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stract: 

o novel centrality indices, PathRank and Icentr, are defined. PathRank is a generalization of t
eRank algorithm, suitable to rank nodes of undirected graphs according to number and weig
aths in the graph. Icentr ranks the nodes of the graph by means of a combination of the weig
odes and edges, scaled according to the distance from each node, one at a time. We apply t
 novel indices to underground transportation networks, since these networks represent 
astructural backbone for the transportation system of most big cities over the world. T
racterization of the most important components of those networks and the simulation of th
onses when they stop working properly, are vital for maintaining the mobility service a

irable level. Since there are different ways to associate a graph to an underground netwo
ording to the degree of detail and aims of the study, we describe the methodology we adopted
ociate a graph to such a network. The methodology was applied to 34 underground networks
rldwide cities, and the resulting graphs constitute the reference dataset. A detailed study of bo
ton network and the dataset is proposed as prototypal for either a graph alone or all graphs in

aset. Results show how different features of graphs are revealed by the two novel indices. 

words: Underground networks, Graph centrality indices, Adjacency matrix, Disruption, Data
parison 

1. Introduction 
 paper originates from the purpose of evaluating the performances of underground networks, 
astructural backbone for urban transportation. To achieve our goal, we designed two central
ices, PathRank and Icentr, for undirected, simple and connected graphs, and we applied them
phs representing underground networks from a topological point of view. PathRank and Ice
 be useful as well to analyze graphs arising from different applications. 
1 
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 characterization of the most important components of networks and the simulation of th
onses when they stop working properly, are vital for avoiding devastating scenarios a

intaining the service at a desirable level. 

ce we are mainly interested in the topology of underground networks, we focus on stations a
ks, including and representing into them all other components of networks. The main purpose

n to provide a methodology to locate the most important stations in the working network. W
ect that the removal of such important stations, together with the links through them, will cau
 highest reduction in the performance of considered networks.  

w, we examine the main causes of disruptive events occurred in underground networks all ov
 world and how they modified the level of service of the infrastructure.  

he transportation system context, disruption is defined as a deviation from planned operatio
ause of its intensity, a disruption can affect performances of stations, links between two statio
ven an entire line of the network. Disruption or reduction in operation of any component o
sportation network can be highly expensive from a financial, economical and temporal point

w, for both passengers and operating companies. However, in a complex transportation syste
e stations are more critical than others for the functionality of a network.  

ruptions can be classified according to their origins as 

Natural Disaster; 
Intentional or Terrorist Attack; 
Random Failure or Incident. 

w, we describe disruptions in more details according to the previous classification.  

 most common natural disaster affecting underground networks is flood.  In general, flo
ses cancellations of some trips or the stop on some lines. An overall delay is a consequence
 increased congestion on routes passengers are forced to use just to avoid flooded links. Oth
rth mentioning natural disasters are earthquakes. They may have different effects both for t
ity of damages and for time needed to recover them. While smaller earthquakes may only for
 underground train to slow down until the system is not completely verified, larger earthquak
 cause structural damages causing the suspension of services, lasting from hours to wee
ntional attacks are targeted destructions caused by outside artificial forces, mainly terroris
ording to the statistics of the attack cases, placing explosives, suicide bombings and relea

sonous gases are the three main types of underground attack tactics used by terrorists (Yu et a
9). It is almost impossible to specify the corresponding destructive power for a random failu
 therefore, a random failure is generally described as a dysfunction of a network due to failu
one or several nodes or edges with random probability of occurrence. Every local failure m
ct the normal functionality of more components or even of the whole system. Techni

lfunctions such as power, gear, or brake failures, operational mistakes by staff or drive
porary suspension of service for special activity, maintenance or safety inspection, are examp
andom failures. 

comparison with other means of transportation, underground systems usually have good safe
ords. However, because of the large number of persons potentially involved, the possible dama
case of disruption is high. E.g., Kings Cross (London, 1987, 31 fatalities), Baku me
erbaijan, 1995, 286 fatalities), Kaprun funicular tunnel (Austria, 1996, 155 fatalities), a
gu metro (South Korea, 2003, 192 fatalities) are examples which demonstrate the high dama
2 
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sibility in case of severe metro accidents, particularly for large fires involving several tra
ttelini, 2019). Power line failure, mechanical equipment failure and arson are among the t
e causes of fire in underground systems (Yu et al., 2019). The required recovery time in case
 of the above-mentioned incidents depends on the resiliency of the underground network as w
he extent of incident diffusion, of exposed population and infrastructures, and their vulnerabili

erally, to describe the capability of a transportation network to face a disruptive eve
archers consider three features, namely resiliency, reliability and robustness. Resiliency

ined as the ability of a transportation network to absorb disruptive events easily and to retu
k to the prior level of service, or to a higher one, within an acceptable time frame; high
liency of a system means lesser economical, social and operational costs in case of a
uptive event. Reliability means that the expected additional trip cost due to a disruption
eptable even if users are extremely pessimistic about the state of the network (Bell, 200
ustness is the property of a transportation network to maintain its functionality unchanged 

rly unchanged, when exposed to disturbances in various accident scenarios (Scott et al., 2006)

e to the reasons mentioned above, researchers continuously aim to identify useful techniques a
ntitative measures to pinpoint the most critical components of a network, and to evaluate t
act that each component has on performance of the whole network.  

th that aim in mind, we have built a dataset of 34 graphs derived from such networks, amon
se of most known cities in the world. Such a dataset has been already studied through the fo
l-known centrality indices, namely Betweenness, Closeness, Degree and Eigenvector centrali
 through the values of Ishortest, an index specifically designed for the purpose (Mussone et 
0). 

get the described goal, we propose two further novel indices enabling us to rank nodes o
ph, by identifying those for which exposure to a disruptive event may lead to the most harm
sequences for the network.  

 paper is organized as follows. Section 2 reports some applications of centrality indices 
formance assessing to transportation networks. In section 3, the two new indices are presente
tion 4 describes how a graph is created from the underground network map and contains som
the main features of the dataset. Section 5 reports a detailed case study based on the Bost
A) network, and a detailed analysis of the above mentioned dataset. Section 6 concludes t
er resuming principal achieved outcomes and outlines future developments. 

2. Centrality indices in transportation 
s review does not aim to present a comprehensive list of the enormous amount of work done 
lications of centrality indices on transportation networks, but only to recognize their role in t
sent research through a few significant contributions. Graph-based indices such as central
ices are among the most commonly used tools enabling researchers to analyze and explain som
tures of networks. It is worth noting that every index highlights some features of a transportati
work, but neglects some others. For example, classical centrality indices, such as Degree 
seness, highlight some topological properties, but neglect important aspects associated w
sportation such as time delay and traffic flow. Since in a transportation network a node can 
ical from some, but not all, perspectives, it would be better to consider more indices and
pare their outcomes. In addition, all traditional centrality measures such as Degree, Closene
3 
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envector and Betweenness centrality, are vertex based and do not provide any information abo
e centrality.  

ree and Eigenvector centrality are measures that date back at least to the beginning of X
tury, and aim at measuring the attractiveness of each node. Two more centrality measures a
weenness and Closeness. They were introduced by Freeman (1978), and are only based on t
ber of intermediary nodes on shortest paths between couples of nodes. They disregard the no

ngth. Also in some proposed generalization of Betweenness (Brandes, 2001) and of Closene
wman, 2001), the length of the shortest paths only depends on the sum of the reciprocal li
ghts. 

sahl et al., 2010) introduced a new generalization for Freeman (1978) centrality indices in whi
h the number of edges and their weights are considered. This approach provides us with a bet
ght regarding the involvement level of each node within the network. Authors designed the n
ex  

𝐶஽
௪ఈሺ𝑖ሻ ൌ  ൫∑ 𝑥௜௝

ே
௝ୀଵ ൯

ଵିఈ
 ൫∑ 𝑤௜௝

ே
௝ୀଵ ൯

ఈ
. 

(1), the number of nodes, the 𝑖𝑗 െelement of the adjacency matrix and the weight of the ed
ween nodes 𝑖 and 𝑗 are 𝑁, 𝑥௜௝ ,𝑤௜௝, respectively. The 𝛼 parameter needs to be calibrated accordi

he studied case. For 𝛼 = 0, one gets Freeman’s (1978) measure of an unweighted network. F
1, one gets a generalization of degree in which only node strength is considered. The autho

 proposed a generalization for Closeness and Betweenness. It takes into account both aspe
ntioned above, by means of the introduction of 𝛼. In particular, the index the author proposed i

𝐶஼
௪ఈሺ𝑖ሻ ൌ  ቆ෍ 𝑑௪ఈሺ𝑖, 𝑗ሻ

ே

௝ୀଵ
ቇ
ିଵ

. 

(2), the weighted distance 𝑑௪ఈሺ𝑖, 𝑗ሻ between nodes 𝑖 and 𝑗 is equal to the minimum of 𝑤௛௞
ିఈ 

ry edge ℎ𝑘 in a shortest path between nodes 𝑖, 𝑗. 

ang and Cullinane, 2016) utilized the centrality measures proposed by (Opsahl et al., 2010)
lyze the maritime transportation network, where container ports are considered as nodes a
ar shipping service as edges. In addition, the weekly transportation capacity was applied 
ght on each edge.  

ang et al., 2011a) applied three classical centrality indices, Degree, Closeness and Betweenne
the air transport network of China (ATNC) to explore the structure of the network and nod
trality of individual cities. Their case study involved all cities with operating airports 
inland China (excluding Hong Kong, Macao, and Taiwan and some small airports, which do n
e regular flights) over six months of observation. The case study network consisted of 144 nod
 1018 links. The proposed approach allowed the authors to find a high correlation between t
ues of the considered indices and socio-economic measures of cities such as air passeng
ume, population, and gross regional domestic product. 

ang et al., 2011b) examined the correlation between “street centrality” and land use density
on Rouge, Louisiana. They represented the road network of East Baton Rouge Parish and 
roundings, comprising about 1809 miles of roadway, through a network with 12,235 nodes a
219 links (a link is a street segment). They used population and employment densities 
icators of land use intensity. Street centrality is obtained through applying Closene
weenness, and Straightness centrality indices. The latter index refers to the hypothesis that t
nectivity between two points is better when the path is straight. Finally, the results fro
4 
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trality measures and land use density measures are transformed into the same units through
nel density estimation and floating catchment areas. Acquired results indicate a high correlati
ween street centrality indices and land use densities showing the significant interplay betwe
d use pattern and transportation network topology. 

iotas and Polyzos, 2015) introduced a new centrality index called “Mobility Centrality” 
lyzing traffic flow in a road transportation network. They used this index to measure t
pensity of each node to attract network flow. The authors utilized Straightness Centrality (firs
posed by Crucitti et al.2006),  

𝐶௜
௖ = 

ଵ

|௏|ି ଵ
 ∑

ௗ೔ೕ
ಶ

ௗ೔ೕ

|௏|
௝ୀଵ,௜ஷ௝  (3) 

ich is a centrality index that determines the level of each network path deviation from the straig
, and a modified formula of kinetic energy. In Straightness Centrality formula (3), 𝑑௜௝

ா  is t

lidean distance, 𝑑௜௝ is the travelled distance between nodes i and j, and |𝑉| is the number 
es. 

eng et al., 2015) proposed three new indices, named Commuter Flow, Time Delay and Del
w in which the authors consider commuter flow and the amount of delay induced to t
sengers due to disruption at each node. In this way, they solve the problem of neglecting flo
 and delay through analyzing the network performance by the three novel centrality indices. T
ula of Commuter Flow Centrality for a disrupted node uses the number of commuters per ho

cted by that disruption. Time Delay Centrality is defined as time passengers will spend
y would take a different mean to reach their destinations in case of disruption in that node. Del
w Centrality is calculated as the ratio between Time Delay centrality and the total commu
 of the considered network. 

ording to (Gu et al., 2020), vulnerability of a transportation network can be examined throu
lyzing the variation in a specific quantitative index. The choice of the index for analyzing t
work vulnerability depends on the aim of investigation since different indices evalu
nerability of the system from different perspectives. Authors categorized the concept 
nerability according to the utilized index into connectivity vulnerability, accessibil
nerability, and capacity vulnerability. With this approach in mind, (Gu et al., 2020) propos
 measures as examples of topology-based indices. The former quantifies the relative change

 average shortest distances between network nodes, the latter considers the reversed avera
ance between nodes of the network as a measure of efficiency of the network in conveyi
sengers. 

addition, other vulnerability indices based on system features providing with informati
arding the network performance, can be obtained by applying topology-based indices w
erent inputs. As an example, travel cost can be utilized instead of the average shortest trav
ance in the previous index.  

mar et al., 2019) suggested a methodology for ranking the links in a road network. According
hors, in a transportation network, some links can be more critical considering daily functional
he network, evacuation planning and emergency operations. Closure of even one critical link c
r the whole travel pattern significantly, leading to major changes in the travel pattern. Th
sider three factors for developing a link criticality indicator, including link traffic volum
nectivity to important facilities, and number of origins and destinations served by the link. 
5 
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plex Network theory has proved to be a powerful tool in many research fields. Among t
ny, see (Fei Xiong et al., 2021) for an application to epidemic dynamic and diffusion process
 (Fei Xiong et al., 2020) for a recommendation model that includes evolutionary opini
ractions. In transportation, complex network theory provides a different point of view fro

ich to explore properties of transportation networks. (Latora and Marchini, 2002) studied 
ail the Boston underground network, and proved that it has the small world property. Moreov
y proposed some efficiency measures. Later, in (Derrible and Kennedy, 2010), the autho
ved that metro networks are quite often scale-free and small world, and made suggestions 
 to improve robustness of such networks.  

ng the same line of research, (Dimitrov and Ceder, 2016) considered the Auckland integrat
lic transport network, and proved that it is a mixture of scale-free and exponential network. 

ngtan Wu et al., 2018) considered transportation networks from complex networks and gra
ory points of view. The authors introduce a novel centrality index, the node occupyi
bability, and they use it to evaluate the robustness of metro networks. 

Two novel indices 
h of the indices mentioned above will provide us with a variety of information about t
ology of the network or other desirable aspects depending on the considered weights. Moreov
y enable us to rank nodes of the network from different perspectives. However, the obtain
lts from these indices may also be misleading and may not reflect the node importance or 

urate comprehensive perspective of the network functionality. For example, Degree a
weenness assign 1 and 0, respectively, to every terminal node. Hence, these two indices do n
inguish between different terminals, while, in underground networks, different terminal nod
e different importance.  Closeness only depends on the weights of shortest paths, and so it do
 take into account paths whose weight is greater than the minimum. Since such paths do play
 in the description of transportation networks, closeness, as it is, is not suitable for applicatio
ransportation we want to consider. Mending the aforementioned deficiencies, we propose tw
 indices, which have notable advantages and increase our capability for a more extensi

estigation of transportation networks, particularly underground networks.   

 first novel index (PathRank) is a generalization of the PageRank index, invented by Lawren
ard Page, which is a well-known ranking algorithm for Google. For a deep description 

eRank, see (Bryan and Leise, 2006). When running PageRank on undirected graphs, one g
 normalized degree as value at each vertex, and so this index does not give new information 
irected graphs. The idea of the generalization is to consider paths instead of edges. PathRa
ex provides us with a straightforward vision about each node’s accessibility to other areas of t
work. 

he second proposed index (Icentr), we use a combination of both vertex weight and link weig
vercome some of the limitations of previous indices in which only one among node weights
 weights were considered for ranking purpose. In this way, we have more reliable a
prehensive results in comparison to previous measures. 

course, both the absolute values and the normalized values of an index are important. Howev
e we want to use indices to rank nodes, the absolute and the normalized values carry the sam
rmation. On the other hand, normalized values provide us an easier way to compare the
ce, in the following, we always refer to normalized values for indices we consider. If 𝑣 is t
6 
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ue the index takes at a node, and 𝑀,𝑚 are respectively the maximum and the minimum value t
ex takes at a node of the graph, the normalized value is 

𝑛𝑣 ൌ  ௩ି௠
୑ି ௠

 (4) 

 PathRank 

his section, we define the new index PathRank. As said, it takes inspiration from the PageRa
orithm, and is suitable for transportation. We first recall the PageRank algorithm and we expla
y it is not suitable for the applications we have in mind, and then we define PathRank. 

ce there are different approaches to PageRank, we follow the one described in (Bryan and Lei
6). Let 𝐺 ൌ ሺ𝑉,𝐸ሻ be a graph. The goal of PageRank algorithm is to rank vertices according

ir importance. To fix ideas, we assume 𝐺 has 𝑛 nodes, labelled as 1, 2, … ,𝑛, and we set 𝑥௜ t
re of node 𝑖. In PageRank, the score 𝑥௜ depends on the scores of neighbor nodes as follows  

𝑥௜ ൌ  ∑ 𝑎௜௝  
௫ೕ
ௗೕ

௡
௝ୀଵ,
௝ஷ௜

. (5) 

he previous equation (5), 𝑑௝ is the number of edges outgoing from node 𝑗 and 𝐴 ൌ ሺ𝑎௜௝ሻ is t

acency matrix of 𝐺. For sake of completeness, we recall that the elements of 𝐴 are 𝑎௜௝ ൌ 1
re is an edge from node 𝑗 to node 𝑖, and 0 otherwise. The order of the nodes does not play 
ortant role. The meaning of the previous equation is that the score 𝑥௝ of 𝑗 is equally distribut

ong the nodes one can reach starting from 𝑗, and the score of node 𝑖 is the sum of 
tributions associated to edges pointing to 𝑖. If we collect the scores in the matrix 𝑋 and 

ine the matrix 𝑩 ൌ ሺ𝑏௜௝ሻ as 𝑏௜௝ ൌ  
௔೔ೕ
ௗೕ

, the previous equation can be rewritten as 

𝑋 ൌ 𝐵 𝑋. (6) 

ce, 𝑋 is an eigenvector of 𝐵 associated to the eigenvalue 𝜆 ൌ 1. Actually, 𝜆 ൌ 1 is 
envalue of 𝐵 because 𝐵 is column-stochastic, that is to say, the elements of 𝐵 are positive, a
 elements on the same column sum to 1 for every column of 𝐵. The graph 𝐺 is assumed to 
ngly connected without dangling nodes.  

ransportation, in general, graphs are undirected, simple and connected. A graph is undirected
re is an edge from node 𝑖 to node 𝑗 as soon as there is an edge from 𝑗 to 𝑖, or, equivalently, t
acency matrix 𝐴 of 𝐺 is symmetric. A graph is simple if there is no loop, that is to say, an ed

 a node to itself, and there are no multiple edges. Finally, a graph is connected if, for eve
ple of nodes 𝑖, 𝑗, there exists a walk from the first to the second one and conversely, where
k is a finite sequence of nodes and two consecutive nodes in the sequence form an edge. W
ark that connectedness and strongly connectedness are the same if the graph is undirected. 

en we use PageRank to rank the nodes of such a graph, 𝑑௝ is nothing but the degree of node

t is to say, the number of edges containing 𝑗 because ingoing and outgoing edges coincide, a
it is easy to check that, up to transposition, ሺ𝑑ଵ, … ,𝑑௡ሻ is an eigenvector for 𝐵 associated to 𝜆
Since the eigenspace 𝑉ሺ1ሻ has dimension 1 because of the connectedness of 𝐺, we have th
eRank score is proportional to the degree of the node. Hence, PageRank is not suitable to ra

 nodes of an undirected, simple and connected graph. A second reason for which PageRa
ds adjustment for applications to transportation networks, is that one is interested in paths, that
say, finite sequences of distinct nodes, more than in edges, when considering connectedne
7 
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perties of graphs. For the above two reasons, we modified PageRank so to get an index that
able for applications in transportation. 

 main idea is to substitute paths to edges, and to construct a suitable column-stochastic matrix
t records the contribution of each path. Since graphs that arise in transportation can be large, t

ber of paths between two nodes can be huge, making unworkable the task of enumerating all
m. Then, we first fix the integer 𝑁, the maximum number of edges in a path. Secondly, 
merate all paths from node 𝑖 to node 𝑗 of length ൑ 𝑁, and we compute the contribution of ea
 of them according to the following two principles: a path is barely attractive if (1) its weight
 and (2) its weight is bigger than the minimum weight of a path between the same termin
es. Before giving equations that translate the principles above, we spend a few words about t
ciples themselves. In transportation, users choose their paths according to some principl

ich generally are based on minimization of (generalized) costs. So, if the weight of a path is b
n absolute sense, only few users will choose that path. This remark justifies the first princip
reover, if a user must travel between two far nodes, then he/she will choose a path whose weig
s close as possible to the minimum weight. This leads to the comparison of the minimum weig
 the actual one. Hence, we have to consider the second principle, too. We translate the princip
ve into the following equation  

path_contribution ൌ 𝑓 ቀ
௪೔ೕ

௪
ቁ
ଵ

௪
  (7) 

ere 𝑤௜௝ is the minimum weight of a path from 𝑖 to 𝑗 and 𝑤 is the weight of the considered pa

t is to say, the sum of the weights of edges in the path. The ratio ଵ
௪

 embodies the first princip

represent the second one, we propose three different functions, according to the importance o
ts to give to it. The functions are  

ሺ1ሻ 𝑓ଵ ቀ
௪೔ೕ

௪
ቁ ൌ

௪೔ೕ

௪
, ሺ2ሻ 𝑓ଶ ቀ

௪೔ೕ

௪
ቁ ൌ

௪೔ೕ
మ

௪మ , ሺ3ሻ 𝑓ଷ ቀ
௪೔ೕ

௪
ቁ ൌ 𝑒

ି 
ೢమ

ೢ೔ೕ
మ  ା ଵ 

. (8) 

th a little effort, it is possible to check that 𝑓ଵሺ𝑥ሻ ൒ 𝑓ଶሺ𝑥ሻ ൒ 𝑓ଷሺ𝑥ሻ for 𝑥 ൌ 𝑤௜௝/𝑤 ∈ ሺ0, 1ሿ. T
vious list is not exhaustive: we considered a wider set of possible functions, and we comput
hRank with them all. The three proposed functions have been selected for the following reaso
tests, they produced mostly uniformly distributed values; the ranking of nodes with oth
ctions was similar to the one we get with one of the three functions in equation (8); t
parison of the three functions is quite simple.   

 choice between functions 𝑓ଵ,𝑓ଶ, and 𝑓ଷ, has to be made according to the importance the seco
ciple has in the application one has in mind. For example, in telecommunication networks, it

 so important if a path is longer than the minimum, because the signal speed is very high, and
is more suitable than the other proposed functions. On the contrary, when we consider a ro
work, shortest paths are considerably more appealing due to the highest costs associated w
ger paths, therefore f3 should be preferred. All three functions get the value 1 when 𝑤 ൌ 𝑤
 tend to 0 when 𝑤 increases indefinitely.  

rdly, we determine 𝑏ᇱ௜௝ to be the sum over all paths from 𝑖 to 𝑗 of the contribution of every pa
 so we get a symmetric matrix 𝐵ᇱ. We define PathRank at node 𝑗 to be  

𝑃𝑎𝑡ℎ𝑅𝑎𝑛𝑘ሺ𝑗ሻ ൌ  ∑ 𝑏′௜௝
௡
௜ୀଵ , 
8 
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t is to say, it is the sum of the elements on the same column. Hence, larger is the sum of t
tributions of the paths starting from a node, higher is the ranking of that node. 

 relationship between PathRank and PageRank stays on the following result. 

eorem. Let 𝐵 be the square matrix whose elements are 𝑏௜௝ ൌ
௕೔ೕ
ᇲ

௉௔௧௛ோ௔௡௞ሺ௝ሻ
. 𝐵 is column-stochas

 ൫𝑃𝑎𝑡ℎ𝑅𝑎𝑛𝑘ሺ1ሻ, … ,𝑃𝑎𝑡ℎ𝑅𝑎𝑛𝑘ሺ𝑛ሻ൯
்
 is eigenvector of 𝐵 for the eigenvalue 𝜆 ൌ 1.  

of. The first claim is trivial because of the definition of PathRank. To check the second, let 

pute the product between 𝐵 and ൫𝑃𝑎𝑡ℎ𝑅𝑎𝑛𝑘ሺ1ሻ, … ,𝑃𝑎𝑡ℎ𝑅𝑎𝑛𝑘ሺ𝑛ሻ൯
்
, a row at a time.  

෍𝑏௜௝

௡

௝ୀଵ

 𝑃𝑎𝑡ℎ𝑅𝑎𝑛𝑘ሺ𝑗ሻ ൌ  ෍𝑏௜௝
ᇱ ൌ෍𝑏௜௝

ᇱ ൌ

௡

௜ୀଵ

𝑃𝑎𝑡ℎ𝑅𝑎𝑛𝑘ሺ𝑖ሻ

௡

௝ୀଵ

  

ause 𝐵ᇱ is a symmetric matrix.  ∎ 

a further remark, our assumptions on the graph assure that the eigenspace 𝑉ሺ1ሻ has dimension
 proof of this last claim is the same as in PageRank case, and so we do not report it. T
rested reader can find the proof in (Bryan and Leise, 2006). 

clarify the way we compute matrix 𝐵′, we consider the graph in Fig. 1. To make the computati
pler, we assume every edge has weight 1 that is to say, we only consider the topology of t
ph and its adjacency matrix. Moreover, we set 𝑁 ൌ 5, and we select 𝑓ଵ. 

 

ure 1. The graph above has 5 nodes and 6 edges. Moreover, it is evident that nodes 1 and 3 pl
 same role, as well as nodes 4 and 5. Hence, we expect that the values at 1, 3 and at 4, 5 are t
e for every index. 

he graph above, the paths from node 2 to node 1 are 21, 231,23451. All three paths contribu
the value of 𝑏′ଵଶ, because their length is smaller than 𝑁. The three paths above ha

ghts 1, 2, 4, respectively, and so 𝑏′ଶଵ ൌ 1 ൅ ଵ

ସ
൅ ଵ

ଵ଺
ൌ ଶଵ

ଵ଺
. Analogously, the paths from 3 to

 31, 321, 3451, those from 4 to 1 are 451, 431, 4321, and finally the ones from 5 to
 51, 5431, 54321. Then,  

ଵ ൌ 1 ൅ ଵ

ସ
൅ ଵ

ଽ
ൌ ସଽ

ଷ଺
, 𝑏′ସଵ ൌ

ଶ

ସ
൅ ଶ

ସ
൅ ଶ

ଽ
ൌ ଵଵ

ଽ
, 𝑏′ହଵ ൌ 1 ൅ ଵ

ଽ
൅ ଵ

ଵ଺
ൌ ଵ଺ଽ

ଵସସ
.  

 first column sum is PathRankሺ1ሻ ൌ ଷ଺ହ

଻ଶ
. 

hs to node 2 are 12, 132, 15432, 32, 312, 34512, 432, 4312, 4512, 45132, 512, 5132, 543
 54312, and so 
9 
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𝑏ଵଶ
ᇱ ൌ

21
16

, 𝑏ଷଶ
ᇱ ൌ

21
16

, 𝑏ସଶ
ᇱ ൌ

77
72

, 𝑏ହଶ
ᇱ ൌ

77
72

. 

ir sum is PathRankሺ2ሻ ൌ
ଷସଷ

଻ଶ
. 

 symmetry, the paths to node 3 can be obtained from the one to node 1, and so the third colum
′ is equal to the first one, up to swapping the first and third elements, and the fourth and fi

s.  

hs to node 4 are 154, 134, 1234, 234, 23154, 2134, 2154, 34, 3154, 32154, 54, 5134, 5123
 so 

𝑏ଵସ
ᇱ ൌ

11
9

, 𝑏ଶସ
ᇱ ൌ

77
72

,𝑏ଷସ
ᇱ ൌ

169
144

, 𝑏ହସ
ᇱ ൌ

169
144

. 

ir sum is PathRankሺ4ሻ ൌ ଵ଺଻

ଷ଺
. 

ause of the symmetry of the graph, the fifth column of 𝐵′ is equal to the forth one, up 
pping the first and third elements and the fourth and fifth ones.  

onclusion, nodes 1, 3 are the most important, node 2 is the next one, while nodes 4, 5 have t
t score. We remark that the scores reflect the symmetries of the graph. Finally, PathRank is ab
ake differences between nodes 2, 4, and 5, while PageRank is not, since these three nodes ha

 same degree. 

 Icentr 

this section, we define another Index of CENTRality, Icentr for brief, designed to evaluate t
formance of transportation networks, that takes into account both node weights and edge weig
he same time. To authors’ knowledge, most centrality indices consider either edge weights,
e weights.   

before, we consider an undirected simple graph 𝐺 ൌ ሺ𝑉,𝐸ሻ that represents the network we ta
 consideration, and we assume that both nodes and edges are weighted. To fix notation, t
es are 1, 2, … ,𝑛, and the edges are 𝑒ଵ, 𝑒ଶ, … , 𝑒௥. We recall that an edge is a set containing tw
erent nodes and two distinct edges contain at most a common node. Given an edge, each node
 a neighbor of the other one. The notion of neighbor is at the core of the definition of Icentr. T
ghts of the nodes are 𝑥ଵ, 𝑥ଶ, … , 𝑥௡ while the ones of the edges are 𝑤ଵ,𝑤ଶ, … ,𝑤௥, respective
 remark that all node and edge weights are equal to 1 if the graph is unweighted, or it can happ
t there exist 𝑥,𝑤 such that 𝑥௜ ൌ 𝑥,𝑤௝ ൌ 𝑤 for every 𝑖 ൌ 1, … ,𝑛, and every 𝑗 ൌ 1, … , 𝑟. In such
e, nodes and edges are uniformly weighted. Of course, it is possible that the nodes are uniform
ghted and the edges are not so, or conversely, the edges are uniformly weighted and the nod
 not so. In general, neither nodes nor edges are uniformly weighted. Finally, we remark that o
 use the values whatever centrality index assigns to each node as weights for nodes. 

w, we explain how to compute the value Icentr takes on a node. Since the value depends on t
nected component containing the node only, we assume 𝐺 to be connected. Let 𝑖଴ be the no
are interested in. By using an adapted Breadth-First Search algorithm, we divide nodes a
es in levels, as follows. 𝑖଴ is the only level 0 node. The level 1 nodes are the neighbors of 𝑖଴, a
y are 𝑖ଵଵ, 𝑖ଵଶ, … , 𝑖ଵ௡భ. The level 2 nodes are the neighbors of the level 1 nodes that are not in

vious level, and they are 𝑖ଶଵ, 𝑖ଶଶ, … , 𝑖ଶ௡మ. In general, a node is in level ℎ if it is neighbor o
10 
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el ℎ െ 1 node, and is not a neighbor of a node in level 𝑘 for some 𝑘 ൏ ℎ െ 1. Level ℎ nod
 𝑖௛ଵ, 𝑖௛ଶ, …, . 𝑖௛௡೓. Because of the previous construction, no node belongs to two different leve

reover, since we are working under the assumption that the graph 𝐺 is connected, every no
ongs to a level.  To divide edges in levels, we remark that an edge 𝑒 ൌ ሼ𝑖, 𝑗ሽ connects two nod
er in different levels, or in the same level. In the first case, the nodes belong to consecuti

els and we set 

𝑙𝑒𝑣ሺ𝑒ሻ ൌ max൫𝑙𝑒𝑣ሺ𝑖ሻ, 𝑙𝑒𝑣ሺ𝑗ሻ൯ (9) 

he second case, we set 

𝑙𝑒𝑣ሺ𝑒ሻ ൌ 1 ൅ 𝑙𝑒𝑣ሺ𝑖ሻ ൌ 1 ൅ 𝑙𝑒𝑣ሺ𝑗ሻ  (10

s choice of levels for the edges corresponds to the order in which they can appear in a pa
ting from 𝑖଴. In fact, if an edge connects two nodes in different levels and it is in a path from 
n it is at the place corresponding to the maximum level of a node in the edge. On the other han
n edge connects two nodes in the same level and it is in a path from 𝑖଴, then it is at the pla
responding to the next level with respect to the level of the nodes in the edge.  

 recall that 𝑤ሺ𝑒ሻ is the weight of the edge 𝑒.  

 connects two nodes at different levels, let 𝑥ሺ𝑒ሻ be the weight of the node at the maximum lev
. Then, the contribution of 𝑒 to the value Icentr takes at 𝑖଴ is  

𝑖𝑐ሺ𝑒ሻ ൌ  ௫ሺ௘ሻ 

ଶ೗೐ೡሺ೐ሻషభ
 𝑤ሺ𝑒ሻ (11

ൌ ሼ𝑖, 𝑗ሽ connects two nodes at the same level whose weights are 𝑥௜ , 𝑥௝ , respectively, t

tribution of 𝑒 to the value Icentr takes at 𝑖଴ is then 

𝑖𝑐ሺ𝑒ሻ ൌ  
௫೔ା௫ೕ
ଶ೗೐ೡሺ೐ሻ

 𝑤ሺ𝑒ሻ (12

 final value is simply the sum of the partial contributions, and so we have 

𝐼𝑐𝑒𝑛𝑡𝑟ሺ𝑖଴ሻ ൌ  ∑ 𝑖𝑐൫𝑒௝൯
௥
௝ୀଵ  (13

w, we compute the values of Icentr on the nodes of the graph in Figure 1, and we assume that t
ghts of nodes and edges are equal to 1, so to consider the topology of the graph, only. Of cour
ause of the symmetries of the graph, we have 𝐼𝑐𝑒𝑛𝑡𝑟ሺ1ሻ ൌ 𝐼𝑐𝑒𝑛𝑡𝑟ሺ3ሻ, 𝐼𝑐𝑒𝑛𝑡𝑟ሺ4ሻ ൌ 𝐼𝑐𝑒𝑛𝑡𝑟ሺ5
 so, it is enough to compute 𝐼𝑐𝑒𝑛𝑡𝑟ሺ1ሻ, 𝐼𝑐𝑒𝑛𝑡𝑟ሺ2ሻ, 𝐼𝑐𝑒𝑛𝑡𝑟ሺ4ሻ. When we start from node 1, t
es are partitioned as follows: 1 is the only level 0 node, 2,3,5 are level 1 nodes, and 4 is the on

el 2 node. Hence, edges 12, 13, 15 are at level 1, and 23, 34, 45 are at level 2. Then, 

𝑛𝑡𝑟ሺ1ሻ ൌ  𝑖𝑐ሺ12ሻ ൅ 𝑖𝑐ሺ13ሻ ൅ 𝑖𝑐ሺ15ሻ ൅ 𝑖𝑐ሺ23ሻ ൅ 𝑖𝑐ሺ54ሻ ൅ 𝑖𝑐ሺ34ሻ ൌ 1 ൅  1 ൅  1 ൅  
1
2
൅  

1
2
൅

ൌ 4.5. 

en we start from node 2, the nodes are partitioned as follows: 2 is the only level 0 node, 1,3 a
el 1 nodes, and 4,5 are level 2 nodes. Hence, edges 21, 23 are at level 1, edges 13, 34, 15 are
el 2, and finally, edge 45 is at level 3. Then, 
11 
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𝑛𝑡𝑟ሺ2ሻ ൌ 𝑖𝑐ሺ12ሻ ൅ 𝑖𝑐ሺ23ሻ ൅ 𝑖𝑐ሺ13ሻ ൅ 𝑖𝑐ሺ34ሻ ൅ 𝑖𝑐ሺ15ሻ ൅ 𝑖𝑐ሺ45ሻ ൌ  1 ൅  1 ൅
1
2
൅  

1
2
൅  

1
2
൅

ൌ 3.75. 

en we start from node 4, the nodes are partitioned as follows: 4 is the only level 0 node, 3,5 a
el 1 nodes, and 1,2 are level 2 nodes. Hence, edges 34, 45 are at level 1, edges 13, 23, 15 are
el 2 and edge 12 is at level 3. Then, 

𝑛𝑡𝑟ሺ4ሻ ൌ  𝑖𝑐ሺ34ሻ ൅ 𝑖𝑐ሺ45ሻ ൅ 𝑖𝑐ሺ13ሻ ൅ 𝑖𝑐ሺ23ሻ ൅ 𝑖𝑐ሺ15ሻ ൅ 𝑖𝑐ሺ12ሻ ൌ  1 ൅  1 ൅  
1
2
൅  

1
2
൅  

1
2
൅

ൌ 3.75. 

conclusion, when we consider topology only, nodes 1,3 have the highest ranking, wh
es 2,4,5 have the same smallest ranking according to Icentr. We remark that Pathrank and Ice
k the nodes of the graph  𝐺 in Figure 1 in a different order, and so they are definitively differe
ices. 

end the section, we spend a few words on the principles behind the definition of Icentr. If 
gine to explore the graph starting from the node 𝑖଴, the partition of nodes in levels correspond

 minimum number of steps needed to reach another node, that is to say, if the node 𝑗 is in level
 shortest path, not necessarily the one with smallest weight, from 𝑖଴ to 𝑗 contains ℎ edges.
ilar argument holds for edges. Then, we modify the weights of the edges according to t
ghts of the nodes in the edge and to the distance from 𝑖଴. We consider the distance from 𝑖଴ a
e penalty, and the weight of the node as a positive attribute (see the discussion in Pathra
tion on penalties and their levels). The partial contribution of a single edge states the abo
ciples. From the discussion above, it follows that, if we assume that every node and every ed

 weight 1, a node has a higher ranking if the edges of the graph are closer to the node, accordi
he levels we construct to explore the graph starting from the given node. We remark that t
tition of nodes in levels is the same needed to construct a spanning tree, rooted at 𝑖଴, so to look
 graph from the point of view of the first node, in some sense. When computing a spanning tr
ever, we do not consider edges connecting nodes in the same level. On the contrary, in t
putation of Icentr, we consider all edges in the connected component containing the node 𝑖଴.  

The dataset 
ig cities, if available, the favorite means of transport is the metro, because of its higher speed
pared to surface transport (buses or tramways) or private cars. An underground train system i
plex physical network, whose simplified description reduces it to stations and rail trac

mber of stations, length of rail tracks and fares provide easily measurable properties of such
work. Passengers per hour or total number of them by day or year, or also most required orig
tination stations are much more demanding measurable properties. In this study, we analyz
ty-four underground networks of most known cities in the world. We associate an undirect
ph G ൌ ሺV, Eሻ to each network, where V is the set of nodes, and E is the set of edges. 
inition, an edge is the set of the two nodes linked by the edge.  

 our study, the graph we associate to a network has to represent the topological and function
perties of the network. Then, not every station of the network needs to be a node of the graph.
t, a station is a node of G if it is either a transfer station or a terminal. In particular, passi
ions (which have degree two) do not appear in the graph. There are exceptions to the previo
: if two different links connect the same couple of nodes, we add an additional node (which h
12 
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ree two) in order to distinguish the different links. Furthermore, if two lines have the sam
inal station, we insert a fictitious node so to avoid the node having degree two. Wh

sidering weights, we assign the length of fictitious links equal to 1 kilometer. 

an example of the methodology we have adopted, we insert both a Boston metro network ma
 the associated graph. In Boston metro network, there are 149 stations, but only 29 of them a
es in the associated graph. Hence, about 20% is needed to represent the topology of the netwo

a general remark, from the graph it is not possible to recover the lines of the network. If t
rmation is needed, one has to attach a label to each edge, so to distinguish between differe
s. 

ure 2: Boston metro map on the left, as found on the web (MBTA site). On the right, t
ociated graph: the nodes generally represent stations that are either terminal or junction. Afte
tion of almost 180°, one can overlap the graph to the map. 

 summarize some information on the networks and the associated graphs in the following Tab

erwards, for each graph, we assigned weights to edges in two different ways. The first weight
 number of stations on the edge, terminal stations included. The second weight is the distan
asured along the tracks between the terminal stations. We do not analyze the weighted graphs
 paper, and we plan to report the analysis of the dataset of weighted graphs in a future wo
re weights could be considered, so to analyze every graph from different perspectives. F
mple, the number of passengers per hour or by other aggregated interval (day, year), the orig
tination matrix and fare policy are very important information to analyze every transportati
work under study. 
13 
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le 1: List of cities and number of nodes and edges of corresponding graphs. 

derground 
twork 

Number 
of  

Nodes 

Number 
of 

Edges 

Total 
Length 

(km) 

Underground 
Network 

Number 
of  

Nodes 

Number 
of 

Edges 

Total 
Length 

(km) 

ens 12 14 85.8 Mexico City 42 62 195.8 

rcelona 36 53 131.2 Milan 21 24 91.3 

ijing 78 121 632.6 Montreal 11 12 61.6 

rlin 34 45 141.9 Moscow 65 106 393.1 

ston 29 34 114.7 New York 85 124 418.6 

ssels 9 10 35.9 Osaka 39 51 215.7 

charest 13 14 66.2 Paris 86 136 312.5 

enos Aires 18 24 54.4 Prague 9 9 64.0 

iro 12 14 88.8 Rome 10 10 62.7 

icago 19 19 161.7 Saint 
Petersburg 

17 20 117.9 

lhi 45 59 365.4 Seoul 119 194 1089.6 

ng Kong 35 39 205.7 Shanghai 88 142 683.5 

bon 13 15 40.6 Singapore 34 57 237.1 

ndon 75 112 405.5 Stockholm 20 20 105.7 

on 10 10 27.7 Tokyo 65 110 279.0 

drid 56 90 296.2 Toronto 12 12 75.9 

rseilles 7 7 21.1 Washington DC 26 32 218.2 

Application and analysis of outcomes 
his section, we customize PathRank and Icentr for transportation applications, and we show ho
se indices defined in section 3 in two different scenarios: the analysis of a single network, a

 comparison of networks in a dataset. The first application, namely the analysis of a sing
work, is the most common when using centrality indices, and we include it so to show t
entialities of PathRank and Icentr. The second application, namely the comparison of differe
works, is more challenging. We show that PathRank and Icentr can be used to cluster networ
he dataset, finding similarities between networks that can look very different at a first glan
., the number of nodes and edges can be different. As a single network, we study the gra
ociated to Boston underground system in full details. The case study can be easily adapted
er transportation networks. As a dataset, we use the one described in section 4 that conta
erground networks of worldwide cities. It is worth noting that this second case study can 
ily adapted to a wide range of different datasets, too.  

 Customize the indices 
ices PathRank and Icentr, as defined, depend on choices and parameters to be settled accordi
he application.  
14 
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hRank 

 us consider PathRank first. Its definition depends on the maximum length 𝑁 of paths, and 
 choice of the function that embodies the second principle used to design the index (see eq. (8)
tion 3.1). 

ce graphs associated to underground networks are finite, also the maximum length of paths
m is finite. Hence, in principle, we can settle 𝑁 large enough so that every path has leng
ller or equal to 𝑁. In correspondence of such an integer, once we select a penalty function, 

 asymptotic values for PathRank at each node, that is to say, even if we increase 𝑁, both t
trix 𝐵 and its eigenvector associated to the eigenvalue 𝜆 ൌ 1 do not change. For this reason, 
 𝑁௔௦௬ that value for 𝑁. From a computational point of view, for big graphs, 𝑁௔௦௬ can be qu
e, and the total number of paths is so huge that it is not possible to actually compute them all
asonable time. It is then meaningful to estimate 𝑁 in such a way that the ranking of the nodes
roximately the same as for 𝑁௔௦௬ even if the value of PathRank at each node is different from t
mptotic one. Of course, when the penalty function changes, the asymptotic values for PathRa
nge as well, and so the estimate for 𝑁௔௦௬ does. In the following Figures 3, 4 and 5, we highlig
 differences between the asymptotic values and the values taken by PathRank at each node 
ximum path length 𝑁 when 𝑁 grows, penalty function by penalty function, for Bost
erground network. 

 

ure 3: Differences between the asymptotic values and the ones for PathRank at each node 
ton graph, for N varying from 4 to 16, for the harmonic penalty function 𝑓ଵ. 

 

ure 4: Differences between the asymptotic values and the ones for PathRank at each node 
ton graph, for N varying from 4 to 16, for the quadratic penalty function 𝑓ଶ.  
15 
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ure 5: Differences between the asymptotic values and the ones for PathRank at each node 
ton graph, for N varying from 4 to 16, for the exponential penalty function 𝑓ଷ. 

those Figures 3, 4 and 5 show, no matter the penalty function we select, only a few nodes do n
nge their PathRank value on N, while nodes 8,9,21,23,24,26, 29 are the ones that get a value
 beginning that is very far from the final one. Nodes 8, 9, and 26 are the slowest to get th
mptotic value. On the other hand, the values at some nodes fluctuate very much. E.g., look
es 10, 12, 14, and 22. However, for 𝑁 ൒ 12, almost all nodes have their final ranking. Hen

 above Figures 3, 4 and 5 show that, even if 𝑁௔௦௬ ൌ 16 for Boston graph, an acceptable estim
the maximum path length is 𝑁 ൌ 12. 

 main difference between the three penalty functions is that the differences between the valu
𝑁 ൒ 4 and the asymptotic ones are in a smaller range if we select 𝑓ଷ for computing PathRan
s means that, independently from the value we fix as maximum path length, the error in usi
hRank for 𝑁 smaller than the asymptotic one is in general smaller than when using differe
alty functions. This is the reason why we select 𝑓ଷ in studying the dataset in next sections.  

 explain the behavior of penalty function 𝑓ଷ as follows. When the maximum path length grow
can construct not only paths between nodes that are far in the graph, but also much more pa
ing the same couple of near nodes. Since 𝑓ଷ strongly penalizes paths longer than the minimu

 contribution of longer paths between the same couple of near nodes is smaller than for oth
alty functions. It follows that, when we select the penalty function 𝑓ଷ, the eigenvector for 𝜆 ൌ
atrix 𝐵 is barely influenced by the many longer paths between near nodes, and so its variati

𝑁 is small.  

course, because of the same argument, 𝑓ଵ and 𝑓ଶ are of greater interest in applications in whi
h weight does not play an important role. 

finish the section, we make some further remarks on the maximum length 𝑁 of paths. When 
ct a very small maximum path length, PathRank and Eigenvector Centrality give very simi
lts. On the other hand, the choice of 𝑁 strongly affects the computation of all paths w

gth ൑ 𝑁 in a graph. Hence, one has to choose 𝑁 according to the computer on which PathRa
s, and to the size of the graph, where the size depends on the number of nodes, of edges, and
 topology of the graph itself. When analyzing the dataset, we settle 𝑁 ൌ 12, because 
putational limitations on the computer on which the Matlab script to evaluate PathRank ran. 
16 
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ally, we remark that, when analyzing a single graph, one can choose the penalty function
ording to the application, and then can compute PathRank values letting 𝑁 vary, so to explo
 ranking of nodes when the maximum path length grows. On the contrary, when analyzing
aset, we suggest to settle both the penalty function 𝑓 and the maximum length 𝑁 to be the sam
all graphs in the dataset, so to have PathRank values computed under uniform constrains. 

said, in next sections, we choose function 𝑓ଷ as penalty, and 𝑁 ൌ 12 in analyzing the dataset. 

ntr 

w, we consider Icentr. This index depends on the weights of nodes and edges. If the graph
ghted, then it is natural to use the given weights. When the nodes of the graph do not have
ght, there are many different possible choices to assign weights to nodes. E.g, uniform weigh
the outcomes of a centrality index such as Degree, Betweenness, Closeness, or Eigenvec
trality, or also random weights, where the values are randomly chosen in a suitable range (in t
e of Boston graph, ሾ0, 30ሿ is a suitable range since there are 29 nodes). Of course, also PathRa
 be used. When using a centrality index as weights for the nodes, Icentr can be considered a
ond level centrality index. Different choices for the node weights produce different values 
ntr, as it can be easily expected and checked. As the following Figure 6 shows, we essentially g
 same values for Icentr when we select one among Closeness, Degree and Uniform as no
ghts (some values are nil because of normalization).  

ure 6: Icentr indices for Boston graph and three types of node weights. On the x-axis, the nod
oston graph, from 1 to 29. On the y-axis, the value of normalized Icentr. The blue bars on t

 represent Icentr when we select Closeness as node weights, the yellow bars in the middle a
ained when selecting Degree, and finally, the red bars on the right draw Icentr for Uniform no
ghts.  

observing Figure 6, we can see that only nodes 1, 6, 7, 10, 17, 20 and 28 have considerab
inct index values; all other nodes have more or less the same values. Nevertheless, t
hlighted dissimilarities have an impact on the ranking of some nodes. In particular, the sev
es 1, 6, 7, 10, 17, 20, 24 change their ranking, as well as nodes 19, 23, and 21, 25, 28, a
lly, nodes 18, 27, when we order the nodes according to Icentr computed with one of the abo

ntioned centrality indices. 
w, we compare Icentr values computed by selecting Eigenvector Centrality and Betweenne
h the ones computed by selecting Closeness, taken as a representative of the previous selection
17 
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ure 7: Icentr indices for Boston graph and other three types of node weights. On the x-axis, t
es of Boston graph, from 1 to 29. On the y-axis, the value of normalized Icentr. The blue bars 

 left represent Icentr when we select Closeness as node weights, the green bars in the middle a
ained when selecting Betweenness, and finally, the black bars on the right draw Icentr 
envector centrality node weights.  

 evident that the values of Icentr when we select Eigenvector centrality or Betweenness, alm
ncide at half of the nodes, while they both overlap to Closeness for only a few nodes. 

dom node weights produce Icentr values that are very different from the others. However, if o
nterested in analyzing the graph from a topological point of view, we suggest not to select
ause random weights do not always respect inner symmetries of the graph. E.g., in Bost
ph, we can swap places of nodes 3, 4, 5 without changing the layout of the graph, so that 
ect their values to be the same. For Random weights that does not happen. In general, it is n
y to determine all possible symmetries of the graph, and so it is hard to assign random weights
es that respect all inner symmetries. On the contrary, when we use weighted graphs, topologi
metries are not always respected by weights, and so random weights can be used in this settin

 example, if we weight nodes according to the number of passengers using that station, nodes
 have no more the same weight. As suggested by the anonymous referee, we have averaged t

ue of Icentr at each node, v, of Boston graph, after computing it with node weights random
racted from the interval [0, b] sufficiently many times. The average value is approximately equ
he value of Icentr at v, when computed with uniform weights equal to b/2. The reason steams 
 equalities 

𝐸൫𝐼𝑐𝑒𝑛𝑡𝑟ሺ𝑣ሻ൯ ൌ  ∑
௪ሺ௘ೕሻ

ଶ೗೐ೡቀ೐ೕቁషభ
 𝐸 ቀ𝑥൫𝑒௝൯ቁ ൌ  ∑

௪ሺ௘ೕሻ

ଶ೗೐ೡቀ೐ೕቁషభ
 
௕

ଶ
௥
௝ୀଵ

௥
௝ୀଵ , 

  

𝐸 ቀ𝑥൫𝑒௝൯ቁ ൌ 𝐸ሺ𝑥௛ሻ ൌ
𝑏
2

 

every node v in the graph, where E is the expected value of a random variable. 
m a topological standpoint, we believe that the ranking of nodes through Icentr with Eigenvec
trality is the best option among the various possibilities. In fact, the initial stripe contains 
inal nodes, with the only exceptions of nodes 7, 20, and 24. Moreover, node 28 has a high

king with respect to nodes 21, 22, and 25. Lastly, nodes 1, 17, and 12, 14 have values that a
y close. Eigenvector centrality is the only centrality index that produces those results and is t
y classical centrality index suitable for transportation applications. Furthermore, the values 
ntr with Eigenvector centrality can be easily divided in classes, with values smoothly varyin
18 
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 those reasons, in next sections, we use Eigenvector centrality when computing Icentr, if 
e to select a unique centrality measure to get weights for nodes. 
remarked for PathRank, when considering a graph only, one can vary the centrality measure a
pare the different outcomes of Icentr. On the contrary, when analyzing a dataset, we suggest

ose a centrality measure only, and to use it on the whole dataset, to avoid the analysis of the b
ss of data produced by computing Icentr with all possible initial options on all graphs in t
aset. 

 Boston: a case study 
ton underground network consists of 114.7 km, divided in 3 heavy rail, 2 light rail and 1 b

id transit lines. In the network, there are 149 working stations plus 7 under construction. T
p and the associated graph are Figure 2 in section 4. In it, we can distinguish a median axis (t
h from node 3 to node 26), and two quite symmetric parts, that share the nodes 29 and 26 (
e only) of the median axis. 

 use of centrality indices aims at finding the most important nodes in the graph, from the po
view of each index. When comparing more indices, one can find nodes that are the m
ortant in the graph, no matter the point of view one adopts. Hence, we first analyze the grap
using PathRank, then by using Icentr. Finally, we compare results to draw conclusions 
ton underground, by considering PathRank, Icentr, and Eigenvector Centrality, a classi
trality index. As previously said at the beginning of section 3, Degree, Betweenness a
seness are not suitable when analyzing underground networks. 

begin, we compare the asymptotic values that PathRank computes when using the three pena
ctions. In fact, in the previous section, penalty function by penalty function, we compared t
mptotic values with the values for a smaller maximum path length, but we did not compa
ues obtained for different penalty functions. The node ranking changes accordingly to harmon
dratic or exponential function. 

 

ure 8: We report the asymptotic values obtained by PathRank. On the x-axis, we have the nod
 1 to 29, on the y-axis, the normalized values. The harmonic values are in red on the left, t

dratic values are green in the middle, and finally, the exponential values are in blue on the righ
19 
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s evident that the harmonic and quadratic values are very similar at more than half of the nod
ile the exponential values agree with the others for twelve nodes on 29. The ranking is definite
erent between exponential and the two others. 

ore showing computation results, we describe the methodology we are going to use in analyzi
m. As a general remark, we expect that, whatever index suitable to examine one property, t
ex gets similar values on nodes that have similar features with respect to that property. Hence
mportant to collect together nodes that the chosen index likewise ranks. To make effective t
tence “likewise ranked”, we order the values of the index, and compute the difference betwe
secutive scores. Then, we select the top values in the difference sequence, and collect nod
ose values fall between two consecutive top values. The number of top values to consider
itrary: both too few and too many of them will provide a poor clustering. We decided to consid
 values in the difference sequence that are about three times the average value 𝑗𝑢𝑚𝑝௔௩
୶ି ௠௜௡

௡ିଵ
 where 𝑚𝑎𝑥 and 𝑚𝑖𝑛 are the maximum and the minimum value the index gets on t

es, and 𝑛 is the number of nodes. As we use normalized values, max ൌ 1 and min ൌ 0 so th
 numerator of the above ratio is equal to 1. 

w, we present the results of the ranking procedure according to PathRank in some tables. T
bol ‘—‘ in a table means that the difference between the nodes in subsequences separated 

 symbol is bigger than the threshold.  

ording to the above procedure for 0.105 as threshold, when using the exponential pena
ction, nodes in the top class are (Table 2): 

ximum path length Nodes in the top classes, ordered in increasing ranking 
4 18, 27, 21, 28, 29 — 26 
8 29, 22, 21, 18, 27, 25, 23, 28 

12 24, 29, 22, 27, 21, 18, 25, 23, 28 
16 24, 29, 22, 27, 21, 18, 25, 23, 28 

le 2: Nodes in the top class for 0.105 threshold according to PathRank computed with t
onential penalty function.  

 evident that node 26, top node for 𝑁 ൌ 4, is no more in the top class for the other values of t
ximum path length. Moreover, nodes 18 and 21 become more important than node 27 as
ws, while nodes 25, 23, and 28 are the most important for 𝑁 ൒ 8. 

the following Tables 3 and 4, we report the nodes in the top class when we use the two oth
alty functions. 

aximun path length Nodes in the top classes, ordered in increasing ranking 
4 27, 18, 21, 28, 29, 26 
8 10, 6, 26, 19, 12, 14, 7, 1, 17, 24, 29, 21, 25, 27, 22, 28, 18 -- 23 
12 10, 29, 21, 12, 14, 7, 1, 17, 25, 27, 8, 9, 22, 28, 18 -- 24 -- 23 
16 10, 29, 21, 12, 14, 7, 17, 1, 25, 27, 8, 9, 22, 28, 18 -- 24 -- 23 

le 3: Nodes in the top class for 0.105 threshold according to PathRank computed with t
monic penalty function.  

de 26, top for 𝑁 ൌ 4, is in the second top class for 𝑁 ൌ 8, and does not belong to the top thr
ses for bigger 𝑁. On the contrary, the ranking of node 24 grows with the maximum path lengt
20 



Journal Pre-proof

 

M

Tab he 
qua

For he 
beg all 
nod ൌ
16, 4, 
and

If w th, 
we rth 
not th. 
No 24 
wit he 
gra an 
axi he 
me

Ice ch 
nod  is 
equ he 
ord

N
B
C
D
E
U

Tab  as 
nod de 
wei

It is en 
if th  a 
cyc we 
con he 
sym

Fin ity 
ind
 Jo

ur
na

l P
re

-p
ro

of

aximum path length Nodes in the top classes, ordered in increasing ranking 
4 22, 25, 27, 28, 21, 18, 29, 26 
8 23 
12 24 — 23 
16 24 — 23 

le 4: Nodes in the top class for 0.105 threshold according to PathRank computed with t
dratic penalty function.  

 the quadratic penalty function, we have differences bigger than the threshold only at t
inning and at the end of the node sequence, and so we get a poor information because almost 
es belong to the same class. The eight top ranked nodes for quadratic penalty function and 𝑁
 are 27, 28, 22, 18, 8, 9 — 24 — 23, but nodes from 27 to 9 belong to a class different from 2
 they are not the only nodes in that class. 

e compare the results for the three penalty functions and the asymptotic maximum path leng
get that the most important nodes according to PathRank are 24, 22, 18, 23, and 28. It is wo
ing that nodes 18 and 28 are linked by an edge, while nodes 22, 23, and 24 make a length 2 pa
des 18 and 28 are in the part of the graph opposite to the one that contains nodes 22, 23, and 
h respect to the median axis. Instead, if we consider 𝑁 ൌ 4, node 26 is the most important in t
ph for all penalty functions. Hence, the most important nodes change from one on the medi
s for small 𝑁 to five in different parts of the graph, in symmetric position with respect to t
dian axis, for 𝑁 large. 

ntr is the second index we consider. As previously said, we compute the Icentr values at ea
e by using all but Random as node weights. In this case, too, the threshold to form classes
al to 0.105, about three times the average difference between two consecutive values in t
ered Icentr sequence. We report the results in the following Table 5. 

ode weights Nodes in the top class, ordered in increasing ranking 
etweenness 25, 22, 27, 21, 29, 18, 26, 28 
loseness 22, 25, 28, 21, 27, 18, 29, 26 
egree 22, 25, 21, 28, 18, 27, 29, 26 
igenvector Centrality 22, 25, 21, 28, 27, 29, 18, 26 
niform 18, 27, 29, 26 
le 5: Nodes in the top class for Icentr index, computed with the specified centrality measures
e weights. For all choices but the last, two classes contain all nodes. For the Uniform no
ghts, the classes are three.  

 evident that the four top ranked nodes are the same for all node weights but Betweenness, ev
eir order changes according to the centrality measure. In Boston graph, those four nodes form

le containing node 28. The cycle has an edge on the median axis, and is on one side of it. If 
sider the top ranked nodes without taking into account Uniform node weights, we restore t
metry around the median axis. 

ally, we compare the results of ranking nodes by PathRank, Icentr and the classical central
ex Eigenvector centrality. 
21 
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ure 9: We report the values obtained by Eigenvector centrality (red), Icentr with Eigenvec
trality as node weights (green), and PathRank with 𝑓ଷ as penalty function (black). On the x-ax
have the nodes from 1 to 29, on the y-axis, the normalized values.  

the above histogram in Figure 9 shows, the values obtained by Eigenvector centrality and Ice
puted with Eigenvector centrality as node weights are generally different. This shows th

ntr depends not only from node (and edge) weights, but from the topology of graph. Moreov
 differences between PathRank and Eigenvector centrality are evident, even if both indices a
ed on the computation of eigenvectors. The two indices become more similar if we set t
ximum path length to a small value. If we perform an analysis for Eigenvector centrality th
ks like the one for the other two indices, we get that the nodes in the two top classes are: 21, 2
 18, 27 in the second top class and 26 in the first one, while twenty-one nodes over twenty-ni
ong to the bottom class. This shows that Eigenvector centrality is not able to partition the nod
ording to functional similarities.  

 top ranked node both for Icentr and for PathRank with asymptotic maximum path length
e 18 that is then the most important in the graph from the two index perspectives. It is in t
ond top class for Eigenvector centrality, too. If we consider Eigenvector centrality, Icentr a
hRank with maximum path length 𝑁 ൌ 4, node 26 is the most important in Boston network. O
 map, node 18 corresponds to Tuft Medical Center and is one of the crossings of Orange a
er Lines. Node 26 corresponds to Downtown Crossing and sits at the crossing of Red, Oran
 Silver lines. The fact that they both sit at crossings of at most two lines is coherent with t
thodology explained in section 4 to construct the graph associated to a metro network. Since 
 performing a topological analysis of the graph, the results must be considered from that point
w. 

Application to the whole dataset 
his subsection, we use PathRank and Icentr to cluster different networks according to similarit
t emerge thanks to the evaluation of the two indices above. The main problem to face wh
king for similarities is the fact that graphs associated to different networks in our dataset ha
erent number of nodes and edges. E.g., the number of nodes ranges from 7 in Marseil
work to 119 in Seoul one. In literature, some techniques are available to cluster data, mainly tim
es, with different lengths. We have used Dynamic Time Warping (DTW, for brief) (Paliwal
 1982) for clustering networks in our dataset according to PathRank and Icentr (Figure 10). T
22 
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lts have not been satisfactory, in our opinion, probably because our data are far from being tim
es. In particular, the number of nodes in the graph strongly affects the DTW distance betwe
tors associated to two graphs.  

er standard techniques have shown analogous limitations. Then, taking inspiration from sign
cessing, we used a different approach we now describe. Even if we refer to PathRank in o
cription, we use it also for Icentr.  

first, we computed PathRank values for each node for every graph in our dataset. Secondly, 
malized the computed values as follows. For every graph 𝐺, we computed the minimum val
 and the maximum value 𝑀ீ PathRank gets on the nodes in 𝐺. The normalized value at the no

s then 𝑛𝑝𝑟ሺ𝑥ሻ ൌ  ௣௔௧௛௥௔௡௞
ሺ௫ሻ ି௠ಸ

ெಸି௠ಸ
. Of course, the normalized values are in the range ሾ0, 1ሿ, a

 extremal values are attained at the nodes where PathRank gets either the minimum or t
ximum value. Thirdly, we order the normalized values, so to get an increasing vector of valu

 0 to 1, for every graph in the dataset. Such an ordered vector can be plotted in a plane. T
ering of the vector is equivalent to permute the labels of the nodes, and so to transform the gra
nother isomorphic one. Then, we mark equally spaced points on the x-axis, one for each nod
he interval ሾ0,𝜋ሿ, and for each node, we plot the corresponding value of the index, so that on
s we measure amplitudes. It is then natural to transform the vector in a continuous functio
metric with respect to the amplitude axis, by computing the 𝑛-th Fourier polynomial  

𝐹௠ሺ𝑥ሻ ൌ  ଵ
ଶ

 𝑎଴ ൅  ∑ 𝑎௞ cos ሺ𝑘𝑥ሻ௠
௞ୀଵ  (14

er a few experiments, we decided to set 𝑚 ൌ 3 so that at each normalized vector, no matter the
ber of nodes in the graph, we associate the four-tuple ሺ𝑎଴, 𝑎ଵ,𝑎ଶ, 𝑎ଷሻ where  

𝑎௜ ൌ  ଵ

௡ିଵ
 ∑ ൬𝑛𝑝𝑟ሺ𝑘ሻ 𝑐𝑜𝑠 ቀ

௞ିଵ

௡ିଵ
 𝑖 𝜋ቁ ൅ 𝑛𝑝𝑟ሺ𝑘 െ 1ሻ 𝑐𝑜𝑠 ቀ

௞ିଶ

௡ିଵ
 𝑖 𝜋ቁ൰ .௡

௞ୀଶ  (15

 formula above is a discrete version of the integral 
ଶ

గ
׬  𝑓ሺ𝑥ሻ cosሺ𝑖𝑥ሻ  𝑑𝑥

గ
଴  that computes t

fficient 𝑎௜ when one wants to compute the Fourier polynomial of the function 𝑓ሺ𝑥ሻ, symmet
h respect to the amplitude axis. In the discretization procedure, we use a trapezoidal quadratu

ula. As last remark, for 𝑖 ൌ 0, the cosine is evaluated at 0 only, and so it does not contribute
 result. 

ce we get the four-tuples associated to the normalized PathRank vector for every graph, we us
stering algorithm. The squared distance between 𝐴ሺ𝑎଴,𝑎ଵ,𝑎ଶ,𝑎ଷሻ and 𝐴′ሺ𝑎଴

ᇱ ,𝑎ଵ
ᇱ ,𝑎ଶ

ᇱ ,𝑎ଷ
ᇱ ሻ must 

puted as  

𝑑ଶሺ𝐴,𝐴ᇱሻ ൌ  ଵ
ଶ

 ሺ𝑎଴ െ 𝑎଴
ᇱ ሻଶ ൅ ሺ𝑎ଵ െ 𝑎ଵ

ᇱ ሻଶ ൅ ሺ𝑎ଶ െ 𝑎ଶ
ᇱ ሻଶ ൅ ሺ𝑎ଷ െ 𝑎ଷ

ᇱ ሻଶ (16

epresents, up to a scalar, the squared distance between two Fourier polynomials with the th
er. Such a procedure allows us to get information on the shape that the graph of the vector
malized PathRank values has (Figure 11). Furthermore, the comparison between different shap
omes much easier because each one is codified by means of four coefficients. Results are qu
resting, as the following pictures (figures 12 up to 18) show.  
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a) b) 

 

c) d) 

ure 10: On the first line, the PathRank value graphs for (a) Beijing (left) and (b) Berlin (righ
se two networks are the closest according to DTW distance on PathRank. On the second li

 Icentr value graphs for (c) Beijing (left) and (d) Athens (right). Those two networks are t
sest according to DTW distance on Icentr. On the x-axis, we report the node numbers. 
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ure 11. We plotted the ordered normalized PathRank vector of Boston graph, and drew t
rier trigonometric polynomials with order m=1, 2, 3 to show how the approximation improv
ording to the order. On the x-axis, the nodes of the graph are equally spaced points in t
rval ሾ0,𝜋ሿ. On the y-axis, both Fourier trigonometric polynomials and the values of t
malized index mostly belong to the interval ሾ0,1ሿ.  

a) b) 

ure 12: Graphs of the two closest vectors of normalized PathRank values according to the th
er Fourier polynomials. (a) Paris and (b) Shanghai network with 86 and 88 nodes, respectively

 clustering algorithm starts from the two closest points, and substitutes their centroid to t
nts. Then, it repeats the computation of squared distances. If one of the two closest points i
troid, the algorithm computes the new position of the centroid of a set of three or more poin
the end, we present the dendrogram of the results. In the following Figure 13, the results 
stering processes for PathRank. 
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ure 13: Dendrogram of the networks in the dataset for PathRank index. 

 PathRank, when we fix a threshold equal to 0.06, we partition our dataset in 5 classes: the fi
ses contain 3, 11, 11, 8 and 1 networks, respectively. The number of nodes is not a discrimina

form the classes. For example, the second class contains Athens and Paris, while the th
tains Saint Petersburg and Seoul. The first and forth classes are the most homogeneous w
ect to the number of nodes of contained graphs, because they contain only small or mediu

works. Buenos Aires graph shows itself to be dissimilar to every other. 

 

ure 14. The five drawn curves are the ones corresponding to the five centroids of the classes
ich we partition the database. The number corresponds to the class, from left to right in t
drogram in Figure 13. On the x-axis, the interval ሾ0,𝜋ሿ. 
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 𝑎଴  𝑎ଵ  𝑎ଶ  𝑎ଷ 

1st class 0.693995  ‐0.55701  0.489510  0.031549 

2nd class 1.151829  ‐0.39900  ‐0.124710  ‐0.044960 

3rd class 0.932001  ‐0.34366  ‐0.004860  ‐0.065770 

4th class 0.867820  ‐0.49156  0.141562  0.017480 

5th class 0.555365  ‐0.26094  0.164330  ‐0.12135 

le 6. Fourier coefficients of the curves in Figure 13. 

 do not report the four-tuples associated to each graph. However, graphs in the second class a
 ones with biggest 𝑎଴, Buenos Aires has the minimum for 𝑎଴, and graphs in the first class are t
s with smaller 𝑎଴, Buenos Aires excluded. It is not easy to distinguish graphs in the third a
rth classes: as a general feature, 𝑎ଵ coefficient is bigger for graphs in the third class than 
phs in the fourth class. It is possible to give a description of ordered normalized PathRa
tors associated to each centroid. The graphs in the first class have ordered normalized PathRa
tors close to square wave, that is to say, the values of normalized PathRank are mostly 0 or
 only a few in between the range. The graphs in the second class have ordered normaliz
hRank vectors that, when plotted, are over the straight line connecting the first and last point
 sequence. The graphs in the third class are characterized as the ones whose ordered normaliz
hRank vectors swing around the straight line connecting the first and last point in the sequen
 Boston graph fulfils this description, as shown in Figure 11. The graphs in the fourth class ha
ered normalized PathRank vectors that, when plotted, are under the straight line connecting t
t and last point in the sequence. The Buenos Aires graph has a shape in between the square wa
 the graphs in the fourth class.  

e let the threshold grow, the second and the third class join first, then the fourth class joins
ir union, then Buenos Aires, and lastly, the first class joins to the others. Hence, Buenos Ai
 the graphs in the first class differ very much from all others, from the point of view 
hRank. 

 satisfactorily apply the procedure above to analyze the dataset from the point of view of Icen
act, the procedure is able to catch the shape of graphs of vectors of Icentr values, as shown in t
owing Figure 15. 
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a) b) 
ure 15: Graphs of the two closest vectors of normalized Icentr values according to the third ord
rier polynomials. (a) Hong Kong and (b) Moscow networks with 35 and 65 nodes, respectivel

ce we have the four-tuples associated to each graph of the dataset, we run a clustering algorith
or PathRank, and we draw the resulting dendrogram (Figure 16). 

 Icentr, when we fix a threshold at 0.04, we partition our dataset into 4 classes: they contain 1
 2, and 1 network, respectively. For Icentr, too, the number of nodes is not a discriminant to fo
 classes. Moreover, when the threshold grows, the two big classes join first, then, the two sm
ses join. This shows that the three networks in the last two classes are different from the othe
 Icentr point of view.  

ure 16: Dendrogram of the networks in the dataset for Icentr index. 
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ure 17. The four drawn curves are the ones corresponding to the four centroids of the classes
ich we partition the database. The number corresponds to the class, from left to right in t
drogram in Figure 16. On the x-axis, the interval ሾ0,𝜋ሿ. 

𝑎଴ 𝑎ଵ 𝑎ଶ 𝑎ଷ 

st class 0.847878  ‐0.42499  0.123730  ‐0.031800 

d class 1.004507  ‐0.43145  ‐0.022800  ‐0.023140 

d class 0.827827  ‐0.57917  0.342391  0.091571 

h class 0.625000  ‐0.53275  0.603553  ‐0.043890 

le 7.  Fourier coefficients of the curves in Figure 16. 

w, we describe the four classes above. 

 do not report the four-tuples associated to each graph. However, Prague has the minimum 
fficient, while the graphs in the fourth class have the smallest 𝑎ଵ coefficient (Table 7). 
inguish between graphs in the first two classes, it is enough to look at 𝑎ଶ coefficient. In fa
h a coefficient is smaller for graphs in the second class.  

 description of ordered normalized Icentr vectors for graphs in each class is like the one 
hRank vectors. We summarize the main characteristic of each class. Graphs in the first cla
e Icentr vectors that, when plotted (Figure 17), are under the straight line connecting the fi
 last point in the sequence, while vectors associated to graphs in the second class stay over t
ve line. Boston graph belongs to the first class, and so its Icentr vector has a shape like the o
ectors in Figure 15. Graphs in the last two classes have ordered normalized Icentr vectors th

k like square waves, but, since the number of nodes that get 0 as value is different in percenta
ween graphs in the third and in the fourth class, the associated vectors do not stay in the sam
s. As last remark, for Icentr, no vector has a shape swinging around the straight line connecti

 first and last point of the sequence. 

 above considerations conclude the analysis of our dataset from the point of view of PathRa
 Icentr, one at a time. We propose two methodologies to analyze the dataset from the tw
29 
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spectives at the same time. The first proposal consists in taking each class with respect to Ice
 sub-dataset, and to filter it according to PathRank. At the end of the process, we get 20 class
ost associated to each couple (PathRank class, Icentr class). For example, no graph is in t

) class, while Moscow, Paris, and Milan graphs are the only in the (2,1) class. Graphs in ea
s are homogeneous with respect to both indices. The second proposal consists in comparing t
troids of the two partitions, so to associate graphs with ordered normalized vectors having
ilar shape with respect to both indices. Under this second analysis, we get that the first class 
hRank looks like the fourth one for Icentr, PathRank second and third classes looks like Ice
ond class, and PathRank fourth class looks like Icentr first class. Finally, the fifth class 
hRank has no correspondence in Icentr classes. 

Conclusions 
this paper, we define two novel centrality indices, PathRank and Icentr, to rank the nodes 
phs associated to underground networks. After a review of a few papers aiming at studyi
phs associated to networks by means of suitable indices, we describe the methodology we ado
associate a graph to an underground network. We have applied that methodology to 
erground networks of worldwide cities, and the resulting graphs constitute our dataset. 
lained in section 3, the first novel index, PathRank, is a generalization of PageRank algorith
able to rank nodes in a transportation context. The second index, Icentr, ranks the nodes of t
ph by means of weights of nodes and edges, scaled according to the distance from the consider
e.  

y both depend on the topology of the graph, since we consider paths. However, the dependen
PathRank on the topology is partially hidden from the computation of the contribution of ea
h to the final value. 

 improvement of the enumeration of paths into a graph would allow researchers to g
mptotic values for PathRank in every graph, independently from its size. That would allow
prehensive assessment of the network performance. As explained while studying Bost

work, the computation of PathRank for bounded path length is however meaningful, since it
ikely that metro passengers travel on long routes only. In a different direction, we ha

slated what we called the first principle, i.e. a long path is barely attractive, into the function

ile we gave different choices of functions representing the second principle. It would 
resting to compare PathRank values for different choices of functions representing the abo
t principle.  

ossible upgrade of Icentr consists in bounding the number of explored levels when computing
ertheless, it is not interesting to use Icentr outcomes as starting weight for nodes wh
puting Icentr, since this procedure converges to an asymptotic result very close to the Ice

ues obtained at the beginning in 3 or 4 iterations, when one uses normalized Icentr values. 
rse, it would be interesting to compare Icentr values for the weights we proposed, with the on
get when using PathRank as a weighting index. We did not explore that choice because,

ay, we are not able to compute the asymptotic PathRank values for all graphs.  

er a very general definition of the indices, we have customized them in the first part of section
 two remaining parts of that section are devoted to a detailed study of Boston graph, and to t
y of the dataset. In both studies, we used novel techniques, since the standard ones had giv
k results when applied in that setting. In particular, the use of quantiles in the study of Bost
30 
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ph caused the loss of nodes with similar role with respect to the considered index. In the analy
the dataset, we used Fourier trigonometric polynomials to investigate shapes of normaliz
tors, no matter the considered index. Such a change in the perspective allowed us to perform
stering in the dataset. We believe that both the use of large differences in an ordered vector a
 use of Fourier trigonometric polynomials as approximating functions for ordered vectors w
erent lengths, can be fruitfully applied to study graphs when different indices are computed. 
outcome of the study of Boston graph from the topological point of view, we found the m
ortant nodes in that underground network. Once more, we remark that our analysis is a model

at we mean with “study of a graph”. Such study can be performed on other graphs associated
works, even if not underground. Outcomes of our study on the dataset were the number 
ses in which the dataset is partitioned for a given threshold, and their centroids. When adding
 graph to the dataset, one can quickly assign it to one of the classes by computing the squar
ance from one of the centroids. Of course, once the new graph is added to a class, one ought
pute the new centroid of the class. A challenging problem is the following: the values 

hRank and Icentr for the graph of an underground network in our dataset produce Four
onometric polynomials that are close to one of the computed centroids. We do not know wheth
 ordered values for the indices above for a network not in the dataset can be approximated 
ans of one of our centroids. The problem is equivalent to the robustness of our dataset from
istical point of view, since it would be able to represent every other graph representing simi
works. In such a case, we could then use the dataset for defining a transportation graph in 
tract sense.   

ure research in transportation will concern the extension of this approach to weighted grap
mely edge length and number of stations per edge) and its use in the study of dynamic featu
raphs when weighted by transportation variables such as passenger per hour per edge. In pu

thematics, instead, the investigation of properties of the indices will provide a deep
erstanding of the dependence of the indices on the topology of graphs. 
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