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Abstract: Bound states in the continuum (BICs), i.e. highly-
localized modes with energy embedded in the continuum
of radiating waves, have provided in the past decade a
new paradigm in optics and photonics, especially at the
nanoscale, with a range of applications from nanophoton-
ics to optical sensing and laser design. Here, we introduce
the idea of a crystal made of BICs, in which an array of BICs
is indirectly coupled via a common continuum of states
resulting in a tight-binding dispersive energy miniband
embedded in the spectrum of radiating waves. The results
are illustrated for a chain of optical cavities side-coupled
to a coupled-resonator optical waveguide with nonlocal
contact points.

Keywords: bound states in the continuum; photonic lat-
tices; waveguides and resonators.

1 Introduction

Bound states in the continuum (BICs), originally pre-
dicted in nonrelativistic quantum mechanics for certain
exotic potentials sustaining localized states with ener-
gies embedded in the continuous spectrum of scattered
states [1–3], have attracted increasing interest in optics
and photonics over the past decade [4–41], providing
a new paradigm for unprecedented light localization in
nanophotonic structures (for recent reviews see [42–46]).
Besides fundamental interest, BICs have found many inter-
esting applications in several areas of photonics, includ-
ing integrated and nanophotonic circuits [18, 36, 41, 44],
laser design [26–28, 39], optical sensing [22, 34], and
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nonlinear optics [16, 30, 37]. BICs have found increasing
interest also in the cavity and circuit quantum electro-
dynamics (QED), where spontaneous emission and deco-
herence can be prevented by the formation of photon-atom
BICs [47–55]. Among the different mechanisms underlying
the formation of BICs [1], we mention symmetry-protected
BICs, BICs via separability, Fano or Fabry–Pèrot BICs,
and BICs from inverse engineering. In the majority of
cases, a BIC arises from perfect destructive interference
of distinct decay channels in the continuum of radiation
modes, and thus perturbations rather generally transform
a BIC into a long-lived resonance state of the system, so-
called quasi-BICs. While the main interest in BICs and
quasi-BICs has been focused on their localization features,
such as the exceptionally high Q factors achievable using
quasi BICs, and to the narrow Fano-like resonances arising
from engineering BICs with applications to optical sens-
ing, a less explored question is the coupling of BICs and
related transport features. Arrays of BICs with compact
support provide an example of a flat band system and
have been investigated in some previous works [56–58].
However, in such a geometrical setting the BICs are decou-
pled and transport in the system via BIC hopping is pre-
vented. Coupling of two BICs via a common continuum
results rather generally in the formation of two quasi-
BICs, which can sustain long-lived Rabi oscillations [54,
59]. Such results stimulate the search for dispersive bands
of BICs, beyond the flat band regime, where transport is
impossible.

In this article, we introduce the idea of a crystal of BICs
where a dispersive band, formed by the indirect coupling
of a chain of BIC states, is embedded in the broader con-
tinuum of radiating waves. Contrary to the BIC flat band
systems [56–58], in our setting the band formed by the BIC
states is dispersive, thus allowing transport in the system
when e.g. a gradient field is applied. The concept of BIC
crystal and transport via BIC mode hopping is exemplified
by considering an array of optical cavities side-coupled
to a coupled-resonator optical waveguide (CROW) [60, 61]
with nonlocal contact points.
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2 Dispersive bands formed by
indirectly-coupled BICs: effective
non-Hermitian description

To highlight the idea of a crystal of BICs, let us consider a
rather general model describing N discrete states coupled
to a common one-dimensional (1D) continuum of radiat-
ing waves into which they can decay. In photonics, this
system can describe, for example, an array of N optical
cavities equally spaced by a distance d, with the same res-
onance frequency 𝜔0, side-coupled by evanescent field to
a waveguide, as schematically shown in Figure 1A. A pos-
sible photonic platform, suggested in pioneering work on
photonic BICs, could be a 1D photonic crystal waveguide
on a square lattice of dielectric rods with additional lateral
defects, which displays BICs with low radiation losses [5].
Our main focus is to consider a crystal of side-coupled res-
onators in the N →∞ limit. We note that in the cavity or
circuit QED context, the system of Figure 1A can describe
as well an array of two-level quantum emitters with tran-
sition frequency 𝜔0, equally-spaced by a distance d and
nonlocally coupled by an electric-dipole transition to the
photon field of waveguide modes. Such circuit QED model
could be implemented, for example, using arrays of artifi-
cial atoms side-coupled to a quantum waveguide realized
with superconducting quantum circuits [52]. In the follow-
ing, we will explicitly refer to the photonic system model
and will use the terminology of integrated photonics.

In the second-quantization framework, the full Hamil-
tonian of the photon field is described by Friedrichs–Lee
(or Fano-Anderson) Hamiltonian (see for instance [62, 63])

Ĥ = Ĥs + Ĥc + Ĥi (1)

where
Ĥs =

∑

n
𝜔0â†nân (2)

is the Hamiltonian of photon field in the N uncoupled
cavities with the same resonance frequency 𝜔0 (n =
1, 2,… ,N),

Ĥc = ∫ dk 𝜔(k)ĉ†(k)ĉ(k) (3)

in the Hamiltonian describing the radiating field in the 1D
waveguide, with dispersion relation𝜔(k) parametrized by
the wave number k, and

Ĥi =
∑

n ∫ dk
{

Gn(k)â†nĉ(k)+ H.c.
}

(4)

describes the resonator-waveguide coupling with spectral
coupling functions Gn(k). In the above equations, â†n and
ĉ†(k) are the bosonic creation operators of photons in the
resonator mode of the nth cavity and in the radiating field
of wave number k in the waveguide, respectively. Such
operators satisfy the usual bosonic commutation relations
[ân, â

†
l ] = 𝛿n,l, [âl, ĉ†(k)] = 0, [ĉ(k), ĉ†(k′)] = 𝛿(k − k′), etc.

Assuming time-reversal symmetry, the dispersion relation
𝜔(k) of the propagating modes in the waveguide satis-
fies the condition 𝜔(−k) = 𝜔(k). We also assume that 𝜔0
is embedded in the continuous spectrum of waveguide
modes and that the resonance condition

𝜔(k) = 𝜔0 (5)

is satisfied for k = ±k0, with 𝜔(k) ≃ |k|𝑣g for k ∼ ±k0,
where 𝑣g is the group velocity of the left- and right-
propagating modes of the waveguide at the frequency 𝜔0.
Since the resonators are equally-spaced by a distance d
along the waveguide x-axis and equally coupled to the
waveguide, the spectral coupling functions Gn(k) satisfy
the condition [6]

Gn(k) = G0(k) exp(ikdn). (6)

with G0(k) → 0 as k → ±∞. Let us assume that the system
is initially excited by a single photon or by a classical state
of light in the resonators solely. In this case, we can restrict

Figure 1: (A) Schematic of a waveguide with N side-coupled optical resonators or cavities (N = 5 in the figure). Adjacent cavities are spaced
by a distance d. (B) A CROW in a zig-zag geometry (blue rings) with side-coupled optical cavities (red circles). The solid bonds show the
couplings of the various cavities/resonators. Note that each cavity is coupled to three resonators of the CROW with coupling constants 𝜌 and
h𝜌. The distance between adjacent cavities is d = 1 (in units of the CROW period). The overall cavities-CROW system can be viewed as a
bipartite lattice with two sites in the unit cell (sublattice A formed by the side cavities and the sublattice B formed by the resonators of the
CROW). The weak-coupling limit corresponds to 𝜌≪ J, where J is the coupling rate of adjacent resonators in the CROW.
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the analysis to the single excitation sector of Fock space
[53, 64] by letting,

|𝜓(z)⟩ =
{

∑

n
an(t)â†n|0⟩+ ∫ dk c(k, t)ĉ†(k)|0⟩

}

× exp(−i𝜔0t) (7)

for the state vector of the photon field, where the ampli-
tude probabilities an(t) and c(k, t) satisfy the classical
(c-number) coupled-mode equations

i dan
dt

= ∫ dk Gn(k)c(k, t) (8)

i𝜕c
𝜕t
= {𝜔(k)−𝜔0} c(k, t) +

∑

n
G∗n(k)an(t) (9)

with c(k,0) = 0. Assuming a weak resonator-waveguide
coupling and neglecting retardation effects, using stan-
dard methods one can eliminate the waveguide degrees of
freedom c(k, t) from the dynamics, resulting in an effective
non-Hermitian coupling among the resonators mediated
by the continuum of waveguide modes [5, 6, 46, 62, 63,
65–67]. The resulting approximate non-Hermitian dynam-
ics of the resonator field amplitudes an read

i dan
dt

≃
∑

l
Hn,lal (10)

where the elements of the non-Hermitian matrix H are
given by (technical details are presented in Section 1
of the Supplementary Material)

Hn,l = lim
𝜖→o+ ∫ dk

Gn(k)G∗l (k)
i𝜖 +𝜔0 −𝜔(k)

. (11)

Note that, from Eqs. (6) and (11), it follows that Hn,l is
a function of (n− l) solely, i.e.

Hn,l = Hn−l = lim
𝜖→o+ ∫ dk |G0(k)|2 exp[ikd(n− l)]

i𝜖 +𝜔0 −𝜔(k)
. (12)

A few general properties of the coefficients Hn are
discussed in Section 1 of the Supplementary Material.
In particular, for a symmetric coupling of the resonator
mode with forward and backward propagating modes of
the waveguide, i.e. for G0(−k) = G0(k), one has H−n = Hn.
Moreover, Hn vanishes as n →∞, if and only if the condition

G(±k0) = 0 (13)

is satisfied. As shown in the Supplementary Material, this
condition corresponds to the vanishing of the imaginary
part of H0, i.e. to the existence of a BIC when a single
resonator (rather than a chain of resonators) is coupled to
the waveguide.

In a system with discrete translation invariance, i.e.
in the N →∞ limit, Eq. (10) indicates that the indirectly-
coupled resonators behave like a tight-binding crystal with
long range hopping, sustaining Bloch-like supermodes of
the form

an = A exp[iqdn− iΩ(q)t] (14)

with the energy dispersion relation given by

Ω(q) =
∑

n
Hn exp(−iqdn) (15)

where −𝜋∕d ≤ q < π∕d is the Bloch wave number. The
main result is that, provided that condition (13) is
met, the series on the right hand side of Eq. (15) con-
verges and the energy spectrum, described by the dis-
persion curve Ω(q), is entirely real and given by (see
Section 2 of the Supplementary Material for technical
details)

Ω(q) = 2𝜋
d

∞∑

l=−∞

|G0(q+ 2𝜋l∕d)|2
𝜔0 −𝜔(q+ 2𝜋l∕d)

. (16)

Clearly, the dispersion curveΩ(q) is embedded in the
broad spectrum𝜔(k) of the scattering states of waveguides.
A trivial case is when the BIC modes are compact states
and decoupled one from another (Hn = 0 for n ≠ 0), which
occurs for enough wide spacing d: in this case, one obtains
a flatband BIC crystal, i.e. Ω(q) = H0 independent of q.
Examples of crystals sustaining a flat band of BIC states
have been discussed in the context of flat band systems
(see e.g. [56–58]). However, the present asymptotic ana-
lyst shows that an entirely real energy dispersion relation
is possible beyond the flat band case when the BIC states
are indirectly coupled via the continuum of the waveg-
uide modes so that excitation can be transferred among
the various indirectly coupled BICs through the embedded
dispersive bandΩ(q).

3 An example of a BIC lattice:
optical cavities side-coupled to a
CROW

3.1 Model and band structure

To illustrate the existence and properties of a BIC crys-
tal with a dispersive band, we consider a simple and
exactly-solvable tight-binding model, shown in Figure 1B.
It consists of an array of optical cavities side-coupled with
three contact points to a CROW in a zig-zag geometry, with
spacing d = 1 between one cavity and the next one (in
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units of the CROW period). We assume negligible radia-
tion losses from the cavities to the surrounding space, so
that decay mainly arises from evanescent mode coupling
to the CROW. This system could be physically implemented
in a two-dimensional photonic crystal platform, where a
periodic sequence of defect modes is side-coupled to a 1D
photonic crystal waveguide, in a configuration similar to
the case of the two off-channel defects suggested in Ref.
[5]. In such a configuration, the side-coupled off-channel
cavities are hidden deeply in the photonic crystal so that
radiation losses from the cavities are strongly suppressed.
For the case of N = 2 cavities, this model has been recently
studied in Ref. [59], showing that weakly damped Rabi
flopping can be observed owing to the indirect coupling
of two quasi-BIC modes. Here we consider, conversely, the
N →∞ limit so that the system displays discrete transla-
tion invariance and we can apply Bloch band theory. We
indicate by 𝜔0 the frequency detuning between the opti-
cal modes in the cavities and resonators, by J the coupling
constant between adjacent resonators in the CROW, and by
𝜌 and h𝜌 the coupling of each optical cavity with the three
closest resonators of the CROW (Figure 1B). The dimension-
less parameter h measures the relative strength of nearest
and next-to-the-nearest mode coupling of the optical cav-
ity with the CROW resonators. We typically assume 𝜌 < J,
with 𝜌 ≪ J in the weak coupling regime. Clearly, in the
N → ∞ limit, the tight-binding Hamiltonian in Wannier
basis can be readily solved by Bloch theorem and the
energy spectrum consists of two bands since the entire
system can be viewed as a bipartite lattice composed by
two sublattices (Figure 1B). This analysis will be discussed
below. Before, we wish to illustrate how the existence of
the BIC crystal can be predicted from the effective non-
Hermitian description outlined in the previous section.
As shown in Section3 of the Supplementary Material,
the Hamiltonian of the photon field for the model of
Figure 1B can be cast in the general Friedrichs–Lee form of
Eqs. (1)–(4), where the continuum of radiation modes in
the waveguide are the Bloch modes of the CROW with the
dispersion relation

𝜔(k) = 2J cos k, (17)

[k varies in the range (−𝜋, 𝜋)], while the spectral coupling
function G0(k) is given by

G0(k) = 𝜌√
2𝜋

(1+ 2h cos k) . (18)

The BIC condition (13) is satisfied provided that the
frequency detuning 𝜔0 is tuned to the value

𝜔0 = 2J cos k0 = −J∕h (19)

so as G(±k0) = 0. Note that, to satisfy Eq. (19), we neces-
sarily require h > 1∕2.

The dispersion curve of the BIC crystal is obtained
from Eq. (16), where the sum on the right hand side of the
equation is limited to the n = 0 term solely (this is because
k varies only in the range (−π, π), rather than from −∞ to
∞ as in a waveguide). One obtains

Ω(q) = 𝜌2(1+ 2h cos q)2

𝜔0 − 2J cos q
(20)

which shows a singularity at J cos q = 𝜔0∕2. The physical
origin of such a singularity and failure of the asymptotic
method will be discussed below through the exact analy-
sis. However, the curve Ω(q) is regularized under the BIC
condition 𝜔0 = −J∕h [Eq. (19)], yielding

Ω(q) = −𝜌
2h
J

(1+ 2h cos q) (21)

Note that the dispersion curve is sinusoidal, corre-
sponding to the vanishing of Hn for n ≠ 0,±1.

Let us then turn to the exact analysis of modes and
spectrum of the lattice shown in Figure 1B, which can be
readily obtained by standard Bloch analysis in the Wannier
basis of the CROW modes. In fact, indicating by an and bn
the field amplitudes in the nth side-coupled optical cavity
and in the nth resonator of the CROW, the classical coupled-
mode equations for an and bn read

i dan
dt

= 𝜔0an + 𝜌bn + 𝜌h(bn−1 + bn+1) (22)

i dbn
dt

= J(bn+1 + bn−1)+ 𝜌an + 𝜌h(an+1 + an−1). (23)

The Bloch eigenstates (supermodes) of the lattice are
of the form

(
an
bn

)
=
(

A
A

)
exp[iqn− i𝜔0t − iΩ(q)t] (24)

where the dispersion relation Ω(q) is obtained as the root
of the determinantal equation

|||||
Ω(q) −𝜌(1+ 2h cos q)

−𝜌(1+ 2h cos q) Ω(q)+𝜔0 − 2J cos q

|||||
= 0. (25)

Note that Eq. (25) is of second order inΩ(q), indicating
the existence of two lattice bands, according to the bipartite
nature of the lattice which comprises the two sublattices
A (optical cavities) and B (resonators of the CROW). The
dispersion curves of the two bands read
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Ω±(q) = −𝜔0
2
+ J cos q

±
√(

𝜔0
2
− J cos q

)2
+ 𝜌2(1+ 2h cos q)2. (26)

Rather generally the energy spectrum is gapped with
an upper (Ω+) and lower (Ω−) band (Figure 2A). However,
when the resonance frequency detuning𝜔0 is tuned to the
value𝜔0 = −J∕h, corresponding to the BIC condition (19),
the spectrum is gapless and the two bands cross, lead-
ing to the formation of a narrow band Ωn(q), embedded
in a wider band Ω𝑤(q), as shown in Figure 2B. Basically,
Ωn(q) = Ω−(q) for −k0 ≤ q ≤ k0, and Ωn(q) = Ω+(q) for
|q| > k0. Likewise, Ω𝑤(q) = Ω+(q) for −k0 ≤ q ≤ k0, and
Ω𝑤(q) = Ω−(q) for |q| > k0. Remarkably, the narrow and
wider bands have the same dispersion relation but with
different amplitudesΔ𝑤.n, namely

Ω𝑤.n(q) = Δ𝑤,n(1+ 2h cos q) (27)

with

Δ𝑤,n =
J

2h
±
√( J

2h

)2
+ 𝜌2. (28)

Note that, in the weak coupling limit 𝜌 ≪ J one
has Δn ≃ −h𝜌2∕J, so that the dispersion relation Ωn(q)
of the embedded narrow band exactly reduces to Eq. (21),
predicted by the asymptotic analysis. The corresponding
Bloch eigenstates [Eq. (24)] have the largest excitation in
the sublattice an, i.e. in the optical cavities, with a ratio
B∕A = Δn∕𝜌 ∼ O(𝜌∕J).

It is worth briefly discussing the failure of the asymp-
totic analysis when the BIC condition 𝜔0 = −J∕h is not

met and the appearance of a singularity in the energy
band Ω(q), given by Eq. (20), at the Bloch wave number
q = ±k0 with J cos k0 = 𝜔0∕2. To this aim, let us consider
the exact band structure of the system, given by Eq. (26),
in the 𝜌∕J → 0 limit. Let us write the bands Ω± in the
equivalent form

Ω±(q) =− 𝜔0
2
+ J cos q±

||||
𝜔0
2
− J cos q

||||

×

√√√√√1+ 𝜌2(1+ 2h cos q)2
(
𝜔0
2
− J cos q

)2 . (29)

In the limit 𝜌∕J → 0 and for𝜔0 ≠ −J∕h, a narrow gap,
corresponding to an avoided crossing of the two branches
Ω±(q), occurs at the Bloch wave number q = ±k0 such
that J cos k0 = 𝜔0∕2. For q far enough from ±k0 such that
|2J cos q−𝜔0|≫ 𝜌, we can perform a Taylor expansion of
the square root on the right hand side of Eq. (29), yielding
for the mixed branchΩn(q) the following expression

Ωn(q) ≃ 𝜌2(1+ 2h cos q)2

𝜔0 − 2J cos q
(30)

which is precisely the dispersion curve Eq. (20) predicted
by the asymptotic analysis. Hence, the unphysical singu-
larity found in Eq. (20) at the Bloch wave numbers q = ±k0
is related to the formation of a physical band gap, which
cannot be described by the asymptotic analysis.

Finally, let us mention that for the exactly solvable
model given by Eqs. (22) and (23) a narrower dispersive
bandΩn embedded into a wider bandΩ𝑤 is observed even

Figure 2: (A and B) Band diagram of the CROW structure with side-coupled optical cavities of Figure 1B for parameter values 𝜌/J = 0.3,
h = 0.8 and for (A) 𝜔0/J = −0.75, (B) 𝜔0∕J = −1∕h = −1.25. The dashed red curves in (A and B) show the band dispersion curveΩ(q)
predicted by the asymptotic analysis [Eq. (20)]. In (A), the BIC condition𝜔0 = −J∕h is not satisfied, the spectrum is gapped with noncrossing
upper (Ω+) and lower (Ω−) bands. Note thatΩ(q) shows a singularity at the Bloch wave numbers q = ±k0, where k0 satisfies the resonance
condition 𝜔0 = 2J cos k0. In (B), the BIC condition 𝜔0 = −J∕h is satisfied and the spectrum is gapless, resulting in the formation of
narrowbandΩn (the BIC band) embedded in a wider bandΩ

𝑤
. In this case, the predicted curveΩ(q) is almost overlapped with the exact

curveΩn of the narrow band. (C) Band diagram in the strong coupling regime (𝜌∕J = 1.1, h = 0.8) with 𝜔0∕J = −1∕h. A narrower bandΩn

embedded in a wider bandΩ
𝑤

is still observed in the exact model (solid curves). However, the asymptotic analysis [Eq. (21), dashed curve]
fails to provide the accurate shape of the narrow band.
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in the strong coupling regime (𝜌 comparable or even larger
than J), provided that the gapless condition 𝜔0 = −J∕h is
met. An example of the exact band structure (Ωn andΩ𝑤) in
the strong coupling regime is shown in Figure 2C by solid
curves. Clearly, in this regime, the asymptotic analysis,
valid in the weak coupling limit, does not provide anymore
an accurate description of the embedded bandΩn, with the
dispersion curve Ω(x) predicted by Eq. (21) (dashed curve
in Figure 2C) substantially deviating from the exact band
dispersion curve Ωn. Also, in the strong coupling regime,
a single BIC mode does not exist anymore under condition
(19), and an additional shift from the gapless value given
by Eq. (19) would be required to have a single BIC: hence
in the strong coupling regime, the nature of the embedded
band Ωn cannot be readily linked to indirectly coupled
isolated BIC modes of the structure.

3.2 Transport dynamics: BOs in the BIC
crystal

In a flat band system realized by a chain of uncoupled BICs,
transport via mode hopping in the flat band is clearly pre-
vented. Conversely, in a BIC crystal with a dispersive band
transport is possible. To illustrate the concept, let us intro-
duce a linear refractive index gradient along the x-axis of
the system, shown in Figure 1B. In a single-band crystal,
such a gradient is known to induce a periodic light dynam-
ics which is the analogous of BOs of electrons in crystalline
potentials (see for instance [68–75]). The coupled-mode
equations ((22) and (23)) are modified as follows

i dan
dt

= 𝜔0an + 𝜌bn + 𝜌h(bn−1 + bn+1)+ Fnan (31)

i dbn
dt

= J(bn+1 + Jbn−1)+ 𝜌an + 𝜌h(an+1 + an−1)

+ Fnbn, (32)

where F is a small frequency detuning gradient induced
by the index gradient. As an initial condition, we assume
a Gaussian wave packet excitation of the optical cavi-
ties (sublattice A) with vanishing momentum, i.e. an(0) =
exp(−n∕2𝑤2 + iq0n), bn(0) = 1 with q0 = 0 and𝑤≫ 1. The
observed dynamical behavior largely depends on whether
the system is gapless (𝜔0 = −J∕h) or gapped (𝜔0 ≠ −J∕h).

In the gapless case, i.e. when we have a BIC crystal, in
the weak coupling limit𝜌≪ J the initial wave packet excites
the narrow portion of the Ωn(q) narrow band with wave
number q ∼ q0 = 0. In the semiclassical description of the
wave packet dynamics, the external force F induces a drift
q(t) = q0 + Ft of the wave number (momentum) in Bloch
space. Since the spectrum is gapless, at the crossing points
q = ±k0, the excitation fully remains in the BIC crystal nar-
row band Ωn, without excitation of the wider embedding
bandΩ𝑤, i.e. of sites of sublattice B. As a result, a periodic
dynamics of the wave packet with a BO period TB = 2π∕F
is observed, with most of the excitation remaining trapped
in the optical cavities, as measured by the evolution of the
fractional optical power

P(t) =
∑

n|an(t)|2∑
n|an(t)|2 +∑

n|bn(t)|2 . (33)

This is illustrated, as an example, in Figure 3.
Conversely, when the condition 𝜔0 = −J∕h is not

satisfied, i.e. when the two bands of the bipartite lattice

Figure 3: Bloch oscillation dynamics in the BIC crystal with the same parameter values as in Figure 2B and for a gradient F∕J = 0.025. The
initial excitation condition is a Gaussian wave packet an(0) = exp[−(n∕𝑤)2 + iq0n] with initial wave number q0 = 0 and width𝑤 = 3. The
external gradient F induces a drift of the Bloch wave number according to q(t) = q0 + Ft, which is schematically depicted in (A) by solid
arrows. When the wave number q reaches the crossing point q = k0, the widebandΩ𝑤 is not excited and the entire wave packet undergoes a
periodic motion, remaining trapped in the narrow (BIC) bandΩn, with a period T B = 2π∕F ≃ 251.3∕J. This is shown in panel (B), which
depicts on a pseudo color map the temporal evolution of the amplitudes |an(t)| in the various cavities, labeled by the site number n. The
temporal evolution of the fractional optical power P(t) trapped in the cavities, defined by Eq. (33), is shown in panel (C). Note that during the
entire Bloch oscillation (BO) period, the optical power remains mostly trapped in the optical cavities, with small excitation of the resonators
in the CROW.
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Figure 4: Same as Figure 3, but for parameter values as in Figure 2A and for a gradient F∕J = 0.025. Note that, when the wave number q(t) of
the Gaussian wave packet reaches the crossing point q = k0, excitation is split between the upper and lower bandsΩ± (solid arrows in panel
(A)), and the entire wave packet undergoes an irregular motion, dubbed Bloch–Zener oscillations (panel (B)), with an aperiodic exchange of
optical power between the two bands as q(t) crosses the two-gap points q = ±k0. Correspondingly, a large fraction of optical power can be
transferred during the dynamics from the optical cavities (sublattice A) to the resonators of the CROW (sublattice B), as shown in panel (C).

undergo an avoided crossing at q = ±k0, we do not have
a BIC crystal anymore, i.e. a narrow band embedded in
a wider one is not formed, rather we have two distinct
bands Ω±(q) separated by a gap. The initial wave packet
mostly excites the Bloch modes of the lower band Ω−(q)
with wave number near q ∼ q0 = 0. When the drifting
Bloch wave number q(t) = q0 + Ft reaches the avoided
crossing points q = ±k0, a splitting of excitation between
the two distinct bands Ω± is observed, leading to a more
complex and generally aperiodic two-band dynamics (so-
called Bloch–Zener oscillations [76–80]). This behavior
is illustrated in Figure 4. Note that, contrary to the gap-
less case of Figure 3, at the avoided-crossing points a
rather abrupt change of the fractional optical power P(t)
trapped in the optical cavities is observed, i.e. excitation
does not remain trapped in the optical cavities anymore,
but it is periodically transferred into the resonators of
the CROW.

4 Conclusion

In this work, we have introduced the concept of a BIC crys-
tal, i.e. a narrow energy band of Bloch modes (rather than
one or more discrete energy levels) embedded in a wide
spectrum of radiation modes. By means of an asymptotic
analysis based on a non-Hermitian effective model, it has
been shown that rather generally a BIC crystal arises when
single BIC modes are indirectly coupled via a common
continuum. To support the predictions of the asymptotic
analysis, we presented an exactly-solvable model, consist-
ing of an array of optical cavities side-coupled nonlocally
to a CROW. The narrow embedded energy band formed by
the indirectly coupled BIC modes enables transport in the

crystal, contrary to the case of a flat band formed by uncou-
pled BIC modes. Our results shed new light in the area of
BIC states, suggesting the fresh concept of the embedded
band or BIC crystal, which could stimulate interest in pho-
tonics and in other areas of physics, such as in cavity or
circuit QED.
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