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Abstract

We present a conceptual and mathematical framework leading to the develop-

ment of a biodegradation model capable to interpret the observed reversibility of

the Pharmaceutical Sodium Diclofenac along its biological degradation pathway

in groundwater. Diclofenac occurrence in water bodies poses major concerns due

to its persistent (and bioactive) nature and its detection in surface waters and

aquifer systems. Despite some evidences of its biodegradability at given reduc-

ing conditions, Diclofenac attenuation is often interpreted with models which

are too streamlined, thus potentially hampering appropriate quantification of

its fate. In this context, we propose a modeling framework based on the con-

ceptualization of the molecular mechanisms of Diclofenac biodegradation which

we then embed in a stochastic context, thus enabling one to quantify predictive

uncertainty. We consider reference environmental conditions (biotic and denitri-

fying) associated with a set of batch experiments that evidence the occurrence

of a reversible biotransformation pathway, a feature that is fully captured by

our model. The latter is then calibrated in the context of a Bayesian modeling

framework through an Acceptance-Rejection Sampling approach. By doing so,

we quantify the uncertainty associated with model parameters and predicted Di-

clofenac concentrations. We discuss the probabilistic nature of uncertain model

parameters and the challenges posed by their calibration with the available data.
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Our results are consistent with the recalcitrant behavior exhibited by Diclofenac

in groundwater and documented through experimental data and support the ob-

servation that unbiased estimates of the hazard posed by Diclofenac to water

resources should be assessed through a modeling strategy which fully embeds

uncertainty quantification.

Key words: Diclofenac, Denitrification, Reversible biodegradation, Bayesian

calibration, Uncertainty quantification, Acceptance-Rejection Sampling

1. Introduction1

Groundwater contamination by pharmaceuticals (PhAs) stands as a crit-2

ical issue in modern society. Regulating authorities are recognizing poten-3

tial risks associated with pollution of drinking water sources by biologically4

active compounds, such as PhAs, even as their detection is often limited to5

trace concentration levels (1− 1000[ng · L−1]). Several classes of medical drugs6

are currently monitored according to international guidelines (CHMP, E.M.A.7

(2006)), with particular focus on the most persistent compounds. Sodium8

Diclofenac (NaDcf) (NaDcf(s), C14H10Cl2NO2 ·Na(s), CAS number 15307-79-6,9

MW = 318.3[g ·mol−1], Figure A.1 (a) in Appendix A) (Fonger et al. (2014)),10

a Non-Steroidal Anti-Inflammatory Drug (NSAID) is commonly prescribed as11

an analgesic (Small (1989)) and is seen to pose major concerns to surface12

waters and groundwater bodies (Lonappan et al. (2016)). Due to its sus-13

pected long-term impact on the ecology of aquatic environments upon chronic14

exposure, NaDcf has been classified by the Global Water Research Coalition15

(GWRC) as Class 1 – high priority substance within relevant Pharmaceuticals16

to the water cycle (de Voogt et al. (2007)). Despite risk assessment proto-17

cols (CHMP, E.M.A. (2006)) often address Sodium Diclofenac biodegradation18

to non-hazardous compounds as a natural attenuation mechanism, several au-19

thors have recently questioned its effectiveness under reducing redox conditions,20

such as, e.g., denitrifying scenarios (Barbieri et al. (2012), Chiron and Duwig21

(2016)). While studies based on laboratory-scale batch systems (Barbieri et al.22
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(2011)), column experiments (Schaffer et al. (2015)) as well as field-scale data23

(Nham et al. (2015), Chiron and Duwig (2016)) are available in the litera-24

ture, there is still a lack of knowledge about the behavior of Diclofenac (Dcf)25

in groundwater bodies, especially under scenarios comprising the occurrence26

of biologically mediated transformations. This observation suggests the need27

to further enhance state-of-the-art modeling frameworks and tools to support28

policies associated with environmental protection of aquatic compartments from29

risks related to bioaccumulation and biomagnification (CHMP, E.M.A. (2006)).30

In this context, it is noted that oversimplified biochemical models might lead31

to an inaccurate assessment of contaminant fate (Greskowiak et al. (2017)).32

Otherwise, relevant uncertainties might arise as a consequence of the complexity33

and non-linearity of model input-output relationships which can be associated34

with the representation of the richness of molecular dynamics associated with a35

full chemical reaction network that might in turn require a high level of model36

parametrization (Porta et al. (2018)). These uncertainties are hard to con-37

trol and eventually constrain and reduce because of the paucity of available38

datasets documenting the fate of emerging contaminants and pharmaceuticals39

in groundwater. Therefore, implementation of an appropriate stochastic inverse40

modeling framework is key to address the effects of uncertainty propagation41

from the model structure and parameters to target model outputs (e.g., con-42

taminant concentrations in environmental compartments), as a consequence of43

conditioning modeling results on available observations.44

In this work, we focus on the fate of Diclofenac in groundwater under biotic, den-45

itrifying redox conditions. These environmental conditions are relevant in field46

scale scenarios such as those that can take place across regions downstream of47

reactive barriers installed in the hyporheic zone. Such a scenario has been mim-48

icked in a series of (biotic) batch experiments (Barbieri et al. (2012), their series49

1[µg · L−1]), which document the emergence of 5-C-Nitro-Diclofenac (NO2Dcf)50

derivative (NO2Dcf(aq)), C14H10Cl2N2O4(aq), MW = 341.15[g ·mol−1], Figure51

A.2 (b) in Appendix A) and its reversible back-transformation into the parent52

compound once denitrifying conditions cease to occur. Several authors (Bar-53
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bieri et al. (2012), Chiron and Duwig (2016)) document the reversibility54

of Diclofenac transformation processes along its biologically mediated reaction55

pathway (under the above mentioned environmental conditions), which involves56

an almost complete back-transformation of its by-products into the parent com-57

pound. The latter process takes place upon complete Nitrite depletion, which58

is turn marked by the the occurrence of stronger reducing conditions than deni-59

trification (such as, e.g., those corresponding to Mn 4+
(s) /Mn 2+

(aq) in our scenario),60

and is supported by experimental observations (Barbieri et al. (2012), Chiron61

and Duwig (2016)).62

Our study is keyed to the following three major objectives: (i) the develop-63

ment of a model capable of interpreting the observed reversible pathway of64

Diclofenac; (ii) the design of a workflow for the stochastic calibration of such a65

model through the estimation of its parameters against observations; and (iii)66

the interpretation of model parameters and outputs in a probabilistic sense,67

which fully embeds predictive uncertainty quantification. To achieve these ob-68

jectives, we consider the set of previously mentioned microcosms experiments69

(Barbieri et al. (2011) and Barbieri et al. (2012)) that document the reversible70

behavior of the tranformation products (TPs) of Diclofenac and Sulphamethox-71

azole (SMX) downstream of the denitrification cycle, as discussed above. To72

interpret the selected dataset, we first formulate an original conceptual and73

biochemical model, which follows the same rationale employed in Rodŕıguez-74

Escales and Sanchez-Vila (2016) to model the fate of SMX, another amino75

compound used as antibiotic. Our stochastic inverse modeling approach relies76

on a Bayesian framework and rests on Acceptance-Rejection Sampling (ARS)77

technique to provide a probabilistic characterization of model parameters based78

on available data.79

2. Methods80

We first introduce the geochemical model we consider to interpret the doc-81

umented reversible biodegradation pathway of Diclofenac. The key elements of82
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the implemented model are offered in Section 2.1. Additional details about the83

implementation strategy within the geochemical simulation Software used (pH84

RedOx Equilibrium C++ Software (PHREEQC), version 3.6.2, Parkhurst and85

Appelo (2013)) are provided in Supplementary Material S1. Further elements86

on the experimental framework of reference (Barbieri et al. (2012), Rodŕıguez-87

Escales and Sanchez-Vila (2016)) are available in the Supplementary Material88

S2. Section 2.2 describes the stochastic framework employed to calibrate the89

proposed model and characterize associated parameters and relevant outputs,90

including quantification of predictive uncertainty. Within the suite of Bayesian91

inverse modeling techniques, we rely on Acceptance-Rejection Sampling due to92

its unbiased nature. This approach yields the posterior (i.e., conditional on93

available data) probability distribution of uncertain model parameters within a94

Bayesian framework, circumventing the assumption of Gaussianity typical of,95

e.g., a Maximum Likelihood (ML) framework.96

2.1. Geochemical model97

We model the combined action of several mechanisms that can impact the98

temporal evolution of Diclofenac concentrations, i.e., precipitation/dissolution99

(see Supplementing Material S1.2.1), sorption/desorption to soil particles (see100

Supplementing Material S1.2.2), and biodegradation (a term which is here em-101

ployed to embed several mechanisms that are discussed in details in Section102

2.1.1). We illustrate here some details of the biochemical model employed to103

characterize biodegradation of Diclofenac. The full description of the model,104

including the complete collection of the considered chemical reactions is then105

provided in the Supplementary Materials and Appendices.106

2.1.1. Reversible biodegradation pathway107

Our model aims at interpreting the fate of Diclofenac at the environmen-108

tal conditions investigated in Barbieri et al. (2012). We conceptualize the109

biochemical process according to the three Phases described in the following.110

These are schematically depicted in Figure 1 and further detailed in Figure 2.111
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Figure 1: Reversible degradation pathway of Diclofenac under biotic, denitrifying redox condi-

tions. Chemical processes leading to the release of transformation products are framed within

specific phases, here denoted as Phase (I ), (II ), and (III ). Main uncertain model parameters

are also depicted within boxes (blue and green backgrounds of these denote whether the cor-

responding reactions are framed in the context of bacterial metabolism or not, respectively).
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Figure 2: Reaction network of Diclofenac reversible biodegradation.
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• (Phase (I )) The abiotic degradation of HDcf(aq) to N-Nitroso-Diclofenac112

(NODcf) (i.e., NODcf(aq), C14H10Cl2N2O3(aq); see Figure A.2 (a) in Ap-113

pendix A) takes place through co-metabolism under anoxic, biotic deni-114

trifying redox conditions. Here, Diclofenac does not participate directly115

to the metabolic mechanism, which involves the (kinetically controlled)116

microbial reduction of Nitrate N(V) (NO –
3(aq)) along the Nitrogen reduc-117

tion cycle. This yields elemental Nitrogen N(0) (N2(g)) upon complete118

conversion of Nitrite N(III)(NO –
2(aq)), a metastable intermediate product119

typically observed along the N(V) reduction cycle (Appelo and Postma120

(2004)). The process is sustained by the oxidation of dissolved organic121

matter (CORG) to Carbon dioxide C(IV) (CO2(aq)). N-nitrosation of HDcf122

takes place together with aqueous complexation of Nitrite into Nitrous123

acid (HNO2(aq)), a process that can be considered at instantaneous equi-124

librium and is characterized by pKa of approximately 3.2 (Fonger et al.125

(2014)). The key role of Nitrous acid in this Phase is consistent with126

the guidelines of environmental geochemistry, which identify HNO2(aq) as127

a typical nitrosating agent at relevant (prevalently alkaline) environmen-128

tal conditions (Stumm and Morgan (2012)). In this context, Diclofenac129

degradation is abiotic and co-metabolic because the compound does not130

participate directly to the redox metabolism of denitrification.131

• (Phase (II )) The second Phase involves the evolution of NODcf to NO2Dcf.132

We note that N-Nitroso-Diclofenac is typically considered an unstable in-133

termediate product that rapidly evolves at appropriate reducing condi-134

tions (Smith (2020), Chiron and Duwig (2016)), such as those associ-135

ated with, e.g., the presence of Pyrolusite (MnO2(s)) acting as oxidizer.136

Here, Nitrites NO –
2(aq) simultaneously act as attacking reagents and Lewis137

base catalysts of the electrophilic aromatic substitution (EAS) yielding138

5-C-Nitro-Diclofenac, which corresponds to the final TP experimentally139

detected by several authors (Barbieri et al. (2012), Chiron and Duwig140

(2016)) under denitrifying redox conditions. This process takes place141
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jointly with denitrification and is modeled as a multistage reaction. The142

involved steps are consistent with previous studies (Chiron and Duwig143

(2016)) and are here interpreted through a kinetic model. In this context,144

the evolution of NODcf is initiated by its one-electron oxidation sustained145

by Pyrolusite reduction. The latter yields N-Nitroso-Dcf+· (Lewis for-146

mula NODcf+ (aq)), a nitroso radical cation of NODcf which features a147

positive charge localized on the central Nitrogen of the amino functional148

group (Figure A.3 (a) in Appendix A). This is a highly unstable compound149

which undergoes a spontaneous fragmentation into Nitrous monoxide free150

radical ( NO) and Nitrenium cation, here denoted as Dcf+ (see Figure A.3151

(b) in Appendix A). Consistent with the resonance theory (Smith (2020)),152

an instantaneous rearrangement of the positive charge is expected at this153

step (the shift occurring from the central Nitrogen of the amino functional154

group towards the topping ring). This yields the carbocation depicted in155

Figure A.3 (c) of Appendix A, a typical electrophile that can easily be156

neutralized by nucleophiles such as NO –
2(aq), consistent with the Lewis157

theory on acid-base reactions. Specifically, the reaction product is here a158

structural isomer (termed NO2DcfISO2(aq); see Figure A.4 (a) of Appendix159

A) of the detected TP, 5-C-Nitro-Diclofenac. The last stage of Phase (II )160

involves instantaneous conversion of NO2DcfISO2(aq) to the main isomer161

NO2Dcf(aq). This occurs through simultaneous protonation of the double162

C N bond of the amino group and one-proton removal in the para position163

of the topping ring, which takes place through the action of a strong Lewis164

base, possibly NO –
2(aq). The ring aromaticity is then restored, yielding the165

expected NO2Dcf derivative (Figures A.2 (b) and A.4 (b) in Appendix A).166

• (Phase (III )) The last Phase involves two consecutive reactions. First, we167

consider NO2Dcf(aq) to undergo a reductive transformation to the corre-168

sponding amine 5-Aminyl-Diclofenac (NH2Dcf) (C14H12Cl2N2O(aq), Fig-169

ure A.2 (c) of Appendix A), consistent with previous studies on aquatic170

chemistry (Stumm and Morgan (2012)). Here, NH2Dcf(aq) acts as a171
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meta-stable intermediate in the broader context of back-transformation172

processes to the parent compound. Consistent with Appelo and Postma173

(2004), a direct microbial transformation of 5-C-Nitro-Diclofenac takes174

place at this step, sustained by additional oxidation of organic Carbon.175

The second reaction of Phase (III ) involves NH2Dcf back-transformation176

to the parent compound through electrophilic aromatic substitution. In177

our approach we assume that dissolved protons H +
(aq) are responsible for178

protonation of NH2Dcf, which is known to act as rate limiting step in179

the context of electrophilic aromatic substitutions. This yields a carbo-180

cation (termed NH3Dcf +
(aq); see Figure A.5 (a) of Appendix A) whose181

aminyl group NH +
2(aq) is removed by the action of strong bases, possibly182

dissolved hydroxyl anions OH –
(aq). The final product is then the parent183

compound HDcf(aq), which is finally restored together with Hydroxylamine184

NH2OH(aq) (Figure A.5 (b) in Appendix A), the secondary product of this185

reaction.186

2.1.2. Quantitative model description187

This Section is devoted to the illustration of the main details about the188

conceptual framework and the ensuing formulation of the mathematical model189

employed to interpret the reversible biochemical pathway introduced in Section190

2.1.1. Consistent with the mixture used in the microcosms experiments of Bar-191

bieri et al. (2011) and with the formulations in Rodŕıguez-Escales and Sanchez-192

Vila (2016) (see the Supplementary material S1.1.1 for details), organic matter193

at Phase (I ) is modeled as a mixture of Methanol C(-II) (CH4O(aq)) and Acetate194

anion C(0) (C2H3O2
–
(aq)). For completeness, we recall that Rodŕıguez-Escales195

and Sanchez-Vila (2016) model the reaction rate of denitrification (per unit196

mole consumption of organic Carbon) according to the following Multiplicative197
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Monod equations (Appelo and Postma (2004)):198

RR
(REDOX1)
CORG

(t) = −d{CORG (aq)}(t)
dt

∣∣∣∣∣
(REDOX1)

199

= rmax1
{CORG (aq)}(t)

{CORG (aq)}(t) +KCORG

half1

{NO –
3 (aq)}(t)

{NO –
3 (aq)}(t) +KNO –

3

half

200

· {CH2O(s)} (1)201

RR
(REDOX2)
CORG

(t) = −d{CORG (aq)}(t)
dt

∣∣∣∣∣
(REDOX2)

=202

= rmax2
{CORG (aq)}(t)

{CORG (aq)}(t) +KCORG

half2

{NO –
2 (aq)}(t)

{NO –
2 (aq)}(t) +KNO –

2

half

203

· Kinhib

{NO –
3 (aq)}(t) +Kinhib

{CH2O(s)} (2)204

205

where CH2O(s)is the biomass molarity, rmaxi
, i = 1, 2 is the maximum rate206

of substrate consumption relative to biomass in the i − th redox reaction,207

Khalfi , i = CORG1,CORG2,NO –
3 ,NO –

2 are half saturation constants, and the208

inhibition constant Kinhib embeds the hindering effect of Nitrates on Nitrites209

reduction. The notation {·} identifies species activity, that tends to coincide210

with molar concentration in very diluted solutions (Appelo and Postma (2004)).211

Note that these parameters are not subject to calibration in our work, being212

rather fixed to the values estimated by Rodŕıguez-Escales and Sanchez-Vila213

(2016) (Table 2 in Section 2.2).214

Diclofenac nitrosation takes place together with aqueous complexation into Ni-215

trous acid, according to the following stages (Mirvish (1975)): (a) first, two216

moles of Nitrous acid rapidly dissociate in the nitrosyl carrier NO2 NO (Nitrous217

anhydride) and water; then, (b) NO2 NO reacts with the secondary amine, yield-218

ing N-Nitroso-Diclofenac (rate limiting step):219

2 HNO2(aq)
Keq1−−−⇀↽−−− NO2 NO(aq) + H2O (3)220

HDcf(aq) + NO2 NO(aq)
k−−→ NODcf(aq) + HNO2(aq) (4)221

222

The global stoichiometry is:223

HNO2(aq) + HDcf(aq)
k1−−→ NODcf(aq) + H2O (5)224

225
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Diclofenac nitrosation is therefore characterized by a reaction rate of order two226

with respect to Nitrous acid concentration and of order three globally, i.e.,:227

RRNODcf (t) =
d{NODcf (aq)}(t)

dt
= k{HDcf (aq)}(t){NO2 NO}228

= k{HDcf (aq)}(t)Keq1{HNO2 (aq)}2(t)229

= k1{HDcf (aq)}(t){HNO2 (aq)}2(t) (6)230
231

where k1 = kKeq1 is a rate constant. For simplicity, we neglect here the tem-232

poral evolution of biomass concentration, which is set to the same value as in233

Rodŕıguez-Escales and Sanchez-Vila (2016).234

Phase (II ) is modeled assuming that one-electron oxidation of HDcf is gov-235

erned by redox equilibria, the reductive half-reaction involving the redox couple236

MnO2(s)/Mn +
2(aq). The spontaneous fragmentation yielding Nitrenium cations is237

then considered instantaneous, consistent with the high instability of the latter.238

The nucleophilic attack of Nitrite to the carbocation is then rate limiting, in239

agreement with the chemistry of Lewis acid-base reactions (Smith (2020)) and240

also consistent with the presence of a substituted amino group ( NHC6H3Cl2)241

on the top (aromatic) ring, which is para activating towards further substitution242

(on the very same ring). Lastly, the central Nitrogen protonation in the amino243

group (taking place after neutralization of the positive charge by NO –
2(aq) attack244

to the carbocation) is again instantaneous.245

These steps can be expressed as:246

NODcf(aq) + 0.5 MnO2(s) + 2 H+
(aq)

Kredox−−−−⇀↽−−−− NODcf+ (aq) + 0.5 Mn 2+
(aq) + H2O

(7)

247

NODcf+ (aq)
instantaneous−−−−−−−−→ NO(aq) + Dcf+(aq) (8)248

Dcf+(aq) + NO2
−
(aq)

k−−→ NO2DcfISO2(aq) (secondary structural isomer) (9)249

NO2DcfISO2(aq) + H+
(aq) + NO2

−
(aq)

fast−−→ NO2Dcf(aq) + HNO2(aq)250

(main structural isomer) (10)251
252
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Thus, the global stoichiometry becomes:253

NODcf(aq) + 0.5 MnO2(s) + 3 H+
(aq) + 2 NO2

−
(aq)

k2−−→254

0.5 Mn2+
(aq) + NO(aq) + H2O + NO2Dcf(aq) + HNO2(aq)

(11)

255

256

The global reaction rate can be formulated as:257

RRNO2Dcf (t) =
d{NO2Dcf (aq)}(t)

dt
= k{NO –

2 (aq)}(t){Dcf+ (aq)}(t)258

= k2
{NO –

2 (aq)}(t){H+ (aq)}2(t){NODcf (aq)}(t)√
{Mn2+ (aq)}(t)

(12)259

260

where k2 = k ·Kredox is the process rate constant.261

The back-transformation into the parent compound (Phase (III )) entails two262

consecutive reactions. The first one involves the direct metabolic transformation263

of NO2Dcf into NH2Dcf (corresponding to microbial reduction sustained by or-264

ganic Carbon oxidation) whose kinetics are modeled according to the Michaelis-265

Menten-Monod mathematical framework (Appelo and Postma (2004)) (specif-266

ically, through the Multiplicative Monod equations). The global stoichiometry267

(see Supplementary Material S1.1.1) can be expressed as:268

CH4O(aq) +
3

4
C2H3O2

−
(aq) +

3

4
H+

(aq) + 2NO2Dcf(aq)
rmax3−−−→269

5

2
CO2(aq) + 2NH2Dcf(aq) +

1

2
H2O(aq)

(13)

270

271

This reaction involves reduction of the nitro group to aromatic amine through272

a six-electron transfer mechanism, in agreement with Razo-Flores et al. (1997)273

and Kulkarni and Chaudhari (2007). Note that the Methanol/Acetate mixture274

representing organic matter can be modeled through a single molecule of organic275

Carbon (CORG), the latter being implemented in PHREEQC as CH2.5O−0.3276

(further details are then available in Supplementary Material S1.1.1).277

The second stage involves the EAS of the aminyl group in NH2Dcf. Here,278

the protonation step is rate limiting, in agreement with Smith (2020). The279

subsequent withdrawal of aminyl groups by dissolved hydroxyl anions is typically280
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very fast and is then considered to take place instantaneously.281

This second reaction is then described by the following stages:282

NH2Dcf(aq) + H +
(aq)

k3−−→ NH3Dcf +
(aq) (14)283

NH3Dcf+(aq) + OH−(aq)
fast−−→ HDcf(aq) + NH2OH(aq) (15)284

285

This leads to the following global stoichiometry:286

NH2Dcf(aq) + H2O
k3−−→ HDcf(aq) + NH2OH(aq) (16)287

288

where NH2OH(aq) (Figure A.5 in Appendix A) represents Hydroxylamine, which289

is another TP for which experimental investigations are still very scarce for the290

purposes of our study (i.e., it has not been monitored in the experiments of291

Barbieri et al. (2012)).292

The corresponding reaction rates are rendered as:293

RRNH2Dcf (t) =
d{NH2Dcf (aq)}(t)

dt
294

= rmax3
{CORG (aq)}(t)

{CORG (aq)}(t) +KCORG

half3

{NO2Dcf (aq)}(t)
{NO2Dcf (aq)}(t) +KNO2Dcf

half

295

Kinhib2

{NO –
2 (aq)}(t) +Kinhib2

{CH2O(s)} (17)296

RRBT (t) = −d{NH2Dcf (aq)}(t)
dt

=
d{HDcf (aq)}(t)

dt
297

= k3{H+ (aq)}{NH2Dcf (aq)} (18)298
299

Here, rmax3 is the maximum Michaelis-Menten-Monod rate; KCORG

half3 , KNO2Dcf
half ,300

and kinhib2 are half-saturation and inhibition constants; and k3 is the rate con-301

stant of the last reaction of Phase (III ). Note that equation (17) considers302

inhibition on the reduction of nitroaromatics in the presence of higher-priority303

oxidizers, such as Nitrites, which are associated with lower standard potentials304

of reduction (see, e.g., Appelo and Postma (2004)).305

The chemical model is completed by three additional processes, which are con-306

sidered at chemical equilibrium: (i) Diclofenac acid adsorption to soil particles,307

(ii) dissolution of Sodium Diclofenac in water, and (iii) dissociation of all of the308

(relevant) acidic compounds present in solution (i.e., Nitric and Nitrous acids,309
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Carbonic acid, HDcf and organic matter, as partially derived from the Acetic310

acid). Sorption is modeled as solely due to surface complexation of the neu-311

tral Diclofenac acid onto the organic Carbon fraction of the soil, the anionic312

form being insensitive to adsorptive mechanisms at the environmental condi-313

tions considered (Appelo and Postma (2004)). Surface complexation of HDcf is314

associated with a linear distribution coefficient (consistent with the very diluted315

conditions of the aqueous solution analyzed), defined as:316

kd =
{HDcf(ADSORBED)}

{HDcf(aq)}
(19)317

318

Considering a linear isotherm approach and following the procedure detailed in319

the Supplementary Material S1.2.1, we obtain kd ≈ 3.6 · 10−3[L/kgsed], clearly320

evidencing the negligible impact of sorption to the extent of Diclofenac degra-321

dation (additional details are provided in the above mentioned Supplementary322

Material).323

The dissolution of Sodium Diclofenac is then modeled as:324

NaDcf(s) ↓
keq−−−⇀↽−−−
1/keq

Na+(aq) + Dcf−(aq) (20)325

326

327

keq =
{Na+ (aq)}{Dcf– (aq)}

{NaDcf (s)}
=

ks
hhhhhh{NaDcf (s)}

= ks (21)328

329

where ks = 2.3 · 10−10[mol2 · L−2] represents the solubility constant of the330

salt, as inferred from available databases (Wishart et al. (2006)). Further331

details are provided in Supplementary Material S1.2.1, where we show that332

one could consider in principle the full amount of NaDcf as fully dissolved in333

solution, consistent with the value of the solubility product and the limited334

(trace) concentration levels at which Sodium Diclofenac is typically detected in335

groundwater.336

We finally note that acid dissociation processes govern the degree of ionization337

of the molecules (water speciation). In this context, dissociation of Diclofenac338

acid and organic matter (the same rationale applying for other molecules of339
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interest) can be formulated as (Wishart et al. (2006)):340

HDcf(aq)
Ka−−⇀↽−−−
1/Ka

H+
(aq) + Dcf−(aq) (22)341

pKa = −Log10Ka = −Log10
{{H+

(aq)}{Dcf−(aq)}
{HDcf(aq)}

}
≈ 4.2 (23)342

3

10
C2H3O2

−
(aq) +

2

5
CH4O(aq)

Ka−−⇀↽−−−
1/Ka

3

10
C2H4O2(aq) +

2

5
CH3O−(aq)

1

10
H+

(aq)

(24)

343

pKa = −Log10Ka =
{C2H4O2(aq)}0.3 · {CH3O−(aq)}0.4 · {H

+
(aq)}0.1

{C2H3O2
−
(aq)}0.3 + {CH4O(aq)}0.4

= −4.772

(25)

344

345

Our implementation fully includes also this latter process, additional details be-346

ing available in Supplementary Materials S1.2.1 and S1.2.3 for Dcf and organic347

matter, respectively.348

We also note that in our study the temporal evolution of Diclofenac concentra-349

tions always refers to the total molarity of Dcf master species (Parkhurst and350

Appelo (2013)), i.e., the overall contribution of its anionic and undissociated351

forms.352

2.2. Stochastic model calibration353

The mathematical representation of the biochemical setting we consider is354

rendered through the system of equations (1), (2), (6), (12), (17), (18), (19),355

(21), (23) and (25). This formulation is here applied under the prescribed initial356

conditions illustrated in the Supplementary Material S2 to interpret the data357

listed in Table 3. Stochastic model calibration is here performed upon consid-358

ering the seven model parameters listed in Table 1 as uncertain, the remaining359

model parameters (listed in Table 2) being assumed as known, on the basis of360

prior studies (Rodŕıguez-Escales and Sanchez-Vila (2016)).361

Our uncertainty analysis is framed in the context of Bayesian model calibration,362

which is performed through Acceptance-Rejection Sampling. In the absence of363

additional information about possible ranges of variability of the model parame-364

ters, the latter are obtained starting from a preliminary fit against the available365
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data. This step involves obtaining preliminary estimates of uncertain model366

parameters through a satisfactory visual agreement between experimental data367

and simulation results. The parameter support is then assessed upon considering368

two logarithmic cycles centered around these preliminary estimates. The uncer-369

tain parameters are then considered as independent and identically distributed370

(iid) random variables, each characterized by a uniform distribution within the371

intervals listed in Table 1. The choice of the latter distribution enables one372

to give the same weight to all parameter values across their support. Random373

sampling of parameter values within the corresponding support is performed374

through a classical Quasi-Monte Carlo technique (Sobol (1998)). Practical

Uncertain parameter Lower limit Upper limit

k1[ L2

mol2s ] 1.2 · 108 1.2 · 1010

k2[ L0.4

mol0.4s ] 1.3 · 102 1.3 · 104

rmax3[ 1s ] 5.0 · 10−12 5.0 · 10−10

KCORG

half3 [M ] 1.0 · 10−7 1.0 · 10−5

KNO2Dcf
half [M ] 7.0 · 10−10 7.0 · 10−8

Kinhib2[M ] 5.0 · 10−7 5.0 · 10−5

k3[ L
mol·s ] 5.0 · 103 5.0 · 104

Table 1: Intervals of variability considered for the uncertain model parameters in the context

of stochastic model calibration.

375

implementation of the ARS algorithm (Bolstad and Curran (2016)) for model376

parameter estimation relies upon embedding multiple model simulations based377

on the widely known and tested software PHREEQC (Parkhurst and Appelo378

(2013)) within the procedure outlined in the following. Acceptance-Rejection379

Sampling is designed to draw samples from the posterior density (fp|C) of the380

considered random parameter set, conditional on observations of a given target381

quantity. Such a density is proportional to the likelihood function fC|p, which382

is taken to be multi-Gaussian, available data being associated with independent383
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Parameter Value

rmax1 [mM
d ] 19

rmax2 [mM
d ] 11

KCORG

half1 [M ] 1.6 · 10−1

KCORG

half2 [M ] 1.8 · 10−2

KNO –
3

half [M ] 1.0 · 10−4

KNO –
2

half [M ] 5.0 · 10−4

Kinhib [M ] 1.0 · 10−4

{CH2O(s)} [mM ] 1

Table 2: Model parameters which are considered as fixed from prior studies (Rodŕıguez-Escales

and Sanchez-Vila (2016)).

C∗

t[d] {Dcf}
{Dcf}0

{CORG}
{CORG0}

{NO –
2 }

{N(V )0}
{NO –

3 }
{N(V )0}

1.55 94.5% − − −

3 70% 57% 49% 45%

5 56% 34% 63% 11%

10 91% 17% 0% 0%

20 83% − − −

Table 3: Available observations for chemical species concentrations. Values are normalized by

the initial concentration of the corresponding master species ({Dcf} denotes total Diclofenac

concentration, including both its anionic and undissociated forms.)
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errors characterized by a variance σ2
OBS .384

ARS enables one to draw random samples from fp|C according to the following385

workflow:386

(1) Sample nmc random combinations of the seven uncertain model parameters387

from the corresponding uniform priors whose supports are listed in Table 1;388

(2) Evaluate the temporal evolution of the concentrations of the compounds of389

interest (i.e., Dcf, organic Carbon, Nitrate and Nitrite) through the geo-390

chemical model for each of the nmc parameter combinations;391

(3) Compute nmc acceptance probabilities αi, i = 1, 2, ..., nmc according to:392

αi =
fC|pi

max
(
fC|pi

)393

= exp

(
− 1

2σ2
OBS

[
C∗

i −Ci

]T [
C∗

i −Ci

])
(26)394

395

where N∗ is the total number of available observations; Ci(t) is the model-396

based concentration of species i at time t, normalized by its initial con-397

centration; p is a vector whose entries correspond to the (seven) uncertain398

model parameters, and C∗i are the observed data.399

400

(4) Draw nmc random values ui (i = 1, 2, ..., nmc) from a uniform pdf in the401

unit support;402

(5) Accept a given model realization i if the corresponding sampled value of ui403

is smaller than αi.404

The number of Monte Carlo simulations should be designed to guarantee that405

stable posterior pdf s of model parameters are obtained. We note that the rate406

of acceptance associated with the algorithm depends on σ2
OBS , whose precise407

assessment is clearly affected by quality and quantity of available information.408

While large values of σ2
OBS typically lead to a large number of accepted realiza-409

tions, these are also related to lower data quality. Since no precise information410

about measurement uncertainty is available for the data-set analyzed, we select411

σ2
OBS as a generally reasonable compromise between a good acceptance rate412

and the loss of quality of the data (see also Section 3).413
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3. Results and Discussion414

We present here the results of our study and provide a quantitative analy-415

sis of our modeling framework for the characterization of Diclofenac reversible416

biodegradation pathway.417

Following the procedure detailed in Section 2.2, Acceptance-Rejection Sampling418

is performed upon setting σ2
OBS ≈ 0.018, as result of a compromise between419

achieving a good acceptance rate and considering data which are not associ-420

ated with marked loss of quality, the total number of realizations considered421

in the ARS approach being set to nmc = 200000, yielding a number of ac-422

cepted realizations in the order of 102 (details not shown). Figure 3 depicts423

the marginal distributions obtained for the seven considered model parameters424

conditional on the available observations. For completeness, the prior (uniform)425

densities (see Table 1) associated with each model parameters are juxtaposed426

to the ARS-based inverse modeling results. The resulting posterior means and427

intervals (centered around the mean) of width equal to a standard deviation428

are highlighted through vertical, dashed lines. Analysis of these results suggests429

that the posterior pdf of k1 is the one which is most affected by conditioning430

as it markedly differs from its corresponding prior pdf . Conditioning on data431

is seen to affect also the pdf s of k2 and k3. All of these posterior densities432

display well defined peaks, corresponding to the Maximum A Posteriori (MAP)433

estimate, the latter being equal to the mode of the posterior distribution (iden-434

tified by vertical dashed blue lines in Figure 3). While the posterior marginals435

of k1 and k2 are nearly symmetric, with modes very close to the correspond-436

ing mean values, the distribution of k3 is visibly left-skewed, conditioning on437

data favoring the largest values of this parameter. As a consequence, stochastic438

calibration indicates that the back transformation steps (in Phase (III )) tends439

to take place with the fastest rates among those analyzed. These features are440

reinforced by the analysis of the corresponding box-plots depicted in Figure 4.441

The latter results yield a visual appraisal of the width of credible intervals of442

the model parameters, here associated with one inter-quartile range (i.e., in-443
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cluded within the first and the third quartiles) of the distributions of k1, k2,444

and k3 and the relative location of the Maximum A Posteriori estimates within445

the corresponding prior supports. Figures 3 and 4 evidence the significant re-446

duction of the support of the posterior distribution of k1 with respect to the447

corresponding assumed prior. This is consistent with the observation that con-448

ditioning on data through (stochastic) inverse modeling yields a reduction of449

the uncertainty which is associated with all relevant model parameters in the450

absence of measurements. For example, one can note that conditioning on data451

leads to a reduction of the prior variance of k1 by approximately 88%, thus452

providing a quantitative metric to support the strong influence of conditioning453

on the assessment of this parameter. Variances of k2 and k3 are seen to drop by454

about 34 and 8%, respectively, as compared against their prior counterparts.455

Otherwise, prior and posterior distributions of the remaining four model param-456

eters display negligible differences. This is indicative of how no particular value457

of these parameters can be identified as most likely to interpret the available458

data. The latter is typically considered as an indication that such parame-459

ters are not influential to the overall variability of the model output following460

conditioning to the available observation. As such, any of the values of these461

parameters comprised within their range of variability is characterized by the462

same likelihood of being consistent with the data considered. Therefore, one463

should not expect significant uncertainty reduction for these parameters fol-464

lowing acquisition of the type of data here considered. Notice that three of465

these parameters are associated with half-saturation and inhibition constants466

appearing in Michaelis-Menten-Monod kinetics. This result is consistent with467

the fact that observed concentrations attain low values, thus explaining why468

half-saturation and inhibition constants do not play a major role on the kinetic469

processes represented by reaction (13). As an example of the quality of the re-470

sults, Figure 5 depicts outputs associated with the proposed geochemical model.471

Here, consistent with the stochastic model calibration framework, k1, k2, and k3472

are set at their MAP, while the remaining model parameters are characterized473

through their corresponding average value. These results are complemented474
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(a) (b)

(c) (d)

(e) (f) (g)

Figure 3: Prior and posterior pdf s of the model parameters, together with MAP estimates

(dashed blue lines), mean values (dashed red lines). Dashed green lines delineate intervals

of width equal to twice the standard deviation and centered around the corresponding mean

value.
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Figure 4: Boxplot representation of the marginal distributions of parameter values resulting

from the inverse modeling procedure. Blue circles correspond to MAP estimates, red squares

denoting lower and upper limits of the support of the prior distributions.

by Table 4 where we list parameter values associated with modeling results of475

Figure 5. One can see that considering MAP estimates of model parameters476

is conducive to high quality estimates of the fate of Diclofenac, even as it is477

evident that the MAP-based geochemical model tends to slightly underestimate478

the reaction progresses along the depicted temporal window. A good agreement479

is still observed amongst model- and observation-based concentrations for most480

of the main compounds undergoing redox reactions along the Nitrogen reduc-481

tion path (Figure 5a). A non-negligible discrepancy is otherwise observed with482

reference to the temporal trend of organic Carbon degradation, our modeling re-483

sults clearly underestimating the associated consumption rate. The latter result484

is consistent with (a) the observation that the temporal evolution of biomass485

concentration in the system has been neglected due to the limited dataset avail-486

able, which prevents reliance on a more complex modeling approach; and (b)487

the study of Barbieri et al. (2012) who derive similar conclusions about the488

fate of organic matter along the biodegradation pathway. Indeed, these authors489

highlight that a relevant percentage (around 27%) of organic Carbon is possi-490
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bly consumed due to the action of additional processes, which are not included491

in their geochemical model. On these bases, and in line with Barbieri et al.492

(2012), an additional contribution of about 2.2[mM ] to the net consumption of493

organic Carbon is expected due to its further degradation as substrate that sus-494

tains bacterial growth (additional details on associated biochemistry are offered495

in the Supplementary Material S1.1.2).496

As an example of the benefits arising from relying on a stochastic model calibra-497

tion, Figure 6 shows the results of uncertainty propagation to the Dcf concentra-498

tion history. Figure 6a depicts the temporal behavior of selected percentiles (i.e.,499

5th, 50th, and 95th) as wells as the mean of the probability distribution of (nor-500

malized) Dcf concentrations resulting from our modeling study. Experimental501

observations are also depicted as a reference, together with the temporal evo-502

lution of Dcf concentrations obtained through the collection of some exemplary503

model realizations associated with the posterior probability densities of model504

parameters (solid grey curves). Figure 6b completes the picture upon showing505

pdf s of Dcf concentrations conditional on available data at three selected ob-506

servation times. The width of the intervals associated with values comprised507

between the 5th and 95th percentile of the distribution widely vary across the508

temporal window considered, attaining a seemingly stable value at late time.509

The latter feature is consistent with our expectations, as our model does not510

implement any additional process downstream of the back-transformation to the511

parent compound, which is expected to end significantly sooner than the last512

monitored time (20 days).513

The available measurements are well within the intervals delineated by the (pos-514

terior) 5th and 95th percentiles. An exception is noted at early times (i.e., t = 3515

days), with reference to a possible under-estimation of the nitrosation rate of516

HDcf, consistent with the trend outlined in Figure 5. This might be indicative517

of faster nitrosation rates than those associated with our model, whose results518

are otherwise fully consistent with the other available data. Finally, we observe519

that the initial decrease and successive increase of Dcf concentration tend to520

attain a similar rate, i.e. concentration histories attain a roughly symmetric U-521
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shape around time 5− 6 days. In particular, the steep increase of Dcf observed522

at time 7 − 8 days for certain realizations (Figure 6a) can be linked with the523

relatively high probability of observing large values of the back-transformation524

rate constant k3 (see Figure 3).525

Our probabilistic results can then assist to assess the uncertainty linked to526

model outputs of interest also at unsampled times. In this context, exemplary527

probability density functions of Dcf are depicted in Figure 6c at unsampled528

times. The ability to have at our disposal these types of results is critical to529

support, for example, probabilistic risk assessment under uncertainty where one530

can be interested in quantifying the probability of exceeding a given threshold531

concentration in time. For example, these results suggest that posterior densi-532

ties tend to almost overlap at sufficiently late times (such as, e.g., t = 18 and533

t = 21 days). Notice that this behavior is consistent with our expectations, as534

Diclofenac concentrations are not expected to undergo further variations after535

completion of back-transformation processes (denoted as Phase (III ) in Section536

2.1.1).

Parameter type Parameter value Log10 of Parameter value

k1[ L2

mol2s ] 8.7096E+08 8.94

k2[ L0.4

mol0.4s ] 1.4791E+03 3.17

rmax3[ 1s ] 8.0E-11 -10.1

KCORG

half3 [M ] 1.2E-06 -5.9

KNO2Dcf
half [M ] 7.9E-10 -9.1

Kinhib2[M ] 5.0E-06 -5.3

k3[ L
mol·s ] 2.9854e+05 5.47

Table 4: Estimated model parameters: k1, k2, and k3 values correspond to MAP estimates,

whereas the remaining model parameters are estimated through the corresponding empirical

posterior mean value.

537
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Figure 5: Normalized concentrations of the main species involved along (a) the Nitrogen

reduction cycle and (b) the Diclofenac reversible transformation pathway. Results are obtained

employing the calibrated model, where the most influential parameters (k1, k2, and k3) are

set to corresponding MAP values, whereas the remaining ones (rmax3, K
CORG
half3 , K

NO2Dcf
half ,

and Kinhib2) are set to their posterior means. Available measurements are highlighted with

diamonds. Percentage differences between Diclofenac observations (C∗) and modeling results

(C) are also included.

4. Conclusions538

Diclofenac (Dcf) is often detected in water resources and groundwater bod-539

ies and is increasingly recognized as a threat for the delicate balance of aquatic540

ecosystems, especially in view of its bioactive nature and recalcitrance. Our541

study provides a model and the associated operational workflow aimed at as-542

sisting the assessment of the fate of Diclofenac under uncertainty at relevant543

environmental conditions. The model rests on a detailed description of the544

molecular mechanisms associated with the biotransformation pathway of Di-545

clofenac and is framed within a stochastic context that enables obtaining a546

probability distributions of target quantities conditional to available observa-547

tions. We demonstrate our approach through a set of available laboratory-scale548

data (Barbieri et al. (2012)). Our work leads to the following major conclu-549

sions.550

• Our process-based biochemical model enables us to interpret the reversible551

pathway exhibited by Dcf in the context of the analyzed laboratory ex-552
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Figure 6: (a) Temporal evolution of Diclofenac concentrations obtained through a collection

of exemplary model realizations associated with the posterior probability densities of model

parameters (solid grey curves) together with the corresponding mean (solid blue), percentiles

P0.05, dashed green, P0.5, dashed blue, and P0.95, dashed red, and experimental observations

(diamonds); (b) Diclofenac concentration pdfs at selected observation times together with

the corresponding sampled values (vertical dashed lines); (c) Diclofenac concentration pdfs at

selected unsampled times.
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periments. Our conceptual model considers three subsequent phases of553

Dcf biotransformation, ultimately leading to the recovery of the parent554

compound in dissolved phase. The model couples Dcf biotransformation555

to the nitrogen cycle. The documented ineffectiveness of Dcf degrada-556

tion under the experimental conditions investigated in this study possibly557

suggests the opportunity to explore diverse biodegradation pathways in558

future research, such as, e.g., settings associated with stronger oxidizers,559

eventually leading to complete mineralization of the original molecule.560

• We describe selected model parameters by way of their (posterior, i.e.,561

conditional on available data) probability distribution upon relying on an562

acceptance-rejection sampling algorithm. An optimal parameter combi-563

nation is identified through the ensuing Maximum A Posteriori (MAP)564

estimates of model parameters. Relying on MAP parameter estimates565

yields a good agreement between model results and observations, relative566

residuals associated with Dcf concentrations being always smaller than567

15%. Our model is seen to underestimate organic Carbon concentration,568

this being likely due to the fact that biomass dynamics are here neglected.569

• Our results suggest that experimental observations of the kind considered570

here might not be exhaustive to yield sharp estimates of all of the biochem-571

ical parameters potentially affecting Dcf biotransformation. Posterior dis-572

tributions associated with kinetic rates exhibit a unique peak, suggesting573

that optimal parameter values could be identified (in a stochastic inverse574

modeling context). Otherwise, the available data do not lead to a reduc-575

tion of the uncertainty related to half-saturation and inhibition constants,576

their prior and posterior distributions being not too dissimilar. This result577

is likely linked to the low concentrations exhibited by the Dcf in the con-578

sidered experiment, and implies that the available data do not enable one579

to constrain the probability distribution of inhibition and half-saturation580

constants associated with the Michaelis-Menten-Monod rates. Our anal-581

ysis provides an example of the usefulness of a probabilistic framework to582
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identify residual model parameter uncertainty following conditioning on583

observations.584

• Probability distributions of Dcf concentrations are obtained by propagat-585

ing the obtained posterior pdf s of input parameters through the considered586

model. At sufficiently long times the pdf s associated with Dcf concentra-587

tion values are left-skewed with a peak corresponding to a 90-100% recov-588

ery of the initial concentration. With reference to the Dcf concentrations589

increase, our results suggest that the back-transformation step is charac-590

terized by a fast kinetic behavior, leading to sharp variations of the Dcf591

with time.592
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Appendix A. Chemical structure of parent compound and transfor-595

mation products596

In this Section, we provide structural formulas for the main chemical species597

involved in the reactive processes of Diclofenac reversible pathway.

Cl
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Cl
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Cl
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Figure A.1: Parent compound and products of its dissolution and aqueous speciation: (a)

Sodium Diclofenac (NaDcf), (b) Diclofenac acid (HDcf) and (c) Diclofenac anion (Dcf–).
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Figure A.2: Main transformation products of Diclofenac: (a) N-Nitroso-Dcf, (b) 5-Nitro-Dcf

(para isomer) and (c) 5-Aminyl-Dcf (para isomer).
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Figure A.3: Intermediates appearing in Phase (II ) of the pathway: (a) Nitroso radical cation

(NODcf+ ), (b) unstable canonical form of resonance (nitrenium cation) of Dcf+ and (c) main

canonical form of resonance (carbocation) of Dcf+.
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Figure A.4: Intermediates appearing in Phase (II ) of the pathway: (a) the second structural

isomer of the nitro-derivative (NO2DcfISO2) and (b) 5-Nitro-Diclofenac (NO2Dcf).

Cl

N

NH2

H
⊕

OHO

H

Cl

(a)

N

H

HO H

(b)

Figure A.5: Chemical species appearing during back-transformation reactions: (a) intermedi-

ate carbocation (NH3Dcf+) and (b) Hydroxylamine (NH2OH).
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𝑹𝟗: Reduction N(III) to N(0)
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𝑷𝟑: Organic carbon C(-0.8) oxidation to C(IV): third path
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