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Abstract 

We evaluate the relative importance of the uncertainty related to parameters 

characterizing partially saturated groundwater flow on head and gravity changes associated 

with pumping tests taking place in homogeneous and heterogeneous porous media. We frame 

our study in a Global Sensitivity Analysis setting and assess the way imperfect knowledge of 

such parameters influences the probability distribution (pdf) of head and gravimetric 

variations recorded during well operation. We rely on a set of detailed computational analyses 

and conceptualize uncertain model parameters as random quantities. Randomly heterogeneous 

domains are treated by considering main geostatistical descriptors (i.e., variance and 

correlation scale) of three-dimensional spatial distributions of system properties as affected by 

uncertainty. We quantify the effects of the latter on the resulting pdf of (ensemble) mean and 

variance of head and gravity changes through a numerical Monte Carlo approach. While all 

uncertain parameters are influential to gravity changes in both homogeneous and randomly 

heterogeneous scenarios, consistent with the integral nature of gravity observations, our study 

enables us to quantify their relative importance. Values of Ensemble mean and variance of 

head and gravity changes associated with randomly heterogeneous fields are generally more 

influenced by the variance rather than by the correlation scale of the spatially heterogeneous 

parameters considered. Uncertainty in the correlation scale is more influential to the shape, 

and hence on extreme values, of the probability distribution of these moments. 
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1. Introduction 

Aquifer characterization commonly relies on several types of data and investigation 

approaches. In the context of hydrogeological analyses, for example, pumping tests are 

performed with the main aim of assessing hydraulic conductivity and storage capacity from 

drawdown observations. As hydrological systems are characterized by heterogeneity as well 

as temporal dynamics which are driven by diverse physical mechanisms, precise identification 

of the relative importance of each system parameter on target state variables (such as, e.g., 

hydraulic head changes) is remarkably challenging. In this context, joint use of 

hydrogeological data and geophysical quantities embedding information about variations of 

water mass stored in the system can improve our ability to characterize hydrodynamic aquifer 

parameters in heterogeneous system settings (Bevan et al., 2003; Rizzo et al., 2004; Andersen 

et al., 2005; Andersen and Hinderer, 2005;  Straface et al., 2007). 

Among these types of observations, gravimetric data are widely being considered to 

assist aquifer system characterization. Their increased use is based on the observation that 

gravimetric variations can be related to the displacement of water masses and mass variations 

taking place across the duration of pumping tests. These tests can then potentially give rise to 

gravity changes of several µGal (Blainey et al., 2007; Damiata and Lee, 2006; Maina and 

Guadagnini, 2018). In this sense, the use of gravimetric variation data in hydrological 

sciences is very attractive because these data can easily be obtained through modern devices 

which are associated with a high precision system capable of detecting also contained changes 

in gravity (e.g., about 3µGal) that correspond in turn to head changes of few centimeters (e.g., 

Jacob et al., 2008). 

Gravity changes in aquifer systems have been analyzed in several studies, which were 

mainly concerned on characterizing storage properties (e.g., Montgomery, 1971; Pool and 

Eychaner, 1995; Tapley et al., 2004; Pool, 2008; Gehman et al., 2009; Hinderer et al., 2009; 

Jacob et al., 2008, 2009, 2010; Christiansen et al., 2011; Pfeffer et al., 2011). Some works 
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have specifically addressed the study of gravimetric variations associated with the operation 

of a pumping well in unconfined aquifers (e.g., Damiata and Lee, 2006; Blainey et al., 2007; 

Herckenrath et al., 2012; González‐ Quirós et al., 2014; Fernández-Álvarez et al., 2016). 

These studies have highlighted that gravimetric data (when coupled with hydrological or 

hydrogeological observations) can provide valuable information to guide assessment of 

hydrodynamic parameters (notably, storage properties). Maina and Guadagnini, (2018) rely 

on Global Sensitivity Analysis (GSA) and show that gravimetric data potentially contain 

information about several hydrodynamic system parameters while showing highest sensitivity 

to specific yield and storage. These authors rely on the three-dimensional analytical solution 

developed by Mishra and Neuman (2011) that embeds the richness of phenomena driving 

flow dynamics through unsaturated and saturated zones in a porous domain. Due to the 

complexities of the coupled unconfined/confined systems analyzed, the above mentioned 

analytical solution includes several approximations and assumptions, including, e.g., spatial 

uniformity of aquifer attributes (see also, e.g., Mishra and Neuman, 2010, 2011, and 

references therein). 

Here, we study gravity changes associated with a pumping test. We ground our work 

on a suite of systematic and detailed computational studies considering homogeneous and 

randomly heterogeneous domains within which partially saturated flow evolves in time. We 

rely on a robust and efficient numerical model that allows solving the Richards equation 

(Richards, 1931) in three dimensional systems through a mixed hybrid finite element scheme 

(Chiang et al., 1989; Chavent and Roberts, 1991; Bergamaschi and Putti, 1999; Farthing et al., 

2003; Bause and Knabner, 2004; Farhloul and Serghini Mounim, 2005; Belfort et al., 2009; 

Fahs et al., 2009), temporal integration being performed via the method of lines whose 

effectiveness has been documented in several works (Miller et al., 1998; Tocci et al., 1997; 

Williams et al., 2000; Fahs et al., 2009). 
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While recognizing that model parameters are typically imperfectly known and affected 

by uncertainty, we (i) conceptualize these as random quantities and (ii) quantify their relative 

degree of importance on target model outputs, i.e., head and gravity changes. We set our 

study in the context of a GSA framework, enabling us to (i) quantify relationships between 

model inputs and outputs (Homma and Saltelli, 1996; Sarrazin et al., 2016) and (ii) assess the 

way parametric uncertainties propagate to model outputs. Together with analyses relying on 

the classical Sobol’ indices, which are variance-based quantities and assist defining the way 

uncertain model parameters affect a model output variance (see, e.g., Sobol, 1993; Homma 

and Saltelli 1996; Archer et al., 1997; Marrel, 2008; Sudret, 2008; Crestaux et al., 2009; 

Saltelli et al., 2010; Razavi and Gupta, 2015; Sarrazin et al., 2016), we further consider the 

sensitivity metrics recently proposed by Dell’Oca et al. (2017). The latter enable one to 

evaluate the contribution of model parameters to the probability density function of model 

outputs, as rendered through its associated statistical moments. When considering spatially 

heterogeneous domains, we treat system attributes as (second-order stationary) three-

dimensional random fields and study the influence of imperfect knowledge of the 

corresponding key geostatistical descriptors (i.e., variance and correlation scale) on the 

uncertainty in the statistical moments (mean and variance) of head and gravity changes 

evaluated through a numerical Monte Carlo approach. 

The work is organized as follows. Section 2 illustrates the key elements of the 

theoretical background, approaches and methodologies employed in the analysis. The 

description of the numerical setup and homogeneous and heterogeneous scenarios examined 

is included in Section 3. Key results are summarized in Section 4, followed by our main 

conclusions. 

2. Mathematical Framework 

2.1. Flow in variably saturated porous media 
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We consider transient partially saturated flow in a non-deformable porous medium 

governed by the following mass conservation equation for the water phase, 

 S
S h

f
t t






 
    

 
q   (1) 
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w w
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-2
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] 

represents a sink/source term; t [T] is time; and q [LT
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] is water specific discharge given by 
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where 
k

a   0 is a constant (typically a function of the pore size distribution of the medium) 

and 
k

  is a pressure head above which k = 1 and (usually) coincides with the air entry 

pressure head, 
a

 . The volumetric water content is evaluated as (e.g., Mishra and Neuman, 

2011) 
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where 
c

a   0 is the water retention curve parameter; 
r

  is residual water content, and 
Y

S  =  

 
r

  is specific yield. 
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We evaluate the flow field in three dimensions through a Eulerian-type method. 

Numerical solutions based on the mixed form of (1) are well known to be associated with 

conservative properties (Celia et al., 1990). However, this form cannot be applied when 

considering higher order numerical integration schemes, such as the method of lines (Miller et 

al., 1998) which has been proven to be efficient and to provide accurate results (Fahs et al., 

2009). Therefore, we rewrite (1) in the corresponding pressure form as 

   s
S h

C f
t

 


  
     

 

q  (5) 

where   /C d d    is the capacity coefficient. In our study we solve (5) by relying on a 

spatial discretization performed according to the mixed hybrid finite elements (Chavent and 

Roberts, 1991), temporal integration being grounded on the method of lines (Fahs et al., 2009; 

Tocci et al., 1997). Additional details about the numerical solution of (5) can be found, e.g., in 

Fahs et al. (2009). 

2.2. Gravimetric Variations 

Changes in water mass stored in the subsurface due to pumping give rise to 

gravimetric variations. Considering a gravimeter positioned at location (
m

x , 
m

y , 
m

z ) in a 

three-dimensional domain of infinite extent, one can write (Telford et al., 1990; Leirião et al., 

2009) 

   
 

3
, , ,

m
z z

g t x y z t dxdydz
r

 





 
     ; with      

2 2 2

m m m
r x x y y z z       (6) 

Here, g  [L T
-2

] is the variation of gravity (or gravity change) detected by the gravimeter 

between the initial (undisturbed) conditions and time t from the start of pumping, as a result of 

the variation of density   [M L
-3

],  being the universal gravitational constant (= 6.67  10
-

11
 N m

2
 kg

-2
). Density variations   depend on changes of water head, h , and water 

content,  , respectively taking place in the saturated and unsaturated regions according to 
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w
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
    (7) 

 
w

      (8) 

2.3. Methodological Approach and Global Sensitivity Analysis 

Models are inevitably associated with uncertainties stemming from our incomplete 

knowledge of the system, e.g., initial/boundary conditions, simplification in the mathematical 

description of the processes involved and lack of information resulting from the variety of 

space-time scales associated with the physical processes under study. Evaluation of gravity 

changes through the interpretive modeling framework detailed in Sections 2.1-2.2 relies on 

our knowledge of model parameters representing specific features of the system functioning. 

In this context, we explore the role of the uncertain model parameters in driving uncertainty 

associated with gravity changes, given the model structure adopted and considering a 

randomly heterogeneous porous medium. As discussed in the Introduction, we do so by 

relying on a Global Sensitivity Analysis (GSA) approach, the latter enabling us to 

quantitatively assess the relative importance of a set of (typically uncertain) model input 

parameters on model outputs of interest. 

The well-known Sobol’ indices (Sobol, 1993) rely on the decomposition of model 

output variance (Archer et al., 1997; Saltelli et al., 2010) and yield its expected reduction due 

to the knowledge of uncertain model parameters. Dell’Oca et al. (2017; 2020a, b) show that 

diagnosing a model by quantifying the importance of uncertain parameters relying solely on 

the model output variance provides at best an incomplete assessment of the way a model 

governs a system behavior. These authors propose an alternative and complementary 

approach based on the computation of (statistical) Moment-based Metrics. The latter aim at 

quantifying the impact of model parameter uncertainties on statistical moments governing 

main features of the probability density function (pdf) of model outputs. A brief illustration of 

Sobol’ indices and Moment-based metrics is provided in Appendix A. 
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A drawback shared by most GSA techniques, including those illustrated above, is that 

they can be computationally very demanding, as a large number of Monte Carlo iterations 

might be required to obtain robust and stable estimates of the desired sensitivity metrics. This 

issue can be particularly relevant in complex settings of the kind here considered. The impact 

of such a barrier can be alleviated by resorting to the use of surrogate (or reduced order) 

models. Amongst various available alternatives, here we rely on an approximation of model 

outputs based on the Polynomial Chaos Expansion (PCE; Sudret, 2008; Wiener, 1938), other 

approaches being fully compatible with the methodological framework we consider. This 

technique has been successfully employed in the context of diverse Earth science settings 

(including, e.g., Crestaux et al., 2009; Fajraoui et al., 2011; Formaggia et al., 2012; Ciriello et 

al., 2013; Porta et al., 2014; Garcia-Cabrejo and Valocchi, 2014; Sudret and Mai, 2015; 

Bianchi Janetti et al. 2019; Patani et al., 2021). 

3. Numerical set-up 

We study the temporal evolution of gravity changes taking place during a pumping 

test in a three-dimensional heterogeneous unconfined aquifer. The exemplary domain has a 

planar extent of 100  100 m
2
 and a total thickness of 50 m. Initial hydraulic head is set to 40 

m, i.e., the water table is initially located 10 m below the ground surface. Dirichlet (h = 40 m) 

and Neumann (impervious) boundary conditions are set at the four lateral limits and at the 

bottom of the domain, respectively. A pumping well is located at the center of the domain and 

is screened between 22.5 and 27.5 m below ground surface. The pumping rate is constant (Q 

= 5  10
-3

 m
3
s

-1
) for the whole pumping period, here taken as 7 days. The pumping duration 

has been selected to ensure negligible impacts of the constant head boundary conditions on 

the target quantities of interest (see also Section 4.2). A gravimeter is placed on the ground 

surface at the well planar location and records the gravimetric variations induced by pumping. 

We remark that our selected pumping test duration as well as domain size and pumping rate 
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are consistent with pumping tests typically associated with unconfined systems (see, e.g., 

Bevan et al., 2003; Damiata and Lee, 2006; Leirião et al., 2009; Maina and Guadagnini 2018). 

To the best of our knowledge, systematic stochastic analyses on gravimetric variations 

induced by a pumping test in randomly heterogeneous aquifers are still lacking. 

The domain is discretized with a uniform grid of size equal to 5 m. Increasing the 

refinement of the grid does not yield significant differences in the solution (not shown), the 

selected grid size allowing for a good balance between CPU time and numerical accuracy. We 

recall that the numerical model relies on the solver DLSODIS (Hindmarsh, 1982), the 

temporal discretization being then designed to ensure stability and accuracy of the solution. 

The domain is isotropic along the horizontal (x, y) plane, the hydraulic conductivity 

matrix KS in (2) being fully defined by its horizontal, KS, and vertical, KSz, components. 

Following Belfort et al. (2013), we set k = a = 0, r = 0.1, and ac = ak. Our state variable of 

interest (gravity changes computed via (6)) depends on the following five model input 

parameters, which are here considered to be affected by uncertainty: (i) horizontal (saturated) 

hydraulic conductivity, KS; (ii) anisotropy coefficient, Kd = KSz / KS; (iii) specific storage, SS; 

(iv) specific yield, SY; and (v) the Gardner model parameter, ak = ac. 

Our study targets homogeneous and randomly heterogeneous aquifer systems, as 

described in the following subsections. For each scenario, our numerical analyses rest on a 

Quasi-Monte-Carlo technique (e.g., Caflisch, 1998; Niederreiter, 1992; Feil, 2009 and 

references therein) to sample the parameter space. Due to computational costs, we perform 

GSA by relying on the construction of surrogate models (based on PCEs) of all quantities of 

interest, as detailed in the following. 

3.1. Homogeneous setting 

We start by considering a homogeneous scenario (denoted as H0) where all uncertain 

model parameters (e.g., KS, Kd, SS, SY, ac) are considered as independent and identically 
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distributed (i.i.d.) random variables characterized by uniform distributions with supports listed 

in Table 1. The interval of variability considered for each uncertain parameter is consistent 

with previous studies (Damiata and Lee, 2006; Leirião et al., 2009) and has been designed to 

encompass coarse as well as fine aquifer geomaterials, resulting in coefficients of variations 

(CVs) of parameter distributions with magnitude around 50%. 

We sample the parameter space via a Quasi-Monte-Carlo technique. Here, we rely on 

m = 1,000 random realizations and for each of these we evaluate the drawdown (with respect 

to the initial hydraulic head) in each cell j of the domain at time t,  ,
i

h j t  (with i =1,…, m), 

as well as the total variation of gravity,  i
g t , via (6). The PCE approximations of  ,

i
h j t  

and  i
g t  are then constructed to assist GSA. The quality of the PCE of order 4 (for the 

evaluation of both  ,
i

h j t  and  i
g t ) has been assessed through cross-validation against 

the numerical solution of the full model illustrated in Sections 2.1 and 2.2 (details not shown). 

The sensitivity indices introduced in Section 2.3 and illustrated in Section 4 are then 

computed on the basis of 5,000 PCE runs. 

 

3.2. Heterogeneous setting 

This setting is designed to assess the effect of randomly heterogeneous spatial 

distributions of KS, ac, and SS on total gravity changes, the remaining model parameters (i.e., 

Kd and SY) being treated as described in Section 3.1. We start by noting that while there is 

abundant literature devoted to the analysis of spatially correlated random fields of KS, 

information about geostatistical characterizations of parameters ac and SS is rather limited 

(see, e.g., Guadagnini et al., 2013 and references therein). In our analysis we consider Y = log 

KS, Yac = log ac and YSS = log SS as second-order stationary and independent random processes 

normally distributed with mean values equal to µY =  5, µYac =  1.69, and µSS =  4, 
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respectively, corresponding to intermediate values of the ranges listed in Table 1. The random 

fields Y, Yac, and YSS are spatially correlated according to an exponential isotropic covariance 

function, its parameters (e.g., variance and correlation scale) being considered as affected by 

uncertainty and uniformly distributed in the range listed in Table 2. This enables us to explore 

the impact of low to mild heterogeneity of random fields characterized by various degrees of 

the strength of spatial correlation. We analyze the three diverse heterogeneous scenarios 

(hereafter denoted as H1, H2, and H3) listed in Table 3. Note that H0 can be viewed as a 

particular case of H1, H2, or H3, respectively corresponding to a scenario where the correlation 

scale of Y, Yac, or YSS is much larger than a characteristic length scale of the domain (i.e., it 

tends to infinity). 

For each of these cases (i.e., for H1, H2 or H3) we perform our analyses according the 

following steps: 

(1) we generate np sets of parameters, i.e., variance and correlation scale of P (with P = Y 

for H1; Yac for H2; and YSS for H3; see Table 3), as well as all of the remaining (spatially 

homogeneous) random model parameters; 

(2) for each pair of values of variance and correlation scale we generate n spatial 

distributions of the corresponding random fields; 

(3) for each parameter set k (i.e., k = 1, …, np) and each realization i (with i =1, …, n) we 

evaluate drawdown (with respect to the initial hydraulic head) at cell j and time t, 

 ,
,

k i
h j t , as well as the total variation of gravity,  ,k i

g t , via (6); 

(4) we then evaluate the Monte-Carlo based mean and variance of drawdown and total 

gravity change for parameter set k as 

, ,

1

1
n

k k i

in


 


  ; 2 2 2

, , ,

1

1
n

k k i k

in
 

  


  ;  with    , , ,
, ,

k i k i k i
h j t g t     (9) 
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We assess convergence of the quantities in (9) following Ballio and Guadagnini (2004) 

and obtain stable results for n = 100 (details not shown). A collection of np = 200 results 

stemming from (9) are then employed to construct surrogate models (i.e., PCE 

approximations of order 4) for mean and variance of drawdowns and total gravity changes for 

each of the three heterogeneous scenarios investigated and each time step considered. The 

accuracy of the surrogate models has been assessed by comparing outputs (in terms of mean 

and variance of drawdowns and total gravity changes) simulated by the surrogate models and 

by the full model (1)-(6) for randomly selected sets of parameters (details not shown). These 

surrogate models are finally employed to evaluate the GSA metrics described in Section 2.3.  

4. Results and discussion 

The analysis of our results is based on the temporal evolution of hydraulic head and 

total gravity changes recorded by the gravimeter positioned as described in Section 3. 

Hydraulic head is analyzed at a selected point (termed as point j = A), located at a radial 

distance from the well equal to 10 m and at the same depth as the well screened interval. 

4.1 Hydraulic head 

Figure 1a depicts the temporal evolution of the hydraulic head changes (drawdowns) 

at point A,  ,
i

h j A t  , computed for each MC realization i (grey continuous curves) in the 

homogeneous scenario H0. The ensemble mean hydraulic head change, 
1

/

m

i

i

h h m


   , 

(black continuous curve), the 95% Confidence Intervals of h  (black dashed curves) 

evaluated as 2 /
h

h V m


   (with  
2

1

/

m

h i

i

V h h m




    ), as well as the box plots 

computed at three selected times (representing the early, intermediate, and late behavior) are 

also depicted. The mean hydraulic head change displays features that are typical of an 

unconfined aquifer system, the shape of the curve being driven by the effects of artesian 

storage at early times and drainage from the unsaturated zone taking place at intermediate 
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times. The width of the uncertainty bounds tends to increase with time. This latter outcome is 

somehow in contrast with the results of Maina and Guadagnini (2018). We note that these 

authors base their study on the three-dimensional analytical solution of Mishra and Neuman 

(2011) and observe that the variance of hydraulic head changes is almost constant during 

early and intermediate times, and slightly increases only towards the end of the pumping 

period. The diverse behavior observed here is possibly related to the simplifying assumptions 

underlying the analytical solution of Mishra and Neuman (2011), which are not required in 

our numerical analyses. 

Figure 2 depicts the temporal evolution of the ensemble mean, 
,h k




 (left column) and 

variance 
2

,h k


  (right column) of head changes evaluated through (9) for each set k of input 

parameters across the heterogeneous scenarios H1, H2, and H3 (grey curves). Average values 

computed across the full collection of parameter values, 
,

1

/

pn

h h k p

k

n
 



    (with 
2

,  

, black continuous curve), the 95% Confidence Intervals of 
h

  (black dashed curves) 

evaluated as 2 /
hh p

V n
 

   (with  
2

,

1

/

p

h

n

h k h p

k

V n
  



    ), as well as the box plots 

evaluated at three selected times are also depicted. The temporal behavior of 
h




 in the 

heterogeneous settings (see Fig 2a, c, and, e) is not characterized by a clear S-shaped 

distribution such as the one corresponding to h  in the homogeneous scenario (see Fig. 1). 

This feature is related to the observation that the duration of the early (where artesian storage 

effects are dominant) and intermediate/late (where drainage effects are dominant) periods 

varies as a function of the considered parameter set k and of the structure of the heterogeneity 

of the system. As such, averaging all of the curves results in a smooth temporal evolution of 

the mean head changes where the early and intermediate/late time effects are somehow 

(partially) overlapped and diluted. 
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The AMA indices quantify the relative importance of each uncertain model parameter to 

the statistical moments of the pdf of head changes (see Appendix A for a summary about the 

key definitions of these indices). Figure 3 (first column) depicts the temporal evolution of the 

AMA indices for h  corresponding to H0. Uncertainty in the mean (as quantified by AMAE) 

and variance (as quantified by AMAV and by the traditional Sobol’ indices) of h  at early 

times are mainly controlled by 
S

S , 
S

K , and (albeit to a lesser extent) 
d

K . This behavior is 

consistent with a mechanism associated with storage in confined aquifers, which is linked to 

the elastic response of the system. As time progresses, mean and variance of h  start to be 

influenced by the specific yield, 
Y

S , and by the Gardner model parameter, 
c

a , whose 

contribution is related to drainage from the unsaturated zone, a phenomenon associated with a 

temporal delay between the early elastic response of the aquifer and the subsequent downward 

movement of the water table due to gravity drainage. The strength of the influence of 
S

S  to 

the mean and variance of h tends to decrease with time, the relevance of 
S

K  becoming 

dominant as steady-state is approached at late times. The impact of interactions among 

parameters on the total output variance (as quantified when the sum, over all parameters, of 

the total Sobol’ index exceeds unity) is not negligible, a feature which is particularly evident 

at intermediate times. Higher order statistical moments of drawdown (skewness and kurtosis) 

are mainly influenced by ac and SY, which are seen to control the degree of symmetry and 

tailedness (i.e., probability of extreme values) of the pdf of h at early and intermediate times. 

Considering the heterogeneous case H1, close inspection of the temporal variations of 

the AMA and Sobol’ indices related to 
h




 (Fig. 3 second column) and 
2

h



 (Fig. 3 third 

column) reveals that, in general, the uncertainty of all studied parameters affects mean and 

variance of 
h




 and 
2

h



 across the entire pumping operation. The sum of the total Sobol’ 

indices attains values larger than those observed in H0, suggesting that the interaction amongst 
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uncertain model parameters is stronger in heterogeneous than in homogeneous settings. As 

opposed to what observed in the homogeneous case, the impact of 
S

S  and 
S

K  is not 

dominant on driving the mean of 
h




 (and 
2

h



), all parameters being otherwise influential 

across time. This result is consistent with the previous observation that the temporal window 

where artesian storage effects are dominant is not significantly visible in heterogeneous 

media. On the other hand, 
S

S  markedly influences the variance of 
h




 and 
2

h



 at early times 

(see Fig. 3h-i), its impact otherwise decreasing with time. Our results further suggest that the 

(isotropic) correlation scale of Y is less influential than its variance for all statistical moments 

depicted in Fig. 3 (second and third column) but skewness and kurtosis of 
2

h



. 

Results associated with the total Sobol’ and the AMAV indices are not always in 

agreement. For example, while the analysis of Sobol’ indices (Fig. 3e, f) would suggest that 

all parameters contribute to the variance of 
h




 and 
2

h



 (with an overall dominance of 

S
S  

and 
2

Y
 ), inspection of AMAV (Fig. 3h, i) indicates that the variance of 

h



 and 

2

h



 is (i) not 

influenced by the uncertainty of 
Y

 , and (ii) only minimally influenced by 
c

a , and 
Y

S . The 

differences detected between the Sobol’ and AMAV indices about the impact of parameters 

Y
 , 

c
a  and 

Y
S  can be explained by noting that these contribute to the variance of 

h



 and 

2

h



 only jointly with other model parameters (this feature being captured by the total Sobol’ 

index), their variability alone not being influential to the overall variance of the quantities 

analyzed (note that this this latter feature is the key element captured by AMAV). 

Skewness and kurtosis of 
h




 are influenced by all parameters, the most influential 

quantities being the Gardner model parameter , the specific yield 
Y

S , and the parameters 

related to the spatially heterogeneous random field of 
S

K  (i.e., 
Y

  and 
2

Y
 ). One can note that 

the sum of the AMAγ and AMAk indices for 
h




 consistently increases with time, thus 

c
a
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highlighting that the impact of parameter uncertainties on the shape of the pdf of 
h




 

increases with time. Otherwise, when considering 
2

h



 our results show that (i) values of 

AMAγ remain (approximately) constant with time, while (ii) the sum of AMAk contributions 

displays a marked peak at intermediate times, which is mainly due to the impact of 
c

a , to then 

decrease as time progresses. 

The analysis of the heterogeneous settings H2 and H3 shows results of similar quality 

to those illustrated for H1 (not shown). 

4.2 Total Gravity Changes 

Figure 4 depicts the temporal evolution of the total gravity change,  i
g t , computed 

for each MC realization i (grey continuous curves) in the homogeneous setting H0. The 

ensemble mean total gravity change, 
1

/

m

i

i

g g m


   , (black continuous curve), the 95% 

Confidence Intervals of g  (black dotted curves) evaluated as 2 /
g

g V m


   (with

 
2

1

/

m

g i

i

V g g m




    ), as well as the box plots related to three selected times are also 

depicted. The mean gravity change increases nearly exponentially with time, as do the 

associated uncertainty bounds. A similar behavior is exhibited in the heterogeneous test cases, 

as shown in Fig. 5 where we depict the temporal evolution of (i) the ensemble mean, 
,g k




 

(left column, grey curves), and variance, 
2

,g k



 (right column, grey curves), evaluated for each 

set k of individual input parameters, and (ii) their average counterparts evaluated across the 

full set of parameters, i.e., 
g




 (left column, black continuous curves) and 
2

g



 (right 

column, black continuous curves), together with their 95% Confidence Intervals (black 

dashed curve) and box plots at three selected times. 
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The sample pdf associated with the total gravity changes recorded at selected times in 

H0 (Fig. 6) displays near-exponential tails, a result which is also consistent with the findings 

of Maina and Guadagnini (2018). It is noted that, as time increases, some combinations of the 

uncertain system parameters can give rise to total gravity changes largely exceeding 3 µGal 

with non-negligible probability. These values are potentially detectable considering the 

accuracy of typically employed gravimeters (Herckenrath et al., 2012; Jacob et al., 2008, 

2009, 2010). This result is promising as it implies that one can potentially identify gravimetric 

variations induced by mass changes following pumping under specific settings, corresponding 

to given combinations of aquifer parameter values. 

The empirical pdfs of 
g




 and g


  are depicted in Fig. 7. Values of 
g




 are typically 

lower than (approximately) 5 µGal for H1, while they can be as high as about 10 µGal for H2 

and H3, while g


  is smaller than 5 µGal in all cases. Uncertainty and heterogeneity 

associated with parameters 
c

a  and 
S

S  shows (overall) similar effects on the resulting pdf of 

g



, while uncertainty in the parameters characterizing the spatial distribution of 

S
K  (as seen 

in H1) yields pdfs of 
g




 displaying higher peaks and smaller tails than their counterparts 

observed in H2 and H3. Otherwise, pdfs of g


  are quite similar across the heterogeneous 

cases (albeit somehow longer tails can be observed in H1 with respect to H2 and H3 at early 

and intermediate times). 

Focusing on the homogeneous case, we then investigate how the statistical moments of 

g  vary as information about the uncertain model parameters (
i

p  = 
S

S , 
d

K , 
c

a , 
Y

S , or 
S

K ) 

becomes available. Figure 8a depicts the values of the mean of total gravity changes, 
i

g p , 

at the end of the temporal simulation window (7 days) as a result of conditioning to the 

knowledge of given values of each of the uncertain parameters. The unconditional mean g  
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(horizontal thin line) is also depicted. Corresponding depictions for conditional variance, 

i
V g p   , skewness, 

i
g p    , and kurtosis, 

i
k g p   , of g  are displayed in Fig. 8b, c, 

and d, respectively. Note that the interval of variation of each model parameter is here 

normalized to span the range [0, 1] for graphical representation purposes. Conditioning on 

increasing values of 
Y

S  causes the mean of g  to monotonously increase in a quasi-linear 

fashion. This behavior is consistent with the structure of (6), (8), and (4), according to which 

variations of gravity mainly depend on corresponding variations in density,  , that 

increases linearly with 
Y

S . Conditional values of mean g  decrease with increasing 
S

K . 

This is related to the observation that the action of 
S

K  on gravity changes is seen in (7) 

through hydraulic head changes (or variation of water content). Low values of 
S

K  yield 

marked head changes in the unsaturated and saturated zones close to well, which are in the 

proximity of the gravimeter location, hence resulting in significant gravity changes. 

Otherwise, conditional mean values of g  tend to increase with the anisotropy coefficient 

d
K  and attain their largest value for isotropic conductivity systems (i.e., when 

d
K  = 1). This 

is consistent with the observation that changes in water mass in the unsaturated zone 

(inducing gravity variations) tend to increase with 
d

K . 

Values of 
c

g a  are lowest for values of 
c

a  close to the lower and upper boundaries 

of the corresponding range of variability. This result is a consequence of the observation that 

the Gardner model parameter acts on both relative hydraulic conductivity (see (3)) and water 

content (see (4)). Large values of 
c

a  (a) correspond to a very poorly permeable unsaturated 

zone, thus providing less water to the saturated zones, i.e., leading to small values of g ; and 

(b) hamper the ability of the unsaturated zone to store water, thus enhancing drainage towards 

the saturated zone, i.e. yielding large vales of g . A reverse competition between these 
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effects, yielding a similar net result, takes place for small values of 
c

a . Due to these 

contrasting effects, mass variations (and hence gravity changes) are highest for intermediate 

values of 
c

a . Conditional values of total gravity change variance (Fig. 8b) display patterns 

similar to those detected for the corresponding mean values. 

Unconditional values of skewness and kurtosis of g  are larger than 2 and 6, 

respectively, highlighting the presence of long right tailing and high peakedness of the pdf of 

g  (see Fig. 8c-d and Fig. 6). Conditioning leads to a decrease of the peak and of the tailing 

of the pdf, this being particularly manifest for small values of 
Y

S  and/or intermediate values 

of 
d

K . Otherwise, conditioning on 
S

K  always yields tails of the pdf which are lighter than 

Gaussian. We further note that the conditional kurtosis is virtually independent of the values 

of 
S

K  in the selected range of variability. 

All uncertain parameters (albeit at differing extents) influence gravity changes in all 

(homogeneous and heterogeneous) scenarios, as quantified through the GSA metrics depicted 

in Figs. 9 (for g  and 
g




) and 10 (for 
2

g


 ). This result is in line with the integral nature of 

the gravity change, which reflects the overall response of the aquifer system and accounts for 

the totality of the processes taking place at diverse spatial locations. 

The overall value of the AMAE index (which is given by the sum of the individual 

contribution of each model parameter) decreases during early times and then increases until 

the end of the pumping period (see Fig. 10a-c) for H0, H1, and (to a lesser extent) H2, to 

denote that the impact of the uncertainty in model parameters on the mean of g  and of 
g




 

(i.e., on g and 
g




) is increasingly strong as time progresses. Otherwise, the total value 

of AMAE does not vary significantly with time in H3, suggesting that the uncertain parameters 

(globally) affect the uncertainty of 
g




 in a similar way at all times. Analyzing the 
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contribution of each parameter to AMAE (see Fig. 10a-d), we note that the impact of 
S

K  (or 

of the parameters controlling the spatial distribution of 
S

K  in H1) increases with time, this 

parameter being recognized as the most influential one to g  and 
g




. With reference to 

the remaining parameters, it is observed that: (i) in H0 (Fig. 10a) the uncertainty associated 

with g  significantly depends also on 
S

S , 
c

a , and 
d

K  in a fashion that is near-constant 

with time while the strength of the impact of 
Y

S  on g  increases with time; (ii) in H1 (Fig. 

10b) all parameters are influential to 
g




, their impact increasing with time; (iii) in H2 (Fig. 

10c) and H3 (Fig. 10d) the impact of 
S

S  (or of the uncertainty of the parameters 

characterizing the spatial distribution of 
S

S ) on 
g




 is negligible. 

The importance of the system parameters on the variance of g ,  V g , and of 
g




, 

g
V 


 
 

, is seen to vary with time in H0 and (to a lesser extent) H1 as one can infer from the 

analysis of the Sobol’ indices depicted in Fig. 9e-f. The total Sobol’ index, which imbues 

effects of parameter interactions contributing to  V g  and 
g

V 


 
 

, tends to decrease (at 

early times for H0 and H1), increase (during intermediate times for H1) or remain constant (at 

late times for H0 - H1, at all times for H2 - H3) with time. All of the heterogeneous scenarios 

are characterized by larger values of the total Sobol’ index when compared against H0, 

documenting an enhanced joint effect of parameter uncertainty in the former than in the latter 

setting. Otherwise, the overall value of the AMAV index (Fig. 9i-l), which quantifies the 

impact of the variability of each individual parameter to the overall variance of g  and 
g




, 

is generally smaller in the heterogeneous scenarios than in their homogeneous counterpart. 

The total Sobol’ indices related to g  and 
g




 in H0 and H1 suggest that the 

contributions of all parameters decrease during early times, 
S

S  being the sole exception to 
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this behavior. Notably, the variance of g  recorded at late times is practically insensitive to 

S
S  and 

d
K  (see Fig. 9e, i) in H0. Otherwise, system heterogeneity promotes the joint 

influence of all parameters to the variance of 
g




 across the entire window of well operation. 

The contribution of each parameter to the variance of 
g




 can be inferred by jointly analyzing 

the results of Figs. 9 f-h, j-l. We note that: (i) the impact of 
S

K  is dominant in all cases, while 

d
K  is relevant only for H2 al late times (Fig. 9k); (ii) the remaining uncertain parameters 

contribute only jointly to the uncertainty associated with the variance of 
g




 and their 

combined effect is always significant (Figs. 9 f-h). 

Indices AMAγ and AMAk in Fig. 9, denoting the impact of parameter uncertainty on 

the shape of the pdf of g  and 
g




, exhibit a clear pattern in their time-dependent behavior 

only for the homogenous case H0. In the latter setting, all uncertain parameters but 
S

K  

influence the shape of the pdf of g , storage parameters (
S

S and 
Y

S ) and conductivity 

anisotropy (
d

K ) being the most dominant ones in driving the skewness, and 
c

a  and 
Y

S  

governing kurtosis. Considering the heterogeneous scenarios, all parameters (including 
S

K ) 

impact the shape of the pdf of 
g




 in terms of its skewness and kurtosis. 

With reference to the uncertainty in the parameters describing the (randomly 

heterogeneous) spatial distribution of the uncertain model attributes (
S

K  in H1, c
a  in H2, and 

S
S  in H3) we note that (i) mean and variance of 

g



 are generally more impacted by the 

variance than by the correlation scale of the spatially heterogeneous parameter; and (ii) the 

opposite occurs with reference to the shape of the pdf of 
g




 (as measured in terms of its 

skewness and kurtosis). 
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Results for the indices evaluated for 
2

g


  are depicted in Fig. 10. In general, these 

display a pattern which is similar to the one observed in Fig. 9 for 
g




, albeit indices related 

to 
2

g


  do not (in general) show a clear temporal trend. The most relevant differences are 

detected (i) with reference to H2 and H3, where one can note that the impact of 
S

K  on AMAE 

and AMAV, is not dominant for 
2

g


 , as opposed to what can be seen for 
g




 (compare 

Figure 9c-d, k-l and 10b-c, h-i), or (ii) with reference to H1 where one can note that AMAV for 

2

g


  is significantly affected also by 
Y

S  and not only by 
S

K  as also observed for 
g




 

(compare Figure 9j and 10g). 

We recall that the pumping duration has been selected to ensure negligible impacts of 

the constant head boundary conditions on the target quantities of interest. Average percent 

differences between total gravity changes (g(t)) evaluated in this study and for a 

homogeneous domain associated with twice the lateral side start to be higher than 2% after ~2 

×10
5
 seconds and attain a large value equal to approximately 7% at the end of the considered 

simulation window (details not shown). This is also in line with the dependence between local 

values of gravity change and the distance from the gravimeter (see Eq. (7)), which is set at the 

well location. Otherwise, relative differences between drawdown values at point A and 

corresponding to these scenarios is always less than ~2%. These results imbue us with 

confidence about the robustness of our study within the investigated domain. Additional 

studies can be planned to further characterize the influence of deterministic boundary 

conditions on the statistics of gravity changes for diverse values of the ratio between the 

domain size and the correlation scale of the randomly heterogeneous fields considered. 

5 Conclusions 

We analyze the impact of an incomplete knowledge about characteristic parameters of 

unconfined aquifers on (i) hydraulic head and (ii) gravity changes monitored during pumping 

                  



25 

 

tests within homogeneous and randomly heterogeneous system. Our work leads to the 

following major conclusions. 

1. In the homogeneous scenario, where all uncertain model parameters are considered 

as i.i.d. random variables, mean head changes are characterized by a typical S-

shaped temporal pattern. This behavior is not visible when analyzing their 

counterparts in randomly heterogeneous media, where heterogeneity somehow 

shadows differences related to aquifer responses linked to early (where artesian 

storage effects are dominant) and intermediate/late (where drainage effects are 

dominant) times. 

2. Consistent with the previous conclusion, global sensitivity indices, quantifying the 

relative importance of uncertain model parameters to statistical moments of 

quantities of interest, show a clear temporal behavior in the homogeneous setting, 

while they are (in general) fairly constant in the heterogeneous settings. 

3. In the homogeneous scenario uncertainty in the mean and variance of head 

changes, h , at early times are mainly controlled by the specific storage, 
S

S , 

governing the elastic response of the system through storage, and by hydraulic 

conductivity, 
S

K . As time progresses, mean and variance of h  start to be 

influenced by parameters related to drainage from the unsaturated zone (i.e., 

specific yield, 
Y

S , and the Gardner model parameter, 
c

a ). Otherwise, the analysis 

of the heterogeneous cases documents that the uncertainty of all considered model 

parameters generally affects mean and variance of head changes throughout the 

entire pumping operation, even as the strength of the impact of 
S

S  tends to 

diminish with time. Saturated conductivity (or the parameters describing its 

                  



26 

 

statistical structure) is seen to be the most influential uncertain parameter at 

steady-state condition for all cases. 

4. The shape of the pdf of head changes (as described in terms of skewness and 

kurtosis) is significantly affected only by 
c

a  and 
Y

S  in the homogeneous setting, 

while all parameters are important for the heterogeneous cases. 

5. All uncertain parameters (albeit at differing and quantifiable extents) influence 

gravity changes, g, in all (homogeneous and heterogeneous) scenarios. This 

result is consistent with the observation that g  data embed the effects of the 

totality of the processes taking place at diverse spatial locations in the system. The 

most influential parameter for the mean and variance of g  is, in general, 
S

K . 

Otherwise, 
S

K  does not significantly impact the shape of the pdf of g  in the 

homogeneous case. 

6. Considering the heterogeneous scenarios, mean and variance of head and gravity 

changes  are generally more influenced by the variance rather than by the 

correlation scale of the spatially heterogeneous parameters considered. Otherwise, 

knowledge of the correlation scale of the random field is significantly important to 

constrain the shape of the pdfs of these moments, and hence their extreme values. 

7. The impact of interactions among parameters on the variability of h  and g , as 

quantified in terms of the total Sobol’ indices, is not negligible, and is largest in 

the heterogeneous than in the homogeneous settings. 
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FIGURES CAPTION 

 

Figure 1. Temporal evolution of drawdown at point A (located at a radial distance from the 

well equal to 10 m and at the same depth as the well screened interval) computed for each MC 

realization (grey curves) in the homogeneous scenario (H0). Ensemble mean drawdown (black 

continuous curve), its 95% Confidence Intervals (black dashed curves) and box-plots at three 

selected times (in red) are also depicted. 

 

Figure 2. Temporal evolution of 
,h k




 (left column) and 
2

,h k


  (right column) evaluated at 

point A for each set k of input parameters (grey curves) in the heterogeneous scenarios. 

Average curves computed across the full collection of parameter values (black continuous 

curves) and their 95% Confidence Intervals (black dashed curve) as well as the box plots 

evaluated at three selected times (in red) are also depicted. 

 

Figure 3. Temporal evolution of AMAE, Sobol’, AMAV, AMA and AMAk indices associated 

with (i) h  for H0 (first column), (ii) 
h




 for H1 (second column) and (iii) 
2

h



 for H1 (third 

column). 

 

Figure 4. Temporal evolution of the total gravity change computed for each MC realization 

(grey curves) in the homogeneous scenario. Ensemble mean gravity change (black continuous 

curve), its 95% Confidence Intervals (black dashed curves) and box-plots at three selected 

times (in red) are also depicted. 

 

Figure 5. Temporal evolution of 
,g k




 (left column) and 
2

,g k



 (right column) evaluated for 

each set k of input parameters (grey curves) in the heterogeneous scenarios. Average curves 
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computed across the full collection of parameter values (black continuous curves) and their 

95% Confidence Intervals (black dotted curve) as well as the box plots evaluated at three 

selected times (in red) are also depicted. 

 

Figure 6. Sample pdf of g  at selected times for H0 (symbols). Exponential fitted models 

(dashed curves) are also shown for comparison. 

 

Figure 7. Sample pdf of 
g




 (top) and g


  (bottom) at selected times for the heterogeneous 

scenarios (symbols). 

 

Figure 8. Conditional (a) mean, (b) variance, (c) skewness, and (d) kurtosis of g  versus 

normalized model parameters 
i

p  at time t = 7 days for H0. Corresponding unconditional 

moments are also shown (horizontal lines). 

 

Figure 9. Temporal evolution of AMAE, Sobol’, AMAV, AMA and AMAk indices associated 

with (i) g  for H0 (first column), and (ii) 
g




 for H1 (second column), H2 (third column), 

and H3 (last column). 

 

Figure 10. Temporal evolution of AMAE, Sobol’, AMAV, AMA and AMAk associated with 

2

g


  for H1 (first column), H2 (second column), and H3 (third column). 
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Tables 

Par

ameter 

Supp

ort 

C

V 

S
S  

[m
-1

] 

[10
-5

 

– 10
-3

] 

5

7% 

Y
S  

[–] 

[10
-2

 

– 0.20] 

5

2% 

c
a  

[–] 

[21

0
-3

 – 25] 

5

8% 

d
K  

[–] 

[0.05 

– 1.0] 

5

2% 

S
K  

[m s
-1

] 

[10
-6

 

– 10
-4

] 

5

7% 

Table 1: Support of uncertain model parameters considered in the homogeneous test 

case, H0, and associated coefficients of variation (CVs). 
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Parameter Sup

port 

2

Y
 , 

2

cYa
 , 

2

S SY
  

[0.0

1 – 1.8] 

Y
 , 

cYa
 , 

SSY
  [m] 

[25 

– 50] 

Table 2: Support of variance and correlation length characterizing the spatial random 

fields considered in the heterogeneous cases (H1, H2, and H3). 

 

 

 log
s

K  
d

K  log
c

a  log
S

S  
Y

S  

H1 X C C C C 

H2 C C X C C 

H3 C C C X C 

Table 3: Definition of the heterogeneous test cases. Quantities denoted by “X” are 

viewed as randomly heterogeneous and spatially correlated fields (with variance and integral 

scale listed in Table 2). Uncertain parameters denoted by “C” are considered as i.i.d. random 

variables within the supports listed in Table 1. 

 

                  



 

Figure 1. Temporal evolution of drawdown at point A (located at a radial distance from the well 
equal to 10 m and at the same depth as the well screened interval) computed for each MC 
realization (grey curves) in the homogeneous scenario (H0). Ensemble mean drawdown (black 
continuous curve), its 95% Confidence Intervals (black dashed curves) and box-plots at three 
selected times (in red) are also depicted. 

 

 

                  



 

Figure 2. Temporal evolution of ,h k  (left column) and 2
,h k  (right column) evaluated at point A 

for each set k of input parameters (grey curves) in the heterogeneous scenarios. Average curves 
computed across the full collection of parameter values (black continuous curves) and their 95% 
Confidence Intervals (black dashed curve) as well as the box plots evaluated at three selected times 
(in red) are also depicted. 

 

 

                  



  

Figure 3. Temporal evolution of AMAE, Sobol’, AMAV, AMA and AMAk indices associated with 

(i) h  for H0 (first column), (ii) h  for H1 (second column) and (iii) 2
h  for H1 (third column).  

                  



 

Figure 4. Temporal evolution of the total gravity change computed for each MC realization (grey 
curves) in the homogeneous scenario. Ensemble mean gravity change (black continuous curve), 
its 95% Confidence Intervals (black dashed curves) and box-plots at three selected times (in red) 
are also depicted. 

 

                  



 

Figure 5. Temporal evolution of ,g k  (left column) and 2
,g k  (right column) evaluated for each 

set k of input parameters (grey curves) in the heterogeneous scenarios. Average curves computed 
across the full collection of parameter values (black continuous curves) and their 95% Confidence 
Intervals (black dotted curve) as well as the box plots evaluated at three selected times (in red) are 
also depicted. 

 

                  



 

Figure 6. Sample pdf of g  at selected times for H0 (symbols). Exponential fitted models (dashed 

curves) are also shown for comparison. 

 

 

 

Figure 7. Sample pdf of g  (top) and g  (bottom) at selected times for the heterogeneous 

scenarios (symbols). 

 

0.001

0.01

0.1

1

0 5 10 15 20

pd
f

[ gal]g 

 t = 6.53
 t = 4.06
+ t = 2.53
 t = 1.58
 t = 0.98
 t = 0.24

Time [ 105 s]

0.01

0.1

1

10

0 1 2 3 4 5
0.01

0.1

1

10

0 1 2 3 4 5

0.01

0.1

1

10

0 2 4 6 8 10
0.01

0.1

1

10

0 2 4 6 8 10

(b) (c)

0.01

0.1

1

10

0 2 4 6 8 10

pd
f

[ gal]g 

 t = 6.53
 t = 4.06
+ t = 2.53
 t = 1.58
 t = 0.98
 t = 0.24

Time [ 105 s]

(a) H1 H2 H3

0.01

0.1

1

10

0 1 2 3 4 5
[ gal]g 

(d) (e) (f)

[ gal]g  [ gal]g 

[ gal]g [ gal]g 

H1 H2 H3

pd
f

                  



 

Figure 8. Conditional (a) mean, (b) variance, (c) skewness, and (d) kurtosis of g  versus 

normalized model parameters ip  at time t = 7 days for H0. Corresponding unconditional moments 

are also shown (horizontal lines). 

 

                  



 

Figure 9. Temporal evolution of AMAE, Sobol’, AMAV, AMA and AMAk indices associated with 
(i) g  for H0 (first column), and (ii) g  for H1 (second column), H2 (third column), and H3 (last 

column). 

 

 

 

 

 

 

                  



 

Figure 10. Temporal evolution of AMAE, Sobol’, AMAV, AMA and AMAk associated with 2
g  

for H1 (first column), H2 (second column), and H3 (third column). 

                  


