits from both Fig.7 and Fig.9. Once the high-order Taylor expansion w.r.t. the initial 
uncertainties is obtained, the outer bound of the range of the expansion at different times is then 
estimated by applying interval arithmetic (Moore et al., 2009). Therefore, the bounds are computed 
through the Taylor expansion of ADS. To validate the results, an MC simulation is performed. For each 
example orbit, it is propagated for 100 scenarios with different values of gravity and the SRP for each 
run. For the results shown in Fig.14, the red and black lines represent the reference distances and the 
MC simulations, respectively. The green and pink ones represent the upper and lower bounds 
estimated from ADS. For all the example orbits, the time intervals of their integrations are different 
and are truncated at different time epochs according to the divergence of the uncertainty propagation.  
 
For all the sample orbits from Fig.7 with 𝛺E=90°, the results are presented in Fig.14. It can be seen 
that polar orbits are the most robust and stable due to their narrow bounds and the smallest-
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amplitude variations of the evolution of the distance. For example, for a=1.4 (one unit corresponding 
to 44.7 m), the resulting bounds of the distance due to the uncertainties at t=50 (one unit 
corresponding to 1177 s) are 0.619 for i=0° and 0.245 for i=180°, respectively. For i=90°, the bound is 
0.186 at t=80, which is far smaller than the other two cases. The range of the distance varies between 
about 0.8 and 2 for non-polar cases and between 1.3 and 1.5 for the polar case, which is much 
narrower. In addition, for a=1.4, 2.5, 3.5, the closest encounter is at about t=42, 48 and 43 for zero 
inclination orbits and at about t=47, 62 and 60 for 180° inclination orbits. This indicates that the closest 
encounter with the asteroid always happen earlier for the orbit with 0° inclinations than the orbit with 
180° inclinations, which is consistent with the map of the first split time of Fig.7.  
 
For all the sample orbits from Fig.9 with i0=90°, the results are presented in Fig.15. For the orbit with 
𝑎 = 1.4 and 𝛺E = 0°, it is seen that its distance to 2016 HO3 varies significantly and the range of the 
distance increases rapidly along with time by reaching between 0.9 and 1.95 at the truncated time 
t=40. The bounds are narrow at the beginning and extend evidently along with time. For the orbit with 
𝑎 = 1.4 and 𝛺E = 90°, i.e. the STO, its distance to 2016 HO3 varies slightly and is restricted between 
1.375 and 1.425 until the end of the integration time t=100, which is much smaller than that of the 
polar orbit with 𝑎 = 1.4 in Fig.14. In addition, the boundary of STO expands little along with the time, 
which also indicates its increased robustness. Similar phenomena are evident for orbits with 𝑎 = 2.5 
and 𝑎 = 3.5, demonstrating that the STO indeed is more robust against environment uncertainties 
than other types of orbits. Since the distance of STO to the body is well restricted within small ranges, 
it is a good candidate for mission design.  
 
For both Fig.14 and Fig.15, it is seen that the range of the distance enlarges significantly with the 
increase of 𝑎 , due to the stronger SRP on high-altitude orbits. This conclusion agrees with the 
simulations in Section 4.3. Moreover, the bounds estimations of all the example orbits using ADS 
generally are in good agreement with these of the MC simulations until obvious overestimation occurs 
when the single Taylor expansion is not accurate enough over the whole uncertainty domain and the 
split of the domain is needed. From Fig.14, it can also be seen that the overestimation occurs especially 
when the motion is in close encounter with the asteroid, e.g. the lower bound (pink line) at about t=62 
and 72 for 𝑎 = 1.4, 𝑖E = 90° and 𝛺E = 45°, again indicating the nonlinearity fundamentally caused 
by the 1/r2 gravity. Improved bounds based on the Taylor expansions of these split trajectories can be 
well estimated, which is not displayed here as the main purpose of the current study is the sensitivity 
analysis. Nevertheless, in spite of the overestimation, the size and the evolution tendency of the 
uncertainty domain are well estimated. The obtained evolution of bounds provides a quantitative 
information to select trajectories that have the required robustness to uncertainties. 
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Figure 14 The distance to 2016 HO3 of the reference trajectory (red solid line), the MC simulations 
(black solid lines) and the estimated bounds using ADS (green and pink dash lines) for the sample 

orbits from Fig.7. The units of semi-major axis a and time are 44.7 m and 1177 s, respectively. 
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Figure 15 The distance to 2016 HO3 of the reference trajectory (red solid line), the MC simulations 
(black solid lines) and the estimated bounds using ADS (green and pink dash lines) for the sample 

orbits from Fig.9. The units of semi-major axis a and time are 44.7 m and 1177 s, respectively. 
 

5 Conclusions 

By applying the ADS algorithm, the uncertainties of the asteroid’s mass and the SRP are propagated 
along the orbital motion and their effects on orbits with different geometries are characterized, for 
the application to 2016 HO3. The map of the first split time indicates the dynamical structure of the 
system in terms of nonlinearity and robustness. STOs are found to be more robust to the model 
uncertainties, making them good candidates for real mission orbits. These investigations prove that 
robust orbits do exist for very small bodies with very weak gravity. Moreover, the split history and 
bounds of the trajectory are evaluated for the sample orbits, and ADS is demonstrated to be an 
efficient tool to estimate the bounds of the motion. The evolution of bounds provides quantitative 
information for selecting the most attractive mission operative orbits. 
  
In summary, this work contributes to systematically identifying the robust regions of orbital motion 
near a very small asteroid considering uncertainties in the force model and to efficiently estimating 
the bounds of the motion. For future work, the effect of the uncertainty on the initial state and on 
maneuvers executions will be investigated, as well as the effects of the irregular gravity field and the 
rotation rate of the small body. 
 



23 
 

Acknowledgement  
This work is supported by Natural Science Foundation of China for Young Scientist with No. 11703013. 
X. Hou wishes to thank the support from the Natural Science Foundation of China with No. 11773017.  
 
References 
R. Armellin, P. Di Lizia, F. Bernelli-Zazzera, M. Berz, Asteroid close encounters characterization using 
differential algebra: the case of Apophis, Celestial Mechanics and Dynamical Astronomy, 2010, 107(4): 
451-470. 
A. Morselli, R. Armellin, P. Di Lizia, F. Bernelli-Zazzera, A high order method for orbital conjunctions 
analysis: sensitivity to initial uncertainties, Advances in Space Research, 2014, 53(3): 490–508. 
V. Arnold, Mathematical Methods of Classical Mechanics. Springer, 2nd edition, 1989.  
M. Berz, Modern Map Methods in Particle Beam Physics, Academic Press, New York, 1999: 82–96. 
A. Cheng, A. Rivkin, P. Michel, et al., DART asteroid deflection test: Planetary defense and science 
objectives, Planetary and Space Science, 2018, 157: 104-115. 
F. Dora, R. Vishnun, W. Richard, et al., Photometry and Spectroscopy of (469129) 2016 HO3, 
AAS/Division for Planetary Sciences Meeting Abstracts, 2018, 50: 505.04. 
J. Feng, R. Armellin, X. Hou, Orbit propagation in irregular and uncertain gravity field using differential 
algebra, Acta Astronautica, 2019, 161: 338-347. 
J. Feng, X. Hou, Secular dynamics around small bodies with solar radiation pressure, Commun 
Nonlinear Sci Numer Simulat, 2019, 76: 71–91. 
C. de la Fuente Marcos, R. de la Fuente Marcos, Asteroid (469219) 2016 HO3, the smallest and closest 
Earth quasi-satellite, Monthly Notices of the Royal Astronomical Society, 2016, 462(4): 3441-3456. 
S. Gur'yanov, T. Galushina, Study of the Dynamics of the Asteroid Kamo`Oalewa, Russian Physics 
Journal, 2021, 63(11): 1989-1996. 
S. Hesar, D. Scheeres, J. Mcmahon, Sensitivity analysis of the OSIRIS-REx terminator orbits to 
maneuver errors, Journal of Guidance, Control and Dynamics, 2017, 40: 1–15.  
H. Hussmann, J. Oberst, K. Wickhusen, et. al, Stability and evolution of orbits around the binary 
asteroid 175706 (1996 FG3): Implications for the MarcoPolo-R mission, Planetary and Space Science, 
2012, 70(1): 102-113. 
 W. Jin, F. Li, J. Yan, et al., Simulation of global GM estimate of Asteroid (469219) 2016 HO3 for China’s 
future asteroid mission, EPSC-DPS Joint Meeting, 2019, 13: 15-20. 
S. Julier, J. Uhlmann, H. Durrant-Whyte, A new approach for filtering nonlinear systems, in: 
Proceedings of IEEE American Control Conference, 1995, 1628–1632.  
D. Lauretta, S. Balram-Knutson, E. Beshore, et al., OSIRIS-REx: Sample Return from Asteroid (101955) 
Bennu, Space Sci Rev, 2017, 212: 925–984.  
X. Liu, D. Scheeres, The shape and surface environment of 2016 HO3, Icarus, 2021, 357, 114249. 
S. Maybeck, Stochastic Models, Estimation and Control, Academic press, New York, 1982. 
J. Melman, E. Mooij, R. Noomen, State propagation in an uncertain asteroid gravity field, Acta 
Astronautica, 2013, 91: 8–19. 
R. Moore, R. Kearfott, M. Cloud, Introduction to Interval Analysis. Cambridge University Press, 2009. 
A. Pellacani, M. Graziano, M. Fittock, et al., HERA vision based GNC and autonomy, 8th European 
Conference for Aeronautics and Space Sciences (EUCASS), 2019. 
D. Scheeres, Orbital Motion in Strongly Perturbed Environments: Applications to Asteroid, Comet and 
Planetary Satellite Orbiters. Springer-Praxis, London (UK), 2012.  
D. Scheeres, J. McMahon, B. Bierhaus, et al., Janus: A NASA SIMPLEx mission to explore two NEO Binary 
Asteroids, AGU Fall Meeting Abstracts, 2020. 
G. Terejanu, P. Singla, T. Singh, P.D. Scott, Uncertainty propagation for nonlinear dynamic systems 
using gaussian mixture models, Journal of Guidance, Control and Dynamics, 2008, 31(6): 1623–1633.  



24 
 

M. Vasile, C. Absil, A. Riccardi, Set propagation in dynamical systems with generalised polynomial 
algebra and its computational complexity, Commun Nonlinear Sci Numer Simulat, 2019, 75: 22–49. 
S. Watanabe, Y. Tsuda, M. Yoshikawa, et al., Hayabusa2 Mission Overview, Space Sci Rev, 2017, 208: 
3–16. 
N. Wiener, The homogeneous chaos, Am. J. Math. 1938, 60(4): 897–936.  
A. Wittig, P. Di Lizia, F. Bernelli-Zazzera, et al., Propagation of large uncertainty sets in orbital dynamics 
by automatic domain splitting, Celestial Mechanics and Dynamical Astronomy, 2015, 122(3): 239-261. 
X. Zhang, J. Huang, T. Wang, Z. Huo, ZhengHe – A Mission to a Near-Earth Asteroid and a Main Belt 
Comet (PDF). 50th Lunar and Planetary Science Conference, March, 2019. 
 


	FronteRivista
	FENGJ_OA_01-22senzafront

