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Abstract—Measurement-based WCET methods are reliable as
long as we know all the application behaviors at design-time.
In particular, we need to observe all the possible execution time
behaviors before the actual system run-time to get a reliable
estimation. This is, unfortunately, difficult to achieve. In this
work, we propose an online monitoring framework with the
goal to detect, at run-time, unexpected application behaviors and
trigger the probabilistic-WCET re-estimation when needed. The
online monitoring and estimation framework allows dealing with
unexpected situations, such as never-seen applications, faults, or
incorrect offline estimations. The proposed approach is tested
with simulated and real data.

Index Terms—probabilistic real-time, pWCET, runtime moni-
toring

I. INTRODUCTION

Estimating the Worst-Case Execution Time (WCET) has
become a critical problem for real-time systems because of the
increasing complexity of modern computing architectures [1].
In fact, hardware manufacturers added complex features (such
as multi-level caches and parallel cores) to overcome the
performance barrier caused by the difficulties in increasing
the clock frequency.

As a possible solution to the WCET problem, probabilistic
real-time has been investigated in recent years [2]. In par-
ticular, the Measurement-Based Probabilistic Timing Analysis
(MBPTA) technique is very attractive because it allows the
estimation of a statistical distribution of the WCET directly
from the observed execution time samples, without the need
for complex platform and application models.

A. Background

Unlike the traditional distribution estimators – which are
based on the Central Limit Theorem – MBPTA uses the Ex-
treme Value Theory (EVT) to output the probabilistic-WCET
(pWCET). This statistical theory generates, from a sequence
of input samples, a distribution which is a good estimate of the
tail of the distribution, i.e., where the real WCET is. The main
result of EVT can be summarized in the following statement:
independently of the original distribution of the input samples,
the tail distribution is always a Generalized Extreme Value
Distribution (GEVD) or a Generalized Pareto Distribution
(GPD), which are asymptotically equivalent. Therefore, we
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can exploit EVT in MBPTA to estimate the pWCET just by
observing the execution time samples of our system.

However, EVT estimates a correct distribution only if three
hypotheses are satisfied. The first hypothesis is that the in-
put samples must be independent and identically distributed
(i.i.d.); the second hypothesis requires the original distribution
to be in the Maximum Domain of Attraction (MDA) of the
GEVD or GPD; the last hypothesis is the representativity
hypothesis, i.e., that the input samples are representative of
the phenomenon we are observing. The first and second
hypotheses can be verified through specific statistical tests,
while the last must be guaranteed by the experimenter. Further
details on the hypotheses are available in the relevant literature,
e.g., [3], [4]. The EVT process filters the input data (i.e.,
the observed execution times) via the Block-Maxima (BM)
or Peak-over-Threshold (PoT) filter. The first splits the input
samples into blocks of fixed size B and takes the maximum
of each block. The second applies a threshold u to remove
all the samples lower than the threshold. In this way, we
save only the largest execution time samples, representing the
behaviors near the WCET. The surviving samples are then
the input of an estimator, which is usually the Maximum
Likelihood Estimator (MLE) or the Probabilistic Weighted
Moment (PWM). The estimator outputs the parameters of the
GEVD or GPD (depending on if the selected filtering approach
is, respectively, BM or PoT).

The pWCET distribution can be directly used by a proba-
bilistic scheduler or can be transformed into a scalar WCET
value and used by any traditional real-time scheduler. The
transformation is possible by computing, via the Inverse-
Cumulative Distribution Function (ICDF) of the estimated
distribution, the value WCET at a given violation probability
p̄. Therefore, the arbitrarily low value p̄, for instance, 10−9,
is the probability of observing an execution time larger than
WCET . The selection of p̄ determines the trade-off between
safety and pessimism of the WCET estimation.

B. Motivation and Contributions

Traditionally, the pWCET is estimated offline, and the re-
sulting distribution (or the extracted WCET at a given violation
probability level) is used online by the scheduler. The safety
of the approach depends only on how the offline measurement
campaign has been performed. In this short paper, we propose
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Fig. 1. The logical flow of the proposed approach.

a novel use of the probabilistic theory, i.e., to monitor the
pWCET quality online and trigger the re-estimation of the
pWCET distribution if the quality of the previous distribution
is insufficient. This approach provides the WCET information
even in these three cases usually not covered by traditional
analyses: 1) the arrival of an unknown application for which
we do not know the WCET1, 2) the incorrect offline estimation
of the pWCET, and 3) the reaction to unpredictable events
(such as faults) which increase the execution time. All of these
three cases are atypical of hard real-time systems because it
is difficult to provide strong guarantees under these conditions
in all the job executions. Hence, the target of this work is soft
real-time or weakly hard real-time systems [6].

Our online framework monitors the quality of the pWCET
estimation and triggers, if necessary, a new pWCET estima-
tion. The output of this process is the new pWCET distribution
(or the WCET value) and a quality parameter called γ,
which represents the amount of trust on the current pWCET
estimation. The scheduler can then use these parameters to
make decisions on the task schedule. Recent approaches
leveraged uncertain WCET values to schedule tasks [7]. We
do not discuss how the scheduler can exploit γ, leaving any
possibility open for future works.

II. METHODOLOGY

The overall flow of the proposed approach is depicted in
Fig. 1. The observed execution times are the input of the BM
or PoT approach described in Section I-A. The filtered dataset
is fed to the EVT estimator and to the quality monitor. When
a sufficient number of samples have been acquired so that
the EVT estimator is able to produce a pWCET (eventually
translated to a scalar WCET ), the estimator stops. The quality
monitor continues to run and check the current distribution
and, if needed, trigger a re-estimation of the pWCET. The
output values of our approach are the pWCET/WCET and the
quality γ. Formally, we write χ(t) ∈ {EST,MON} to identify,
respectively, the estimation and monitoring phases. The system
always starts in estimation phase, thus χ(0) = EST.

1This is especially critical in high-performance computing real-time sys-
tems, where the applications are seldom known a priori [5].

A. pWCET estimation phase

Let us assume we initially measure a sequence of n execu-
tion time values x1, x2, ..., xn. This sequence is fed to the BM
or PoT filter and then to a pWCET estimator, which provides a
distribution G. The form of this distribution (GEVD or GPD)
is irrelevant in this paper, and this approach works in both
cases. However, for simplicity, in the following paragraphs,
we refer to the PoT/GPD approach. Determining the precise
number of samples n to obtain a good distribution is non-
trivial. For this reason, we applied the following rationale: we
continuously increase the number of samples until MLE is able
to find a solution, the EVT hypotheses are satisfied according
to the Probabilistic Predictability Index test [4], and the
monitoring block returns a positive answer (see next Section
II-B). Experimental data showed that the required number of
samples is approximately n ≈ 500. The initial estimation
(χ(0) = EST) can be performed online or offline. Instead, the
subsequent online estimations start when χ(t − 1) = MON
and χ(t) = EST. Once a new distribution G′ is found, the
system switches back to monitoring mode: χ(t+n) = MON.
After the estimation, the WCET is computed using the ICDF
of the estimated distribution at a given probability level p̄.

B. pWCET monitoring phase

When the system is in monitoring mode – i.e., χ(t) = MON
– the sequence of filtered execution times is provided to the
quality monitor, and the distribution estimator does not run.
This monitor performs a Goodness-of-Fit (GoF) test to check
whether the estimated distribution G matches the observed
samples. The test analyzes a window of W execution time
values, i.e., x̂m−W+1, ..., x̂m, where {x̂i} is the sequence post-
filtering of the input execution times {xi}. In statistics, the
output of an hypothesis test is the statistic 0 ≤ S ≤ 1 and
the critical value 0 < CV < 1. If S > CV , then the test
rejects the initial hypothesis (i.e., the data does not match the
estimated distribution). To build a unified index, we define the
quality γ at a given time t as follows:

γ(t) =

{
−∞ if χ(t) = EST
1− S(t)

CV (t) else
(1)

A value γ(t) near 1 means the best confidence on the execution
time distribution, while a value near 0 a weak confidence.
Instead, values γ(t) < 0 identify the non-confidence region,
where the test is able to reject the pWCET distribution
according to the execution time data. When the calculated
quality is γ(t) < 0, then the re-estimation is triggered to learn
a new pWCET distribution, i.e., χ(t+1) = EST. During the re-
estimation phase, the previous distribution must be considered
unreliable (and, therefore, the quality parameter γ(t) = −∞).
Because the test does not run at every input sample of xi (but
every W filtered samples of {x̂i}), the quality value maintains
the last value, i.e., γ(t̄) = γ(t̄− 1) if the test does not run at
time t = t̄.

The parameter W acts on the trade-off between test speci-
ficity and detection speed. Large values of W make the test
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Fig. 2. Simulation 1: N(100, 1) followed by N(120, 1). The T symbol
represents the triggering of a new pWCET re-estimation. The Estimated
WCET threshold is set with violation probability p = 10−9.

more stable and reduces the false-detection, but it increases
the detection time. A small value W makes the test window
smaller, thus fast, but it may experience many false-detections.
Experimentally, a window size of W = 20 showed good
results, but the value should be adjusted according to the
operational requirements.

Many GoF tests exist. The most famous – and used in
pWCET literature – are the Kolmogorov-Smirnov (KS) and
the Anderson-Darling (AD). Due to performance issues of
AD (see next Section II-C), in this work we used the KS
test. The KS test is performed by computing its statistic S as
follows [8]:

S = sup
z

∣∣∣∣∣ 1

W

W∑
i=1

1x̂i≤z − FG(z)

∣∣∣∣∣ (2)

where W is the window size, {x̂i} is the filtered sequence in
the window, FG is the Cumulative Distribution Function (CDF)
obtained from the parameters of the estimated distribution G,
and 1A is the indicator function: 1A = 1 if A is true, 0
otherwise. The critical value depends on W only and can be
calculated or taken from alread available tabular data.

C. Run-time sustainability

Since both the estimation and monitoring phases are ex-
ecuted at run-time, an analysis of their computational com-
plexity is mandatory to assess the feasibility. It should be
noted that the first pWCET estimation can also be performed
offline and with a large dataset, thus reducing the probability
of triggering the re-estimation. We will focus on the analysis
of the subsequent run-time estimations.

The pWCET estimation is dominated by the complexity to
run the estimator. MLE has a complexity of O(n2), while
PWM has a complexity of O(n). Since the number of samples
is low (see Section II-A), this complexity is certainly afford-
able. For the experiments, we selected MLE. Regarding the
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Fig. 3. Simulation 1: N (100, 1) followed by N (80, 1) and N (120, 1).
The T symbol represents the triggering of a new pWCET re-estimation. The
Estimated WCET threshold is set with violation probability p = 10−9.

monitoring phase, KS has a linear complexity O(n), while
AD has also O(n) to compute S, but it requires O(nm) to
compute CV, with m a constant but large factor (on the order
of 10 000). Therefore, we selected KS as the GoF run-time test
because of its lower complexity than AD. In conclusion, all the
algorithms have polynomial complexity, making our approach
affordable at run-time. The open source chronovise tool [9]
has been used as a reference for the algorithms’ complexity.

III. PRELIMINARY RESULTS

To evaluate the ability to detect changes and re-estimate
the pWCET distribution, we tested our approach in simula-
tion (with a synthetic dataset) and with real execution times
measured on a real platform. To simulate the three scenarios
described in Section I-B, we introduced application modes,
i.e., changes in the execution time behavior of the application.
In all the analyses, we considered the PoT approach with
the threshold u set as the 90th percentile. The value u is
updated every time the triggering of a new estimation occurs.
The violation probability to compute the WCET is selected
as p̄ = 10−9. The choice of p̄ affects only the plot and, in
particular, the estimated WCET value. All the scripts and the
datasets are available online2.

A. Simulations

We considered two scenarios generated by the following
synthetic datasets:

1) Data sampled from a Gaussian distribution N (100, 1)
(10 000 samples) followed by a distribution Gaussian
distribution with higher mean value: N (120, 1) (10 000
samples).

2) Data sampled from a Gaussian distribution N (100, 10),
followed by a sharp transition to a Gaussian distribution
N (80, 10), and followed by a slow transition to a
Gaussian distribution N (120, 10).

2https://doi.org/10.5281/zenodo.5528004

https://doi.org/10.5281/zenodo.5528004


The results are depicted, respectively, in Fig. 2 and 3.
In the first test, the distribution is estimated after n = 496

samples. From t = 497 the system switches to monitoring
mode (χ(497) = MON), until the distribution switch. Because
the distribution switch is sharp, the test immediately detects a
violation of the pWCET distribution (γ < 0), and the system
switches back to the estimation mode. Then, the system goes
back to monitoring mode (χ(10 503) = MON) until the end.

The second case is more dynamic than the first. The first
distribution is found at3 t = 746. After 10 000 samples, the
distribution is replaced with the lower-mean distribution. It
is possible to notice a lower variability in the quality index
because a lower number of samples survive the PoT filter with
threshold u, thus the KS window fills slower. The samples of
the lower-mean distribution never triggered the pWCET re-
estimation, as excepted. Finally, at t = 20 000, the distribution
with a higher mean is slowly introduced, and the KS test
triggers the re-estimation at t = 20 777, followed by another
re-estimation at t = 22 607 when the samples are at the new
distribution. Then, at t = 29 328, a false positive result of
the test triggers a new distribution estimation, which outputs
a similar distribution (visible from the estimated WCET).

B. Real-board experiments

Once we evaluated the performance of our approach on
synthetic data, we tested it using the data collected from
a real platform. We set up a NUCLEO-F746ZG, a devel-
opment board from ST equipped with an STM32F746ZG
MCU, and run a micro-benchmark derived from the popular
WCET Mälardalen suite [10], that performs the insertion sort
algorithm on a random array of size 1000. At the end of each
run, we annotated the execution time thanks to the board’s
hardware timers. To simulate different execution modes, we
run, in sequence, three input scenarios: 1) a completely random
array; 2) a partially ordered array; 3) a reversed partially
ordered array (i.e., near the worst-case).

The results are depicted in Fig. 4. In the first scenario [0−
5 000) samples, the re-estimation is triggered after few samples
(t = 1179) because of a drop of the quality index below zero.
Then, the same estimation remains until the change to the third
scenario, and the change is detected at t = 10 007. Another
re-estimation is triggered at t = 11 479.

IV. DISCUSSION AND CONCLUSIONS

The preliminary results showed how the use of the test to
detect a mode change in the software is effective. Clearly,
if the mode change is sharp, as in Fig. 2 and 4, it cannot
avoid the WCET overruns in the first samples before detection.
However, if the change is progressive, the re-estimation is
triggered before a WCET overrun occurs, like Fig. 3. The
quality index γ can be used by the scheduler to determine the
current level of confidence of the estimated WCET. This value
appears to be noisy and sometimes triggers a re-estimation
even if there is no application mode change. This is due to

3To simplify the discussion all the time references are expressed per-run.
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Fig. 4. Real world experiments. The T symbol represents the triggering of
a new pWCET re-estimation. The Estimated WCET threshold is set with
violation probability p = 10−9.

the value W = 20: increasing the window size would make
the index more stable but also slower to detect mode changes.
The W trade-off must be decided case by case and depending
on the application requirements.

The preliminary results are encouraging and show the
good detection capability of the proposed monitor. Having a
pWCET estimation monitor is essential to address the three
scenarios described in Section I-B. Future works include
the refinement of the estimation/monitor procedure and the
exploitation for scheduling purposes of the index γ.
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