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Abstract: The present research focuses on the use of a meshless method for the
solution of nanoplates by considering strain gradient thin plate theory. Unlike the
most common finite element method, meshless methods do not rely on a domain
decomposition. In the present approach approximating polynomials at collocation
nodes are obtained by using radial basis functions which depend on shape param-
eters. The selection of such parameters can strongly influences the accuracy of
the numerical technique. Therefore the authors are presenting some numerical
benchmarks which involve the solution of nanoplates by employing an optimiza-
tion approach for the evaluation of the undetermined shape parameters. Stability
is discussed as well as numerical reliability against solutions taken for the existing
literature.
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1 Introduction
In the broad context of meshless methods Meshless Local Petrov-Galerkin (MLPG) [1] demonstrated

to have strong capabilities to solve problems where weakly-singular traction and displacement boundary
integral equations are involved. Moreover, other problems in this context have been analyzed and solved [2,
3]. THe main idea of meshless methods is to go beyond the current limitations of finite element models for
analyzing problems in mechanics [4]. Unlike classical FEM shape functions are developed for a scattered set
of collocation nodes [4, 5] and their generation defines different meshless approaches. The one considered in
the present work is named Radial Point Interpolation Method (RPIM) [6, 7, 8, 9] which has the fundamental
property of Kronecker delta function [10, 11, 12, 13]. This approach makes the RPIM extremely easy to be
implemented and used for the solution of any problem in structural mechanics.

It has been demonstrated to be extremely relevant in industrial applications for nanoengineering that
nanoelectromechanical (NEMS) systems have been widely considered in the recent literature with several
gradient elasticity problems [14, 15]. It has been demonstrated in recent literature that nano-structures are
used for micro-sized systems and devices such as biosensors, nano-actuators and nano-electro-mechanical
systems [16].

Among the vast literature of nonlocal theories stress-driven models have been recently presented for
nanobeams presenting analytical solutions. For instance closed-form solution of Bernoulli and Timoshenko
type for Erigen-like formulations and stress field and a bi-exponential averaging kernel functions character-
ized by a scale parameter is presented in [17, 18, 19]. Nonlocal strain gradient Bernoulli like beam models by
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considering special bi-exponential averaging kernels and functionally graded materials has been presented
in [20]. Nonlocal beam formulations have been presented within a thermodynamic framework, variational
formulation within its analytical solution has been provided in [21]. Nanobeams can be subjected to axial
loads which leads to buckling, such effects must be considered for a proper nanoengineering design, thus
stress-driven buckling of nanobeams can be found in [22, 23]. In the context of dynamic problems vibrations
in nonlocal integral elasticity has been recently considered for beams and plates in [24, 25].

Most of the nonlocal theories relies on homogenization approaches which aim at simplifying the prob-
lem by considering less modelling parameters in composite materials [26, 27]. It is remarked that size
effects and microstructures paved the way in presenting innovative and multiscale approches in solid me-
chanics [28, 29].

It has been demonstrated by several researchers that higher-order elasticity is becoming of paramount
importance for solid mechanics as mentioned in [30, 31, 32]. In most researchers the term nonlocality has
been brought by Eringen [33] and by Eringen and Edelen [34] where it can be found that the constitutive
relations have to be modified to take into account their dependency on the mechanical properties of the entire
body and not only of the properties in the neighbourhood of the material point. In this regard, in the present
work nonlocal effects have be meaning introduced by by Altan and Aifantis [35, 36], which considered a
simplified nonlocal model where all nonlocalities are concentrated in a gradient model similar to the one
proposed by Mindlin [37]. Such approach, known as strain gradient theory, has been utilized also by others
in other contexts in solid mechanics [38, 39, 40]. Strain gradient theory [41] has been demonstrated to be
a constrained version of other higher-order unconstrained versions available in the literature such as couple
stress [42, 43, 44] as well as micropolar theories [45, 46, 47].

In the framework of plate theories thin plate model is very common within the area of structural me-
chanics of investigating thin-walled structures [48, 49]. Such approach can be easily extended in order to
consider composite structures such as laminated [50, 51] or sandwich ones [52].

In the present work the advantages of meshless methods are considered in the framework of strain
gradient composite thin plate theory to solve such numerical problem.

2 Theoretical background
The present work considers the problem of laminated thin plates of rectangular plane form of size

a× b, where a,b indicate lengths with respect to x,y, respectively. The plate thickness is indicated with
h and the plate represents the middle plane of the actual plate with z axis pointed normal to the x,y plate.
Each ply which constitutes the stacking sequence is indicated with hk and the total thickness is computed as
h = ∑

NL
k=1 hk, where NL denotes the number of plies [53].

The present displacement field follows the classical thin plate theory and Cartesian displacements can
be represented as [54]

U = u− zD(s)u, (1)

where u is the vector collecting the three middle plane displacements of the material point and D(s) is the
derivative operation defined in [55]. The strain vector ε is given by

ε= ε(m)+ zε(b), (2)

in which ε(m) and ε(b) denote respectively the membrane and bending strains, respectively. They can be
evaluated as follows

ε(m) = D(m)u, ε(b) = D(b)u (3)

where the meaning of the differential operators D(m), D(b) is reported in [55] and [54].
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BCs x = 0,a y = 0,b
Supported v = w = ∂w

∂y = 0 u = w = ∂w
∂x = 0

Clamped u = v = w = ∂w
∂x = ∂w

∂y = 0 u = v = w = ∂w
∂x = ∂w

∂y = 0
Free No variables involved No variables involved

Table 1: Essential boundary conditions considered.

Linear constitutive law is considered within the strain gradient theory as suggested in [40] allows to
relate the membrane stresses in the k-th layer σ(k) to the corresponding strain components ε as shown below
[56, 57]

σ(k) =
(
1− ℓ2

∇
2)Q̄(k)ε, (4)

in which the nonlocal parameter ℓ includes the micro/macro-scale interaction effects. The dependency of
the stresses on the strain distribution within the medium is emphasized by the presence of the Laplacian in
Cartesian coordinate system: ∇2 = ∂ 2

∂x2 +
∂ 2

∂y2 . On the other hand, Q̄(k) represents the plane stress-reduced

stiffness coefficients matrix of the k-th layer. The terms Q̄(k)
i j of this matrix depend on the orthotropic

properties of the layer (Young’s moduli E1, E2, Poisson’s ratio ν12 and shear modulus G12), as well as by an
arbitrary orientation θ (k) as indicated in the book [58]. the SN and SM are the stress resultants that can be
defined as follows

SN =

(
AD(m)+BD(b)− ℓ2

(
AD(m)

xx +AD(m)
yy +BD(b)

xx +BD(b)
yy

))
u,

SM =

(
BD(m)+DD(b)− ℓ2

(
BD(m)

xx +BD(m)
yy +DD(b)

xx +DD(b)
yy

))
u,

(5)

The differential operators D(m)
xx , D(m)

yy , D(b)
xx , D(b)

yy are defined in [54]. The constitutive operators A,
B, D represent instead the membrane, membrane-bending coupling and bending stiffness matrices of the
laminated composite plates [58].

In the current paper, isotropic and composite schemes are considered, therefore for some configurations
B ̸= 0, thus, membrane and bending behaviors are coupled. The variational form of the present equilibrium
is represented by [54, 59]

0 =
∫

Ω

{(
D(m)

δu
)T (

AD(m)+BD(b)
)

u+
(
D(b)

δu
)T (

BD(m)+DD(b)
)

u

+ ℓ2
[(

D(m)
x δu

)T (
AD(m)

x +BD(b)
x

)
u+

(
D(m)

y δu
)T (

AD(m)
y +BD(b)

y

)
u

+
(
D(b)

x δu
)T (

BD(m)
x +DD(b)

x

)
u+

(
D(b)

y δu
)T (

BD(m)
y +DD(b)

y

)
u
]
−δuT q dΩ,

(6)

The present meshless technique is applied to such variational statement of the problem.

3 Radial point interpolation method (RPIM)
In the present approach solution is obtained in scattered points located in the given plate rectangu-

lar domain. The approximating polynomials involved possess the Kronecker delta property which allows
a straightforward implementation of boundary conditions. In the following implementation, in plane dis-
placements u and v, transverse displacement w as well as rotations wx, wy are included in the numerical
implementation even though more primary variables are involved in the present formulation [55, 54]. In the
context of the strain gradient theory, the essential boundary conditions for the plate are shown in Table 1
where the four edges are identified by the values of the physical coordinates x and y.
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Figure 1: Sample of shape functions generation for a reference unitary domain.

Figure 2: Shape functions of Figure 1 derived with respect to x.

Any other higher-order derivative is carried out by numerical derivation of the aforementioned param-
eters. Since both the deflection and its first derivatives are considered unknown, the Hermite-RPIM formu-
lation is here presented. Let’s consider a domain enclosing n arbitrarily scattered nodes. The approximation
of the generic displacement w(x,y) can be expressed as:

w(x,y) = R⊤(x)a+R⊤
,x(x)a

x +R⊤
,y(x)a

y (7)

where R, R,x and R,y are the vectors including the radial basis functions (RBF) and their derivatives. The
correspondent coefficients are indicated using vectors a, ax and ay. For the following numerical applications
the well-known multi-quadrics (MQ) RBF is used in its general form

Ri(x,y) = [(x− xi)
2 +(y− yi)

2 +C2]q (8)

where C = αCdc. Both q and αC are shape parameters that have to be tuned while dc is the average nodal
spacing.

The vectors of coefficients in Equation (7) can be obtained by enforcing the field function and its
derivatives to be satisfied at all the n nodes falling within the support domain of the point of interest (x,y).
The support domain is a local domain, typically circular or rectangular, centered in a point of interest which
can either be a node or an integration point. This leads to 3n linear equations

W =

 R R,x R,y

R,x R,xx R,xy

R,y R,xy R,yy


a
ax

ay

= G


a
ax

ay

 (9)

where w, w,x and w,y are vectors of function values of the degrees of freedom considered in the collocation
nodes. Thus, the independent parameter can be carried out as

w(x,y) =
{

R⊤ R⊤
,x R⊤

,y
}

G−1W =ΦΦΦ
⊤W (10)
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Figure 3: Shape functions of Figure 1 derived with respect to y.

An example of what the shape functions look like as computed with this method is given in Figure 1.
A squared domain, represented by 3× 3 regularly distributed nodes, is considered and all of the nodes are
used to construct the shape functions for this domain. Figure 1 represents the shape functions and their first
derivatives with respect to x and y for the nodes in the bottom left corner, in the middle left side, in the
middle of the domain and in the top right corner respectively. For this particular case, the dimensionless
parameters of the RBF are chosen as C = 1 and q = 0.05.

By following the same computational strategy of conventional finite element method [54] the algebraic
form of the variational statement can be carried out because shape functions are evaluated at the collocation
nodes. The needed integration is performed by following well-known Gauss integration rules. Solution of
the present static problem is provided by Gauss elimination algorithm. The following section is dedicated
to numerical results, stability and accuracy.

4 Applications
4.1 Isotropic plates

This section shows the results of the numerical analysis of isotropic Kirchhoff nanoplates modelled
according to the second-order strain gradient theory and analysed by means of a mesh free RPIM. In this
case, there is no coupling between the in plane and out of plane behaviour. Hence, the only unknown
variables considered in the numerical implementation the are transverse displacement w and the rotations
wx, wy The numerical codes are developed in MATLAB.

The results in terms of mid transverse displacement are presented in the nondimensional form as fol-
lows:

w̄ =
1000wD

qza4 (11)

where w is the central plate deflection, qz is the magnitude of the transverse external load and D is the
bending rigidity D = Eh3/12(1−ν2).

Nanoplates with different constraints are analysed, all having thickness h = 0.34 nm. Young’s modulus
and Poisson’s ratio are taken as 1100 GPa and 0.3 respectively. Different nodal densities are also taken into
account. Nanoplates represented by 3× 3, 5× 5, 7× 7 and 11× 11 equally spaced node grids are studied
to analyse the convergence of the method. The local parameter ℓ also varies according to the analysis and
results presented in the available literature [60].

The support domain used for the mesh free implementation has rectangular shape and is centered in the
Gauss points. Its dimensions are considered in the classical way [4] ds = αsdc where dc is the average nodal
spacing dc =

√
∆x2 +∆y2 and αs is a dimensionless parameter which, in this work, varies from 1.8 to 2.4.
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Table 2: Values of w̄ for 3×3 nodal distribution, obtained for αC = 3, q = 1.3, αs = 2.
BC ℓ (nm) Exact Result Error (%)

SSSS

0 4.0624 2.8622 29.5441
0.2 4.0330 2.8338 29.7347
0.5 3.8844 2.6956 30.6045
1 3.4231 2.3142 32.3946

CCCC

0 1.2653 1.0716 15.3086
0.2 1.2333 1.0555 14.4166
0.5 1.0979 0.9785 10.8753
1 0.7946 0.7762 2.3156

SCSC

0 1.9171 1.5481 19.2478
0.2 1.8783 1.5269 18.7084
0.5 1.7093 1.4247 16.6501
1 1.3040 1.1519 11.6641

SFSF

0 15.0113 13.5089 10.0085
0.2 14.9470 13.4511 10.0080
0.5 14.6165 13.1711 9.8888
1 13.5451 12.3957 8.4857

SCSF

0 11.2359 10.8262 3.6463
0.2 11.1703 10.7635 3.6418
0.5 10.8454 10.4568 3.5831
1 9.8416 9.5731 2.7282

Note that, in this work, 2× 2 Gauss integration points are used in each cell of the background integration
mesh.

Results listed in Tables 2-5 compare the available analytical solutions [60] with the present ones in
terms of percentage error:

err% = 100
|we − w̄|

we
(12)

where we is the exact solution taken from the aforementioned references.

The provided comparison is performed for different boundary conditions, number of collocation nodes
and nonlocal parameter values. The C and q coefficients characterising the MQ radial basis functions, as
well as the nondimensional αs support domain parameter, vary as the number of nodes changes.

In addition, a visualization of the deformed configuration of the nanoplates here analysed is shown in
Figure 9.

4.2 Composite plates

A similar analysis is also performed on squared cross-ply laminates. Simply-supported (SSSS) lami-
nates with lamination schemes 0, (0/90), (0/90)2 and (0/90)4, subjected to a sinusoidal load are analysed.
The material property used are taken as E1/E2 = 25, G12 = G13 = 0.5E2, G23 = 0.2E2. Moreover, the thick-
ness is given by h = a/100. As in the previous section, the results are compared in terms of nondimensional
mid-deflection:

w̄ = w0
E2h3

qsa4 (13)
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Table 3: Values of w̄ for 5×5 nodal distribution, obtained for αC = 2.38, q = 0.01, αs = 2.4.
BC ℓ (nm) Exact Result Error (%)

SSSS

0 4.0624 3.8549 5.1078
0.2 4.0330 3.8262 5.1277
0.5 3.8844 3.6844 5.1488
1 3.4231 3.2736 4.3674

CCCC

0 1.2653 1.3058 3.2008
0.2 1.2333 1.2774 3.5758
0.5 1.0979 1.1466 4.4357
1 0.7946 0.8384 5.5122

SCSC

0 1.9171 1.8851 1.6692
0.2 1.8783 1.8509 1.4588
0.5 1.7093 1.6903 1.1116
1 1.3040 1.2914 0.9663

SFSF

0 15.0113 14.8721 0.9273
0.2 14.9470 14.8087 0.9253
0.5 14.6165 14.5144 0.6985
1 13.5451 13.7290 1.3577

SCSF

0 11.2359 11.2265 0.0837
0.2 11.1703 11.1623 0.0716
0.5 10.8454 10.8529 0.0692
1 9.8416 9.9527 1.1289

where qs is the magnitude of the sinusoidal load, taken as 1. The analysis is performed using 11×
11 regularly distributed nodes to represent the domain and 2× 2 Gauss points to perform the numerical
integration. The results of the analysis, compared in terms of percentage error as shown in Equation 12, are
shown in Table 6.

5 Conclusions
In this work, strain gradient nanoplates, both isotropic and laminated, have been analyzed by means of

the Radial Point Interpolation Method. The aim was to apply a RPIM formulation to thin plates modelled
via strain gradient theory. Isotropic second order strain gradient Kirchhoff nanoplates with various boundary
conditions are first analyzed. Numerical convergence with the analytical results achieved in recent literature
was studied. In a similar way, cross-ply composite plates subjected to a sinusoidal load are also analysed. In
this case, 11×11 nodes are used to represent the domain and different lamination sequences are considered.
The paper provides a detailed explanation of the RPIM method theoretical and numerical implementation as
well as theoretical notions in both explicit and matrix form. This work proves the validity of the RPIM for
problems with higher order of derivatives involved.
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Table 4: Values of w̄ for 7×7 nodal distribution, obtained for αC = 2.38, q = 0.01, αs = 2.4.
BC ℓ (nm) Exact Result Error (%)

SSSS

0 4.0624 3.9617 2.4788
0.2 4.0330 3.9310 2.5291
0.5 3.8844 3.7815 2.6491
1 3.4231 3.3461 2.2494

CCCC

0 1.2653 1.2796 1.1302
0.2 1.2333 1.2470 1.1108
0.5 1.0979 1.1177 1.8034
1 0.7946 0.8305 4.5180

SCSC

0 1.9171 1.9072 0.5164
0.2 1.8783 1.8668 0.6123
0.5 1.7093 1.7035 0.3393
1 1.3040 1.3220 1.3804

SFSF

0 15.0113 14.9049 0.7088
0.2 14.9470 14.8228 0.8309
0.5 14.6165 14.5063 0.7539
1 13.5451 13.7327 1.3850

SCSF

0 11.2359 11.2019 0.3026
0.2 11.1703 11.1255 0.4011
0.5 10.8454 10.8058 0.3651
1 9.8416 9.9248 0.8454

Table 5: Values of w̄ for 11×11 nodal distribution, obtained for αC = 2, q = 1.4, αs = 2.3.
BC ℓ (nm) Exact Result Error (%)

SSSS

0 4.0624 4.0472 0.3742
0.2 4.0330 4.0174 0.3868
0.5 3.8844 3.8711 0.3424
1 3.4231 3.4424 0.5638

CCCC

0 1.2653 1.2794 1.1144
0.2 1.2333 1.2464 1.0622
0.5 1.0979 1.1084 0.9564
1 0.7946 0.8018 0.9061

SCSC

0 1.9171 1.9272 0.5268
0.2 1.8783 1.8872 0.4738
0.5 1.7093 1.7163 0.4095
1 1.3040 1.3111 0.5445

SFSF

0 15.0113 11.2507 0.0566
0.2 14.9470 11.1760 0.0214
0.5 14.6165 10.8467 0.0089
1 13.5451 9.9095 1.3761

SCSF

0 11.2359 11.2265 0.1317
0.2 11.1703 11.1623 0.0510
0.5 10.8454 10.8529 0.0120
1 9.8416 9.9527 0.6899
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Figure 4: SSSS Figure 5: CCCC

Figure 6: SCSC Figure 7: SFSF

Figure 8: SCSF

Figure 9: Deformed shapes of square isotropic nanoplates with different boundary conditions.
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Table 6: Non dimensional values of w̄ mid deflection for composite nanoplates, obtained for αC = 1.85,
q =−1.6, αs = 2.4.

ℓ (nm) Laminate Ref. [61] Result Error (%)

0

0 0.004312 0.004349 0.858071
(0/90) 0.010636 0.010693 0.535916
(0/90)2 0.005065 0.005109 0.868707
(0/90)4 0.004479 0.004520 0.915383

0.05

0 0.002170 0.002137 1.520737
(0/90) 0.003931 0.004033 2.594760
(0/90)2 0.002444 0.002351 3.805237
(0/90)4 0.002233 0.002167 2.955665

0.1

0 0.001450 0.001490 2.758621
(0/90) 0.002522 0.002584 2.458366
(0/90)2 0.001623 0.001605 1.109057
(0/90)4 0.001490 0.001497 0.469799
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