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A B S T R A C T   

The layerwise nature of additive manufacturing (AM) allows for in-situ monitoring of the consolidate material to 
identify defects on the fly and produce parts with improved reliability and performance. The main challenge in 
this paradigm, however, is that current methods have either limited measurement throughput or produce signals 
that are difficult to interpret and to relate to build properties. In this work, we present a new methodology that 
combines high-throughput in-situ measurements during laser powder bed fusion (L-PBF) with robust and un-
biased numerical image analysis to predict build density from the surface topography of the consolidated ma-
terial. The method relies on high resolution and large field of view optical scans of the layer—acquired through 
our powder bed scanner (PBS) technology—which we segment into “superpixels” to capture local and distributed 
differences in surface morphology and roughness. The high accuracy of our predictions together with the fast 
data acquisition and analysis enabled by the PBS and the low-dimensionality of the optical dataset after seg-
mentation make our methodology an ideal candidate for in-line monitoring of materials produced by L-PBF. In 
addition, the ability to indirectly deduce a specific material property—namely density—as opposed to inferring a 
qualitative descriptor related to it makes our methodology unique and transferable to commercial powder bed 
fusion processes.   

1. Introduction 

The layer-wise material forming process typical of additive 
manufacturing (AM) technology offers unique opportunities to assess 
build quality layer by layer throughout the entire volume of parts pro-
duced. In theory, this capability may enable defects identification both 
at the material level [1] as well as at the part geometry level [2], which 
could either be directly rectified during the manufacturing process or 
leveraged to inform the performance and lifetime of parts more accu-
rately. In practice, however, this paradigm relies on the ability to 
interpret the data acquired at each layer using different in-situ and 
in-line measurements [3]. 

A wealth of sensing methods and data processing algorithms have 
been proposed to capture different signatures of the physical phenom-
ena involved during metal AM processes and infer the presence of 
anomalies or defects in the build. An overview of the wide and rapidly 
growing literature on this topic can be found in recent review studies by 

McCann et al. [2] and Grasso et al. [4]. Among the different in-situ 
monitoring strategies developed for laser powder bed fusion (L-PBF) 
processes, many rely on layerwise measurement of the topography of 
consolidated layers to detect anomalies and estimate part quality.  
Table 1 reports some relevant works in this field, classified according to 
sensing method, spatial resolution, and field-of-view (FOV). 

As shown in Table 1, the mainstream research in this field relies on 
using one or more cameras—typically mounted off-axis with respect to 
the laser energy source—to capture images of the consolidated layers 
through viewports available at the front or on the top of the machine 
chamber. Depending on the number of cameras and on their arrange-
ment, the topographic information acquired may be two- or three- 
dimensional (3D). Employing lighting sources typically yields two- 
dimensional (2D) images of the surface layer, whose pixel intensity 
variation may be analyzed to identify irregular patterns on the solid 
metal surface or powder bed recoating errors. Fringe projection—which 
makes use of optical cameras (usually in a stereo-vision configuration) 

* Corresponding author at: School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore 639798, Singapore. 
E-mail address: mseita@ntu.edu.sg (M. Seita).  

Contents lists available at ScienceDirect 

Additive Manufacturing 
journal homepage: www.elsevier.com/locate/addma 

https://doi.org/10.1016/j.addma.2022.102626 
Received 23 October 2021; Received in revised form 14 January 2022; Accepted 14 January 2022   

mailto:mseita@ntu.edu.sg
www.sciencedirect.com/science/journal/22148604
https://www.elsevier.com/locate/addma
https://doi.org/10.1016/j.addma.2022.102626
https://doi.org/10.1016/j.addma.2022.102626
https://doi.org/10.1016/j.addma.2022.102626
http://crossmark.crossref.org/dialog/?doi=10.1016/j.addma.2022.102626&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/


Additive Manufacturing 51 (2022) 102626

2

and projectors—provides 3D information on the layer topography. This 
approach allows quantifying the size and morphology of different fea-
tures, such as deposited spatter particles, layer roughness, and surface 
profiles of the consolidated metal layer. Another important aspect that 
emerges from Table 1 is the trade-off between spatial resolution and 
FOV in layerwise monitoring of the L-PBF process. On the one hand, 
large-area inspection of layers restricts the maximum spatial resolution 
of images to ~20 µm or ~30 µm [6,7,10]. On the other hand, using 
techniques with higher spatial resolution limits the maximum area that 
can be imaged to typically less than 100 mm × 100 mm, which may not 
be representative of the entire layer [5,21,22]. 

To overcome the spatial resolution-FOV trade-off and provide 
detailed information across the entire area of the layer, our team 
recently proposed an in-line monitoring method based on the powder 
bed scanner (PBS) technology [23]. The PBS relies on a line-scan im-
aging sensor—the very same sensor found in flatbed document scan-
ners—which is directly mounted onto the recoater arm [23]. This set-up 
allows using the recoating device to capture high resolution (~5 
µm/pixel) images at 4800 dots-per-inch (DPI) over an area of 210 × 297 
mm2 at a speed that is comparable with typical recoating velocities [24]. 
At that spatial resolution, individual powder particles are clearly visible. 
Moreover, the PBS technology provides 3D topographic information of 
the layer owing to the narrow depth of field of the line-scan sensor. By 
correlating the local level of focus in the image with the line-sensor 
distance from the layer, it is in fact possible to quantify the height or 
depth of features on the powder bed. Barrett et al. [26] proposed a 
similar approach by blade-mounting a laser triangulation line-scan 
system to reconstruct the height-map of the powder bed. Although 
their monitoring system allows the detection of lack-of-fusion defects 
and deposited spatters in addition to the height-maps, it is limited by the 
trade-off between FOV and spatial resolution. 

While all the above-mentioned methods provide some level of 
anomaly detection capability during L-PBF—either on re-coated powder 
layers or on consolidated layers—there is a need to link this information 
to the presence of actual defects in fabricated parts to predict build 
quality. It is also essential to develop in-line data processing methods 
that enable on-the-fly data analysis and efficient data storage while 
preserving the ability to extract and model the actual information. The 
specific problem we address in this study consists of inferring build 
density from in-situ analysis of the surface patterns in the consolidated 
material, layer by layer. Such a capability may open novel industrial 
uses of powder bed imaging methods in L-PBF. Indeed, it would allow 

time- and cost-effective detection of surface anomalies which have been 
ascribed to poor build quality and would help reduce the experimental 
efforts devoted to materials development and process optimization. 
Within this framework, our proposed approach involves two major in-
novations in the field of in-line monitoring during AM processes. The 
first regards the layerwise image processing methodology, which relies 
on the segmentation of the raw data (acquired by means of the PBS 
technology on individual layers) into so-called “superpixels”. This 
approach enables capturing region-level differences in surface 
morphology, roughness, and intensity of reflected light in a more 
computationally efficient and a more holistic way compared to the pixel- 
wise analysis of the images. The second innovation regards how we 
predict part quality from the in-situ optical measurements. Rather than 
training a classifier to estimate part quality indirectly following pre-
defined categories—as it was done in several previous studies [5,6,15, 
16,27]—we predict build density. We confirm our predictions using 
X-ray computed tomography (CT) measurements and benchmark the 
higher performance of our method against others. Although the pro-
posed methodology relies entirely on the PBS technology, we believe it 
could be extended to other in-line monitoring techniques which employ 
different machine vision equipment. 

2. Proposed methodology 

Our approach relies on processing the PBS micrographs using a 
superpixel-segmentation algorithm to highlight surface patterns in so-
lidified layers and lighten the image processing time. Superpixels divide 
an image into structurally meaningful groups of pixels, whose 
morphology naturally adapts to gradients and borders within the image 
[28]. Since superpixels carry information on region-level proper-
ties—including the shape of the pixel group, topology, intensity and 
contrast variations, and blurriness—and since the number of superpixels 
is lower than that of pixels in the raw image, the segmentation provides 
a more holistic information and yields a lighter dataset compared to 
original micrographs. In this work, we focus on the monitoring of the 
L-PBF process through the analysis of the surface topography of 
consolidated layers of stainless steel 316 L (SS316L) and define two key 
superpixel attributes to predict build density. The methodology—which 
can be fully integrated within L-PBF processes—consists of three main 
steps: 

Table 1 
Summary of literature devoted to in-situ layerwise monitoring in L-PBF.  

Sensing method Illumination Lateral resolution (µm/ 
pixel) 

Vertical resolution (µm/ 
pixel) 

Field of view 
(mm) 

References 

Off-axis imaging in visible 
range 

Direct or diffuse 7 Not applicable ~15 × 28 Aminzadeh and Kurfess [5] 
10 – 13 40 × 60 Lu et al. [6] 
20 50 × 50 Caltanissetta et al. [7] 
24  Kleszczynski et al. [8], zur Jacobsmulhen 

et al. [9] 
20 – 30 40 – 105 × 40 – 

105 
zur Jacobsmulhen et al.[10] 

15 – 50 Not specified Foster et al. [11] 
50 Gobert et al. [12] 
45 – 88 Abdelrahman et al.[13] 
125 Pagani et al. [14] 
20 – 290 Scime et al. [15] 
290 Scime and Beuth [16] 

Fringe projection 6.8 Not specified 28 × 15 Land et al. [17], Zhang et al. [18] 
72 – 76 Not specified Dickins et al. [19] 
100 < 10 Kalms et al. [20] 

Inline coherent imaging Laser beam exposure 30 7 Not specified Fleming et al. [21] 
100 25 44 × 44 DePond et al. [22] 

Blade-mounted sensor Embedded in the 
transducer 

5.3 < 50 210 × 297 Le and Seita [23], Le et al. [24] 
5.97 Not applicable 98 (width) Fischer et al. [25] 

Laser 20 Not specified Not specified Barrett et al. [26]  
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1) PBS image acquisition of consolidated layer right after laser scanning 
and before re-coating of a new powder layer,  

2) Superpixel segmentation of the PBS micrographs following a simple 
linear iterative clustering (SLIC) algorithm [29,30],  

3) Evaluation of the intensity and focus level variations within each 
superpixel and their surroundings, which we identify as the two most 
relevant attributes to predict build quality. 

2.1. Powder bed image acquisition and SLIC segmentation 

The first step in the methodology is to acquire one micrograph for 
each consolidated layer (i.e., after laser scanning) using the PBS tech-
nology [23]. That requires two calibration stages: (i) synchronizing the 
recoater speed with that of the sensor data acquisition rate to obtain 
distortion-free images; and (ii) aligning the PBS sensor such that its 
imaging plane coincides with the powder layer to obtain focused images. 
The first calibration is taken care of automatically by the signal pro-
cessing controller, as detailed in our previous publication introducing 
the PBS technology [23]. Aligning the position of the sensor to ensure 
focused image acquisition, on the other hand, is carried out by the 
operator before each L-PBF experiment. This second calibration consists 
of setting the sensor working distance from the powder layer equal to its 
focal distance, which is ~3 mm (as detailed in the aforementioned 
publication). First, we raise the substrate (which we use as a reference 
plane) above the nominal laser focusing plane by (3+ t/103) mm, where 
t is the powder layer thickness in μm. This distance equals the sensor 
working distance plus one powder layer thickness (of t µm). We then lay 
the sensor down on the substrate before fixing it to the recoater arm. 
Subsequently, we lower the substrate down by 3 mm, lay the recoater 
blade on it and fix the blade to the recoater arm. Finally, we lower the 
substrate by t µm to set the correct powder layer thickness. As a result, 
the distance between the PBS sensor and the recoater blade tip (and 
thus, the powder layer surface) is constant and maintained at 3 mm. At 
the end of the calibration, we can acquire undistorted and focused im-
ages of the entire build area. 

It is noteworthy that we convert the micrographs into grayscale 
images because the color information does not contribute significantly 
to the characterization of surface patterns. Nevertheless, the method-
ology is easily extendable to colored scans. Moreover, we apply no filters 
to remove shadowing in the scans, which stem from surface asperities. In 
fact, shadows carry information about the specimen’s surface roughness 
(which we use to estimate build density). Indeed, shadows are rare 
across specimens with relatively smooth surface. By contrast, they 
become more ubiquitous when imaging specimens with higher surface 
roughness, giving rise to scans with larger intensity variations. These 
features are the result of melting or solidification instabilities, which we 
speculate (and demonstrate in this work) are the precursor of defects 
and thus lead to low density builds. 

The second step employs a SLIC-based superpixel segmentation of 
the raw micrographs. The SLIC algorithm is based on a clustering 
operation that groups pixels together based on intensity, similarity, and 
proximity in the image. The resulting groups are the superpixels. The 
clustering operates in a 3D parametric space, where the first parameter 
corresponds to the pixel intensity, I, and the other two represent the x 
and y pixel coordinates in the image. The algorithm starts by setting 
initial superpixel clusters of equal size on a regular grid with P centers, 
Ck =

[Ik, xk, yk
]T, where k = 1,…,P, and P is the user-defined number of 

superpixels that the segmented micrographs must have. The cluster 
centers are then moved in an n × n neighborhood (where usually n = 3) 
and placed in the lowest gradient position of intensity within the 
neighborhood [30]. After this superpixel center perturbation, each pixel 
in the image is linked to the nearest cluster center within a search area of 
size 2S× 2S, where S is the superpixel size parameter defined as S =

̅̅̅̅̅̅̅̅

M×N
P

√

and M × N is the raw image size. To determine the nearest cluster 
center, we use the following distance metric, Ds, between the i-th pixel 
and the k-th superpixel center, 

Ds =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

dgray
2 +

(m

S
dxy

)2
√

. (1) 

Here, dxy is the Euclidean distance between the i-th pixel and the k-th 
superpixel center and dgray is the Euclidean distance of their intensities, 
defined as dgray =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

(Ik − Ii)
2

√

. The SLIC algorithm ensures that the 
superpixel size, S, is approximately equal to ensure high computational 
efficiency. The number of superpixels as input of the SLIC algorithm can 
be imposed by setting S equal to a characteristic dimension of the surface 
pattern. The choice of S depends on both the spatial resolution of the 
input image and the minimum size of the surface features of interest. S 
increases with the area of consolidated material on the layer for a con-
stant value of P. A superpixel shall consist of a high number of pixels to 
enable an effective dimensionality reduction but, at the same time, its 
size shall be small enough to assess surface information at high spatial 
resolution. It is worth noting that P—whose value is user-defin-
ed—dictates the superpixel size, S. Thus, we recommend choosing P to 
ensure an appropriate value of S. Section 4 reports a discussion on how 
to estimate S. 

The parameter m in Eq. (1) controls the compactness of a superpixel. 
The greater the value of m, the more regularly shaped superpixels are (i. 
e., more towards the shape of a square or a circle). By contrast, the 
smaller the value of m, the more superpixels will adhere to region 
boundaries in the image, yielding more irregularly shaped superpixels. 
m is iterated to optimize the trade-off between the shape of the super-
pixel and how well it adheres to boundaries in the image [30,31]. Pixels 
are assigned to superpixels until a stop condition on the residual error, E, 
is met. Additional details about the SLIC algorithm together with a 
discussion on the influence of intrinsic parameters like neighborhood 
size n and the stop condition can be found in [29,30]. 

We selectively run the SLIC algorithm on portions of the micro-
graphs—or regions of interest (ROI)—which contain solid material (i.e., 
regions of the powder layer which have been consolidated by the laser). 
This information is typically available from the CAD file of the object to 
be produced by L-PBF, which indicates the nominal shape of the part in 
each layer. Using this information as a “mask” and applying it to the raw 
scans reduces the size of the raw images and speeds up image analysis.  
Fig. 1(a) shows an example of a digitally magnified micrograph of the 
solidified layer of a cylindrical specimen. Fig. 1(b) and 1 (c) show an 
example a PBS-acquired micrograph with a mask applied to isolate the 
ROI and the resulting segmentation into the Pj superpixels, where j = 1,
…,J, J being the total number of layers. 

2.2. Superpixels attributes 

The third step of the methodology involves the analysis and 
computation of two superpixel attributes across all layers—namely in-
tensity and focus level variation across all pixels within a superpixel—as 
a proxy of topographical properties of the metal surface. We select these 
two attributes based on the intuition that deviations from a flat and 
homogenous surface produce intensity variations due to shadowing and 
to differences in local focus level because surface protrusions or de-
pressions fall out of the focal plane of the line-scan sensor [23]. 

By construction, superpixels include pixels with similar intensity. We 
employ a histogram-based analysis to compute the intensity variation 
both within each superpixel as well as within adjacent superpixels. To 
this end, we compute an adjacency matrix of superpixels within the 
same ROI on the layer to automatically identify and label neighboring 
superpixels. The adjacency matrix carries the following information: 
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1) The adjacency between each superpixel and itself is 0 (all elements 
along the diagonal of the matrix are 0),  

2) The adjacency between two superpixels is 1 if they have at least one 
pixel edge in common (adjacency of order 1),  

3) The adjacency between two superpixels is 2 if there is at least one 
superpixel that has adjacency of order 1 with both of them (adja-
cency of order 2), etc. 

A graphical representation of superpixels of adjacency order 1 and 2 
with respect to a given superpixel is shown in Fig. 2. 

The analysis of the histograms of groups of superpixels with adja-
cency order up to q = 2 across each solidified layer is computationally 
demanding as we capture high resolution micrographs of the entire 
powder bed. To process high-resolution images in a computationally 
efficient way we use principal component analysis (PCA) and project the 
multidimensional histograms into a lower dimensional space. If the PCA 
is successful, the first few principal components (PCs) [32–34]—which 
consist of linear combinations of original variables—should capture the 
largest portion of data variability; namely the most salient information 
about the surface pattern of the solidified layer. We discuss the main 
steps of this algorithm in the following. 

Based on the adjacency matrix, we compute a histogram of in-
tensities within a group of superpixels with adjacency order up to q = 2. 
This histogram is associated to the k-th superpixel that is in the center of 
the group. Thus, each superpixel has its own histogram. There will be a 
total of Pj histograms for each j-th solidified layer, which are used as 
input to form a histogram data matrix, X, as illustrated in Fig. 3. Each 
histogram can be treated as a B-variate vector, where B is the number of 
bins. Let X be a data matrix in which each row corresponds to the his-
togram of a group of superpixels with adjacency order up to q. Such a 

histogram contains information on pixel intensities within the super-
pixel itself as well as within neighbouring superpixels with adjacency 
order up to q. If X includes all histograms computed in the j-th solidified 
layer, then X is a Pj × B matrix. We then carry out PCA on X to compute a 
linear combination of frequency values in different bins that maximizes 
the explained variability (i.e., the first PC). The weights of such a linear 
combination—referred to as “loadings”—are the elements of the first 
eigenvector of X; namely the eigenvector corresponding to the largest 
eigenvalue of X. The projections of the original variables (i.e., the his-
tograms) onto the first PC are called “scores”. The first PC represents the 
metric to characterize surface patterns of the captured solidified layer 
micrographs. 

The computation of the second salient attribute of superpixels—the 
image focus level—relies on the algorithm proposed by [35]. The main 
steps in this algorithm include:  

1) Applying a low-pass filter to a given region of interest of the image (e. 
g., the k-th superpixel or a larger ROI including also adjacent 
superpixels),  

2) Estimating intensity variations between neighboring pixels in the 
original image (in terms of absolute differences),  

3) Estimating intensity variations between neighboring pixels in the 
low-pass filtered image (in terms of absolute differences),  

4) Comparing the extent of site-specific intensity variations in the two 
micrographs. If the local difference is large, then the original image is 
in focus. Otherwise, the smaller the difference, the lower the focus 
level (i.e., the higher the blurriness) in the original image. 

The resulting focus level ranges between 0 and 1, with 1 corre-
sponding to the highest blurriness. Fig. 3 shows a schematic of the 
proposed approach to synthesize the information enclosed in the 
superpixels into a bi-variate space defined by the two descriptors—the 
first PC of histogram data and the focus level. 

In summary, upon obtaining the SLIC-based superpixel segmentation 
for the current solidified layer, we reduce the dimensionality by 
grouping pixels into Pj superpixels and only consider two attributes: one 
which captures the superpixel blurriness and one which describes the 
intensity distribution both within the superpixel and among its neigh-
bors, respectively. From a general implementation perspective, we 
suggest the computation of the two indices in a coherent way: if adjacent 
superpixels with adjacency order up to q are considered for the PCA 
analysis of the pixel intensity histograms, the blurriness index shall be 
computed on the adjacent superpixels with the same adjacency order. 

Fig. 1. (a) Example of a PBS-acquired micrograph of a solidified layer; (b) PBS-acquired micrograph after masking with nominal shape (mask) of the consolidated 
metal (here SS316L); and (c) resulting SLIC-based superpixel segmentation. 

Fig. 2. Example of one superpixel and neighbor superpixels with adjacency of 
order 1 and 2. 
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3. Experimental setup 

We produced cylindrical specimens of AISI SS316L using powders 
from Höganäs AB with particle size distribution between 20 µm and 
63 µm. Table 2 shows the powder chemical compositions. The produc-
tion of specimens involved the use of a custom-built pulsed L-PBF system 
with integrated PBS that captures in-line, high-resolution micrographs 
of the solidified surface at each layer. The pulsed fiber laser source 
provides a maximum average power of 200 W at a central wavelength of 
1065 nm. It also enables tuning the pulse shape in terms of frequency 
and pulse duration. The cylinders measured 5 mm in height and 5 mm in 
diameter. We produced three sets of cylindrical specimens, referred to as 
set A, set B, and set AR. The only difference between set A and set 
B—which we processed in the same run—was the laser pulse shape: A 
and B, respectively. In these two sets, we varied average laser power and 
laser scanning speed, but kept all other parameters constant, including 
the serpentine laser scanning strategy with 67◦ rotation each layer, the 
hatch spacing of 120 µm, and the powder layer thickness of 40 µm.  
Table 3 summarizes the process parameters used to produce set A and set 
B specimens and Fig. 4 shows the specimens’ locations on the substrate. 
We compute the volumetric energy density, VED, by: 

VED =
P

vht
. (2) 

Here, P is the power (in W), v is the scanning speed (in mm/s), h is the 
hatch spacing (in µm) and t is the layer thickness (in µm). 

We use set AR specimens as a validation of the results collected for 
set A and set B. First, we produced set AR in a different run and used 
slightly different laser parameters compared to set A, but similar VED. 
The AR set included four groups (I, II, III, and IV) of the same four 
specimens, each arranged in a different order across the substrate (see  
Fig. 5). The four specimens in each group differed in average laser power 
and laser scanning speed, but were produced using all other parameters 
constant, including the pulse shape A, the serpentine laser scanning 
strategy with 67◦ rotation each layer, the hatch spacing of 80 µm, and 
the powder layer thickness of 30 µm. Table 4 shows the four process 
parameters. 

A direct comparison between set A and set B specimens allows us 
investigating the effects of VED and the laser pulse shape on build 
density. In our matrix of experiments (Tables 3 and 4), we covered a 
wide range of VED values, which yielded both under-melting and over- 
melting of powders. Moreover, changing the laser pulse shape from A to 
B provides a means to study the effects of laser pulse modulation on 

build density while keeping VED constant. Indeed, pulse frequency and 
duration for pulse shape A are 950 kHz and 261 ns, respectively, while 
for pulse shape B are 500 kHz and 508 ns, respectively. By comparing set 
A against set AR, we could also assess the accuracy and repeatability of 
the proposed methodology in predicting density of specimens based on 
surface topography, regardless of the nominal process parameters used 
to produce them or their position on the substrate and with respect to the 
flow direction. 

To capture micrographs of the solidified layers during specimen 
production, we set the PBS acquisition resolution to 1200 1200 DPI, 
leading to a spatial resolution of ~20 µm/pixel. The time taken to 
capture one colored micrograph at this resolution was ~1 min. The 
contact image sensor (CIS) of the PBS is characterized by a working 
distance of 3 mm and a depth-of-field of about 100 µm. Fig. 4 and Fig. 5 
are examples of powder bed micrographs acquired with the blade- 
mounted CIS. The figures also illustrate the recoating direction as well 
as that of the shielding gas flow. We carried out PBS measurements, and 
compare the resulting density predictions, for 10 and 30 layers starting 
from layer 80 (build height, z = 3.2 mm) for set A and set B specimens, 
and for 118 layers starting from layer 21 (build height, z = 0.6 mm) for 
set AR specimens. 

We carried out Archimedes’ tests to determine the final density of all 
the specimens and used these results as ground truth to evaluate the 
accuracy of our PBS-based predictions. We used a Mettler Toledo XS204 
analytical balance to measure the mass of the cylinder in air and sub-
sequently in ethanol as an auxiliary liquid. We repeated the measure-
ment for each cylinder three times and report the average density. 

We also carried out X-ray CT on set A and set B specimens to examine 
the size and distribution of defects in the specimens using the Bruker 
SkyScan 1173 system. The scanning settings included a voxel size of 
8 µm, voltage of 130 kV, current of 62 μA, rotation step of 0.2◦ and 
frame averaging of 6. We used the NRecon and CTAn software to 
reconstruct and analyze the size and distribution of defects in the 
specimens respectively. 

4. Results 

4.1. Superpixel segmentation 

We apply the SLIC algorithm to PBS micrographs by setting an 
average superpixel size S = 300μm. According to our sensitivity anal-
ysis, this value is appropriate for the different specimens we produced in 
our work. We detail how this parameter may affect the predictions in 

Fig. 3. Schematics of the proposed approach to estimate superpixel-level synthetic descriptors.  

Table 2 
Chemical compositions of SS 316L powders.  

Iron Chromium Nickel Molybdenum Manganese Silicon Oxygen Carbon 
Balance 16 – 18% 11 – 14% 2 – 3% 2% 1% 0.062% 0.03%  
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Section 4.5. Fig. 6 shows the superpixel segmentation obtained by 
applying the SLIC technique to some representative solidified layers 
from specimens belonging to set A and set B. As observed in these two 
images, superpixels naturally adapt to the surface features of the solid-
ified layer. For example, in specimen 1 from set A and set B (produced 
using a low VED)—the superpixel boundaries adapt to the presence of 
small dark and bright regions that correspond to small peaks and valleys. 
Conversely, in specimens 7 from set A and set B (produced using a high 
VED), some superpixels exhibit elongated geometries along the scan 
direction (since scan tracks are more clearly visible at higher energy 
input), while others have random orientation and globular shape. 

4.2. Surface pattern descriptors 

We employ three possible analysis methods to study how the two 
superpixel attributes we selected—based on intensity variations and 
local changes of the blurriness amongst neighboring superpixels—may 
be used to predict build density of set A and set B specimens. The 
methods are “Q2′′, “weighted”, and “no-weight”. The Q2 method (i.e., 
adjacency order up to 2) consists of compiling the intensity histogram 

and blurriness level for pixels belonging to a ROI that is the union of the 
k-th superpixel and all adjacent superpixels up to q = 2. The weighted 
method consists of introducing a weight on the histograms which de-
creases as adjacency increases: w = 1 for the k-th superpixel with q = 0, 
w = 0.5 for superpixels with q = 1, w = 0.25 for superpixels with q = 2, 
and w = 0 for superpixels with q = 3. The no-weight method consists of 
computing the intensity histogram and the blurriness index of the k-th 
superpixel only, without including any information related to neigh-
boring superpixels. We refer to this approach as the “no-weight” 

method, because is it equivalent to the weighted method with w = 1 for 
the k-th superpixel and w = 0 for all other superpixels. The rationale for 
using these three methods is to investigate whether the presence of 
defects—specifically porosity—in the build is related to variations in 
intensity and blurriness that are only local (i.e., within a superpixel) or 
distributed (across multiple superpixels). 

Fig. 7 shows the pixel intensity histograms and the corresponding 
average histograms computed for the SLIC-based segmentation of one 
representative layer from different specimens belonging to set A (i.e., 
produced using different VED). The average intensity histograms (the 
solid red curves in Fig. 7) show that the three methods—Q2, “weighted”, 
and “no-weight”—exhibit similar trends across the data set. By contrast, 

Table 3 
Process parameters for set A and set B specimens.  

Set Cylinder Average laser power P (W)  Scanning speed v (mm/s)  Hatch spacing h (µm)  Layer thickness t (µm)  Pulse shape Energy density (J/mm3) 

A  1  100  200  120  40 A  104  
2  100  100  208  
3  200  200  208  
4  200  150  278  
5  200  100  417  
6  200  80  521  
7  200  50  833 

B  1  100  200 B  104  
2  100  100  208  
3  200  200  208  
4  200  150  278  
5  200  100  417  
6  200  80  521  
7  200  50  833  

Fig. 4. PBS micrograph illustrating the arrangement of set A and set 
B specimens. 

Fig. 5. PBS micrograph illustrating the arrangement of set AR specimens 
consisting of four groups of specimens (I, II, III and IV), produced using 
different process parameters (see Table 4). 
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there is a large difference in the variability of the pixel intensity histo-
grams; especially when comparing the no-weight method against the Q2 
and the weighted methods. There is a notable peak in Q2 and weighted 
histograms, while those corresponding to the no-weight method shows a 
much higher variability. Indeed, the Q2 and weighted methods can be 
viewed as weighted moving averages, which reduce the variability of the 
estimated quantity. Fig. 7 also indicates that different VED values yield 
different intensity histogram patterns. At the energy density that cor-
responds to the highest part density (specimen 3A), intensities exhibit a 
unimodal distribution, where only a few pixels are saturated and mainly 
distributed along the contours of the ROI (as shown in Fig. 6). By 
contrast, the intensity histograms of specimens 1 and 2 from sets A and 
set B —corresponding to low VED—exhibit a bimodal distribution (i.e., 
they include superpixels with both low and high intensity). At higher 
energy densities (specimens 4–7 of set A and set B), the bimodal dis-
tribution becomes even more evident. In these extreme cases, there exist 
a higher fraction of saturated superpixels (which is also visible from 
Fig. 5). 

Following the methodology outlined in Section 2.2, we applied PCA 
to this dataset considering groups of histograms coming from 10 
consecutive layers. The rationale behind the use of such a small number 
of layers in our analysis consists of showing that layerwise measure-
ments in a few layers—combined with our proposed approach—is 

sufficient to obtain reliable estimates of build density. The results are 
depicted in Fig. 8. The loadings of the first PC can be thought of as 
weights assigned to different intensity values. The percentage of 
explained variance, which we report in the plot, can be thought of as the 
amount of information captured by the PC. Both Q2 and weighted 
methods exhibit comparable results. The Q2 method (the orange line in 
Fig. 8) suggests that the largest portion of variability (about 42%) can be 
explained in terms of intensity contrast between I < 150 and I > 150 
(with a peak at saturation I = 255). The weighted method (the green 
line in Fig. 8) shows that the first PC has the same interpretation and 
about the same explained variability as the Q2 method (it is worth 
recalling that the sign of the loading is not relevant). The no-weight 
method (the grey line in Fig. 8) indicates that not considering super-
pixel adjacency results into a much lower explained variance (about 
26%) and in significantly different loading compared to the foregoing 
case. Here, pixel intensities up to I = 75 (darker regions) are associated 
to zero-value loading and the first peak occurs at about I = 140 (as 
opposed to I ≈ 80). Nevertheless, we notice a significant contrast be-
tween lower and higher intensities. 

Table 4 
Process parameters for set AR specimens.  

Group Cylinder Average laser power P (W)  Scanning speed v (mm/s)  Hatch spacing h (µm)  Layer thickness t (µm)  Pulse shape Energy density (J/ 
mm3) 

I / II / III / IV  1  100  500  80  30 A  83  
2  150  400  156  
3  180  550  136  
5  200  200  417  

Fig. 6. SLIC-based segmentation (setting S = 300 μm) on individual layers from specimens 1 A, 3 A, 7 A, 1B, 3B and 7B. The red arrows indicate saturated pixel 
regions near the contours. 
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4.3. Density measurements and porosity analysis on set A and set B 
specimens 

We measured the densities of set A and set B cylinders based on 

Fig. 7. Intensity histograms plotted using the Q2, weighted, and no-weight methods. The histograms refer to representative individual layers from specimens 
belonging to set A and produced using different VEDs (whose values are reported on top of each plot). The respective average in each histogram appears as a solid red 
curve. The shade of grey used for the histograms scales with VED. 

Fig. 8. Loading of the first PC computed considering histograms from 10 
consecutive layers using the Q2, weighted, and no-weight methods for set A and 
set B specimens. The percentages indicate the explained variance of 
each method. 

Fig. 9. Average density of set A and set B specimens.  
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Archimedes’ principle and report their average readings in Fig. 9. The 
density of specimens belonging to set B is lower compared to that of the 
corresponding specimens in set A across all VED used. Since the only 
difference between these two sets of samples is the laser pulse shape 
employed, we attribute the lower density of set B specimens to the 
combination of frequency and pulse duration used. Specimens 3A and 
3B (P = 200 W, v = 200 mm/s, E = 208 J/mm3) are those exhibiting 
highest density in both sets. Interestingly, specimens 2A and 2B have 
significantly lower density (2B has the lowest amongst all specimens 
produced) although they have the same energy density (E =

208 J/mm3)—achieved by lowering both laser power and scanning 
speed (P = 100 W and v = 100 mm/s). 

We gathered more insights into the different types of porosity in set A 
and set B specimens using X-ray CT analysis. The results, in Fig. 10, show 
large and irregular lack-of-fusion pores with un-melted powder particles 
entrapped in specimens produced with the lowest energy density 
(specimens 1A and 1B). Increasing to VED = 208 J/mm3 mitigates the 
porosity (specimens 2A and 2B), although small spherical pores that are 
aligned along the scan direction are still noticeable—especially in 
specimen 2B. Using the same energy density but increasing both laser 
power and scanning speed leads to the highest density in our dataset 
(specimens 3A and 3B). The cross section of some specimens is also seen 
in Fig. 11. We note that specimen 3A has lower porosities compared to 
the other specimens. Another finding is that keyhole and gas-entrapment 
porosity are particularly evident in specimens 5, 6, and 7 of set A and set 
B, where their VED > 208 J/mm3. These features are, again, more 
prominent in set B. 

4.4. Part density predictions of set A and set B specimens through PBS 
measurements 

We refer to the scores of the first PC computed on the intensity his-
tograms in Fig. 8 as PChist . Fig. 12 shows the scatter plot of PChist and 
blurriness value, blur, against the final part density for the Q2, weighted, 
and no-weight methods in both set A and set B specimens. All values 
consider measurements coming from J = 10 consecutive layers (from 
layer 80–90). Fig. 12 (a) shows a clear linear trend between the PChist 
values and the final specimen density, which is more evident for the Q2 
and the weighted methods. By contrast, the larger variability of the PChist 
index in the no-weight method prevents any correlation to build density. 
The correlation is positive for the Q2 method and negative for the two 
other techniques simply because of the signs of PC loadings shown in 
Fig. 8. 

Fig. 12 (b) shows that a higher blurriness corresponds to a lower 
specimen density. This correlation can be rationalized as follows. A 
rougher surface topography yields large blur values because surface 
asperities fall outside the CIS’s depth of focus. This corrugation is 
probably caused by an unstable melt pool, which may lead to non- 
uniform solidification and generate defects [36]. Interestingly, the 
variability of the blur index obtained with the Q2 and weighted methods 
is lower than in the case where superpixel adjacency is not considered. 
This result suggests that blur variations within a larger area are more 
relevant for the prediction of build density. If neighboring superpixels 
have similar blurriness, the surface is likely to be flat and regular. 
Similar to the measured intensity variations, the Q2 and weighted 
methods can be thought of as weighted moving averages of blur values, 
which reduce their variability. 

The PChist values are based on a linear combination of intensity his-
tograms, which, as shown in Fig. 8, mainly captures the contrast be-
tween low and high intensities. As a result, a highly positive value of 
PChist in the Q2 method corresponds to a relatively homogeneous surface 
pattern with predominantly low intensity pixels. This pattern is repre-
sentative of a regular surface resulting from a more stable and uniform 
solidification of the material, hence a higher build density. Zhu et al. 
[37] have shown that with sufficient energy input, the presence of voids 
and un-melted powder particles in the consolidate layer reduce signifi-
cantly, resulting in parts with relatively high density and low roughness. 
By contrast, a large, negative value of PChist from the Q2 method cor-
responds to surface patterns with regions that exhibit high—and even 
saturated—intensity. These features are the result of severe process in-
stabilities, where asperities in the surface topography may also cause 
strong out-of-plane distortions in the monitored layers. When the energy 
input is too low, the consolidated layer is non-uniform due to the pres-
ence of un-melted particles, which affect the interaction between the 
laser and the powder bed. Thus, the surface exhibits high roughness. 
When the energy input is too high, the surface tension of the melt pool is 
reduced and gives rise to ripples and irregularities, which remain frozen 
upon rapid solidification, resulting in poor surface quality [36]. Because 
the signs of PC loadings for the weighted and no-weight methods are 
opposite to that of the Q2 method, a large, negative value of PChist in this 
case corresponds to a relatively homogeneous surface pattern and a 
build of higher density. 

In order to use the PChist and blur indices as predictors of the final 
build density, we fit a linear model to the density measurements ob-
tained using Archimedes’ method and present the results in Fig. 13. The 
Q2 approach yielded the highest goodness-of-fit (R2

adj = 0.805). Table 5 

Fig. 10. CT models of specimens 1, 2, 3, and 7 from set A and set B.  
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shows the standardized effects associated with the two regressors, PChist 
and blur. All model terms are statistically significant to a 95% confidence 
level. By comparing these values, we ascribe the relative contribution of 
each regressor to the overall model. This analysis indicates that blur 
becomes less important with the transition from Q2 method (where the 
blurriness accounts for about half of the contribution of PChist) to the 

weighted and to the no-weight method (where the blurriness does not 
contribute to the model in a statistically significant way). From Fig. 13 
and Table 5, we thus conclude that the Q2 method yields the best pre-
diction performance amongst the methods considered. 

Fig. 11. Cross-section images from the x−z plane of specimens 2A, 5A, 6A, 7A, 3A, 5B, 6B, and 7B.  

Fig. 12. Scatter plot of PChist and blur against density of specimens in set A and set B using the Q2, weighted, and no-weight methods.  
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4.5. Accuracy estimation and sensitivity analysis 

To assess the prediction accuracy of our PBS-based in-line moni-
toring technique when using the Q2 method, we performed a leave-one- 
out cross-validation analysis by fitting the model using data from 13 out 
of 14 specimens (from set A and set B) and measuring the prediction 
error for the excluded one. We estimate the accuracy of predictions 
fitted onto measurements by means of the root mean square error 
(RMSE). The results, reported in Table 6, show that our method yields a 
RMSE value of 0.0510. This number comes from iterating the leave-one- 
out analysis 14 times, by selecting a different test specimen each time. 

To compare the accuracy of predictions obtained with and without 
SLIC-based segmentation and to benchmark our methodology against 
other algorithms which were previously proposed in the literature [38], 
we analyzed our experimental dataset (i) without any prior segmenta-
tion of the images and (ii) considering surface roughness as the sole 
regressor. The first technique (hereafter referred to as the “no segmen-
tation-based” method) consists of computing the same proposed surface 
pattern descriptors (PChist and blur) using the entire solidified layer of 
the specimen as ROI without any superpixel segmentation. By 
comparing the Q2 method against this technique, we demonstrate the 
benefit of estimating local descriptors through the SLIC-based segmen-
tation rather than simply measuring an overall index. The second 

technique (hereafter referred to as the “areal roughness-based” method) 
consists of computing more traditional image-based areal roughness 
indices, such as the average roughness Sa and the root mean square 
roughness Sq [38]. We measure these quantities using the entire solid-
ified layer of the specimen as ROI, without any superpixel segmentation. 
The reader is referred to [38] for details on the image-based computa-
tion of such indices. This second technique is deemed representative of 
benchmark methods aimed at investigating the correlation between the 
surface topography and part density. 

Table 6 shows the comparison between the Q2 method and the two 
other approaches in terms of the leave-one-out RMSE. It also shows the 
resulting prediction error both for all specimens (set A and set B com-
bined) as well as separately, for specimens belonging to set A and set B. 
Table 6 shows that the Q2 method outperforms the other two, yielding 
an RMSE that is about 33% lower than the one obtained by computing 
PChist and blur on the entire solidified area without any superpixel seg-
mentation (no segmentation-based method) and about 45% lower than 
the one obtained by using benchmark image-based areal roughness 
indices. 

As mentioned in Section 2.1, the proposed method relies on the se-
lection of a suitable value of S—through the choice of P—which sets the 
spatial resolution and defines the number of superpixels used in our 
algorithm. We performed an analysis to evaluate the sensitivity of the 
prediction accuracy and performance on the parameter S. The results 
presented in the foregoing sections were based on S = 300 μm. We chose 
this value to demonstrate the ability to characterize the overall solidi-
fication pattern produced by L-PBF. Specifically, 300 μm roughly cor-
responds to twice the hatch distance. We repeated the analysis using 
S = 125 μm (i.e., equal to the hatch distance) and S = 600 μm to 
investigate the effect of this variable on our method and the resulting 
density predictions. The results are presented in Table 7. 

When using a larger superpixel size, the resulting RMSE in the pre-
diction of final part density approaches the one obtained with the no 
segmentation-based method (see Table 6). By contrast, when using a 
smaller S, over segmentation may occur, which yields a slight reduction 
of prediction accuracy with respect to the proposed settings (i.e., S =

300 μm). As a general guideline, we recommend selecting an 

Fig. 13. Fitted model surface to density measurements of set A and set B specimens using the Q2, weight, and no-weight methods (plotted points correspond to 
specimens’ density values). 

Table 5 
Linear model formulation, standardized effects and goodness of fit for different 
weighting schemes.  

Method Model Standardized 
effects 

Goodness-of-fit 
(R2

adj)  

Q2 Density = 8.326 +

1.74e−4PChist − 0.801Blur  
PChist  5.649 0.805  
Blur  2.09 

Weighted Density = 8.167 −

6.22e−4PChist − 1.649Blur  
PChist  4.898 0.639  
Blur  1.270 

No- 
weight 

Density = 7.746 −

0.011PChist + 0.211Blur  
PChist  2.842 0.506  
Blur  0.013  

Table 6 
Leave-one-out cross-validation RMSE for the Q2 method and the two other 
techniques for all specimens (overall) and specimens belonging to set A and set B 
respectively.  

Method RMSE(g/cm3)

Set A Set B Overall 
Q2 method  0.0543  0.0475  0.0510 
No segmentation-based method  0.0721  0.0783  0.0753 
Areal roughness-based method  0.0947  0.0897  0.0923  

Table 7 
Leave-one-out cross-validation RMSE for different approximate superpixel sizes 
for all specimens (overall) and specimens belonging to set A and set B 
respectively.  

Approximate superpixel size (µm), S  RMSE(g/cm3)

Set A Set B Overall 
125   0.0671  0.0703  0.0688 
300   0.0543  0.0475  0.0510 
600   0.0670  0.0786  0.0730  
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approximated size of superpixels that is twice the hatch distance to avoid 
over and under segmentation of surface features that characterize the 
surface patterns. In the present case study, with a lateral resolution of 
the input image of 20 µm/pixel, a size S between two and three times the 
hatch spacing is the one that provides the best prediction performance. 
We recommend selecting S in this range when the acquired images or 
scans have spatial resolution analogous to (or even higher than) the one 
used in this work. Moving from S = 125 μm to S = 600 μm yields no 
significant change of the computational time needed to carry out the 
SLIC-based segmentation. In the present study, the SLIC algorithm 
(implemented in MATLAB) required on average 0.12 s to perform the 
segmentation of solidified layers on a regular laptop equipped with an 
Intel® core i7 processor. The full processing time per layer includes the 
acquisition time of one micrograph, which is ~1 min at 1200 DPI, and 
the time to compute the proposed descriptors (Q2 method) for all so-
lidified surfaces, which is ~0.4 s/mm2. The latter includes only the area 
of the solidified cylinders, i.e., after the application of binary mask onto 
the ROI, and not the entire powder bed. 

We also carried out an additional investigation to assess how the 
number of PBS-acquired micrographs (i.e., the number of measured 
layers) affects the resulting regression model to estimate build density. 
In the foregoing sections, we present results based on using 10 consec-
utive layers to fit the models, as shown in Fig. 13 and Table 5. Fig. 14 and  
Table 8 show how the predictions change when considering PBS- 
acquired micrographs from 30 consecutive layers. 

From this data, it appears that the correlation between both PChist 
and blur descriptors and build density is confirmed when using 30 layers 
(i.e., the model coefficients are not statistically different). Clearly, using 

more measurements will provide more accurate predictions at the cost of 
data processing speed. To demonstrate this point, we apply our meth-
odology to the entire dataset AR and present the results in the following 
Section 4.6. This analysis took ~12-times longer compared to when 
using only 10 layers and led to a similar outcome on build density 
prediction, i.e., the predictions are in good agreement between in-situ 
and ex-situ density estimates. From an in-situ monitoring perspective, 
analyzing a few consecutive layers can be a reasonable compromise to 
quickly detect major deviations from a target process condition. From a 
process optimization perspective, instead, larger batches of consecutive 
layers could be needed to decide whether a given set of process pa-
rameters needs be screened out. We speculate that using more images in 
the analysis could even help identify individual porosity defects across 
the build. However, the main goal of our methodology is to establish a 
global correlation between in-situ and ex-situ estimates rather than 
providing an accurate mapping of defects within builds. In this context, 
using fewer images is enough to acquire statistically representative 

Fig. 14. Scatter plot of PChist and blur against the part density of specimens in set A and set B for 10 and 30 measured layers.  

Table 8 
Comparison of part density estimation models based on measurements per-
formed in 10 and 30 consecutive layers for set A and set B specimens.  

Number of 
layers 

Model Standardized 
effects 

Goodness-of-fit 
(R2

adj)  

10 Density = 8.326 +

1.74e−4PChist − 0.801Blur  
PChist   5.649 0.805  
Blur   2.09 

30 Density = 8.309 +

1.75e−4PChist − 0.777Blur  
PChist   5.263 0.778  
Blur   1.86  
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surface conditions during melting and solidification and provide accu-
rate build density estimates. While porosities may not be evenly 
distributed within parts (as it is the case for specimens 5, 6, and 7 from 
set A and set B), the mechanisms by which they may form are likely to be 
at play throughout the entire build. Sometimes they may just not yield a 
defect. However, they may still impart measurable differences in the 
surface patterns across all layers. That enables our methodology to 
provide accurate estimates of build density even without using images 
from layers that actually contain porosity defects. All in all, these results 
demonstrate that gathering in-situ measurements from a few consecu-
tive layers is sufficient to identify a statistically significant correlation 
between the solidified layer pattern and the final part density. That is if 
parts geometry and process parameters are kept constant each layer. 

4.6. Validation experiment using the AR set 

The AR set specimens produced using four different VED levels 
exhibit variable mean density values, as illustrated in Fig. 15. Specimens 
1 correspond to a lack-of-fusion condition, specimens 2 and 3 corre-
spond to high-density parts, and specimens 5 correspond to a key-hole 
porosity condition. There is no significant difference in part density 
between specimens 2 and 3 in spite of the different VED used (156 J/ 
mm3 and 136 J/mm3, respectively). By contrast, there is a statistically 
significant difference in part density between specimens with lack-of- 
fusion porosity (VED of 83 J/mm3) and keyhole porosity (VED of 
417 J/mm3). We also note that specimens 5 exhibit larger part-to-part 
variability; probably due to the use of a relatively large VED, which 
induces violent convection currents and strong vapor recoil forces that 
could erratically disrupt the melting process. 

We apply the Q2 method to analyze PChist and blur from the AR set 
specimens. We use the same linear model shown in Table 5 (Q2 method) 
to infer density predictions for each specimen. To this end, we use the 
same PCA loadings that we estimate from set A and set B (shown in 
Fig. 8) to compute the PChist descriptor for set AR specimens. This im-
plies that we project the measurements of set AR specimens onto the 
previously estimated PC direction, enabling PChist computation in the 
validation experiment. In other words, we use the experiment described 
in Section 3 (involving set A and set B) as a “training set” to estimate the 
intensity histograms and the linear model for build density prediction of 
set AR specimens. Fig. 16 illustrates the 95% confidence intervals of 
mean density predictions drawn by measuring 118 consecutive layers of 
the validation build, i.e., across all the PBS-acquired micrographs. 

Ideally, predictions should lay on the diagonal (red dashed line). Most 
datapoints (13 out of 16) do follow this ideal trend, suggesting a good 
agreement between in-situ and ex-situ density estimates. Moreover, for 
all the specimens in the AR set (with the only exception of specimen 5-I), 
the deviation between the mean predicted value and the reference value 
is lower than 0.05 g/cm3. The most obvious outlier is specimen 5-I, 
which is characterized by keyhole porosity. Interestingly, this spec-
imen detached from the substrate after 83 layers because of severe 
delamination. This result further supports our suspects on the large 
variability in part density of specimens 5 due to the high VED used. This 
process instability may have led to a build with significantly different 
surface compared to what a nominal specimen 5-I should be. Fig. 16 
shows that specimens having significantly different densities are also 
associated with significantly different predictions according to the 
proposed approach. This observation has important practical implica-
tions, since it may be interesting to detect a deviation from a target 
condition that affects a specific portion of the build. 

In summary, the results from this validation experiment show that: 
(i) analyzing all the micrographs (entire dataset) yields similar outcome 
on build density prediction as compared to a few consecutive layers (for 
set A and set B specimens), (ii) the correlation between in-situ modelled 
surface patterns is consistent across different builds, (iii) process con-
ditions that produce statistically different density conditions also pro-
duce statistically different predictions based on in-situ measured 
descriptors, and (iv) the prediction accuracy and the associated uncer-
tainty are appropriate to identify and classify deviations from a target 
density condition relying on in-situ measurements from a few consecu-
tive layers. 

5. Discussions 

The results shown in Section 4 demonstrate that the proposed 
method allows an accurate prediction of the build density by using two 
synthetic indices, which may be estimated in-situ and from a few 
consecutive layers. The Q2 method provides more accurate predictions 
of final part density compared to the other two methods, which put 
lower weight on information coming from adjacent superpixels. The 
higher performance of this method is confirmed by a distinct linear trend 
between the PChist values and the final specimen density as shown in 
Fig. 12 (a), which is indeed more evident when using the Q2 method. 
The larger spread in PChist values for the no-weight method concealed 
the correlation to the final density. The RMSE values in Table 6 are a Fig. 15. Average density of set AR specimens.  

Fig. 16. Comparison between reference density measured via Archimedes’ 

method and the predicted density enabled by the proposed approach. The plot 
shows the 95% confidence intervals of the sample mean predictions across 118 
consecutive layers for set AR specimens. 
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measure of the prediction uncertainty. Each superpixel corresponds to a 
small region of the micrograph with relatively homogeneous pixel in-
tensities within itself. These results suggest that inferring part density 
from surface topography requires the analysis of more distributed fea-
tures, as opposed to just the local characteristics of the surface. This also 
implies that defects in the build either disrupt, or are the product of 
instabilities related to, the melting and solidification of the alloy from a 
greater volume compared to the defects’ physical extension. The Q2 
method yields a RMSE of 0.051 g/cm3, which corresponds to 0.66% of 
the mean density of the specimens produced in our first experimental 
dataset, i.e., set A and set B specimens. This value illustrates that the 
uncertainty in the estimates of build density is relatively small. Thus, our 
method allows distinguishing builds that have relatively small differ-
ences in density. 

The two descriptors we propose in this work are suitable to capture 
and model surface topographies that range from regular and flat pat-
terns (associated with high build density) to various kinds of surface 
irregularities (associated with lower densities). However, it is important 
to note that predictions based these descriptors require analysis from a 
number of consecutive layers. If surface irregularities are limited to in-
dividual layers, they may not be representative of build quality. In this 
work, we found the PChist descriptor—which quantifies the pixel in-
tensity distribution within sub-portions of the solidified layer—to be the 
most significant predictor. Adding the blur descriptor enabled by the 
unique capabilities of the PBS technology brings additional—and com-
plementary—information about build density (when using the Q2 
method). Indeed, a higher blurriness corresponds to a lower specimen 
density, as illustrated in Fig. 12 (b). Interestingly, however, specimen 
2B—which exhibits the lowest density across our experimental data 
set—does not exhibit the lowest blur value. This apparent discrepancy 
may be due to the fact that porosity defects in specimen 2B are not 
related to the surface topography of the correspondent layers. These 
specific defects have diameter ranging between ~40 µm and ~55 µm 
and are aligned along melt tracks as shown in the CT model of Fig. 10. 
We speculate that they may form highly localized mechanisms (e.g., the 
result of gas entrapment within the melt pool as the liquid metal va-
porizes), which do not produce significant perturbations on the metal 
surface, thus leading to too low variations in PChist and blur to be iden-
tified. As such, they may be considered as example defects/instabilities 
which cannot be resolved using our PBS-based method. Because both 
blur and PChist are related to the surface topography—the first is a direct 
assessment of intensity variations stemming from the presence of as-
perities on the surface, while the second is an indirect assessment of 
their height—it may be tempting to believe that they are redundant. 
Indeed, the results in Fig. 12 and Table 5 show that the two parameters 
are correlated. However, they are statistically significant and thus both 
contribute to a different extent to the overall information. As a result, 
build density evaluation based on both descriptors is deemed more ac-
curate than relying exclusive on either of them. 

It is worth recalling that, in the experiment discussed in Section 3, set 
A and set B employed the same energy density, yet they exhibited 
different density. While a density prediction based exclusively on VED 
would not capture these differences in the dataset, our methodology 
correctly quantifies and distinguishes the density from these two sets of 
specimens. The implications of this result are quite intriguing as our 
methodology can differentiate the density of builds based on differences 
in their percentage volume of porosity. Using this same argument, we 
elucidate the differences between specimens 2A, 2B, 3A and 3B, pro-
duced using the same energy density but different combinations of laser 
power and scanning speed. As a result, specimens 2A and 3A exhibit 
higher density compared to specimens 2B and 3B respectively. Several 
studies have shown that VED is not the only factor to be considered when 
analyzing the formation of defects in—or inferring the density of—parts 
produced by L-PBF [39,40]. For instance, Prashanth et al. [40] showed 
that the density of Al-12Si alloy parts produced by L-PBF scales with 
laser power and scanning speed even when keeping VED constant. This 

trend is in agreement with our results (as seen in Fig. 9). According to 
Bertoli et al. [39], a higher laser power has a more dominant effect on 
the melting regime than a reduction in scanning speed. The increase in 
laser power causes an increase in the maximum temperature reached in 
the powder bed, ensuring the complete melting of powder particles in 
specimen 3A. 

6. Conclusions 

The analysis of the signals captured during in-situ monitoring of AM 
processes are typically difficult to interpret. Here, we present a fast, cost- 
effective and versatile method to understand simple surface images. 
Leveraging on the PBS, we captured high-resolution (~20 µm/pixel) and 
large FOV micrographs of solidified areas of the layer, to which we 
applied SLIC-based superpixel segmentation. We then computed local 
variations of pixel intensity and local blurriness level within superpixels 
and used them as a proxy to quantify surface topography. By correlating 
this information with build density measurements obtained via Archi-
medes’ method, we develop a model to predict the density of different 
specimens. We show that 13 out of 16 predictions are in good agreement 
between in-situ and ex-situ density estimates based on the analysis of 
118 consecutive micrographs from the validation experiment. By 
extending the number of micrographs for the computation of the mean 
prediction from 10 to 30, the accuracy increases slightly. However, the 
image processing time scales directly with number of micrographs 
considered. 

Our proposed methodology can accurately predict differences in 
density between parts produced with very similar VED but exhibiting 
different porosity levels. It captures the variations in pixel intensity 
within a relatively large area and has the lowest RMSE of 0.0510 as 
compared to other benchmark methods. However, our method should 
not be considered as an alternative to standard density metrology. In 
fact, it cannot provide a direct density measurement. The strength of the 
method lies in the capability to infer build density with a determined 
uncertainty range based on the correlation between the surface pattern 
that repeats layer by layer and the corresponding build density 
(measured ex-situ). Thus, it makes it possible to detect, in-line and in- 
situ, surface patterns that are not representative of a target density 
condition. The proposed methodology has potential for several different 
applications, ranging from in-situ monitoring of the L-PBF process to 
process optimization and material development procedures, where in- 
situ measurements may aid the reduction of the experimental effort. 
For in-situ monitoring, capturing differences between dense and very 
dense builds is most interesting, given that manufacturers typically 
already have established process parameters to produce high quality 
builds. However, identifying those process parameters is a time and 
resource intensive process, mostly based on trial and error. Using a cost- 
effective in-line monitoring method such as the one we present in this 
work could help in this endeavor substantially. Moreover, we would like 
to point out that defects in builds may occur stochastically, even when 
using optimized process parameters. For the most part, these defects are 
difficult to predict and to identify during the additive process. Even in 
these cases, we envision our method to be instrumental to avoid build 
failure or the production of parts with substandard performance. 

We envisage several possible extensions and improvements of the 
proposed approach. It would be interesting to expand the analysis to 
include other superpixels attributes, which may provide insights into 
additional materials properties besides density. For instance, the 
morphology of superpixels could carry information about the underlying 
microstructure of the metals and metal alloys processed by L-PBF. 
Another field of research that our current work opens regards investi-
gating how the relationships between build density and surface topog-
raphy may change when producing parts with more complex 
geometries, which would be more representative of real-life parts. In this 
case, surface pattern variations would be also a function of the thermal 
distribution across the layer, which depends on the laser scan vector 

Q. Lu et al.                                                                                                                                                                                                                                       



Additive Manufacturing 51 (2022) 102626

15

[41] and local changes in the cross-sectional area of the features to be 
produced [42]. 

The success of our methodology opens new opportunities for 
achieving defect-free and more consistent builds. Because of the fast 
data acquisition and data analysis speed, anomalies may be detected and 
corrected on the fly, by the tuning the process parameters during the L- 
PBF process. Not only this paradigm would reduce experimental efforts 
to produce high quality builds, but also help make AM processes more 
sustainable, by improving the chances of successful builds and reducing 
material waste. 
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