
Fortifying RTL Locking Against Oracle-Less
(Untrusted Foundry) and Oracle-Guided Attacks

Nimisha Limaye∗, Animesh B. Chowdhury∗, Christian Pilato†, Mohammed T. M. Nabeel‡,
Ozgur Sinanoglu‡, Siddharth Garg∗, Ramesh Karri∗

∗New York University, USA, †Politecnico di Milano, Italy, ‡New York University Abu Dhabi, UAE

Abstract—Logic locking protects integrated circuits (IC)
against intellectual property (IP) theft, IC overbuilding, and
hardware Trojan insertion. Prior locking schemes operate after
logic synthesis and cannot protect the semantic information
embedded into the logic. Register-transfer level (RTL) locking
can protect the sensitive IP semantics and are EDA tool-chain
agnostic, allowing seamless integration into arbitrary design
flows. State-of-the-art RTL locking protects against the untrusted
foundry assuming no access to working chip (oracle). However,
it does not protect against oracle-based attacks. In this work, we
propose to fortify RTL locking to protect against all untrusted
entities in the supply chain, including foundry for oracle-less
attacks, and test facility and end users for oracle-guided attacks.

I. INTRODUCTION

Increasing fabrication costs due to technology scaling cre-
ated a globally distributed integrated circuit (IC) supply chain
wherein IC fabrication, testing, and packaging are outsourced
to different entities around the globe to amortize this cost [1].
The presence of potentially untrustworthy entities in the IC
supply chain opened up avenues for attackers to pirate con-
fidential intellectual property (IP), overproduce ICs, and to
insert malicious hardware Trojans. An attacker with access to
a reverse-engineered netlist obtained from the GDSII at the
foundry or by physical reverse engineering as an end user
could get the IP information and either overbuild it or steal it.

Logic locking seeks to safeguard designs from such at-
tacks [2]. In the past, locking schemes inserted key gates either
in the gate-level netlists or structural register-transfer level
(RTL) files [3], [4]. Obfuscation was delegated to security-
oblivious and deterministic synthesis tools; this opened the
doors to structural-analysis attacks [5], [6]. When an attacker
has access to the functional IC (the oracle), oracle-guided
attacks like Boolean satisfiability (SAT)-based ones can be
launched to retrieve the secret locking key [7]. Further, com-
pound locking scheme [8] proposed to thwart oracle-guided
and structural attacks at once is also shown to be broken [9].

Researchers proposed high-level logic locking schemes dur-
ing high-level synthesis (HLS) [10] or directly on behavioral
RTL [11]. As shown in Fig. 1, these schemes operate on a
technology-independent representation of the design, making
the obfuscated designs portable and reusable across different

The research is supported in part by NSF (A#: 1526405), DARPA Au-
tomatic Implementation of Secure Silicon (AISS) program (#: HR0011-20-
9-0043), the NYU Center for Cybersecurity (cyber.nyu.edu), and NYUAD
Center for Cybersecurity (sites.nyuad.nyu.edu/ccs-ad).

RTL

IP Design

RT
L 

Lo
ck

in
g

Lo
gi

c
Sy

nt
he

si
s

Locked
Design

netlist

Oracle-less threat model

Fu
nc

. M
od

e 
Is

ol
at

io
n

Lo
gi

c
Sy

nt
he

si
s

netlist

Oracle-guided threat model

RTL

Protection of
IP semantics 

Protection of
key bits 

Multi-level, orthogonal 
solutions

Agnostic to input flows
and synthesis flows

✓

✗ Protection against only 
untrusted foundry 

Protection against 
all entities

Fig. 1: Designer can protect semantically meaningful, sensitive
information by operating at the register-transfer level (RTL).
This can thwart an untrusted foundry that has no access to an
oracle. Isolating functional mode from the test mode further
protects against all other entities that have access to an oracle.

TABLE I: Comparison with prior work
Attack Untrusted foundry Untrusted end user

TAO [10] SMT [12] 3 7
ASSURE [11] SAT [7] 3 7

This work - 3 3

ICs. However, these schemes currently focus on thwarting
an untrusted foundry (oracle-less threat model) and cannot
defend against oracle-guided attacks [7], [12] (see Table I).
For widespread impact, these approaches must be extended to
protect the IPs against attacks by all entities in the IC supply
chain, with or without an oracle.

In this work, we fortify existing RTL locking scheme [11]
against oracle-based attacks by combining it with functional
mode isolation (FMI) methodology. The oracle-based attacks
succeed in recovering the secret key mainly when they have
access to both the internal system state and the primary out-
puts. FMI methodology disables access to the internal system
state when it senses activity on the scan infrastructure. This
combined defense achieves the required security and output
corruption to thwart all the untrusted entities in the supply
chain. Composing the orthogonal solutions does not affect the
complementary security guarantees that each offers. Instead, it
provides a multi-layer protection, where RTL locking hides the
semantics from the foundry and FMI protects against oracle-
based attacks. The four key contributions of this work are:

1) While RTL locking claims proven resilience to oracle-
less attacks, for the first time we assess if this is indeed
the case. We show that RTL locking thwarts oracle-less
redundancy attacks [5] and explain where it applies.

2) We add RTL functional mode isolation (FMI) as an

cyber.nyu.edu
sites.nyuad.nyu.edu/ccs-ad


additional security layer to thwart oracle-guided attacks
by design (e.g., SAT attacks [7]) that rely on scan access.

3) Using the oracle guided attack tool KC2 [13], we show
that FMI thwarts such attacks and clarify where it applies.

4) We demonstrate the scalability of integrated RTL lock-
ing on several RTL benchmarks [14] and on the tape-
out-ready Cortex-M0 micro-controller targeting Global-
Foundries 55nm LPe.

II. BACKGROUND AND RELATED WORK

A. Threat Model

There are two broad categories of threat models, viz., oracle-
less and oracle-guided. Under oracle-less threat model, we
assume the attacker is an untrusted foundry that has access
only to a reverse-engineered netlist from which he/she can
extract information about operations and signals. Under the
oracle-guided threat model, we assume the attacker is an
untrusted end user and has access to the functional IC (oracle)
and can obtain the underlying netlist by either colluding with
an untrusted foundry or reverse-engineering the IC.

Prior RTL locking solutions [10], [11] focus on the oracle-
less threat model for low-volume IC production. In this work,
we aim at fortifying this approach to consider also an oracle-
guided threat model where the attacker has access to both
the reverse-engineered netlist and a working IC (oracle). In
this case, we assume the attacker to be at any point in the IC
supply chain: an untrusted foundry, test facility, or end user.

B. Logic Locking

Logic locking is a design-for-trust solution to safeguard
ICs against hardware attacks. It inserts key gates driven by
secret key inputs later stored in a non-volatile tamper-proof
memory located on the IC. When the secret key is applied,
the IC becomes functional and provides correct results. For
all incorrect keys, the IC produces erroneous outputs. Logic
locking was conventionally performed either on structural
RTL designs or technology mapped gate-level netlists. Recent
works proposed to operate at the behavioral RTL (before logic
synthesis) to obfuscate the behavior instead of the structure.

C. RTL Locking Against Oracle-Less Attacks

Logic synthesis absorbs vital security semantics and gener-
ates an optimized netlist. Gate-level locking takes in a netlist
as input and inserts key-input controlled XOR/multiplexer
logic gates in it. Logic-locked gate-level optimized designs
are prone to oracle-less de-synthesis [15] and structural [16],
[6] attacks. RTL locking obfuscates a design at a higher-level
of abstraction than the common gate-level approaches. RTL
obfuscation uses the semantic information available at the
behavioral level to create a set of totally valid alternatives.
Since the RTL is locked before the synthesis tools can apply
logic optimizations, it prevents vulnerabilities induced by the
IC structure. High-level locking techniques such as TAO [10]
and ASSURE [11] borrow concepts from software obfuscation

like obfuscating control-flow graphs, data structures, and oper-
ations in the program. TAO [10] does obfuscation during high-
level synthesis (HLS) requiring access to the internals of the
HLS tool. ASSURE [11], instead, obfuscates the RTL designs
and hence is oblivious to the source of the RTL. While these
approaches are simple and easy to use, they are not designed
to be resilient to oracle-guided attacks [7], [12], limiting the
applicability to commercial, high-volume IC designs.

III. FORTIFYING RTL LOCKING AGAINST ORACLE-LESS
AND ORACLE-BASED ATTACKS

As shown in Fig. 1, our approach is composed of two
subsequent steps: it first applies RTL locking to protect the
IC semantics against reverse engineering and then functional
mode isolation to protect the key against oracle-based attacks.

A. Protecting IC Design by Obfuscating Behavioral Semantics

Gate-level netlist locking or structural RTL locking leaves
behind traces from deterministic synthesis steps which are
then leveraged by structural/netlist-analysis-based attacks to
recover the secret locking key [5], [6], [15], [16]. In our work,
we lock the behavioral RTL using a behavioral semantics
obfuscation (BSO) to hide the IC semantics instead of its
structure; we use ASSURE [11] to perform BSO. ASSURE
offers full control to the designer to select which secret and
confidential constants (like proprietary coefficients), arithmetic
operations, and control branches to lock. Using this approach,
we replace these elements with predicates that are dependent
on the external locking key; each element is associated with
a specific part of the key. Only when applying the correct
key, the design operates on the original constants, operations,
and branches. This embeds a 100% error rate in the design for
even one-bit change in the key configuration (i.e., no collision).
We now briefly describe the BSO techniques implemented in
ASSURE for locking a given design.
1) Constant obfuscation: We protect confidential constants

by replacing them entirely with key bits carrying constant
information. For example, we rewrite the operation
out = in+8’b11101001 as out = in+Kc where Kc is the
8-bit constant stored in the locking key. The attacker has
28 possibilities to get a correct out for a given in value.

2) Operation obfuscation: We introduce a multiplexer to de-
cide between the correct operation and a dummy operation
based on the value of one key bit. For example, we lock
the operation out = in1 + in2 as out = Ko ? (in1 + in2)
: (in1 - in2). Only the correct value of Ko enables the
propagation of the correct result.

3) Branch obfuscation: In branch obfuscation, we perform
XOR based locking on the original condition followed by
logical inversion if key-bit is 1. For e.g., we rewrite the
original condition in1 > in2 as (in1 ≤ in2) ⊕ Kb with
locking key-bit Kb = 1. An attacker cannot deduce from
the statement whether the original condition was > or ≤.

The tool outputs a behavioral, locked RTL that adds an extra
input port to the interface to load the locking key. The locked



Functional Mode

Key: TPM (secret)

Test Mode

Key: User (incorrect)

chip-reset

SE

Clear key
registerSE

SE

SE

chip-reset
SE

Fig. 2: Isolation of functional mode explained using a finite
state machine (FSM). If activity is sensed on the scan-enable
(SE) signal, the circuit moves out of the functional mode.

TABLE II: Functional mode isolation (FMI) operation

Reset SE Key-register
1 x FMI reset

1 → 0 1 Key from scan-in
1 → 0 0 Key from TPM

0 0 → 1
1. FMI reset
2. Key from scan-in

RTL design can be taken through the same synthesis flow used
for the original, non-secure design.

B. Functional Mode Isolation

RTL locking hides the sensitive semantic information in the
original design thereby thwarting structural-analysis (oracle-
less) attacks (see Table I). But when attackers have access
to a working IC (oracle), they can query the oracle through
its scan infrastructure and primary outputs to recover the
secret information. Obfuscation and oracle-guided protection
are orthogonal and can be applied at the same/different
abstraction levels. To undermine attackers with access to a
reverse-engineered netlist and an oracle, we provide an RTL
solution for functional mode isolation (FMI) to protect the
key upon sensing scan access.

FMI adds a key register that drives the key of the locked
RTL design. In functional mode, the key register is loaded with
the secret key from the tamper-proof memory immediately
after global reset, ensuring correct functionality. When an
oracle attack creates an activity on the scan-enable (SE) signal,
the chip exits the functional mode while the FMI circuitry
immediately clears the key register and isolates it from the
tamper-proof memory. This process breaks the functionality
making the oracle unusable. Test and debug are both allowed
but with the key register loaded with dummy user keys through
the test interface, similar to the methods used in oracle-less at-
tacks with random key guesses [11]. The correct functionality
can only be restored with a global reset. A similar approach
was recently proposed in [17]. While DisORC demonstrates
resilience against oracle-guided attacks, it is only applied at the
gate-level for a locked netlist. Scan locking techniques [18],
[19], [20] which insert key-driven logic on scan paths are also
shown to be vulnerable to modeling-based attacks [21], [22].

Architecture: Figure 2 depicts the FMI operation as a finite
state diagram. On a global chip-reset, the circuit starts

Sc
an

 d
ec

om
pr

es
si

on

Sc
an

 c
om

pr
es

si
on

...Sc
an

-in

Sc
an

-o
ut

FMI TPM

PIs POs

key-reset secret key

KR

clock
reset

assign c1= a + k_c;

assign c2= k_o? (a-b): (a+b);
assign c3= (a<=b) ^ k_b;

BSO circuitry FMI circuitry Original design

SE
key

Fig. 3: Integrated BSO + FMI architecture. KR is the key
register consisting of key scan cells distributed over multiple
scan chains based on synthesis and layout constraints. Key
scan cells need not necessarily be placed as shown. SE is the
scan-enable signal. TPM is tamper-proof memory.

either in the test or functional mode based on the value of
SE signal. During functional mode, an activity on the SE
signal resets the key register. The chip enters (correctly) in
test mode but the design receives an incorrect key (i.e., reset
values of the key registers). Only with a global reset, the circuit
returns to functional mode. We provide a behavioral RTL
implementation of the FMI unit by following the operations
in Table II. The FMI unit requires a sensing circuitry for the
SE signal and a reset circuitry for the key register. This unit is
independent of the rest of the design and does not require low-
level scan architecture details. During scan-chain insertion,
the SE pin is reused and the key register becomes part of
the scan chains. The key scan cells may be distributed across
different scan chains based on layout constraints; this has no
implication on security as key registers are reset immediately
upon scan activity sensing and before any scan shift operation
takes place. Figure 3 describes the integration of the BSO and
FMI approaches. We also show how the selected locking key
bits are registered, integrated, and protected in the scan chain.

Testing: Scan-chains in a design facilitate efficient struc-
tural testing of the ICs. Structural testing can be carried
out using an incorrect key as the correct functionality is
not required. So, our FMI method supports an untrusted test
facility in the supply chain. The FMI circuitry around the
RTL locking solution is tested implicitly during structural and
functional tests. For in-field debug, a trusted entity can bring
the circuit to a known state even in the test mode by providing
the correct key through the scan chains.

C. Security Analysis

As the two approaches are orthogonal, we analyze the
security of each step separately. Our solution protects against
an untrusted foundry using indistinguishable obfuscation [11].
BSO produces a behavioral RTL design which any front-end
and back-end synthesis tools can use to produce layout files.
The synthesis process successfully dissolves the traces of the
locking components present in the obfuscated behavioral RTL
design, thereby making it structurally indistinguishable from



cfg1
cfg2

cfg3
cfg4

0.0%

100.0%

200.0%

300.0%

400.0%

DES3 FIR IIR SASC SIMPLE_SPI USB_PHY I2C_SLAVE GCD

(a) BSO overhead when locking only constants.

cfg1
cfg2

cfg3
cfg4

581.55%

0.0%

100.0%

200.0%

300.0%

400.0%

DES3 FIR IIR SASC SIMPLE_SPI USB_PHY I2C_SLAVE GCD

(b) BSO overhead when locking all element types.

cfg1
cfg2

cfg3
cfg4

0.0%

2.0%

4.0%

DES3 FIR IIR SASC SIMPLE_SPI USB_PHY I2C_SLAVE GCD

(c) FMI overhead when locking only constants.

cfg1
cfg2

cfg3
cfg4

0.0%

2.0%

4.0%

DES3 FIR IIR SASC SIMPLE_SPI USB_PHY I2C_SLAVE GCD

(d) FMI overhead when locking all element types.

Fig. 4: Area overhead when applying the combination of the proposed schemes. We report the BSO overhead compared to the
original design and the FMI overhead compared to the design already protected with BSO.

cfg1
cfg2

cfg3
cfg4

0.0%

100.0%

200.0%

300.0%

DES3 FIR IIR SASC SIMPLE_SPI USB_PHY I2C_SLAVE GCD

(a) BSO overhead when locking only constants.

cfg1
cfg2

cfg3
cfg4

0.0%

100.0%

200.0%

300.0%

DES3 FIR IIR SASC SIMPLE_SPI USB_PHY I2C_SLAVE GCD

(b) BSO overhead when locking all element types.

cfg1
cfg2

cfg3
cfg4

0.0%

5.0%

10.0%

15.0%

20.0%

DES3 FIR IIR SASC SIMPLE_SPI USB_PHY I2C_SLAVE GCD

(c) FMI overhead when locking only constants.

cfg1
cfg2

cfg3
cfg4

0.0%

5.0%

10.0%

15.0%

20.0%

DES3 FIR IIR SASC SIMPLE_SPI USB_PHY I2C_SLAVE GCD

(d) FMI overhead when locking all element types.

Fig. 5: Power overhead when applying the combination of the two proposed schemes. We report the BSO overhead compared
to the original design and the FMI overhead compared to the design already protected with BSO.

the original design. However, current RTL locking methods
are secure only against oracle-less attacks [10], [12].

FMI is a complementary approach that eliminates access to
the scan chain, thwarting all scan-based attacks as variants
of SAT-based attacks. While structural-analysis attacks can
recover the secret key in this threat model, locking at the RTL
thwarts this type of analysis, as shown by the experiments in
Section IV. FMI only protects the scan chains; the attacker still
has access to the oracle. We do a security analysis using model
checkers and show that even for small circuits, the attack fails
under resource and time constraints.

IV. EXPERIMENTAL RESULTS

A. Experimental Setup

In our experiments, we used selected designs from CEP,
IWLS-05, OpenCores, and OpenROAD benchmark suites. We
used ASSURE for BSO and an in-house tool for FMI gen-
eration. We performed logic synthesis with Synopsys Design
Compiler targeting the Nangate 45nm Open Cell Library [23].
We performed test coverage analysis with Synopsys Tetramax

and functional verification with Synopsys VCS. All these
experiments are carried out on CentOS 6 operating system
with 128-core Intel Xeon processor running at 2.2 GHz.

To validate the security promises of our solution, we run the
open-source KC2 attack based on model checkers [13] and
the redundancy attack based on structural analysis [5]. Due
to code dependencies, attack experiments are carried out on
Linux Ubuntu 16.04 operating system with 24-core Intel Xeon
processor running at 3.3 GHz having 96 GB RAM. For KC2
experiments, each run allocates 10,000 MB of memory. For
both the attacks, we set a time-out of 48 hours.

B. Overhead Analysis

We assess the practicality of our defense using area, power,
and timing overhead compared to original designs when
varying the designer’s requirements. As in [11], we create
four configurations for each design, namely CFG1, CFG2,
CFG3, CFG4 using an increasing number of key bits. CFG4
always corresponds to using the maximum number of bits. Due
to space limitations, we present results when all techniques



cfg1
cfg2

cfg3
cfg4

0.0%

200.0%

400.0%

DES3 FIR IIR SASC SIMPLE_SPI USB_PHY I2C_SLAVE GCD

(a) BSO overhead when locking only constants.

cfg1
cfg2

cfg3
cfg4

0.0%

200.0%

400.0%

DES3 FIR IIR SASC SIMPLE_SPI USB_PHY I2C_SLAVE GCD

(b) BSO overhead when locking all element types.

cfg1
cfg2

cfg3
cfg4

0.0%

2.0%

4.0%

6.0%

DES3 FIR IIR SASC SIMPLE_SPI USB_PHY I2C_SLAVE GCD

(c) FMI overhead when locking only constants.

cfg1
cfg2

cfg3
cfg4

0.0%

2.0%

4.0%

6.0%

DES3 FIR IIR SASC SIMPLE_SPI USB_PHY I2C_SLAVE GCD

(d) FMI overhead when locking all element types.

Fig. 6: Timing overhead (critical-path delay) when applying the combination of the two proposed schemes. We report BSO
overhead compared to the original design and the FMI overhead compared to the design already protected with BSO.

and only constants are used for locking, while all others are
available to the community [14].

Figure 4 shows area overhead. On average, we incur
59.36% area overhead for BSO and an additional 1.29%
overhead due to FMI. The area overhead is larger for data-
intensive designs and grows with the size of the key. The
size of the FMI circuitry is, instead, only proportional to the
number of registered key bits and not the size of the design.
So, it becomes less noticeable in large locked designs.

Figure 5 shows power overhead. On average, we incur
28.91% power overhead when applying the BSO scheme
and an additional 8.66% overhead for the FMI circuitry.
While BSO introduces extra gates (additional static power),
the dynamic activity is related only to the original signals.
So, power overhead follows the area trend. Extra activity (and
overhead) is, however, required for the FMI circuitry.

Figure 6 shows timing overhead. While no extra cycles are
added to the circuit, the extra logic may affect the critical
paths. On average, we incur 54.17% performance overhead
corresponding to the BSO scheme and 0.09% overhead
corresponding to the FMI circuitry. Figure 7 presents test
coverage for original and RTL-locked design; we incur on
average a loss of 0.1% when designs are locked with BSO.

C. Security Analysis

We analyze the security of our locking scheme using open-
source oracle-less and oracle-guided attacks.

Oracle-less attack (Redundancy [5]): The attack exploits
redundancies introduced by synthesis with incorrect keys. It
works on the principle of testing; with correct key, unlocked
and original designs should have the same fault coverage.
Incorrect keys might introduce some redundancies, reducing
the fault coverage. This analysis aides the redundancy attack
in deciphering the correct key.

Oracle-guided attack (KC2 [13]): KC2 improves prior
model-checker based attacks, which unroll the sequential cir-
cuit and recover the key using only primary inputs and outputs;
it works with no scan-chain access.

TABLE III: Security assessment of our defense against oracle-
less redundancy attack [5] and oracle-guided KC2 attack [13].
Failed denotes attack failure due to non-existence of untestable
faults for redundancy attack and due to unsolvable constraints
for KC2 attack. Timeout denotes tool termination after 48
hours without returning the key.

Design
(max bits) Cfg Used

key bits
Oracle-less [5] Oracle-guided [13]

Key-bits
recovered

Exe.
time (sec)

Key-bits
recovered

Exe.
time (sec)

DES3
(898)

CFG1 203 2/3 1,984 203 95,588
CFG2 448 0/56 6,224 0 Timeout
CFG3 647 12/75 12,334 0 Timeout
CFG4 898 6/119 29,990 0 Timeout

FIR
(344)

CFG1 70 0 Failed 70 308
CFG2 172 0 Failed 172 2,740
CFG3 242 0 Failed 239 19,926
CFG4 344 0 Failed 0 Timeout

GCD
(31)

CFG1 8 1/5 2 8 3,288
CFG2 16 3/10 2 16 2,218
CFG3 24 4/14 3 24 2,965
CFG4 31 7/18 4 31 2,827

IIR
(651)

CFG1 139 0 Failed 139 4,825
CFG2 310 0 Failed 310 58,602
CFG3 480 0 Failed 0 Timeout
CFG4 651 0 Failed 0 Timeout

SASC
(126)

CFG1 32 0 Failed 0 Timeout
CFG2 64 0 Failed 0 Timeout
CFG3 94 0 Failed 0 Timeout
CFG4 126 0 Failed 0 Timeout

SPI
(288)

CFG1 73 0 Failed 0 Failed
CFG2 145 0 Failed 0 Failed
CFG3 216 0 Failed 0 Failed
CFG4 288 0 Failed 0 Failed

USB PHY
(223)

CFG1 57 9/27 18 0 Timeout
CFG2 112 0 Failed 0 Timeout
CFG3 168 48/97 38 0 Timeout
CFG4 223 48/115 79 0 Timeout

For redundancy attack: X/Y means out of Y key-bits claimed to be recovered
by the attack, X key-bit values are correct.

The oracle-less redundancy attack and the oracle-guided
KC2 attack are excellent candidates to validate the security
of our proposed solution. Table III provides the attack results



cfg1
cfg2

cfg3
cfg4−0.2%

0%

0.2%

DES3 FIR IIR SASC SIMPLE_SPI USB_PHY I2C_SLAVE GCD

(a) Locking only constants.

cfg1
cfg2

cfg3
cfg4−0.2%

0%

0.2%

DES3 FIR IIR SASC SIMPLE_SPI USB_PHY I2C_SLAVE GCD

(b) Locking all element types.

Fig. 7: Test coverage (TC) overhead. On average, there is only a 0.1% reduction in TC when BSO is integrated with FMI.

TABLE IV: Overhead analysis of Cortex-M0 when locked
with BSO and FMI using a 128-bit key. TC: Test coverage.

Cortex-M0 Area (µm2) Power (mW) Critical Path (ns) TC (%)
Original 46,748 3.26 4.19 100

BSO (keyreg) 60,074 4.22 4.39 100
BSO+FMI (keyreg) 60,811 4.25 4.44 100

when all elements are locked.1 Combining BSO+FMI protects
the designs from both oracle-less and oracle-guided attacks.

We identified cases (DES, FIR, and USB PHY) where
redundancy attacks can recover a few bits from locked designs,
showing vulnerabilities in the tool implementation. Integration
with FMI exposes some vulnerabilities in oracle-guided at-
tacks (see FIR and GCD, and some configurations of DES3
and IIR). These results can help us improve locking methods.

D. Case Study

Table IV presents the overhead for ARM Cortex-M0 micro-
controller when locked using our solution and synthesized
using the tape-out flow with GlobalFoundries 65nm LPe
technology to showcase the practicality of a silicon-grade
implementation. Timing of the design is closed at 250 MHz
across the corners. Synthesis is done using Synopsys Design
Compiler. Synopsys IC Compiler is used for physical design.
Timing and power analysis are done using Synopsys Prime
Time and Prime Power, respectively. Functional simulation is
performed using Synopsys VCS. All EDA tools are executed
on a 128-core Intel Xeon processor running at 2.2 GHz.
We performed BSO with a 128-bit key. From Table IV, we
observe 28.51%, 29.45%, and 4.77% overhead for area,
power, and critical path, respectively. The integration with FMI
introduces 1.23%, 0.71%, and 1.14% overhead for area,
power, and critical path, respectively. Further, as seen from
Table IV, test coverage is unchanged.

V. CONCLUSION

RTL locking proved to successfully thwart oracle-less at-
tacks utilizing only structural information of the underlying
netlist [10], [11]. However, these solutions were broken by
satisfiability modulo theories (SMT) [12] and SAT-based at-
tacks when an oracle is available. We fortify RTL locking
by functional mode isolation to make a complete high-level

1We exclude i2c design from the security analysis due to presence of
tri-state gates which are not supported by the open-source attack tools.

solution for achieving end-to-end protection against all un-
trusted entities in the IC supply chain. We give the control of
area, power, and performance overhead to the designers and
allow them to select elements which require protection, such
as proprietary coefficients. We further showcase the scalability
of our complete solution by locking ARM Cortex-M0 micro-
controller. We analyze the security promises of the combined
RTL solution against oracle-less and oracle-guided attacks
with promising results and potential vulnerabilities to explore.

REFERENCES

[1] J. Hurtarte et al., Understanding Fabless IC Technology. Elsevier, 2007.
[2] K. Shamsi et al., “IP protection and supply chain security through logic

obfuscation: A systematic overview,” ACM TODAES, 2019.
[3] J. A. Roy et al., “Ending piracy of integrated circuits,” Computer,

vol. 43, no. 10, pp. 30–38, 2010.
[4] B. Shakya et al., “CAS-Lock: A Security-Corruptibility Trade-off Re-

silient Logic Locking Scheme,” TCHES, pp. 175–202, 2020.
[5] L. Li and A. Orailoglu, “Piercing logic locking keys through redundancy

identification,” in DATE. IEEE, 2019, pp. 540–545.
[6] A. Sengupta et al., “CAS-Lock: A Security-Corruptibility Trade-off

Resilient Logic Locking Scheme,” TCHES, 2021.
[7] P. Subramanyan et al., “Evaluating the security of logic encryption

algorithms,” in HOST, 2015, pp. 137–143.
[8] A. Rezaei et al., “Rescuing logic encryption in post-sat era by locking

& obfuscation,” in DATE, 2020, pp. 13–18.
[9] N. Limaye et al., “FaSAT- Fault-aided SAT-based attack on Compound

Logic Locking Techniques,” in DATE, 2021, pp. 1–6.
[10] C. Pilato et al., “TAO: Techniques for algorithm-level obfuscation during

high-level synthesis,” in DAC, 2018, pp. 1–6.
[11] C. Pilato et al., “ASSURE: RTL locking against an untrusted foundry,”

IEEE Transactions on Very Large Scale Integration Systems, 2021.
[12] C. Karfa et al., “Is Register Transfer Level Locking Secure?” in DATE,

2020, pp. 550–555.
[13] K. Shamsi et al., “KC2: Key-condition crunching for fast sequential

circuit deobfuscation,” in DATE. IEEE, 2019, pp. 534–539.
[14] (2021) FMI+BSO benchmarks. Design For Excellence Lab - NYU AD.

[Online]. Available: https://github.com/DfX-NYUAD/FMI BSO
[15] M. E. Massad et al., “Logic locking for secure outsourced chip fabrica-

tion: A new attack and provably secure defense mechanism,” preprint
arXiv:1703.10187, 2017.

[16] P. Chakraborty et al., “SAIL: Machine learning guided structural analysis
attack on hardware obfuscation,” in AsianHOST, 2018, pp. 56–61.

[17] N. Limaye et al., “Thwarting all logic locking attacks: Dishonest oracle
with truly random logic locking,” IEEE TCAD, pp. 1–1, 2020.

[18] R. Karmakar et al., “Encrypt Flip-Flop: A Novel Logic Encryption
Technique For Sequential Circuits,” preprint arXiv:1801.04961, 2018.

[19] X. Wang et al., “Secure Scan and Test Using Obfuscation Throughout
Supply Chain,” IEEE TCAD, vol. 37, no. 9, pp. 1867–1880, 2018.

[20] R. Karmakar et al., “A Scan Obfuscation Guided Design-for-Security
Approach For Sequential Circuits,” IEEE TCAS II: Express Briefs, 2019.

[21] L. Alrahis et al., “ScanSAT: Unlocking Static and Dynamic Scan
Obfuscation,” IEEE TETC, pp. 1–1, 2019.

[22] N. Limaye and O. Sinanoglu, “DynUnlock: Unlocking Scan Chains
Obfuscated using Dynamic Keys,” in DATE, 2020.

[23] (2011) NanGate FreePDK45 Open Cell Library. Nangate Inc. [Online].
Available: http://www.nangate.com/?page id=2325

https://github.com/DfX-NYUAD/FMI_BSO
http://www.nangate.com/?page_id=2325

	Introduction
	Background and Related Work
	Threat Model
	Logic Locking
	RTL Locking Against Oracle-Less Attacks

	Fortifying RTL Locking Against Oracle-less and Oracle-based Attacks
	Protecting IC Design by Obfuscating Behavioral Semantics
	Functional Mode Isolation
	Security Analysis

	Experimental Results
	Experimental Setup
	Overhead Analysis
	Security Analysis
	Case Study

	Conclusion
	References

