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Abstract 

Reliable and accurate wind speed forecasting (WSF) is fundamental for efficient exploitation 

of wind power. In particular, high accuracy short-term WSF (ST-WSF) has a significant 

impact on the efficiency of wind power generation systems. Due to the non-stationarity and 

stochasticity of the wind speed (WS), a single model is often not sufficient in practice for the 

accurate estimation of the WS. Hybrid models are being proposed to overcome the limitations 

of single models and increase the WS forecasting performance. In this paper, a new hybrid 

WSF model is developed based on long short-term memory (LSTM) network and 

decomposition methods with grey wolf optimizer (GWO). In the pre-processing stage, the 

missing data is filled by the weighted moving average (WMA) method, the WS time series 

(WSTS) data are smoothed by WMA filtering and the smoothed data are used as model input 

after  -score normalization. The forecasting model is formed by the combination of a single 

model, a decomposition method and an advanced optimization algorithm. Successively, the 

hybrid WSF model is developed by combining the LSTM and decomposition methods, and 
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optimizing the intrinsic mode function (IMF) estimated outputs with a grey wolf optimizer 

(GWO). The developed non-linear hybrid model is utilized on the data collected from five 

wind farms in the Marmara region, Turkey. The obtained experimental results indicate that 

the proposed combined model can capture non-linear characteristics of WSTS, achieving 

better forecasting performance than single forecasting models, in terms of accuracy. 

Keywords: wind speed, hybrid model, long short-term memory (LSTM), decomposition, grey 

wolf optimizer (GWO). 

 

1. Introduction 

Renewable energy is experiencing great developments at the global level with the highest 

growth of wind and solar photovoltaic, specifically 27% annual growth and 42% annual 

growth over the last decade, respectively [1]. The installed power of renewable energy has 

reached 2351 Gigawatts (GW) worldwide in 2018. In the European Union (EU), the installed 

capacity has reached 536 GW in 2018 [2]. It is expected that the contribution of renewable 

energy to electricity generation in the EU will continue to increase and reach 1210 Terawatts 

(TW) hours in 2020. This amounts to approximately 34% of gross final electricity 

consumption by 2020 [3]. In particular, wind energy, one of the renewable energy sources, is 

growing rapidly in recent years. By the end of 2018, the total power capacity of all the wind 

turbines installed in the world reached 597 GW, according to the World Wind Energy 

Association [4]. It is foreseen that wind energy will be the most important renewable energy 

source and provide approximately 40% of all renewable electricity by 2020 [3]. Developing 

wind energy technology is, thus, expected to provide substantial support to traditional energy 

sources in the future. In order to be able to benefit from wind energy technology, it is very 

important to know the possibilities of its utilization, i.e., to determine regions with high 

potential of wind energy, and to predict the wind characteristics and speeds. For Turkey, in 

particular, it is estimated that the wind energy potential amounts to about 50,000 MW 
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whereas the installed capacity is only around 10% of this value [5]. The accurate modeling of 

the wind regime based on its statistical properties like humidity, temperature, solar radiation, 

pressure and WS is very important in order to use the existing potential in the region. 

 

Accurate WSF, in particular, is critical to wind farm design and operation [6]. Existing 

methods can be roughly divided into two kinds, as forecasting and optimization methods are 

used to develop the WSF models. The forecasting methods are used as the predictors to 

perform WSF, and they include physical, statistical, artificial intelligence (AI), and hybrid 

models. Optimization methods, including signal processing with optimization of the 

parameters, are used to improve the forecasting [7, 8]. 

 

Physical models are used to estimate long-term WS using physical data such as terrain, 

obstacle, roughness, atmospheric pressure and ambient temperature [9, 10]. These models are 

occasionally used as the first step to predicting the wind ancillary input of other statistical 

models [9]. Models like numerical weather forecast (NWF) [11], mesoscale model 5 (MM 5) 

[12], weather research and forecast (WRF) [13], model output statistics (MOS) and Eta model 

[14], high resolution model (HRM) [15], often combine multiple physical considerations to 

provide satisfactory prediction accuracy. However, these models are not convenient for ST-

WSF, because of the high costs and complexity of the calculation [16]. 

 

Statistical methods, are usually preferred for ST-WSF, and employ historical data to estimate 

WS. The model parameters are adjusted to minimize the error between the actual and the 

estimated WS data [16, 17]. Among the statistical methods, used for WSF there are both 

linear and nonlinear models. Common linear statistical models for WSF include the auto-

regressive (AR) [18], linear regression [19], moving average (MA) [20], Kalman filtering [23, 

24], ARMA [21], Markov chain [25] and AR integrated MA (ARIMA) [22] models. If the 
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nonlinear characteristics are prominent, however, the forecasting results by these models may 

not be satisfactory for the intended application [26]. This is often the case in practice for wind 

speed time series (WSTS) [27]. In this case, non-linear statistical models for WSF perform 

better, which include nonlinear auto regressive (NAR) and nonlinear auto regressive 

exogenous (NARX) models [28-30]. In [19], an AR model that is sufficiently flexible for 

modeling the main features of WS and sufficiently sensitive for wind turbines has been used. 

Riahy and Abedi [20] proposed a linear MA prediction model for ST-WSF. A window is 

utilized to estimate the future samples of WS. Erdem and Shi [21] applied four different 

ARMA models for the estimation of WS and direction. In [22], the fractional ARIMA has 

been employed for the prediction of WS on one day and two day-ahead horizons. Cadenas et 

al. [29] performed one-step ahead forecasting of the next WS with ARIMA and NARX 

models for two different regions. In addition to WS from meteorological data, average values 

of temperature, pressure, solar radiation and humidity data were used for both regions. The 

NARX model performed better than the ARIMA model for both regions. In [31], a new WSF 

model was developed by using AR with Hammerstein models. Akçay and Filik [32] built a 

Kalman filter for one-and multi-step ahead WSF. 

 

AI methods are also effectively used to estimate WS. These methods include various types of 

artificial neural networks (ANNs), like [33], multi-layer perceptron (MLP) [34], back 

propagation neural network (BPNN) [35], long short term memory (LSTM) [36], radial basis 

function (RBF) [37], recurrent neural network (RNN) [38], Elman neural network (ENN) 

[39], convolutional neural network (CNN) [40] and wavelet neural network (WNN) [41], and 

also fuzzy logic (FL) methods [42]. There exist various implementations of AI methods for 

WSF in the literature. Modandes et al. [43] proposed the use of a support vector machine 

(SVM) to predict short term WS (ST-WS) by using daily average data of WS. Guo et al. [44] 

have focused on a new combined approach based on seasonal exponential adjustment and 
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BPNN, which effectively improves the WS forecasting accuracy. In [45], a hybrid wavelet 

neutral network (WNN) has been developed, based on the multi-objective sine cosine 

algorithm (MOSCA) for achieving strong stability and high accuracy simultaneously. In [41, 

46], two types of deep learning model based on the LSTM network for one and multi-step 

WSF have been developed. 

 

More in general, machine learning algorithms are often used for WSF, including SVM, K-

nearest neighbor (KNN), adaptive boosting (Adaboost) and evolutionary algorithms for 

parameter optimization [47]. Kiplangat et al. [48] have developed a data-driven multi-model 

WSF technique by using a two-layer ensemble machine learning method. For the purpose of 

establishing a more generalized estimation model, the deep feature selection approach is used 

for meteorological data (temperature, pressure, humidity, etc.). The proposed multi-model 

WSF technique is compared with single models and it is observed that the ST-WSF 

performance is enhanced. In [49], SVM models for short-term accurate prediction of WS have 

been proposed.  

 

In WSF, the models that use a combination of forecasting and optimization techniques are 

called hybrid or combined models. Recently, hybrid (combined) models have been used 

frequently for WSF. In [50], a hybrid model based on Adaboost-extreme learning machine 

(AELM) with two-stage decomposition is proposed and applied to four WS data sets for one-

two-and three-step ahead prediction. In [51], a hybrid model based on environmental factors 

for ST-WSF is developed using SVM and wavelet transform (WT), which is optimized by 

genetic algorithm (GA). In [52], a hybrid model has been proposed, combining regularized 

ELM (RELM) network, empirical wavelet transform (EWT) decomposition, inverse empirical 

wavelet transform (IEWT) reconstruction and grey wolf optimizer (GWO) algorithm. The WS 

data is divided into time series components by the EWT decomposition. The parameters of the 
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RELM network are optimized by GWO. The RELM network optimized by GWO is used to 

estimate each sub-time series. The IEWT is used as a filter bank to avoid unsuspected 

prediction values and reconstruct the predicted results. In [53], a hybrid model called 

EnsemLSTM has been proposed, which has deep learning time series estimation based on 

LSTMs, extremal optimization (EO) algorithm and support vector regression machine 

(SVRM). The estimation values of LSTMs are collected into the top layer of a non-linear 

learning regression composed of SVRM, and the ST-WS is forecasted by SVRM with model 

parameters that are optimized by EO. Hu et al. [54] have developed a non-linear hybrid model 

that aims to improve WSF accuracy by combining LSTM, diff erential evolution (DE), non-

linear hybrid mechanism and hysteretic ELM (HELM). The DE algorithm is used to optimize 

the LSTM model successfully, while balancing its complexity. Wang et al. [55] have 

developed a hybrid model for ST-WSF, which combines an improved complementary 

ensemble empirical mode decomposition with adaptive noise (ICEEMDAN), ARIMA and 

ELM. The ELM model is utilized for ST-WSF, whilst the ARIMA model is employed to 

specify the best input variables. The robustness of the ELM is increased using the ensemble 

method. It is pointed out that the proposed model is more robust than other versions of 

empirical mode decomposition (EMD) in achieving nonstationary decomposition, and 

provides satisfactory performance for both pre-processing and post-processing. Jiang and 

Huang [56] proposed a hybrid model that includes attribute selection and error correction 

steps to enhance the achievement of decomposition-based estimation models used in real-time 

WSF. The WSTS is separated into a number of different sub-series by ensemble EMD 

(EEMD) method. Kullback-Leibler divergence based on kernel density prediction and feature 

selection method based on energy measurement are applied. The error components are 

corrected by combination of the generalized AR conditionally heteroscedastic and least 

squares SVM. 
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In this study, we propose a new modeling framework for WSF. The elements of the proposed 

hybrid WSF modeling framework include filling the missing data, normalization by  -score, 

creating a forecasting model by combining the LSTM and decomposition method, and 

optimizing the intrinsic mode function (IMF) predicted outputs with GWO. The proposed 

hybrid model is called ICEEMDAN-LSTM-GWO. The remainder of this paper is organized 

as follows. In Section 2, the specific methodology is introduced, including the data pre-

processing method, optimization method, and proposed hybrid model. The experimental 

procedure and analysis are presented in Section 3. In Section 4, some tangible discussions are 

presented to prove the performance of the new hybrid model. Finally, conclusions are 

highlighted in Section 5.  

2. ICEEMDAN-LSTM-GWO hybrid WSF modeling framework 

In this section, the specific methods composing the developed ICEEMDAN-LSTM-GWO 

hybrid model for WSF, namely data preprocessing, LSTM neural network, ICEEMDAN 

technique and GWO algorithm, are presented. In extreme synthesis, a forecasting model is 

created with LSTM neural network for each of the IMF obtained by ICEEMDAN technique, 

and the weight coefficients of each output are optimized with GWO. 

2.1  Data pre-processing 

The WSTS data are pre-processed before being fed to the proposed hybrid model. In the pre-

processing step, the missing data are filled by means of a weighted moving average (WMA) 

method. The WSTS data are smoothed by WMA filtering and the normalization of the 

smoothed data is done by Z-score normalization. The methods used in the data pre-processing 

phase are described in the following sections. 

2.1.1 Imputation of missing data 

The missing data of some measurements due to sensor malfunctions or to the nature of the 

wind can cause significant deterioration of the wind power system's model performance. 
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When some measurements are missing, the forecasting accuracy is generally offset by 

gathering data over long horizons. In literature, interpolation, Kalman filters, persistence, 

WMA, random sample approaches are frequently used in the imputation process [57]. In this 

study, the missing data are filled with a simple WMA approach for imputation. 

2.1.2  Weighted moving average 

In the WMA method, each of the missing values is filled with the mean of the k-observation, 

which is a window of    data samples on both sides of the missing value [57].  

For example, the one-step ahead WMA forecast is 

               

 

  

 (1) 

where    is the time series of interest for         and                are the weights. 

The window size   is increased incrementally when the complete window is void because of 

missing values. The weights are linearly decreasing in time as 1/2, 1/3, 1/4, ... till the end of 

the window. 

2.1.3  -score normalization 

The  -score, which is calculated using the standard deviation and arithmetic mean of the 

given WS data, is frequently used as score normalization technique. It is expected that this 

normalization technique will perform well in case of prior knowledge about the average score 

and the score variations of the matcher [58]. The normalized scores are given by 

  
  

    

 
 (2) 

where   is the standard deviation and μ is the arithmetic mean of the given data. In this study, 

the normalization of the smoothed data is done by  -score normalization. 

2.2  Decomposition techniques 

The EMD technique is an adaptive method introduced to analyze non-linear and nonstationary 

signals [59]. The basis of the method is to empirically define internal oscillation modes with 
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characteristic time scales in the data and, then, to decompose the data accordingly. In fast and 

slow oscillations, it involves the decomposition of a signal locally and fully in a data-driven 

manner, through a sifting process. The ensemble EMD (EEMD) technique has been proposed 

to alleviate the problem of very similar oscillations in different modes, called "mode mixing", 

that are often a consequence of signal intermittency, in physical applications. The EEMD 

consists of a data decomposition ensemble that is appended to different realizations of the 

finite amplitude white noise and, then, takes the means of the corresponding IMFs from 

different decompositions as the final result [60, 61]. EEMD defines the “true” IMF 

components as the average of the corresponding IMFs obtained via EMD over an ensemble of 

trials, generated by adding different realizations of white noise of finite variance to the 

original signal     . The EEMD algorithm can be defined as [62]: 

(i) generate             , where                are different realizations of 

white Gaussian noise (WGN) and    , 

(ii) each                is completely decomposed by EMD, obtaining the modes 

  
   

, where         are the modes, 

(iii) take    as the   th mode of   , obtained as the mean of the corresponding modes 

   
 

 
   

   
 

   
 (3) 

In the EEMD, it can be recognized that every    is decomposed independently from the other 

realizations and for every one of them a residue   
      

    
  is obtained at each stage, 

without any link between the different realizations. The reconstructed signal contains residual 

noise and different realizations of signal plus noise may produce a different numbers of 

modes. The complete EEMD with adaptive noise (CEEMDAN) technique is proposed to 

overcome these situations [62]. The full reconstruction of the original signal and an improved 

spectral separation of the modes with lower computational cost are achieved by the 
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CEEMDAN technique. In this method, a certain amount of noise is added at each phase of 

decomposition, and a unique residue is calculated to obtain each mode. The resulting 

dissociation is complemented by a numerically negligible error. However, there are still 

problems with some residual noise and “spurious” modes.  The ICEEMDAN technique is 

developed to improve the problems with some residual noise and ”spurious“ modes by 

Colominas et al. [63]. This technique introduces operator       and     . Let       be the 

operator which produces the   th mode obtained by EMD,      be the operator which 

produces the local average of the signal, and    a realization of WGN with zero mean and 

unit variance. The ICEEMDAN technique can be defined by the following steps: 

(i) compute by EMD the local means of   realizations 

             
                 (4) 

 

where                 
    , and    is defined as reciprocal of the desired signal to noise 

ratio (SNR) between the first added noise and the analyzed signal, 

(ii) compute the first residue    

               (5) 

where       is the action of averaging throughout the realizations, 

(iii) calculate the first mode at the first stage (     

         (6) 

(iv) predict the second residue as the mean of the local means of the realizations 

         
     (7) 

and describe the second mode as  

                          
        (8) 

(v) for        , compute the   th residue 

                            (9) Jo
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where    is chosen as                  to obtain the desired SNR between the added 

noise and the residue, 

(vi) compute the   th mode 

            (10) 

(vii) go back to step (v) for next  . 

2.3 Long short term memory network 

LSTM network, a special type of RNNs, has a strong ability to solve long-term and short-term 

dependence problems with its success in the processing of non-linear sequential data. The 

core of the LSTM network is the memory cell that replaces the hidden layers of conventional 

neurons [64]. The LSTM network can add or remove information from the input gate, output 

gate, and forget gate to the memory cell state. This structure provides the LSTM with the 

ability to determine which cells are suppressed and stimulated based on the previous state, 

current memory and current input. The vanishing  gradient problem is effectively overcome 

by this structure, shown in Fig. 2, such that the neural networks can recall information from a 

long range. In order to identify new information that can be collected in the cell, the input data 

is multiplied by the output of the input gate. To calculate the information that can be spread to 

the network, the output data for the network is multiplied by the activation of the output gate. 

To determine whether the last state of the cell should be forgotten, the cell states of the 

previous time are multiplied by the activation of the forget gate [65]. The  procedure of the 

LSTM [66] is as follows: 

 the stage of deciding what information to be discarded from the cell state: the value of 

   and      is obtained, and determines whether to discard through a sigmoid function: 

                      (11) Jo
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 the stage of determining which new information is stored in the cell state: it is decided 

by a sigmoid layer which information will be stored in the cell state; then, the values obtained 

from the        layer by    and      are taken as a new candidate value    : 

                      (12) 

                          (13) 

 the step of updating the previous cell state      to the new cell state   : the cell state 

     is multiplied by    to forget what information we decide to forget. Then, to obtain a new 

cell state   ,    is multiplied by     and new cell state    is determined by adding the term 

obtained to the previous term. 

                  (14) 

 the stage of deciding what information will be output: it is decided by a sigmoid layer 

which information will be output in the cell state. 

                      (15) 

               (16) 

where             denote the weight matrices,             represent the bias vectors, 

respectively;      is the logistic sigmoid function which is utilized as the gate activation 

function: 

     
 

     
 (17) 

and         is a hyperbolic tangent function used as activation function of the input and 

output blocks: 

        
      

      
 (18) 

 

2.4 Grey wolf optimizer algorithm 

The GWO is a new and effective meta-heuristic optimization algorithm, which is a swarm 

intelligence-based evolutionary computation method based on the simulation of the hunting 
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behavior and social leadership of grey wolves in nature [67]. In this algorithm, inspired by 

grey wolves, the grey wolf's leadership and hunting mechanisms are imitated. Four types of 

grey wolves, alpha    , beta    , delta   ) and omega    , are applied to imitate the 

leadership hierarchy. The nature of the GWO algorithm is that  ,  , and   wolves guide the 

optimization process, while being followed by   wolves. The main stages of the grey wolf 

hunting are [68]:  

 chasing, approaching, and tracking prey  

 pursuiting, harassing, and encircling the prey 

 stationary wait and attack towards the prey. 

The hunting behavior of grey wolves is shown in Fig. 1. The stage of the chasing, 

approaching, and tracking of the prey is shown in Fig. 1(A); the stages of the pursuing, 

harassing, and encircling of the prey are shown in Fig. 1(B-D); the stages of the stationary 

wait and attack towards the prey are shown in Fig. 1(E). The encircling behavior of a grey 

wolf throughout hunting is modeled as [69, 70] 

           
                (19) 

          
                 (20) 

 

where   shows the current iteration,    and    are coefficient vectors,       and   
         are 

position vectors of grey wolf and prey, respectively. The vector    and    are calculated as 

                 (21) 

            (22) 

where        and        are random vectors in       and the    components are linearly decreased 

from 2 to 0 over the course of iterations. 

 

Grey wolves have the capability to recognize the position of the prey and encircle it. To 

mathematically simulate the hunting behavior of grey wolves,  , which is the best candidate 
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solution,  , and   are presumed to have a better knowledge of the potential position of the 

prey. This process is defined with the help of the following mathematical formulas as 

  
          

        
               

         
        

               
         

        
            (23) 

  
        

        
         

              
        

        
         

            
        

        
         

       (24) 

        
  
        

        
     

 
 (25) 

where   indicates the current iteration,   
        

        
      are random vectors, and   

     ,   
      and   

      

indicate the position of  ,   and   wolves, respectively. 

 

Fig. 1. Hunting behavior of grey wolves [68]. 

When the movement of the prey stops, the grey wolves finish the hunt with an attack. The 

value of    is decreased for the mathematical model approaching its prey. At that time, the 

fluctuation range of    is also decreased by   . The next position of a search agent could be any 

position between its current position and the position of the prey. The grey wolves that have 

diverged from each other to search for their prey and converge to attack the prey, mostly 

search according to the position of  ,   and  . For mathematical model divergence, the search 

agent must be diverged from the prey with random values greater than 1 or less than -1. The 

GWO algorithm is shown in Fig. 2. 

2.5 Framework of the developed ICEEMDAN-LSTM-GWO hybrid model for WSF Jo
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In this study, the ingredients of the novel combined modelling framework for WSF consist of 

data preprocessing phase, a novel forecasting model creation phase by combining the LSTM 

and ICEEMDAN decomposition method, the phase of optimizing IMF predicted outputs with 

GWO and the phase of model evaluation. 

2.5.1 Data preprocessing phase 

In the data preprocessing phase, the missing data are filled with the WMA method and the 

WSTS data are smoothed by WMA filter. Also in this phase, the normalization of the 

smoothed data is done by  -score normalization before the training and testing phases of the 

proposed hybrid model. 

2.5.2 ICEEMDAN-LSTM combined forecasting model creation phase 

In this phase of the study, IMFs are obtained by the ICEEMDAN decomposition method. In 

order to eliminate noise signals and stochastic volatility, the ICEEMDAN method 

decomposes the original series and reconstructs the filtered time series. For each output of the 

IMFs, a combined forecasting model is established with LSTM network and ICEEMDAN. 

The processed WS data obtained at the end of this phase will be used for the next phase of 

optimization. In LSTM model, the number of hidden unit is set to 500 and the maximum 

epoch is set to 300. 

2.5.3 Optimization phase 

The weighted coefficients of each IMF output are optimized to create the best forecasting 

model with the GWO algorithm. The objective function is the mean square error (MSE). 

2.5.4 Model evaluation phase 

The performance of the new hybrid model is measured by considering the mean absolute error 

(MAE), root mean square error (RMSE) and mean absolute percentage error (MAPE) values.  
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Fig. 2. Process for the development of the ICEEMDAN-LSTM-GWO hybrid WSF model. 

Jo
ur

na
l P

re
-p

ro
of
16 
 



350 

351 

352 

353 

354 

355 

356 

357 

358 

359 

360 

361 

362 

363 

364 

365 

366 

367 

368 

369 

Journal Pre-proof
The formulas of the three error metrics are presented in Table 1. The MAE and RMSE are 

used to assess the average difference between the actual and the forecasted values. MAPE is 

defined as the mean of the absolute error. 

Table 1  

Error metrics for WSF model evaluation. 

Metric Description Formula 

MAE Mean absolute error     
 

 
            

         
  

 

   
 

MAPE 
Mean absolute percentage 

error 
     

 

 
  

       
            

 

       
 

      
 

   
 

RMSE Root mean square error       
 

 
            

         
   

 

   
 

 

3. Experimental procedure and analysis 

In this section, the studies performed with data collected from five wind farms in the Marmara 

region and the developed ICEEMDAN-LSTM-GWO hybrid WSF model are presented. The 

developed ICEEMDAN-LSTM-GWO hybrid WSF model is compared with other models 

obtained by combining with different decomposition methods. Moreover, the effect of GWO 

on the combined models is investigated. 

3.1 Wind speed datasets 

The WS data used in this study are collected from five different meteorological stations 

around the Marmara region in Turkey. The region where the data is collected is one of the 

highest potential wind energy locations of Turkey. The stations of Bandırma (BAN), 

Bozcaada (BOZ), Gönen (GON), İpsala (IPS) and Şile (SIL) are chosen arbitrarily among the 

available measurement locations in the region (Fig. 3). Each measurement location is isolated 

from the others and is not near the Çanakkale and Bosphorus Straits. The WS and direction 

measurements are collected between 2008 and 2014, for a period of 6 and 2/3 years. 
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Approximately 52,000 hours of WS measurement data are collected from each station. The 

10-hour average of the collected data is taken and 15% of the data set is allocated as test data. 

Some statistical values of the five WS datasets are given in Table 2, including standard 

deviation, minimum, mean and maximum. The validity of the experimental data obtained 

from five wind stations is evaluated by uncertainty analysis [71]. The upper and lower 

confidence levels for the forecasting values are determined by uncertainty analysis. 

 

Fig. 3. Five meteorological stations in Marmara region of Turkey. 
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Table 2 

Statistical values of the five WS datasets. 

Dataset Samples Numbers Statistical values (m/s) 

 
Min Max Mean Std. 

 

BOZ 

All samples 5173 0.5 30.5 5.8528 3.1660 

Training 4397 0.7 30.5 5.9617 3.2106 

Testing 775 0.5 17.5 5.2316 2.8233 

 

IPS 

All samples 5173 0.3 14.9 2.8671 1.5143 

Training 4397 0.3 14.9 2.9177 1.5406 

Testing 775 0.4 10.9 2.5785 1.3203 

 

GON 

All samples 5173 0.4 13.4 2.0611 1.2411 

Training 4397 0.4 13.4 2.0759 1.2540 

Testing 775 0.4 6.8 1.9760 1.1627 

 

BAN 

All samples 5173 0.6 25.7 3.9893 2.5093 

Training 4397 0.7 25.7 4.0370 2.5426 

Testing 775 0.6 11.6 3.7145 2.2926 

 

SIL 

All samples 5173 0.1 12.9 2.2089 1.0840 

Training 4397 0.1 12.9 2.2517 1.1197 

Testing 775 0.6 5.7 1.9655 0.8132 

 

3.2 Experimental results and analysis 

The developed hybrid model combines the ICEEMDAN, LSTM and GWO and is applied to 

the five WSTS, together with seventeen other WSF models. These are single NAR model 

(Appendix A), single LSTM model, EMD-NAR combined model, EEMD-NAR combined 

model, CEEMDAN-NAR combined model, ICEEMDAN-NAR combined model, EMD-

NAR-GWO combined model, EEMD-NAR-GWO combined model, CEEMDAN-NAR-

GWO combined model, ICEEMDAN-NAR-GWO combined model, EMD-LSTM combined 

model, EEMD-LSTM combined model, CEEMDAN-LSTM combined model, ICEEMDAN-

LSTM combined model, EMD-LSTM-GWO combined model, EEMD-LSTM-GWO 

combined model and CEEMDAN-LSTM-GWO combined model. All WSF models are 

applied to the data collected from the five wind farms shown in Fig. 3. The performance of 

the models is measured by MAE, RMSE and MAPE performance indexes. The results of all 
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models for WSF are reported in Table 3 and Tables B.1-B.4. Also, the IMFs of ICEEMDAN, 

which is used as the decomposition method in the creation of the developed ICEEMDAN-

LSTM-GWO combined model, and the ICEEMDAN-NAR hybrid model, ICEEMDAN-

NAR-GWO hybrid model and ICEEMDAN-LSTM hybrid model, are presented in Fig. 4 for 

the WSTS collected from the five different wind farms. The performance of the models on 

these test datasets are presented in Figs. 5-8 and Figs. B.1-B.16 in Appendix B. The 

performance analysis for BOZ station is provided in the following; the analogous analysis of 

the other stations is presented in the Appendix B.  

 

For the dataset of BOZ station, the forecasting accuracy of the developed ICEEMDAN-

LSTM-GWO hybrid model for WSF has the best MAE, RMSE and MAPE at 0.1960, 0.2750 

and 4.59%, respectively. Among the other individual and combined models considered, the 

best five models are EEMD-LSTM-GWO, ICEEMDAN-LSTM, CEEMDAN-LSTM-GWO, 

EEMD-LSTM and CEEMDAN-LSTM, with the lowest MAPE values of 5.74%, 5.83%, 

5.93%, 7.09% and 7.47%, respectively. The five worst models are NAR, EMD-NAR-GWO, 

ICEEMDAN-NAR-GWO, EMD-NAR and CEEMDAN-NAR-GWO, with the highest MAPE 

values of 27.19%, 21.87%, 20.84%, 20.79% and 20.26%, respectively. The effect of 

decomposition on the single model is shown in Figs. 5 and 6; the effect of GWO on the 

combined models is shown in Figs. 7 and 8. Figs. 5-8 and Table 3 shows that ICEEMDAN-

LSTM-GWO is the best performing model. The results for the other four stations are similar 

and detailed performance analyses are presented in the Appendix B. 

 

In order to show that the proposed forecasting model is independent of the data set, the model 

has been applied on the data obtained from IPS, GON, BAN, and SIL stations and 

approximately the same forecasting performance has been obtained. When the developed 

model is compared with some hybrid wind speed estimation studies [51-55] in the literature, it 
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is seen that the proposed method has a much better prediction performance. In addition to the 

proposed signal processing method, well optimization of the weight coefficients in the LSTM 

deep learning algorithm by the GWO algorithm plays an important role in this forecasting 

performance. 
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22 

Fig. 4. IMFs of ICEEMDAN for WSTS gathered from the five stations. 
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Fig. 5. WSF results achieved by using various NAR models for BOZ station. 

 

 
Fig. 6. WSF results achieved by using various LSTM models for BOZ station. 

 

 
Fig. 7. WSF results achieved by using various NAR models with GWO for BOZ station. 
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Fig. 8. WSF results achieved by using various LSTM models with GWO for BOZ station. 

 

Table 3  

Comparison of various forecasting models for WSTS collected from BOZ station. 

Models MAE RMSE MAPE 

(%) 

NAR 1.0080 1.2524 27.19 

EMD-NAR 0.8314 1.1149 20.79 

EEMD-NAR 0.7791 1.0408 19.13 

CEEMDAN-NAR 0.6760 0.9137 16.35 

ICEEMDAN-NAR 0.7469 1.0101 18.64 

LSTM 0.6733 0.8641 18.06 

EMD-LSTM 0.4629 0.6728 12.17 

EEMD-LSTM 0.2962 0.3925 7.09 

CEEMDAN-LSTM 0.3182 0.4131 7.47 

ICEEMDAN-LSTM 0.2451 0.3409 5.83 

EMD-NAR-GWO 0.8395 1.1079 21.87 

EEMD-NAR-GWO 0.7898 1.0260 20.15 

CEEMDAN-NAR-GWO 0.8052 1.0524 20.26 

ICEEMDAN-NAR-GWO 0.7896 1.0240 20.84 

EMD-LSTM-GWO 0.3758 0.5472 9.89 

EEMD-LSTM-GWO 0.2366 0.3184 5.74 

CEEMDAN-LSTM-GWO 0.2498 0.3286 5.93 

ICEEMDAN- LSTM-GWO 0.1960 0.2750 4.59 

 

Jo
ur

na
l P

re
-p

ro
of
24 
 



447 

448 

449 

450 

451 

452 

453 

454 

455 

456 

457 

458 

459 

460 

461 
462 

463 

464 

Journal Pre-proof
4. Discussion 

The WF results of the ICEEMDAN-NAR, ICEEMDAN-LSTM, ICEEMDAN-NAR-GWO 

and ICEEMDAN-LSTM-GWO combined models created with the ICEEMDAN 

decomposition method are shown in Figs. 9-13 for each station. The mean of the performance 

index values for all models is presented in Table 4 for the five stations. The forecasting 

performance of the developed ICEEMDAN-LSTM-GWO hybrid WSF model has the best 

MAE, RMSE and MAPE compared to the other models, with values of 0.1309, 0.1847 and 

5.26%, respectively. The average MAPE values of ICEEMDAN-NAR, ICEEMDAN-LSTM 

and ICEEMDAN-NAR-GWO are 18.25%, 6.62% and 20.44%, respectively; the average 

MAE values of ICEEMDAN-NAR, ICEEMDAN-LSTM and ICEEMDAN-NAR-GWO are 

0.4575, 0.1635 and 0.4910, respectively; the average RMSE values of ICEEMDAN-NAR, 

ICEEMDAN-LSTM and ICEEMDAN-NAR-GWO are 0.6252, 0.2291 and 0.6384, 

respectively. It is clearly seen that the developed ICEEMDAN-LSTM-GWO hybrid WSF 

model performs better than the other models. 

 
Fig. 9. The best WSF results achieved by using various NAR and LSTM models for BOZ 

station. 

 Jo
ur

na
l P

re
-p

ro
of
25 
 



465 
466 

467 

468 

469 

470 
471 

472 

473 

474 
475 

476 

Journal Pre-proof
 
Fig. 10. The best WSF results achieved by using various NAR and LSTM models for IPS 

station. 

 

 

 
Fig. 11. The best WSF results achieved by using various NAR and LSTM models for GON 

station. 

 

 
Fig. 12. The best WSF results achieved by using various NAR and LSTM models for BAN 

station. 
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Fig. 13. The best WSF results achieved by using various NAR and LSTM models for SIL 

station. 

 

Table 4  

Comparison of the averages of the performance indexes for various forecasting models. 

Models MAE RMSE MAPE 

(%) 

NAR 0.6351 0.8019 27.82 

EMD-NAR 0.5060 0.6908 20.00 

EEMD-NAR 0.4767 0.6449 19.09 

CEEMDAN-NAR 0.4232 0.5736 17.01 

ICEEMDAN-NAR 0.4575 0.6252 18.25 

LSTM 0.4193 0.5489 17.76 

EMD-LSTM 0.2688 0.3803 11.04 

EEMD-LSTM 0.1852 0.2530 7.38 

CEEMDAN-LSTM 0.1865 0.2529 7.34 

ICEEMDAN-LSTM 0.1635 0.2291 6.62 

EMD-NAR-GWO 0.5159 0.6758 21.47 

EEMD-NAR-GWO 0.4935 0.6410 20.74 

CEEMDAN-NAR-GWO 0.5048 0.6586 20.95 

ICEEMDAN-NAR-GWO 0.4910 0.6384 20.44 

EMD-LSTM-GWO 0.2192 0.3106 9.24 

EEMD-LSTM-GWO 0.1484 0.2047 5.98 

CEEMDAN-LSTM-GWO 0.1482 0.2028 5.91 

ICEEMDAN-LSTM-GWO 0.1309 0.1847 5.26 
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It is seen that the performance of the models combined with signal processing methods is 

better than the performance of single models. It is clear that signal processing methods 

improve the performance of single models. The performance of the combined models with 

LSTM appears to be better than that of the combined models with NAR. It can be said that the 

performance of combined models with NAR is poor compared to the performance of single 

LSTM models. In combination models with signal processing, models with EMD have the 

worst performance. When the performance of the proposed forecasting model on the data sets 

obtained from five stations is analyzed, it can be also concluded that it will show the same 

forecasting performance on the data sets that are well known in wind speed forecasting. 

5. Conclusions 

WSF with high precision is quite important for efficient exploitation and usage of wind 

energy. Uncertainty and non-stationarity of WS suggests the opportunity of employing 

combined models for high precision and reliable WSF. In this paper, a hybrid model named 

ICEEMDAN-LSTM-GWO, based on LSTM network and ICEEMDAN decomposition 

method with GWO is developed for ST-WSF. Filling of missing data and smoothing of 

WSTS data are performed by WMA in a preprocessing phase, followed by  -score 

normalization. The ICEEMDAN method is used in the decomposition phase and the models 

created by using the ICEEMDAN method are compared with those created by using other 

decomposition methods. The proposed ICEEMDAN-LSTM-GWO combined WSF model is 

applied to data gathered from five wind stations in the Marmara region, Turkey. The obtained 

experimental results demonstrate that the developed ICEEMDAN-LSTM-GWO combined 

WSF model is superior to all other considered models. 
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Appendix A 

ANN and AI forecasting models are used as single forecasting models without any 

decomposition or optimization algorithms. In this Appendix, the NAR forecasting model used 

to compare the performance of the developed ICEEMDAN-LSTM-GWO hybrid WSF model 

is described. 

 

Recurrent neural networks, such as NAR, layer recurrent networks and time delay neural 

networks (TDNN) are widely used for modeling non-linear dynamic systems. The NAR 

neural network is defined as a feedback-driven and self-repeating network, including several 

layers [72]. The NAR model, which is widely used in time series predictions, is based on the 

linear AR model. The descriptive equation for a NAR neural network is: 

                                (26) 

where the subsequent values depend only on regressed   previous values of the output signal. 

The non-linear function      calculates the one-step ahead WS value by Eq. (26) depending 

on the previous one-step values of the output signal. The output of the closed loop NAR 

network is described as follows: 

                                  (27) 

where   represents the forecasted steps in the future. 
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Appendix B 

In this Appendix, the forecasting performance of the methods considered is performed with 

respect to the IPS, GON, BAN and SIL stations. 

 

For IPS station, the forecasting performance of the developed ICEEMDAN-LSTM-GWO 

hybrid model for WSF has the lowest MAE, RMSE and MAPE values of 0.1289, 0.1878 and 

5.63%, respectively. Among the other individual and combined models considered, the best 

five models are CEEMDAN-LSTM-GWO, EEMD-LSTM-GWO, ICEEMDAN-LSTM, 

CEEMDAN-LSTM and EEMD-LSTM, with the lowest MAPE values of 6.40%, 6.70%, 

7.27%, 7.86% and 7.89%, respectively. The five worst models are NAR, EEMD-NAR-GWO, 

EMD-NAR-GWO, CEEMDAN-NAR-GWO and ICEEMDAN-NAR-GWO, with the highest 

MAPE values of 28.34%, 21.93%, 21.71%, 21.52% and 21.24%, respectively. The effect of 

decomposition on the single model is shown in Figs. B.1 and B.2; the effect of GWO on the 

combined models is shown in Figs. B.3 and B.4. Figs. B.1-B.4 and Table B.1 shows that 

ICEEMDAN-LSTM-GWO is the best performing model. 

 

 
Fig. B.1. WSF results achieved by using various NAR models for IPS station. 
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Fig. B.2. WSF results achieved by using various LSTM models for IPS station. 

 

 
Fig. B.3. WSF results achieved by using various NAR models with GWO for IPS station. 

 
Fig. B.4. WSF results achieved by using various LSTM models with GWO for IPS station. 

 

Table B.1.  
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Comparison of various forecasting models for WSTS collected from IPS station. 

Models MAE RMSE MAPE 

(%) 

NAR 0.5562 0.7148 28.34 

EMD-NAR 0.4315 0.5904 20.35 

EEMD-NAR 0.4220 0.5757 20.05 

CEEMDAN-NAR 0.3682 0.5036 17.52 

ICEEMDAN-NAR 0.4070 0.5695 19.24 

LSTM 0.3789 0.5066 18.86 

EMD-LSTM 0.2085 0.3016 10.21 

EEMD-LSTM 0.1763 0.2522 7.89 

CEEMDAN-LSTM 0.1718 0.2466 7.86 

ICEEMDAN-LSTM 0.1626 0.2336 7.27 

EMD-NAR-GWO 0.4529 0.5985 21.71 

EEMD-NAR-GWO 0.4395 0.5777 21.93 

CEEMDAN-NAR-GWO 0.4415 0.5836 21.52 

ICEEMDAN-NAR-GWO 0.4344 0.5722 21.24 

EMD-LSTM-GWO 0.1675 0.2431 8.14 

EEMD-LSTM-GWO 0.1447 0.2065 6.70 

CEEMDAN-LSTM-GWO 0.1391 0.2003 6.40 

ICEEMDAN-LSTM-GWO 0.1289 0.1878 5.63 

 

For GON station, the forecasting precision of the proposed ICEEMDAN-LSTM-GWO hybrid 

model for WSF has the lowest MAE, RMSE and MAPE values of 0.0930, 0.1364 and 5.63%, 

respectively. Among the other individual and combined models considered, the best five 

models are CEEMDAN-LSTM-GWO, EEMD-LSTM-GWO, ICEEMDAN-LSTM, 

CEEMDAN-LSTM and EEMD-LSTM, with the lowest MAPE values of 5.77%, 6.32%, 

6.88%, 7.49% and 7.92%, respectively. The five worst models are NAR, EMD-NAR-GWO, 

CEEMDAN-NAR-GWO, EEMD-NAR-GWO and ICEEMDAN-NAR-GWO, with the 

highest MAPE values of 33.82%, 25.10%, 24.20%, 24.12% and 23.48%, respectively. The 

effect of decomposition on the single model is shown in Figs. B.5 and B.6; the effect of GWO 
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on the combined models is shown in Figs. B.7 and B.8. Figs. B.5-B.8 and Table B.2 shows 

that ICEEMDAN-LSTM-GWO is the best performing model. 

 
Fig. B.5. WSF results achieved by using various NAR models for GON station. 

 
Fig. B.6. WSF results achieved by using various LSTM models for GON station. 

 
Fig. B.7. WSF results achieved by using various NAR models with GWO for GON station. 
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Fig. B.8. WSF results achieved by using various LSTM models with GWO for GON station. 

 

Table B.2.  

Comparison of various forecasting models for WSTS collected from GON station. 

Models MAE RMSE MAPE 

(%) 

NAR 0.5164 0.6591 33.82 

EMD-NAR 0.3688 0.5308 20.71 

EEMD-NAR 0.3399 0.4737 20.09 

CEEMDAN-NAR 0.3005 0.4219 17.36 

ICEEMDAN-NAR 0.3257 0.4555 19.11 

LSTM 0.2837 0.3778 18.07 

EMD-LSTM 0.1670 0.2342 9.92 

EEMD-LSTM 0.1341 0.1855 7.92 

CEEMDAN-LSTM 0.1216 0.1751 7.49 

ICEEMDAN-LSTM 0.1150 0.1691 6.88 

EMD-NAR-GWO 0.4005 0.5165 25.10 

EEMD-NAR-GWO 0.3868 0.4999 24.12 

CEEMDAN-NAR-GWO 0.3946 0.5168 24.20 

ICEEMDAN-NAR-GWO 0.3825 0.4977 23.48 

EMD-LSTM-GWO 0.1427 0.1968 9.41 

EEMD-LSTM-GWO 0.1078 0.1493 6.32 

CEEMDAN-LSTM-GWO 0.0967 0.1394 5.77 

ICEEMDAN-LSTM-GWO 0.0930 0.1364 5.63 
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For BAN station, the forecasting accuracy of the developed ICEEMDAN-LSTM-GWO 

hybrid model for WSF has the best MAE, RMSE and MAPE at 0.1503, 0.2026 and 5.73%, 

respectively. Among the other individual and combined models considered, the best five 

models are EEMD-LSTM-GWO, CEEMDAN-LSTM-GWO, ICEEMDAN-LSTM, EEMD-

LSTM and CEEMDAN-LSTM, with the lowest MAPE values of 5.93%, 6.53%, 7.15%, 

7.54% and 7.75%, respectively. The five worst models are NAR, CEEMDAN-NAR-GWO, 

EMD-NAR-GWO, EEMD-NAR-GWO and ICEEMDAN-NAR-GWO, with the highest 

MAPE values of 29.72%, 23.76%, 23.39%, 22.95% and 22.59%, respectively. The effect of 

decomposition on the single model is shown in Figs. B.9 and B.10; the effect of GWO on the 

combined models is shown in Figs. B.11 and B.12. Figs. B.9-B.12 and Table B.3 shows that 

ICEEMDAN-LSTM-GWO is the best performing model. 

 

 
Fig. B.9. WSF results achieved by using various NAR models for BAN station. 
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Fig. B.10. WSF results achieved by using various LSTM models for BAN station. 

 

 
Fig. B.11. WSF results achieved by using various NAR models with GWO for BAN station. 

 

 
Fig. B.12. WSF results achieved by using various LSTM models with GWO for BAN station. 
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Table B.3.  

Comparison of various forecasting models for WSTS collected from BAN station. 

Models MAE RMSE MAPE 

(%) 

NAR 0.7605 0.9548 29.72 

EMD-NAR 0.6167 0.8377 22.52 

EEMD-NAR 0.5730 0.7671 20.97 

CEEMDAN-NAR 0.5346 0.7078 20.61 

ICEEMDAN-NAR 0.5529 0.7415 20.11 

LSTM 0.4977 0.6545 18.62 

EMD-LSTM 0.3414 0.4677 13.69 

EEMD-LSTM 0.2009 0.2687 7.54 

CEEMDAN-LSTM 0.2112 0.2761 7.75 

ICEEMDAN-LSTM 0.1871 0.2513 7.15 

EMD-NAR-GWO 0.6125 0.8014 23.39 

EEMD-NAR-GWO 0.5949 0.7642 22.95 

CEEMDAN-NAR-GWO 0.6140 0.7881 23.76 

ICEEMDAN-NAR-GWO 0.5953 0.7644 22.59 

EMD-LSTM-GWO 0.2763 0.3818 11.06 

EEMD-LSTM-GWO 0.1592 0.2157 5.93 

CEEMDAN-LSTM-GWO 0.1675 0.2222 6.53 

ICEEMDAN-LSTM-GWO 0.1503 0.2026 5.73 
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For SIL station, the forecasting performance of the proposed ICEEMDAN-LSTM-GWO 

hybrid model for WSF has the best MAE, RMSE and MAPE values at 0.0863, 0.1219 and 

4.74%, respectively. Among the other individual and combined models considered, the best 

five models are CEEMDAN-LSTM-GWO, EEMD-LSTM-GWO, ICEEMDAN-LSTM, 

CEEMDAN-LSTM and EEMD-LSTM, with the lowest MAPE values of 4.89%, 5.19%, 

5.98%, 6.13% and 6.45%, respectively. The five worst models are NAR, EMD-NAR, EMD-

NAR-GWO, EEMD-NAR and LSTM, with the highest MAPE values of 20.01%, 15.61%, 

15.30%, 15.20% and 15.20%, respectively. The effect of decomposition on the single model 

is shown in Figs. B.13 and B.14; the effect of GWO on the combined models is shown in 

Figs. B.15 and B.16. Figs. B.13-B.16 and Table B.4 shows that ICEEMDAN-LSTM-GWO is 

the best performing model. 

 

 
Fig. B.13. WSF results achieved by using various NAR models for SIL station. 
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Fig. B.14. WSF results achieved by using various LSTM models for SIL station. 

 
Fig. B.15. WSF results achieved by using various NAR models with GWO for SIL station. 

 

 
Fig. B.16. WSF results achieved by using various LSTM models with GWO for SIL station. 

 

 

Jo
ur

na
l P

re
-p

ro
of
39 
 



641 

642 

643 

644 

645 

646 

647 

648 

649 

650 

651 

Journal Pre-proof
Table B.4.  

Comparison of various forecasting models for WSTS collected from SIL station. 

Models MAE RMSE MAPE 

(%) 

NAR 0.3346 0.4282 20.01 

EMD-NAR 0.2816 0.3800 15.61 

EEMD-NAR 0.2694 0.3669 15.20 

CEEMDAN-NAR 0.2367 0.3212 13.19 

ICEEMDAN-NAR 0.2552 0.3492 14.16 

LSTM 0.2630 0.3415 15.20 

EMD-LSTM 0.1644 0.2254 9.19 

EEMD-LSTM 0.1186 0.1659 6.45 

CEEMDAN-LSTM 0.1098 0.1532 6.13 

ICEEMDAN-LSTM 0.1079 0.1509 5.98 

EMD-NAR-GWO 0.2742 0.3550 15.30 

EEMD-NAR-GWO 0.2569 0.3369 14.56 

CEEMDAN-NAR-GWO 0.2688 0.3521 15.00 

ICEEMDAN-NAR-GWO 0.2535 0.3335 14.08 

EMD-LSTM-GWO 0.1338 0.1842 7.69 

EEMD-LSTM-GWO 0.0939 0.1337 5.19 

CEEMDAN-LSTM-GWO 0.0877 0.1234 4.89 

ICEEMDAN-LSTM-GWO 0.0863 0.1219 4.74 
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HIGHLIGHTS

 A novel  combined  model  based  on  long  short-term  memory  neural  network  and

decomposition methods with grey wolf optimizer algorithm is successfully proposed.

 The proposed combined model will significantly improve the forecasting accuracy.

 The effectiveness of the proposed combined model is tested  on data from the wind

farm in five regions.

 The experimental results indicate that the proposed combined wind speed forecasting

model can capture non-linear features of the wind speed time series.
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