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Abstract 

European policies are fostering the electrification of end 

uses including the space heating and cooling systems in 

order to decarbonise the housing stock. The deep 

penetration of electrical loads and domestic PV plants has 

therefore become an important topic for researchers and 

engineers working in the building sector. In this context, 

this paper presents a recently constructed laboratory for 

testing efficient management strategies in all-electric 

dwellings. The article describes the lab and the model 

predictive control strategy developed to minimize 

economic costs for space heating and cooling while 

guaranteeing thermal comfort in the indoor environment 

in presence of a simulated rooftop PV system. The 

proposed controller exploits prior knowledge about 

physical and geometrical properties of the building. The 

first tests, carried out in offline mode, demonstrated the 

effectiveness of this approach. The proposed Building 

Energy Management System (BEMS) exploits the 

flexibility offered both by the building structure and by 

the thermal storage tank to minimize costs in both the 

heating and cooling season. Future work will put other 

electrical devices under BEMS control. 

Key Innovations 

 Model Predictive Controller tested on-field  

 Lumped-capacitance building models allow to 

exploit a-priori knowledge of the building 

 Exploitation of combined flexibility from 

building structures and thermal storage tank  

 A detailed model of the lab is under development 

for generalizing the results  

Practical Implications 

This article describes a new lab to test innovative 

strategies that improve the efficiency of buildings. We 

propose a technology that increases the self-consumption 

from rooftop PV systems with no need of batteries! 

 

Introduction 

It is widely accepted that the large-scale deployment of 

heat pumps is a promising way toward the 

decarbonisation of the heating sector. This trend will 

severely affect the power consumption patterns in the 

electrical distribution systems (Barton et al., 2013). At the 

same time, increasing penetration of small-scale 

renewable energy sources such as domestic PV systems is 

pushing the energy system towards a decentralised 

structure (Pierro et al., 2020). In such an energy transition, 

Building Energy Management Systems (BEMS) play a 

key role as they can shift energy consumption towards the 

most convenient time windows. BEMS may pursue 

individual objectives, such as cutting costs for single 

dwellers while guaranteeing a comfortable indoor 

environment (Vivian et al., 2020a) or system-level 

objectives, such as reducing the peak loads on electrical 

distribution grids (Vivian et al., 2020b) or providing 

services to the power grid (Romero Rodríguez et al., 

2019). In both cases, the buildings could take advantage 

from different flexibility sources to decouple the supply-

side and the demand-side, such as thermal energy storage 

systems or the inertia of building structures (Arteconi et 

al., 2016). Model Predictive Control (MPC) seems to 

overcome rule-based controllers based on simple 

heuristics to fully exploit the energy flexibility of building 

structures and thermal storage systems using heat pumps 

(Péan et al., 2019).  

 

 

Figure 1. (a) Photo and (b) floor plan of the lab. 

This paper contributes to the ongoing discussion and 

presents a laboratory developed by Ricerca Sistema 

Energetico in Piacenza (Italy). The goal of the laboratory 

is to simulate the performance of an all-electric residential 

building, to validate numerical approaches and to test 

novel, efficient and reliable system layouts and smart 



control strategies. In particular, this article investigates 

the use of a well-known simplified building model to 

exploit a-priori knowledge of the building for control 

purposes. Secondly, the article presents the first 

experimental tests of a model predictive controller that is 

able to exploit the flexibility offered by both the building 

structure and the thermal storage tank in both heating and 

cooling season. 

Lab description 

The 100 m2 internal surface laboratory shown in Fig.1 is 

equipped to simulate the performance of an efficient “all-

electric” building. To this end, the laboratory has been 

equipped with (i) an air-to-water heat pump air 

conditioning system connected to four fan coils with a 

300-liter water heat storage tank; (ii) a heat pump water 

heater with 200-liter storage tank for domestic hot water 

(DHW) production; (iii) an air/air conditioning system 

consisting of an outdoor condensing unit and four indoor 

units with a nominal cooling capacity of 6.8 kW; (iv) four 

air extractors; (v) a set of electrical appliances (e.g., 

washing machine, dryer, dishwasher and combined 

refrigerator). The HVAC system is illustrated in Fig. 2. In 

the upcoming months, the laboratory will be also 

equipped with a PV system with inverter and storage 

battery. In the meanwhile, the PV system has been 

simulated –see PV model section. A monitoring system 

allows to read data logged by the environmental sensors 

such as temperatures, mass flow rates, heat and power 

flow and automatically controls the system and 

communication with the heat pump. The software was 

created in the LabView environment based on a personal 

computer and on Advantech acquisition modules. The 

communication architecture uses Modbus ASCII and 

Modbus RTU fieldbuses on RS485 network. A 

preliminary analysis on the energy performance of the lab 

based on EnergyPlus simulations showed that the specific 

annual energy demands are approximately 68 kWh/m2 for 

heating and 13 kWh/m2 for cooling, including both 

sensible and latent loads. The whole analysis has not been 

included in this article to facilitate its readability. 

 

Figure 2. Synoptic panel of the HVAC system. 

Models 

Lumped capacitance building model 

The lumped capacitance model used to reproduce the 

thermal behavior of the lab is the well-known 5R1C 

model proposed by Standard ISO 13790 (International 

Organization for Standardization, 2008). The Standard 

uses the electrical analogy and distributes the heat gains 

to three temperature nodes of an equivalent thermal 

network: 𝛷𝑖𝑎 to the indoor air temperature node (𝜃𝑖), 𝛷𝑠𝑡 

to the surface temperature node (𝜃𝑠) and 𝛷𝑚 to the 

thermal mass temperature (𝜃𝑚) node. These heat gains 

derive from the sum of HVAC heat output 𝛷ℎ𝑐, solar heat 

gains 𝛷𝑠𝑜𝑙 and internal heat gains 𝛷𝑖𝑛𝑡. The internal heat 

gains have been assumed equal to a constant heat flow rate 

𝛷𝑖𝑛𝑡,0. The indoor air temperature can then be found by 

solving the linear system given by the energy balance on 

the mentioned temperature nodes: 

𝐻𝑣𝑒(𝜃𝑡
𝑠𝑢 − 𝜃𝑡

𝑖) + 𝐻𝑡𝑟,𝑖𝑠(𝜃𝑡
𝑠 − 𝜃𝑡

𝑖) + 𝛷𝑡
𝑖𝑎

+ 𝑓𝑐𝑜𝑛𝑣  𝛷𝑡
ℎ𝑐 = 0 

(1) 

𝐻𝑡𝑟,𝑤(𝜃𝑡
𝑒 − 𝜃𝑡

𝑠) + 𝐻𝑡𝑟,𝑖𝑠(𝜃𝑡
𝑖 − 𝜃𝑡

𝑠)

+ 𝐻𝑡𝑟,𝑚𝑠(𝜃𝑡
𝑚 − 𝜃𝑡

𝑠) + 𝛷𝑡
𝑠𝑡

+ (1 − 𝑓𝑐𝑜𝑛𝑣) 𝛷𝑡
ℎ𝑐 = 0 

(2) 

𝐻𝑡𝑟,𝑒𝑚(𝜃𝑡
𝑒 − 𝜃𝑡

𝑚) + 𝐻𝑡𝑟,𝑚𝑠(𝜃𝑡
𝑠 − 𝜃𝑡

𝑚) + 𝛷𝑡
𝑚

=
𝐶𝑚

𝜏
(𝜃𝑡

𝑚 − 𝜃𝑡−τ
𝑚 ) 

(3) 

where the capacitance term 𝐶𝑚 represents the thermal 

inertia offered by the building structures. The other 

building parameters are the ventilation heat transfer 

coefficient 𝐻𝑣𝑒 , the coupling conductance between 

internal air and surface node 𝐻𝑡𝑟,𝑖𝑠, the thermal 

transmission coefficients of the windows 𝐻𝑡𝑟,𝑤 and of the 

opaque building components 𝐻𝑡𝑟,𝑜𝑝. The latter is divided 

into two components, 𝐻𝑡𝑟,𝑒𝑚 and 𝐻𝑡𝑟,𝑚𝑠. The air supply 

temperature due to infiltration and/or ventilation (𝜃𝑠𝑢) is 

equal to the external air temperature (𝜃𝑒) in case there is 

no mechanical ventilation system and 𝑓𝑐𝑜𝑛𝑣 is a parameter 

that accounts for different radiative and convective 

contributions of HVAC terminals (example: 𝑓𝑐𝑜𝑛𝑣= 1 for 

fancoils, 𝑓𝑐𝑜𝑛𝑣 = 0.5 for radiators). This model is able to 

accurately capture the thermal response of buildings 

especially in the heating season, whereas it is less accurate 

in the cooling season (Vivian et al., 2017). However, 

those results were obtained by calculating the parameters 

with analytical procedures. Instead, here the parameters 

are calculated with a data-driven calibration procedure as 

explained in the methodological Section. 

Heat pump model 

The simplified steady-state model adopted for the air 

source heat pump consists of three equations. The first 

equation correlates the heat pump capacity, i.e. the 

maximum thermal power output, to temperatures of the 

heat source (external air) and heat sink (thermal storage 

tank). In general, the polynomial law used for this 

correlation may be of the first, second or third order. Eq. 

(4) shows the polynomial of the second order. Eq. (5) 

assumes that the thermal power output is a fraction of the 

capacity equal to the ratio between the compressor speed 

𝑛 and the maximum speed 𝑛𝑚𝑎𝑥. Finally, Eq. (6) assumes 

that the power consumption of the heat pump including 

auxiliaries can be calculated based on a polynomial 

similar to Eq. (4), where COP is the coefficient of 

performance of the heat pump. In order to calculate 

𝑄ℎ𝑝,𝑚𝑎𝑥  and COP as a boundary condition for the 

optimization –see Methods Section-, 𝜃ℎ𝑠 has been 



replaced with the average supply temperature of the heat 

pump during the last 24 hours 𝜃ℎ𝑝,𝑜𝑢𝑡.  

𝑄ℎ𝑝,𝑚𝑎𝑥 =  𝑎0 + 𝑎1 𝜃𝑒 + 𝑎2 𝜃ℎ𝑠 + 𝑎3 𝜃𝑒
2

+ 𝑎4 𝜃ℎ𝑠
2 + 𝑎5 𝜃𝑒𝜃ℎ𝑠 

(4) 

𝛷ℎ𝑝 =  
𝑛

𝑛𝑚𝑎𝑥

 𝑄ℎ𝑝,𝑚𝑎𝑥  
(5) 

𝐶𝑂𝑃 =
𝛷ℎ𝑝

𝑤ℎ𝑝

=  𝑏0 + 𝑏1 𝜃𝑒 + 𝑏2 𝜃ℎ𝑠 + 𝑏3 𝜃𝑒
2

+ 𝑏4 𝜃ℎ𝑠
2 + 𝑏5 𝜃𝑒𝜃ℎ𝑠 

(6) 

PV system model 

While the previous models were included among the 

constraints of the optimization problem, the photovoltaic 

system model replaces the real system, i.e. provides 

power production values depending on the forecasted 

solar radiation. The model used was taken from an open-

source collaborative project called pvlib (F. Holmgren et 

al., 2018), which is based on the well-known clear sky 

model (Ineichen and Perez, 2002). The simulated PV 

system is assumed to be positioned on the south-oriented 

side of the roof, with a tilt angle of 20°. It consists of 8 

modules with a nominal power of 220 W. 

Methods 

BEMS architecture 

The Building Energy Management System (BEMS) was 

developed in Python with the logic of object oriented 

programming. It consists of several processes that are 

cyclically run on the computer of the lab where all 

measurements are collected. These processes include: (i) 

reading measurements from the plant and environmental 

sensors; (ii) reading weather forecast and update PV 

production forecasts accordingly; (iii) calibrating 

parameters of the lumped capacitance model; (iv) 

scheduling the heat pump operation for next hours. In its 

final version, the BEMS will perform these operations 

sequentially with a given frequency. This paper presents 

the current version where all operations are manually 

launched at the same time and the results of the main 

processes (calibration and optimization) is commented. 

As Fig. 3 shows, the BEMS relies on a model predictive 

control loop. Measurements of indoor and outdoor 

temperature, solar radiation and heat flow rate released 

from the HVAC plants to the indoor environment are 

stored in a history database. All these measurements are 

used to calibrate a lumped capacitance building model 

described in the Models Section. The calibration process 

carried out to find the parameters of the building model is 

described in the Methods section. Instead, the calibration 

of the heat pump model consists in the calculation of the 

coefficients of polynomials 𝑎1. . 𝑎𝑁 and 𝑏1. . 𝑏𝑁 –see Eq. 

(4) and (6)) through a linear regression. Once the optimal 

parameters are found through these calibration procedure, 

they are used to build the constraints of an optimization 

problem described hereafter. The optimization is the 

BEMS core, and relies on weather forecasts that are 

updated by an external service twice a day. 

 

Figure 3. Qualitative scheme illustrating the BEMS 

architecture. 

Calibration of the building model  

The calibration is the numerical process by which the 

parameters describing the building's dynamic thermal 

behaviour in Eq. (1-3) are initially determined based on 

an approximate knowledge of the building physical and 

geometrical properties, and then iteratively recalculated to 

ensure that the lumped capacitance model described 

above adheres as much as possible to the real behaviour 

of the building. This operation is carried out by an 

optimisation algorithm that minimises the mean square 

error between the average indoor air temperature profile 

measured in the lab and the indoor air temperature 

calculated by the mentioned model. Thus, the objective 

function is: 

min
𝑥∈𝑋

√
∑ (𝜃𝑡

𝑖(𝑥) − 𝜃𝑡
𝑖,𝑚𝑒𝑎𝑠)2𝑇

𝑡=1

𝑇
 

 

(7) 

where x = [𝐶𝑚, 𝐻𝑡𝑟,𝑒𝑚, 𝐻𝑡𝑟,𝑖𝑠, 𝐻𝑡𝑟,𝑚𝑠, 𝐻𝑡𝑟,𝑤, 𝐻𝑣𝑒 , 𝑓𝑐𝑜𝑛𝑣, 

𝛷𝑖𝑛𝑡,0] is the optimal set of parameters that must be 

determined. The algorithm used to find the optimal set of 

parameters is called Particle Swarm Optimization (PSO), 

a nature-inspired optimization algorithm that does not 

make any assumptions about the problem and allow the 

exploration of very wide spaces of solutions (Kennedy 

and Eberhart, 1995). These algorithms have the advantage 

of always converging towards a solution and being 

insensitive to local minima, although being slower than 

classical gradient descent methods. At each iteration, the 

algorithm evaluates the objective function expressed in 

Eq. (4) at a number of points in the domain. Depending 

on the result obtained, the position of each point is 

updated in the next iteration according to a criterion 

inspired by the dynamics of swarms in the animal world. 

Each of these points, which represent the particles of the 

swarm, move in the domain as the number of iterations 

advances. This shift, represented by the velocity of the i-

th particle in the Eq. (8), is determined by the 

superposition of three kinetic components: (i) an inertial 

component derived by the velocity at the previous 

iteration; (ii) a cognitive component where the particles 

keep memory of their best position (personal best) and 

therefore move in that direction; (iii) a social component 

where the particles move towards the best position 

reached by the entire swarm (global best). In Eq. (9) the 

position at the k-th iteration is updated according to the 

velocity calculated as described above. 



𝑣𝑖
𝑘+1 = 𝑤 𝑣𝑖

𝑘 + 𝑐1 𝑟 (𝑝𝑝𝑏,𝑖
𝑘 − 𝑥𝑖

𝑘)

+ 𝑐2 𝑟 (𝑝𝑔𝑏,𝑖
𝑘 − 𝑥𝑖

𝑘) 

(8) 

𝑥𝑖
𝑘+1 = 𝑥𝑖

𝑘 + 𝑣𝑖
𝑘+1

 (9) 

The parameters w, 𝑐1  and 𝑐2 represent the weight of the 

inertial, cognitive and social components of the algorithm, 

respectively. These parameters must be set according to 

the problem to be analysed and therefore need an initial 

sensitivity study to make the algorithm converge towards 

an optimal value in a reasonable time. The value r is a 

random number between 0 and 1 and must be calculated 

at each iteration for each particle. This random variable 

makes the algorithm stochastic, i.e. based on a random 

exploration of the domain by the swarm that resembles a 

natural process. The greater is the cognitive component 

compared to the social one, the greater is the propensity 

of the algorithm to explore the domain.  

Optimization problem  

The current version of the BEMS controls only the heat 

pump and the circulation pump of the secondary water 

loop (see Fig. 2). In the future, also the DHW boiler and 

other electrical devices will be integrated within the 

BEMS. The core of the BEMS is a mixed integer linear 

programming (MILP) problem solved in a rolling horizon 

scheme. This means that the optimization is repeated with 

a predetermined sample time. At each step, the operation 

of the HVAC system is planned for the next H hours, 

where H is the horizon of the optimization problem. The 

planning consists in determining the circulation pump on 

the water loop of the fancoils and the state of the heat 

pump, which consists of an on/off signal and a frequency 

signal communicated to the inverter-driven compressor. 

The optimization problem consists in the minimization of 

the economic objective function: 

min
𝛯

∑(𝜆𝑡
𝑏𝑤𝑡

𝑏 − 𝜆𝑡
𝑠𝑤𝑡

𝑠)

𝑡

+ ∑ 𝛾 (𝛿𝑡
↑ + 𝛿𝑡

↓)

𝑡

 
(10) 

Subject to the constraints in Eq. (1-3) and those listed in 

the following: 

𝑤𝑡
𝑏 + 𝑤𝑡

𝑝𝑣
=  𝑤𝑡

𝑠 + 𝑤𝑡
ℎ𝑝

+ 𝑤𝑡
𝑜𝑑 (11) 

𝜃𝑡
𝑖,𝑚𝑖𝑛 − 𝛿𝑡

↓ ≤ 𝜃𝑡
𝑖 (12) 

𝜃𝑡
𝑖 ≤ 𝜃𝑡

𝑖,𝑚𝑎𝑥 + 𝛿𝑡
↑ (13) 

𝛷𝑡
ℎ𝑝

− 𝛷𝑡
ℎ𝑐 − 𝑈𝐴(𝜃𝑡

ℎ𝑠 − 𝜃𝑡
𝑖) = 

𝜌 𝑉ℎ𝑠𝑐𝑝

𝜏
 (𝜃𝑡

ℎ𝑠 −

𝜃𝑡−𝜏
ℎ𝑠 )   

(14) 

𝜃𝐻
ℎ𝑠 ≥ 𝜃0

ℎ𝑠 (15) 

𝛷𝑡
ℎ𝑝

= 𝑟𝑚𝑖𝑛𝑄𝑡
ℎ𝑝,𝑚𝑎𝑥

 𝑢𝑡
ℎ𝑝

+ 𝑄𝑡
ℎ𝑝,𝑚𝑜𝑑

 (16) 

𝑄𝑡
ℎ𝑝,𝑚𝑜𝑑

≤ 𝑢𝑡
ℎ𝑝

 (1 − 𝑟𝑚𝑖𝑛) 𝑄𝑡
ℎ𝑝,𝑚𝑎𝑥

  (17) 

𝛷𝑡
ℎ𝑝

= 𝐶𝑂𝑃𝑡  𝑤𝑡
ℎ𝑝

 (18) 

𝑥𝑡
𝑠𝑢 ≥ 𝑢𝑡

ℎ𝑝
− 𝑢𝑡−𝜏

ℎ𝑝
 (19) 

𝑥𝑡
𝑠𝑢 ≤ 𝑢𝑡

ℎ𝑝
 (20) 

𝛷𝑡
ℎ𝑝

≥ 𝑥𝑡
𝑠𝑢 𝑟𝑚𝑖𝑛,𝑠𝑡𝑎𝑟𝑡  𝑄𝑡

ℎ𝑝,𝑚𝑎𝑥
 (21) 

𝛷𝑡
ℎ𝑐 = 𝑟𝑚𝑖𝑛,𝑓𝑐𝑄𝑡

ℎ𝑐,𝑛𝑜𝑚 𝑢𝑡
ℎ𝑐 + 𝑄𝑡

ℎ𝑐,𝑚𝑜𝑑
 (22) 

𝑄𝑡
ℎ𝑐,𝑚𝑜𝑑 ≤ 𝑢𝑡

ℎ𝑐  (1 − 𝑟𝑚𝑖𝑛,𝑓𝑐) 𝑄𝑡
ℎ𝑐,𝑛𝑜𝑚

 (23) 

𝛷𝑡
ℎ𝑐 ≤  𝑘𝑓𝑐,𝐻 (𝜃𝑡

ℎ𝑠 − 𝜃𝑡
𝑖) (24) 

where 𝜆𝑡
𝑏  and 𝜆𝑡

𝑠 are the purchase and sale price of 

electricity; 𝑤𝑡
𝑏  and 𝑤𝑡

𝑠 represent the amount of electricity 

bought by and sold to the grid, and the second sum is a 

penalty that aims at limiting the events in which the air 

temperature goes beyond the boundaries of thermal 

comfort. The temperature difference between the indoor 

air temperature and the upper/lower thermal comfort 

bound is defined by variables 𝛿𝑡
↑ and 𝛿𝑡

↓, respectively. 

Further details about the optimization can be found in an 

early version of this work (Vivian and Mazzi, 2019). Eq. 

(11) represents the electrical energy balance at building 

level; Eq. (12-13) define the boundaries of indoor thermal 

comfort based on the temperature setpoints fixed by the 

user; Eq. (14) is the thermal energy balance of the hot 

water tank and Eq. (15) imposes that the temperature of 

the water in the tank at the end of the horizon must be at 

least equal to its initial temperature. This choice was made 

to avoid continuous discharging to pursue cost 

minimization. Eq. (16-18) describe the heat pump 

performance; Eq. (19-21) set the minimum power during 

the heat pump start-up; Eq. (22-24) set the minimum heat 

flow rate exchanged by the heat emitters and the 

maximum one as a function of the temperature of the 

water coming from the tank. The whole set of constraints 

includes 7 equations and 12 inequalities that must be 

repeated for each step t in the horizon, i.e. Ɐ𝑡 ∈ [1, 𝐻]. 

There are 16 unknown variables at each step: 𝑢𝑡
ℎ𝑐, 𝑢𝑡

ℎ𝑝
, 

𝛷𝑡
ℎ𝑐, 𝛷𝑡

ℎ𝑝
, 𝜃𝑡

ℎ𝑠, 𝜃𝑡
𝑖, 𝜃𝑡

𝑠, 𝜃𝑡
𝑚, 𝑤𝑡

ℎ𝑝
, 𝑤𝑡

𝑠, 𝑤𝑡
𝑏 , 𝑥𝑡

𝑠𝑢, 

𝑄𝑡
ℎ𝑝,𝑚𝑜𝑑

, 𝑄𝑡
ℎ𝑐,𝑚𝑜𝑑

, 𝛿𝑡
↓ and 𝛿𝑡

↑. Therefore, considering a 24-

hours-horizon with 15-minutes-steps leads to an 

optimization problem with 8∙96 = 768 equalities, 8∙96 

+1= 769 inequalities and 16∙96 = 1536 unknown 

variables. Therefore, the problem has (16-8)∙96 = 768 

degrees of freedom.  

Results 

Calibration of the heat pump model 

In order to find the coefficients of the polynomial 

functions, a linear regression has been implemented 

selecting only data corresponding to inverter frequencies 

greater than 59.5 Hz (the maximum frequency being 60 

Hz). The square points in Fig. 4 represent the thermal 

power and the COP as a function of external air 

temperature and of the average thermal storage 

temperature. The coloured area in the graphs represents 

the second-order polynomial curve obtained by the 

regression to approximate the data cloud. As Fig. 4 shows, 

the correlation coefficient R2 is 86% for the heat pump 

capacity and 63% for the COP. The lower correlation 

index can be explained by the fact that the COP considers 

two phenomena with different dynamics: while the 

electrical power absorbed by the compressor has an 

almost instantaneous response considering a sampling 

time of one minute, the thermal power approaches its 



steady-state value more slowly. These transients occur 

mainly during compressor start-up periods. In these 

moments, COPs are typically lower than during steady-

state operation. 

 
Figure 4 a) Capacity and (b) COP of the heat pump: 

measurements vs linear regression model. 

Calibration of the building model 

Figure 5 shows the profile of the indoor air temperature 

obtained with the nominal parameters, i.e. thanks to the 

prior knowledge of the building (blue line), the profile 

obtained with the calibrated parameters (orange line) and 

the profile of the average temperature measured in the 

four rooms of the lab (dashed black line). The calibration 

includes three training days (from 17/12/20 at 10:45 to 

20/12/20 at 10:45) and one testing day (from 20/12/20 to 

21/12/20). The profile obtained from the nominal 

parameters shows a similar trend compared to the 

measured temperature profile. However, there is a gap 

between the two and the indoor temperature peaks due to 

the intermittent behaviour of the fancoils are higher than 

those measured in the lab. The calibration process based 

on Particle Swarm Optimization is able to narrow these 

differences, bringing the model output closer to the 

measured one. In the chosen days, the RMSE between the 

profiles goes from 2.03 K (model with nominal 

parameters) to 0.59 K (model with calibrated parameters) 

during the training period. In the testing period, i.e. on the 

fourth day shown in the graph below, the RMSE reaches 

0.89 K, which is probably linked to a change in the 

boundary conditions. Similar results have been obtained 

in the cooling period. 

 

Figure 5 Example of building model calibration during 

the winter period. 

Optimization results  

Figure 6 shows the result of the optimisation performed 

in the laboratory at 1 am on 30/11/20 with a 24-hour 

horizon. The wide comfort range considered (21±2°C) 

was set to better appreciate the energy flexibility offered 

by the building structures and by the HVAC system. After 

an initial transient that brings the indoor air temperature 

(continuous blue line) from the initial state (approx. 23°C) 

to the minimum of the comfort band (19°C), the 

temperature remains at the minimum level throughout the 

day except when it is possible to self-produce energy with 

the PV system. In fact, when the simulated photovoltaic 

panels produce electricity (yellow line), the heat pump 

produces heat and charges the tank. The possibility of 

modulating the thermal output of the heat pump adapts its 

electrical consumption (black line) to the forecasted 

production of the PV modules.  

 

 

Figure 6. Optimization results during (a) a winter day 

and (b) a summer day. 



The heat produced during these hours (from about 8 am 

to 3 pm) is not discharged directly into the room, but 

charges the thermal storage tank. The latter releases heat 

to the room both during the night and early morning hours 

due to the low outdoor temperature (blue dotted line), and 

from 1 pm onwards, when the tank has reached the 

maximum limit temperature and must therefore be 

discharged. This strategy can be appreciated by observing 

the green line, which represents the power profile 

transferred to the environment by the fan coils. This 

solution found by the optimiser takes maximum 

advantage of the combined inertia offered by the building 

structures and by the HVAC system. The state of charge 

of the tank, i.e. its average temperature 𝜃𝑡
ℎ𝑠 (blue dotted 

line) oscillates between a minimum and a maximum. In 

the summer season, the situation is mirrored: the internal 

temperature predicted by the optimiser is equal to the 

maximum allowed, except when the thermal storage can 

supply cold water that was produced at low cost by means 

of the photovoltaic system. During the night and in the 

morning, the external air temperature is lower than the 

internal one. Therefore, the heat pump only shows limited 

start-ups to maintain the water temperature in the tank 

below the maximum value allowed (20°C). During the 

first afternoon hours, the heat pump exploits the electrical 

energy produced locally by the PV system to cool down 

the tank. The fancoil operation is scheduled from 12 am 

to 11 pm with a maximum cooling load occurring around 

4 pm.   

Optimal control of the HVAC system 

The monitored values of temperature and energy in the 

lab do not exactly match those predicted by the optimal 

planning. The difference is mainly due to the 

simplifications assumed in the first-principle equations 

describing the thermal behaviour of the system and by the 

inaccuracy of weather forecasts. Figure 7 shows, by way 

of example, the planned and realised behaviour during a 

test carried out on January 18th, 2021, where dashed lines 

represent the predicted optimal behaviour and dotted lines 

stand for the actual behaviour measured in the lab. The 

blue lines in Figure 7(a) show the predicted and measured 

outdoor air temperature. During the first hours, the 

measured temperature corresponds to the forecasted one, 

but from approximately 8 am it deviates with consequent 

underestimation of the heat losses due transmission and 

ventilation. The profiles of forecasted and actual water 

temperature in the tank show a diverging trend in the late 

morning. This can be explained by observing the heat 

exchange rate at the heat pump condenser –red lines in 

Fig. 7(b). Despite an overall similar trend on a daily basis, 

the spike occurring around 10 am reaches negative values, 

which means that the tank switches its role from heat sink 

to heat source in order to perform a defrosting cycle. As a 

result, the water temperature in the tank drops compared 

to the predicted optimal trend shown by the dashed green 

line in Fig. 7(a). As far as the secondary side of the HVAC 

system is concerned, the measured and optimal heat flow 

rate supplied by the fancoils (𝛷ℎ𝑐) also show a similar 

trend on a daily basis. However, the peak due to the start-

up transient is underestimated by the linear model. The 

electrical demand of the heat pump –green lines in Fig. 

7(b)- and the average indoor air temperature -black lines 

in Fig. 7(a)-, which are the most important variables for 

the optimization pursued by the BEMS, show a good 

match with the optimal values, which confirms the 

robustness of the proposed model predictive controller. 

 

Figure 7. Optimal planning vs measured behaviour:    

(a) temperatures and (b) heat flow rates. 

 

Conclusions 

This article presents the first tests carried out in an 

experimental laboratory equipped with electrical devices 

including an air source heat pump for space heating and 

cooling. A model predictive control strategy was 

developed in order to minimize economic costs and 

indoor thermal discomfort. The underlying building 

model is based on the well-known simple hourly method 

of ISO 13790 Standard, where the heat transfer 

coefficients are first guessed based on physical and 

geometrical knowledge of the building and then calibrated 

using Particle Swarm Optimization. The short number of 

training days needed in the calibration process confirms 

the effectiveness of the proposed method. The 

optimization, carried out in offline mode, shows that the 

proposed strategy is able to maximize the self-

consumption from the PV panel and to take advantage 



from the flexibility offered by the combination of building 

structure and thermal storage tank in both the heating and 

cooling season. The first tests where the optimal planning 

is used to control the HVAC system show that the actual 

behaviour is slightly different from the predicted one due 

to inaccurate forecasts, simplifications introduced by 

linear constraints and due to the presence of defrosting 

cycles.  

Potential contribution for future research 

Future work will focus on the implementation of the 

presented Model Predictive Controller in online mode 

using a rolling horizon scheme. New electrical devices 

will be considered in order to improve the capability of 

the Building Energy Management System for all-electric 

dwellings. Indeed, this research is focused on the optimal 

management of energy flows in buildings under high 

electrification scenarios.  

Although this paper is mainly focused on control aspects, 

the laboratory will also be of interest for the building 

simulation community. In fact, current activities include 

the development of a detailed dynamic model of the lab 

to be validated using measured data of indoor 

environmental conditions and thermal loads. The detailed 

dynamic model will be the basis of a digital twin used to 

test the optimal control strategies presented here (or other 

ones) on buildings with different physical characteristics, 

thus generalizing the results concerning the flexibility 

offered by building structures to all-electric dwellings.  
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