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Abstract

The Containers Drayage Problem (CDP) aims at routing a fleet of trucks,
based at a common terminal, to serve customers, minimizing the total travel
distance. Each trip starts from and ends to the terminal, handling a subset
of customers. Each customer requires either picking a container up (export
customer) or delivering a container (import customer). We introduce a more
realistic variant, i.e., the Multi-trip Multi-period CDP with Release and Due
Dates (MM-CDP-RDD), in which the planning horizon is composed by sev-
eral periods (days). On each day, each truck may perform more than one
trip respecting the Release and Due Dates (RDD) associated with customer
services, corresponding to the first and the last day on which the service can
be carried out, respectively. Drivers contracts impose limitations on the
maximum time allowed driving on each day, on two consecutive days and on
the whole weekly planning horizon. To model the MM-CDP-RDD, we pro-
pose both an Arc-based Integer Linear Programming (ILP) formulation and
a Trip-based ILP formulation that exploits the generation of all the feasible
non-dominated trips. To efficiently address medium/large-sized instances of
the problem, we also design six Combinatorial Beneders’ Cuts approaches.
All the methods are compared on a rich set of instances generated for this
new problem.

Keywords: Routing, Multi-trip Vehicle Routing, Multi-period Vehicle
Routing, Combinatorial Benders’ Cuts

1. Introduction

In the Port Logistics sector, the term Containers Drayage refers to the
goods transportation between terminals (e.g., sea ports, intermodal termi-
nals, inland ports, border points) and customers, where containers are used
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as bins. The drayage operating cost significantly amounts on the total door-
to-door containers transportation cost (Figure 1). For 500-mile haul, it
represents about 42% of the total door-to-door cost [34]. This leads to the
need of properly routing the trucks used for the drayage operations.

The Containers Drayage Problem (CDP) aims at efficiently routing a
fleet of trucks, based at a common terminal, in order to serve customers
geographically distributed while minimizing the total travel distance. In
a trip, a truck starts from the terminal, serves a subset of customers and
returns to the terminal. The customers are distinguished into two categories:
import customers who require a container delivery and export customers who
instead require a container pickup. Therefore, the drayage activities mainly
concern the distribution of trucks that move full/empty containers between
the terminal, the import and the export customers [16].

According to the International Standard Organization, several container
sizes are permitted (e.g., 10feet (ft), 20ft, 40ft, 45ft, 48ft, 53ft), although
the most used ones are 20ft and 40ft ([37],[42],[27]) while, the truck capacity
is usually equal to 40ft. This means that each truck can transport either
one 40ft sized container or two 20ft sized containers, simultaneously. Due to
these loading restrictions, the maximum number of customers can be served
into a single trip is equal to 4. Figure 2 shows a feasible CDP solution in
which 5 trips are performed for serving both export and import customers
identified, respectively, by a positive and a negative demand. For instance,
a −40ft demand means that the customer requires receiving a 40ft sized
container.

However, since the inland destinations are usually not far from the ter-
minal, short-duration trips are very frequent. Therefore, introducing the
assumption that a truck can perform more than one trip during a working
day is realistic and leads to the multi-trip variant of the CDP ([20], [26],
[7]).

The aim of this work is to introduce a new variant of the CDP in which
the multi-trip assumption is combined with the need of both serving the
customers only in specific periods (e.g, days) and respecting the contractual
restrictions imposed on the drivers working time. For this purpose, we divide
the whole planning horizon into discrete time periods (e.g., days) and each
customer can be served only in specific consecutive periods e.g., Release
and Due Dates (RDD). We address simultaneously the problem of assigning
containers to the trucks and of routing the latter.

The main contributions of this work are:

• the introduction of the Multi-period Multi-trip (MM) CDP with Re-
lase and Due Dates , i.e., MM-CDP-RDD, a more realistic CDP variant
in which the planning horizon is divided into several discrete periods
(multi-period), a truck is allowed to perform more than one trip in
each period (multi-trip), RDDs are associated with each customer and
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Figure 1: Total costs (in $) to move both 20ft and 40ft containers from USA to other
countries. Source: https://moverdb.com

Figure 2: An example of feasible solution of the CDP.
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finally, restrictions on the trip duration in each period, in two con-
secutive periods and in the whole planning horizon are imposed. The
latter assumptions allow accounting for contractual limitations on the
drivers’ work performance.

• the formulation of an Arc-based Integer Linear Programming (A-ILP)
model;

• the design of an exact two-stage approach together with the definition
of both trip feasibility and dominance rules. In the first stage, all
the feasible non-dominated trips are generated. While, in the second
stage, a Trip-based ILP (T-ILP) model is solved;

• the design of several Combinatorial Benders’ Cuts (CBC) approaches,
based also on valid inequalities ad hoc defined for the MM-CDP-RDD;

• the generation of a rich set of instances for this new problem, starting
from the traditional benchmark instances proposed for the Vehicle
Routing Problem by both Solomon [36] and Gehring & Homberger
[18];

• the numerical comparisons among A-ILP, T-ILP and the CBC ap-
proaches.

The rest of the paper is organized as in the following. Section 2 reviews
the main literature contributions on the CDP and its variants. In Section
3, the statement of the problem is given together with the notation used. In
Section 4, the A-ILP model for the MM-CDP-RDD is described, while Sec-
tion 5 proposes a two-stage approach. Section 6 describes several variants of
the CBC approach specifically designed for the MM-CDP-RDD. In Section
7, benchmark instances for this new problem are generated and numerical
comparisons among the solution methods are discussed. Finally, Section 8
draws some conclusions and outlines future research directions worthy of
investigation.

2. Literature Review

The CDP and its variants belong to the most general class of Vehicle
Routing Problem (VRP) with Pickups and Deliveries, i.e., the Pickup and
Delivery Problem (PDP) because customers can require either a container
pickup or its delivery ([30], [31]). Moreover, as specified by the recent lit-
erature review [16] on the CDP and its variants, the scientific contributions
can be classified according to the following features: Drop&Pick (DP), i.e.,
trucks and containers can move separately during the drayage operations.
In case of delivery requests, this means that the career has not to wait at the
customer for picking the empty container up, after the delivery; Stay-with
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(SW), i.e., trucks and containers have to move coupled during the opera-
tions; Container per truck , i.e., the number of containers per truck can be
either equal 1 or greater than 1; Time Windows, i.e., trucks have to per-
form the service at customers within specific time windows and this usually
complicates the solution of the problem.

In this paper, we introduce the following two new features: Multi-period
(MP), i.e., the planning horizon is divided into discrete time periods (e.g.,
days) and then, the release and due dates at customers are specified in
terms of periods in which they have to be served; Multi-trip (MT), i.e.,
each truck can perform more than one trip in each period. We discuss
the main literature contributions on CDP and its variants with regard the
aforementioned features.

The Drop&Pick CDP with Time Windows (TW) at customers, with only
one container per truck, has been extensively studied in the literature. In
[21], the CDP with intermediate facilities between terminals and customers
in a metropolitan area is addressed and modeled as a multi-Traveling Sales-
man Problem with TW (m-TSPTW) at both origins and destinations. An
exact solution approach based on dynamic programming is proposed. Since
it is able to solve to optimality only instances with up to 15-20 nodes, a
heuristic approach that combines it with a genetic algorithm is also proposed
to address instances with up to 100 nodes. In [14], the problem is modeled
as a Multi-Resource Routing Problem with flexible tasks for determining the
set of routes by resource type, satisfying all the tasks, respecting operational
rules. For it, a set partitioning model is formulated with a weighted objec-
tive function minimizing both the fleet and the variable distance cost and
a greedy randomized procedure is also designed. While, a cluster method
together with a reactive Tabu Search (TS) is proposed in [50]. In [49], the
problem is addressed as a m-TSPTW and solved by a modified version of the
method of [46]. While, in [51], it is modelled as a m-TSPTW with resource
constraints and solved through a reactive TS. Considering that, for each
empty container, either the origin or the destination is not defined, in [5],
the problem is modelled as an asymmetric m-TSPTW and both a sequential
and an integrated solution approaches are described. For minimizing the to-
tal operating time of all the trucks used, in [39], a node-arc mathematical
formulation is proposed, for simultaneously routing the trucks, scheduling
the services and relocating the empty containers while, a TS is proposed
for solving large-sized instances. In [45], a variant of the problem is stud-
ied in which, with 4 types of containers (inbound/outbound, full/empty),
the transport can be performed by both trucks and trains and a node-arc
mathematical formulation with a hybrid TS are proposed. Assuming multi-
depots and a homogeneous fleet, in [29], a node-arc mathematical model is
formulated for minimizing the total operating time and a two-stage heuris-
tic is also designed. Allowing that a tractor can be assigned to a different
trailer to perform a new task, in [48], a node-arc formulation is modelled
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coordinating the empty containers that move between customers. A TS al-
gorithm is also designed for solving instances with up to 400 customers while
a maxmin ant colony optimization algorithm is proposed in [47].

A problem variant in which the intermodal terminal requires trucks to
have an appointment is addressed in [34]. Then, an arc-node formulation
together with a reactive TS algorithm are proposed. Finally, assuming that
some empty containers can return to the depot for maintenance, in [38], the
problem is seen as an extension of the asymmetric VRP with TW and an arc-
node formulation is solved through a branch-and-price-and-cut algorithm.
A Drop&Pick CDP with TW at customers with more than one container
per truck is addressed in [43] where the problem is modelled as a multiple
matching problem to determine the optimal pickup and delivery vehicle
routes and a variable neighborhood search is also proposed.

A Drop&Pick CDP without TW at the customers, with only one con-
tainer per truck, is addressed in [6], modelled as an asymmetric multiple ve-
hicle TSP considering that either the origin or the destination of the empty
containers are unknown in advance, minimizing simultaneously the number
of vehicles used and the total travel distance. Both a hybrid deterministic
annealing algorithm and a TS are designed.

A Stay-with CDP with only one container per truck is addressed by
[28] where a first phase model is formulated for identifying the maximum
revenue set of container move tasks to serve and a second phase routing and
scheduling model is solved. In addition, the authors also design a column
generation based heuristic. With more than one container per truck, the
problem is modelled as a VRP with multiple visits and heterogeneous trucks
in [23] and a variant of the Clarke-and-Wright algorithm is also proposed.
While, an Adaptive Guidance meta-heuristic is proposed in [22].

The Stay-with CDP with TW at customers is addressed in [9], where the
problem is solved through a local search, based on three neighbourhoods,
with an initial solution computed by a two-phase insertion heuristic. Sev-
eral techniques already proposed in the literature for the VRPs are extended
in order to schedule pre- and end-haulage of containers in [32] and several
versions are studied, i.e., both managing multiple empty container depots
and balancing empty container depot levels. In [35], the problem is mod-
elled through Mixed Integer quadratic programming in order to schedule
simultaneously tractor, loaded container, empty container and chassis and
a reactive TS is also developed.

In the CDP proposed in [33] for taking under control the harmful emis-
sions, collaboration among truckers is permitted and a mathematical model
based on the m-TSPTW is formulated. Finally, in [16], the authors, af-
ter introducing the possibility to move more than one container per truck
in a trip and by exploiting the limited number of feasible trips, propose a
set-covering formulation tested on real-world case studies.

Multi-trip CDPs are addressed in both [26] and [7], the latter considers
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Table 1: Literature contributions on CDP and its variants
Reference Service Container/truck RDD TW MP MT Approach

[46] DP 1 X NA+heu
[21] DP 1 X NA+heu
[14] DP 1 X T+ heu
[50] DP 1 X NA+heu
[49] DP 1 X NA+heu
[51] DP 1 X NA+heu
[5] DP 1 X NA+heu
[39] DP 1 X NA+heu
[45] DP 1 X NA+heu
[29] DP 1 X NA+heu
[48] DP 1 X NA+heu
[47] DP 1 X NA+exact
[34] DP 1 X NA+heu
[38] DP 1 X T+exact
[11] DP ≥ 1 X NA+heu
[43] DP ≥ 1 X M+heu
[6] DP 1 NA+heu
[44] DP ≥ 1 M+heu
[28] SW 1 T+heu
[23] SW ≥ 1 NA+heu
[22] SW ≥ 1 NA+heu
[20] SW 1 X NA+heu
[17] SW 1 X NA+heu
[9] SW 1 X NA+heu
[32] SW 1 X T+exact
[35] SW 1 X NA+heu
[33] SW 1 X NA+exact
[16] SW ≥ 1 X T+exact
[26] DP 1 X X T+heu
[7] SW ≥ 1 X X NA+exact

This work DP ≥ 1 X X X NA+ T+exact

only 20ft sized containers. However, neither of them considers multiple
periods. Therefore, to the best of our knowledge, no contributions already
exist in which the multi-period is combined with the multi-trip, the RDDs
of the customers, the contractual restrictions on the trip duration, allowing
both moving more than one container per truck and managing two container
sizes (20ft and 40ft).

Table 1 summarizes the most significant contributions on the CDPs,
where column Container/truck specifies the number of containers can be
simultaneously moved by each truck. While, NA, T and M identify respec-
tively the Node-Arc, the Trip-based and the Matching formulation. Finally,
heu and exact denote respectively that heuristic and exact approaches have
been developed.

3. Problem statement and notation

The MM-CDP-RDD aims at efficiently routing a fleet of K trucks, based
at a common terminal 0, for serving import/export customers (set C), min-
imizing the total travel distance over a given planning horizon. For this
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Table 2: Notation of the MM-CDP-DRD
Set Meaning
C Set of customers
K Set of trucks
T Set of periods
Ti Set of periods in which customer i can be served
Tij Set of periods in which both customer i and customer j can be served
Cπ Set of customers served by the trip π

T̃π Set of periods in which the trip π can be performed

Parameter Meaning
0 Terminal
v Average truck speed
Q Loading truck capacity

Tmax1 Maximum travel time per truck per period
Tmax2 Maximum travel time per truck in two consecutive periods
Tmax3 Maximum travel time per truck in the planning horizon
dij Travel distance between i ∈ C ∪ {0} and j ∈ C ∪ {0}
ri Demand of customer i
τi Service time at customer i
dπ Total distance travelled in the trip π
aiπ 1 if customer i ∈ C is served in the trip π; 0 otherwise.

purpose, the planning horizon is divided into T discrete time periods, each
one representing a working day. Hereafter, we suppose T = {1, 2, . . . , |T |}.
Within the same period, each truck can perform more than one trip. How-
ever, due to drivers contractual limitations, each truck can travel no longer
than Tmax1 , Tmax2 and Tmax3 , in a period, in two consecutive periods and
in the whole planning horizon (generally, a week), respectively, [24]. Each
truck, whose average speed is equal to v, has also a limited loading capacity
Q equal to 40ft meaning that it can simultaneously move either only one
container of 40ft or two containers of 20ft.

The demand ri of each customer i ∈ C can be either positive (export
customer) or negative (import customer) and of either 40ft or 20ft. While,
the service time at each customer i ∈ C is indicated by τi. In addition, for
each customer i ∈ C, the set Ti indicates the set of consecutive periods on
which the service can be performed at customer i. Moreover, for each pair
(i, j) : i, j ∈ C, Tij indicates the subset of T containing the periods in which
both customer i and customer j can be served, i.e., Tij = Ti ∩ Tj . For each
pair (i, j) ∈ C ∪ {0}, the travel distance dij is known. Table 2 summarizes
the notation used in this paper.

A trip π starts from the terminal and returns to it, by serving a sub-set
of customers Cπ. Its total distance is indicated by dπ and the periods in
which it can be performed is denoted by T̃π = ∩i∈CπTi. Finally, we also
introduce a customers coverage matrix in which the entry aiπ is 1 if and
only if the customer i ∈ C is served in the trip π, i.e., i belongs to Cπ; 0,
otherwise.
Since each truck can move either a 40ft container or two containers of 20ft,
all possible kinds of feasible trips can be enumerated according to the fol-
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lowing definition.

Definition 1: Type of trips

• 1-customer trip {0, i, 0}, with ri ∈ {40,−40, 20,−20};

• 2-customer trip {0, i, j, 0}, with (ri, rj) ∈ {(-20,-20), (20,20), (20,-20),
(-20,20), (-40,20), (-20,40), (-40,40)};

• 3-customer trip {0, i, j, k, 0}, where (ri, rj , rk) ∈ {(-20,-20,20), (-20,20,20),
(-20,20,-20), (20,-20,20), (-20,-20,40),(-40,20,20)};

• 4-customer trip {0, i, j, k, v, 0}, where (ri, rj , rk, rv) ∈ {(-20,20,-20,20),
(-20,-20,20,20)}.

4. An Arc-based Mathematical Programming Formulation

Similarly to the traditional VRPs, the MM-CDP-DRD can be formally
represented on a directed graph G = (N,A), where the set of nodes N
contains the set C of customers to be served and the terminal 0 while, A is
the set of the arcs.

According to Definition 1, A is not complete because, through a proper
pre-processing, only some arcs are kept. More specifically, A = {(i, j) ∈
C × C : i 6= j∧(ri, rj) ∈ {(-20,-20), (20,20), (20,-20), (-20,20), (-40,20), (-
20,40), (-40,40)}∧ Ti ∩ Tj 6= ∅ ∧ dij/v ≤ Tmax1 } ∪ {(0, j), j ∈ C : d0j/v ≤
Tmax1 } ∪ {(j, 0), j ∈ C : dj0/v ≤ Tmax1 }. Figure 3 shows the graph G
generated for the instance of the problem of Figure 2.

The formulation is based on the following decision variables: xktij , binary
variable equal to 1 if truck k travels from node i to node j in period t and 0
otherwise, ∀(i, j) ∈ A, ∀k ∈ K and ∀t ∈ T ; u+

i , an integer variable denoting
the total quantity of pickup until node i from the last exit from 0, ∀i ∈ N ;
u−i , an integer variable representing the total quantity of delivery until node
i from the last exit from 0, ∀i ∈ N .

The Arc-based Integer Linear Programming (A-ILP) formulation of the
MM-CDP-DRD is the following:

min
∑

(i,j)∈A

∑
k∈K

∑
t∈Tij

dijx
kt
ij (1)

s.t. ∑
k∈K

∑
j:(i,j)∈A

∑
t∈Tij

xktij = 1 ∀ i ∈ C (2)

∑
j:(i,j)∈A
t∈Tj

xktij −
∑

j:(j,i)∈A
t∈Tj

xktji = 0 ∀ i ∈ N, k ∈ K, t ∈ Ti (3)

∑
(i,j)∈A
t∈Tij

(
dij
v

+ 2τj)x
kt
ij ≤ Tmax1 ∀ k ∈ K, t ∈ T (4)
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Figure 3: A graph instance of the MM-CDP-RDD.

∑
(i,j)∈A

t∧(t+1)∈Tij

(
dij
v

+2τj)x
kt
ij+

∑
(i,j)∈A

t∧(t+1)∈Tij

(
dij
v

+2τj)x
k(t+1)
ij ≤ Tmax2 ∀ k ∈ K, t = 1, . . . , |T |−1

(5)

∑
(i,j)∈A

∑
t∈Tij

(
dij
v

+ 2τj)x
kt
ij ≤ Tmax3 ∀ k ∈ K (6)

u+
0 = u−0 = 0 (7)

u+
j ≥ u

+
i +max{rj , 0} − (Q+max{rj , 0})(1−

∑
k∈K

∑
t∈Tij

xktij ) ∀ (i, j) ∈ A : j 6= 0 (8)

u−j ≥ u
−
i −min{rj , 0} − (Q−min{rj , 0})(1−

∑
k∈K

∑
t∈Tij

xktij ) ∀ (i, j) ∈ A : j 6= 0 (9)

xktij ≤ u−i − u
+
i ∀ (i, j) ∈ A : i 6= 0, j 6= 0, ri = rj = −20, ∀k ∈ K,∀t ∈ Tij (10)

xktij ≤ Q− u+
i ∀ (i, j) ∈ A : i 6= 0, j 6= 0, ri = 20, rj = −20, ∀k ∈ K,∀t ∈ Tij (11)

u−i ≤ Q ∀ i ∈ C (12)

u+
i ≤ Q ∀ i ∈ C (13)
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∑
k∈K

∑
t∈Ti

xkti0 = 1 ∀ i ∈ C : ri = +40 (14)

∑
k∈K

∑
t∈Ti

xkt0i = 1 ∀ i ∈ C : ri = −40 (15)

xktj0 ≥ xktij ∀ k ∈ K, i ∈ C, j ∈ C : i 6= j, ri = rj = 20, t ∈ Tij (16)

xktij ∈ {0, 1} ∀(i, j) ∈ A, k ∈ K, t ∈ Tij (17)

u+
i , u

−
i ≥ 0 integer ∀i ∈ C (18)

The objective function (1) to be minimized represents the total travel
distance. Constraints (2) assure that each customer is served exactly once
while constraints (3) guarantee the flow conservation for each node of the
graph. Constraints (4)-(6) assure that each truck cannot travel longer than
Tmax1 , Tmax2 and Tmax3 , respectively, in a period, in two consecutive periods
and in the whole planning horizon. It is worth noting that the service time
of each customer is counted twice for taking into account the related service
time at the terminal.

Constraint (7) fixes to 0 the quantity of both pickup and delivery at the
terminal while, constraints (8)-(9) count the quantity of pickup and delivery
at each node, respectively. Since, these constraints are imposed for each arc
except those entering in the terminal, they also ensure that the subtours not
visiting the terminal cannot be feasible.

Constraints (10) ensure that two consecutive deliveries of 20ft size cannot
be served after a pickup of 20ft size, i.e., a trip {0, v, i, j, 0}, where rv =
20, ri = rj = −20, is not allowed. Similarly, constraints (11) avoid that
a pickup and a delivery, both of 20ft size, are consecutively served after a
delivery and a pickup, both of 20ft size, i.e., a trip {0, q, v, i, j, 0}, where
rq = rj = −20, rv = ri = 20, is not permitted.

Constraints (12)-(13) guarantee that the maximum truck loading capac-
ity is never exceeded. In a trip, a customer i ∈ C with ri = 40ft has to be
served as the first (14) while each customer i ∈ C with ri = −40ft has to be
served as the last (15). A truck, after consecutively visiting two customers
i and j with ri = rj = 20ft, has to return to the terminal (16). Finally,
constraints (17)-(18) define the decision variables nature.

5. A two-stage trip-based approach

In this section, the two-stage trip-based approach designed for solving
the MM-CDP-RDD is described, by exploiting the generation rules (Defini-
tion 1). The approach proposed works as in the following. A trip generation
procedure is firstly invoked (Section 5.1). In order to further reduce the
number of trips to manage, both feasibility and dominance rules are also
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introduced. This way, the set Π of all feasible non-dominated trips is gener-
ated. Then, a Trip-based Integer Linear Programming formulation (T-ILP)
is solved receiving Π as input (Section 5.2).

5.1. Trip generator

From all the possible trips generated according to the rules introduced
in Section 3, only the feasible are kept, according to the following definition:

Definition 2: Feasible trip.
A trip π is feasible if and only if:

• tπ = dπ
v ≤ T

max
1 ;

• T̃π =
⋂
i∈Cπ Ti 6= ∅;

• The truck capacity Q is never exceeded.

Moreover, in order to reduce as much as possible the number of trips
to manage, among the feasible ones, we maintain only the set Π of non-
dominated ones, according to the following definition:

Definition 3: Dominated trip.
Given two feasible trips π1, π2, the former dominates the latter if and only
if:

• Cπ1 ≡ Cπ2 ;

• dπ1 < dπ2 ;

In Algorithm 1, the trips generation procedure is outlined. In particular,
the algorithm starts generating the 1−customer feasible trips. It is worth
noting that all of them are non-dominated too. The routine Feasible(π)
returns TRUE if the trip π is feasible according to the feasibility rules (Def-
inition 2); FALSE, otherwise. Then, for each feasible 1−customer trips, it
generates all the feasible non-dominated 2−customer trips. In particular,
a 2−customer trip {0, c1, c2, 0} is obtained by the feasible 1−customer trip
{0, c1, 0} by adding c2 : c2 6= c1 as the last served. This way, a 3−customer
trip {0, c1, c2, c3, 0} is obtained by the feasible non-dominated 2−customer
trip {0, c1, c2, 0} by adding c3 : c3 6= c1 ∧ c3 6= c2 as the last served.
Moreover, a 4−customer trip {0, c1, c2, c3, c4, 0} is obtained by the feasi-
ble non-dominated 3−customer trip {0, c1, c2, c3, 0} by adding c4 such that
c4 6∈ {c1, c2, c3}.

Generating 2-customer, 3−customer and 4−customer trips means check-
ing not only the feasibility conditions but also the dominance ones. In fact,
the routine Dominated(π) returns TRUE if the trip π is dominated, accord-
ing to the dominance rules (Definition 3); FALSE, otherwise.
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Algorithm 1 Trips Generator
Input: C, 0, dij , ∀i ∈ C ∪ {0}, j ∈ C ∪ {0}, Ti, ri, τi∀i ∈ C, Tmax1 , Q, v.
Output: feasible non-dominated paths Π

1: Let Π := ∅;
2: for (c1 ∈ C) do
3: π1 = {0, c1, 0}
4: if (Feasible(π1)) then
5: Π = Π ∪ {π1}
6: for (c2 ∈ C ∧ c2 6= c1) do
7: π2 = {0, c1, c2, 0}
8: if (Feasible(π2)∧!Dominated(π2)) then
9: Π = Π ∪ {π2}

10: for (c3 ∈ C ∧ c3 6= c1 ∧ c3 6= c2) do
11: π3 = {0, c1, c2, c3, 0}
12: if (Feasible(π3)∧!Dominated(π3)) then
13: Π = Π ∪ {π3}
14: for (c4 ∈ C ∧ c4 6= c1 ∧ c4 6= c2 ∧ c4 6= c3) do
15: π4 = {0, c1, c2, c3, c4, 0}
16: if (Feasible(π4)∧!Dominated(π4)) then
17: Π = Π ∪ {π4}
18: end if
19: end for
20: end if
21: end for
22: end if
23: end for
24: end if
25: end for

5.2. Trip-based Integer Linear Programming model

The Trip-based ILP model (T-ILP) receives in input the set Π of all fea-
sible non-dominated trips, generated through Algorithm 1. It is formulated
by introducing the following decision variables: zπ equal to 1 if trip π ∈ Π
is selected; 0 otherwise; ytπk equal to 1 if trip π ∈ Π is performed by truck
k ∈ K on period t ∈ T̃π.

The mathematical formulation is given in what follows.

min
∑
π∈Π

dπzπ (19)

∑
π∈Π

aiπzπ = 1 ∀i ∈ C (20)

∑
k∈K

∑
t∈T̃π

ytπk = zπ ∀π ∈ Π (21)

∑
π∈Π:t∈T̃π

tπy
t
πk ≤ Tmax1 ∀k ∈ K, ∀t ∈ T (22)

∑
π∈Π:t∈T̃π

tπy
t
πk +

∑
π∈Π:t∈T̃π

tπy
t+1
πk ≤ T

max
2 ∀k ∈ K, ∀t = 1, . . . , |T | − 1 (23)

∑
t∈T

∑
π∈Π:t∈T̃π

tπy
t
πk ≤ Tmax3 ∀k ∈ K (24)

zπ ∈ {0, 1} ∀π ∈ Π (25)
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ytπk ∈ {0, 1} ∀π ∈ Π, ∀k ∈ K, ∀t ∈ T (26)

The objective function (19) to be minimized represents the total travel
distance. Customers’ coverage is guaranteed by constraints (20) while con-
straints (21) logically link variables y and z, i.e., a trip π is selected if and
only if it is assigned at a truck in a period. Constraints (22)-(24) assure
that a truck cannot travel longer than Tmax1 , Tmax2 and Tmax3 , respectively,
in a period, in two consecutive periods and in the whole planning horizon.
Finally, constraints (25)-(26) define the variables nature.

6. Combinatorial Beneders’ Cuts approaches

Benders’ Decomposition (BD) is a successful and broadly applied exact
approach to solve Mixed Integer Programming (MIP) models introduced in
the pioneering work of Benders [4]. The core idea, which this approach is
based on, consists in fixing a set of variables, which make the MIP hard
to be solved, so that the problem can be strongly simplified. In the BD,
the problem is decomposed into a Master Problem (MP), in which only a
subset of the decision variables is considered and into a Slave Problem (SP),
containing the remaining variables. The MP and the SP are iteratively
solved in sequence.

At each iteration, the MP is firstly solved, then, the SP is formulated by
fixing the variables values found by the MP, and solved for the remaining
variables. Based on the SP outcome, one or more cuts can be generated and
added to MP, preventing it from exploring specific areas of the search space.
In the classical application of BD to MIPs, the SP is a Linear Programming
(LP) problem, whose dual solution is exploited to derive cuts to be added
to the MP. In [15], BD has been generalized and extended to problems in
which the SP is not required to be an LP problem.

Logic Based Benders decomposition, introduced many decades later in
[19], is an extension of the classical BD in which, in the MP only the variables
that contribute directly to the objective function are considered, while, the
others are relegated to the SP. This way, the SP becomes a pure feasibility
problem. Each time the SP results to be infeasible, one or more cuts can be
generated to cut off infeasible solutions from the MP solutions search space.
As soon as a feasible SP is detected, the overall solution obtained is proved
to be optimal.

A specific case of Logic Based Benders decomposition, named Combi-
natorial Benders decomposition, has been presented in [12]. This approach
is specifically suited for MIP models, involving binary variables and a large
number of logical implications through Big-M constraints. In this scenario,
each time a given combination of the MP variables yields to an infeasible SP,
a Combinatorial Benders Cut (CBC) is added, forcing to be 0 at least one of
the variables equal to 1 in the current MP optimal solution. If the number
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of variables equal to 1 in the MP optimal solution is large, the derived cut
may be very weak. Stronger cuts can be obtained identifying a subset of
variables responsible for the infeasibility through the search of the Minimum
Infeasible Set (MIS), which can be determined through either an exact or
a heuristic approach. Such cuts are stronger since they allow cutting off
from the MP search space several solutions at a time, i.e., all the variables
contained in the MIS equal to 1, strongly speeding-up the convergence to-
ward an optimal solution. However, the algorithm convergence is always
guaranteed even adopting only standard CBC, cutting off one solution at a
time as proved in [12].

In the last decade, CBC has been successfully applied to real problems
arising in different contexts. The first application is described in [3], where
a toll facilities location problem is addressed. In [13], an exact CBC-based
approach for the Strip Packing problem is proposed. Several applications
in the field of Port Logistics are reported in the literature, e.g., quayside
operations at container terminals are studied in [8] and [10], while in [41], the
lock scheduling problem is addressed. Other innovative applications can be
found in health care, regarding beam intensity modulation in radiotherapy
[40], in production, where the assembly line balancing is studied [1] and in
jobs allocation on computers clusters, [25].

All the above cited problems share a common structure where the vari-
ables can be partitioned into two subsets. The first one, involved in the MP,
contains all the variables directly contributing to the objective function,
while the second one, containing variables only responsible for the solution
feasibility, is involved in the SP.

In this section, we propose several CBC approaches in which we try
to speed-up the standard CBC method both providing stronger cuts and
adding valid inequalities to the MP.

6.1. CBC1

The first developed CBC approach (CBC1) is based on the classical
framework of [12]. The master problem, MP1, aims at finding the optimal
subset of trips covering all the customers at the minimum cost and, there-
fore it becomes a pure Set Partitioning problem, quickly solved to optimality.

MP1:
min

∑
π∈Π

dπzπ (27)

∑
π∈Π

aiπzπ = 1 ∀i ∈ C (28)

zπ ∈ {0, 1} ∀π ∈ Π (29)

The objective function (27) to be minimized represents the total travel
distance as in the T-ILP model, while constraints (28) and (29) correspond
to constraints (20) and (25), respectively.
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The slave problem, SP1, checks if a feasible assignment of those trips
to both periods and trucks exists such that the duration constraints are re-
spected, becoming a pure feasibility problem.

SP1: ∑
k∈K

∑
t∈T̃π

ytπk = z?π ∀π ∈ Π (30)

∑
π∈Π:t∈T̃π

tπy
t
πk ≤ Tmax1 ∀k ∈ K, ∀t ∈ T (31)

∑
π∈Π:t∈T̃π

tπy
t
πk +

∑
π∈Π:t∈T̃π

tπy
t+1
πk ≤ T

max
2 ∀k ∈ K, ∀t = 1, . . . , |T | − 1 (32)

∑
t∈T

∑
π∈Π:t∈T̃π

tπy
t
πk ≤ Tmax3 ∀k ∈ K (33)

ytπk ∈ {0, 1} ∀π ∈ Π, ∀k ∈ K, ∀t ∈ T (34)

where z?π is equal to 1 if trip π has been selected in the MP1 optimal
solution; 0 otherwise. Constraints (30) imply that if a trip has been selected
by MP1, it must be assigned to exactly one period and one truck, while
constraints (30)-(34) correspond to (21)-(26) of the T-ILP model.

MP1 and SP1 are iteratively solved in sequence. If SP1 is infeasible,
then a cut is added to MP1, imposing that at least one of the trip selected
by MP1 would not be selected in the next iterations:∑

π∈Π?

zπ ≤ |Π?| − 1 (35)

where Π? is the set of the trip selected by MP1 at the current iteration
and |Π?| indicates the number of trips belonging to the set Π?.

The procedure is repeated until SP1 becomes feasible. As soon as a
feasible solution for SP1 is found, it is proved to be optimal.

The main drawback of CBC1 is that if the number of trips selected
by MP1 is very large, the cuts may become too weak, and, therefore, the
convergence toward an optimal solution may result to be slow.

6.2. CBC2

In the second CBC approach proposed, (CBC2), we focus our attention
on the identification of a subset of the selected trips which is responsible for
the SP infeasibility. In particular, we focus on the selected trips which can
be performed only on a given subset of consecutive periods S and whose
duration imposes that they cannot be paired among them, thus requiring a
truck each one. The number of selected trips of this type cannot be greater
than the number of trucks multiplied by the number of periods in S, to have
a feasible solution.
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Both the MP and the SP, namely MP2 and SP2, respectively, exactly
correspond to MP1 and SP1. Each time SP2 turns out to be infeasible, for
all the periods in S, we check if the number of the selected trips, that can be
performed only on those periods and cannot be paired with others, is greater
than |S|·|K|. If this happens, we add to MP2, beyond the traditional cut
(35), the following cut: ∑

π∈Π?
S

zπ ≤ |S|·|K| (36)

where Π?
S represents the set of trips selected by MP2, that can be per-

formed only on periods belonging to S and cannot be paired among them.
The cut (36) becomes very useful when trips are reasonably long respect to
the maximum truck usage duration per period, Tmax1 and when the set of
periods in which a customer can be servedis smaller than the total number
of periods, |T |, e.g., when the number trips π for which |T̃π| = 1 is high. In
fact, the smaller |S|, the stronger the related cut is.

6.3. CBC3

The third CBC approach designed, (CBC3), follows the same core idea
of CBC2. However, instead of dynamically adding constraints on the maxi-
mum number of non-combinable trips per period, whenever this restriction
is violated by the current MP, now, these constraints are directly imposed
in the MP from the beginning, acting as valid inequalities. Therefore, MP3
can be obtained adding to MP1 the following valid inequalities:∑

π∈ΠS

zπ ≤ |S|·|K| ∀S ⊂ T (37)

where S is every subset of consecutive periods selected over T and ΠS is the
set of all the trips that can be performed only on periods belonging to S
and cannot be paired among them. While, SP3 exactly corresponds to SP1.

It is worth noting that the total number of valid inequalities (37) only
increases in quadratic way in function of |T |, since the total number of
subsets S of consecutive periods, selected over T , is |T |− |S|+ 1 and |S| can
vary from 1 to |T |.

6.4. CBC4

In the fourth CBC approach, (CBC4), we pursue a complete different
philosophy to identify stronger cuts. MP4 and SP4 exactly correspond to
MP1 and SP1, respectively. The main difference is that, whenever SP4
turns out to be infeasible, i.e., no feasible solution exists with all the |Π?|
selected by the MP, we try to compute the smallest integer value α∗ for
which a feasible solution can be obtained containing at most |Π?|−α∗ trips.
This approach is able to find very strong cuts and, consequently, to reduce
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the number of iterations needed to reach optimality. However, the computa-
tional time of each iteration may become slightly higher than that required
by the other CBC approaches. It is worth noting that the greater the value
of α∗, the stronger the cut, but the longer the computational time required
to solve the feasibility check problem.

More in details, MP4 and SP4 are iteratively solved in sequence. When-
ever SP4 turns out to be infeasible, a Feasibility Check Problem, (FCP4), is
formulated. FCP4 corresponds to SP4 except for the fact that constraints
(28) are replaced by the following ones:∑

k∈K

∑
t∈T̃π

ytπk = zπ ∀π ∈ Π (38)

∑
π∈Π?

zπ ≤ |Π?| − α (39)

with α initially equal to 2. While FCP4 remains infeasible, we increase
α by 1 and reiterate until FCP4 turns out to be feasible. In this way, we
exactly identify the maximum number of trips, α? = |Π?| − α, among those
selected by MP4, that can be selected in a feasible solution. Therefore, we
can replace the classical CBC (35), to be added to the MP, by the following
stronger cut: ∑

π∈Π?

zπ ≤ α? (40)

The CBC4 pseudo-code is in Algorithm 2.

Algorithm 2 CBC4
1: Solve MP4
2: Set, in SP4, the z variables to be equal to the optimal values found by MP4
3: Solve SP4
4: while SP4 is infeasible do
5: Set α = 2
6: Solve FCP4
7: while FCP4 is infeasible do
8: Set α = α+ 1
9: Solve FCP4

10: end while
11: Add constraint (40) to MP4
12: Solve MP4
13: Set, in SP4, the z variables to be equal to the optimal values found by MP4
14: Solve SP4
15: end while
16: Return the MP4 optimal solution

6.5. CBC5

The fifth CBC approach, (CBC5), follows a similar idea of CBC2. How-
ever, instead of working on the maximum number of non-combinable trips,

18



that can be performed only on a given period t, which can be selected by
the MP, it deals with the maximum total duration of the selected trips that
can be performed only on a given period t. We then formulate two Feasibil-
ity Check Problem whenever the slave problem is infeasible. The first one,
FCP 1

5 , checks, for each period t, if the total duration of the trips, that can
be performed only on t, selected by MP5 (indicated by Π?

t ), does not exceed
Tmax1 , multiplied by the number of trucks, |K|. The same consideration is
applied for each pair of consecutive periods t, t+ 1 in the second Feasibility
Check Problem, (FCP 2

5 ). In fact, the total duration of the trips, that can
be performed only on the subset of periods t, t+ 1, selected by MP5 (indi-
cated by Π?

t,t+1), has not to exceed the maximum allowed duration Tmax2 ,

multiplied by |K|. If FCP51 turns out to be infeasible, the following cut is
added, together with the classical CBC, (35):∑

π∈Π?t

zπ ≤ |Π?
t | − 1 ∀t ∈ T (41)

while if FCP52 turns out to be infeasible, the following cut is added,
together with the classical CBC, (35):∑

π∈Π?t,t+1

zπ ≤ |Π?
t,t+1| − 1 ∀t = 1, . . . , |T | − 1 (42)

The CBC5 pseudo-code is in Algorithm 3.

Algorithm 3 CBC5
1: Solve MP5
2: Set, in SP5, the z variables to be equal to the optimal values found by MP5
3: Solve SP5
4: while SP5 is infeasible do
5: Solve FCP 1

5

6: if FCP 1
5 is infeasible then

7: Add constraint (41) to MP5
8: end if
9: Solve FCP 2

5

10: if FCP 2
5 is infeasible then

11: Add constraint (42) to MP5
12: end if
13: Add constraint (35) to MP5
14: Solve MP5
15: Set, in SP5, the z variables to be equal to the optimal values found by MP5
16: Solve SP5
17: end while
18: Return the MP5 optimal solution

6.6. CBC6

Finally, the sixth CBC approach, CBC6, is based on the same idea of
CBC5 but all the cuts (41) and (42) are directly added to the MP, at the
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beginning of the search process. According to this, MP6 results to be equal
to MP1 with the additional constraints:∑

π∈Πt

tπzπ ≤ |K| · Tmax1 ∀t ∈ T (43)

∑
π∈Πt,t+1

tπzπ ≤ |K| · Tmax2 ∀t = 1, . . . , |T | − 1 (44)

where Πt,t+1 indicates the set of trips that can be performed only on the
pairs of periods (t,t+1). SP6 exactly corresponds to SP1. Both CBC6 and
CBC5 are particularly useful when |T̃π| is small, but differently from what
happens in CBC2 and CBC3, they are effective even when trips are short
with respect to Tmax1 , i.e., when the number of trips which can be performed
by the same truck on a period is high.

7. Computational results

In this section, we describe the experimental campaign carried out on
several small/medium/large-sized instances, ad hoc generated for the MM-
CDP-RDD. In particular, in Section 7.1, the procedure for generating the
sets of instances is detailed while in Section 7.2, numerical comparisons
among the proposed CBC approaches and the two ILP formulations are dis-
cussed. All the proposed approaches were implemented in Java (in Eclipse
environment) and both the ILP models were solved by ILOGs CPLEX Con-
cert Technology (version 12.9). The experiments were run on a computer
with a 64-bit operating system, 2.39 GHz processor and 32 GB of RAM.

7.1. Problem instances generation and parameters setting

In order to generate significant instances for the MM-CDP-RDD, the
dataset proposed for the VRP, available at https://www.sintef.no/projectweb/
top/vrptw/, was considered. In particular, we used the instance sets with
25 and 100 customers proposed by Solomon and the one with 200 customers
of Gehring & Homberger.

A planning horizon of one week, excluding Sunday, was considered, i.e.,
|T | = 6. The number of trucks available may change instance per instance.
In fact, for each instance, we run the approach with different fleet sizes
in order to determine its minimum value to make the instance feasible.
Then, we set the fleet size for that instance to the minimum value found.
The parameters Tmax1 , Tmax2 and Tmax3 were set to 11, 16 and 40 hours,
respectively. The truck loading capacity and the truck average speed were
set to 40ft and 60 km/h. The service times for 20ft and 40ft sized containers
were set to 15 and 30 minutes, respectively.

For generating the RDDs at customers, the procedure proposed in [2] was
used. Initializing t equal to 1, the release date of a customer was set to t. The
t value was increased by 1 every time a new customer was considered until it
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reached |T | (customers are considered sequentially). After which, t was set
again to 1. The procedure ends when all customers have been considered.
Instead, the due date of a customer was determined as the release date plus
an integer parameter λ that can vary in [0, 2]. For feasibility reasons, if the
release date of customer i is 6, then Ti = {6} while if the release date of
customer j is 5, with λ = 2, then Tj = {5, 6}.

The distance between each pair of customers and between each customer
and the terminal were computed using the Euclidean formulas, considering
the coordinates indicated in the original files.

The demand of each customer was set as in the following. We firstly
fixed the probability β of having a 40ft sized demand and the probability
γ of having a pickup request. Therefore, for each customer, two integer
numbers, n′ and n′′, were randomly generated with uniform probability,
both in [0, 1]. If, n′ ≤ β, then the request size was set to 40ft; otherwise, to
20ft. Moreover, if n′′ ≤ γ, the customer request was a pickup; otherwise, a
delivery.

Finally, for each of the original six sets with 25, 100 and 200 customers,
we took randomly one instance. This way, by varying λ in {0, 1, 2}, β in
{0.25, 0.50, 0.75} and γ in {0.25, 0.50, 0.75}, we generated 162 instances with
25, 100 and 200 customers, for a total number of 486 instances.

7.2. Result comparisons

In this section, we compare the results obtained by the proposed CBC
approaches and the ones detected by both A-ILP and T-ILP. In the tables
that will follow, instance denotes the instance name. We point out that
we keep the original instance name in the root name, adding information
about parameters β, γ and λ, after it. For example, c107 25 25 0 means that
the instance c107 has been elaborated with β = 0.25, γ = 0.25 and finally,
λ = 0. Column |K| indicates the minimum number of trucks to make the
instance feasible. Columns TD and CPU denote the total travel distance
and the CPU time required, respectively. Finally, column GAP (%) reports
the percentage ILP GAP of the ILP models and the symbol † is always used
for marking the cases in which the CPU time limit of one hour is reached

7.2.1. Results on instances with 25 customers

In this section, we discuss the results obtained by A-ILP and T-ILP on
the instances with 25 customers. We do not report the results obtained by
the CBC approaches since, due to the very small size of the instances, T-ILP
shows on the average the best performance.

Tables 3-4 show that T-ILP is suitable to close to optimality all the
instances in an average total CPU time of 0.60 seconds against 1, 005.25
seconds required by A-ILP. It is worth remarking that the total CPU time
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required by T-ILP counts also the time for generating all the feasible non-
dominated trips. The number of trips generated is equal to 174 in about
0.11 seconds, on average.

Moreover, A-ILP reaches the CPU time limit of 3, 600 seconds on four
instances that correspond to cases in which the value of λ has been set to
the maximum one (i.e., 2). Indeed, on these four instances, although A-ILP
finds the optimal solution, the solver is not able to certificate its optimality
within the CPU time limit. In fact, those percentage gaps are high only
because the A-ILP bound turns out to be not tight enough, as often it
occurs for arc-based mathematical programming formulations.

7.2.2. Results on instances with 100 customers

In this section, the results obtained by the two ILP models are com-
pared with those found by the CBC approaches, on the instances with 100
customers. In particular, the average number of trips generated is almost
equal to 19, 143 in an average CPU time of about 1.25 seconds, while, the
number of cuts added is about 11 in CBC1, CBC2 and CBC3, 1 in CBC4
and CBC6 and finally, 4 in CBC5.

Tables 5-6 show that on average CBC6 outperforms all the other ap-
proaches and the two ILP models, solving all the instances to optimality in
the smallest average CPU time of 8.13 seconds. The other CBC approaches
instead do not close to optimality two instances (i.e., c106 25 50 2 and
r207 25 50 2), cases in which the values of the objective function (2, 517.37
and 2, 195.69, respectively) are lowest than the optimal ones (2, 521.93 and
2, 199.11, respectively) because they correspond to the last infeasible solu-
tions found by the MP. Indeed, in the tables, these cases correspond to ones
in which the CBC approaches reach the CPU time limit of one hour. More-
over, CBC4 does not close to optimality also the instances c106 50 50 2,
r109 50 50 2, r207 50 50 2 and rc108 25 75 2. This is justified by the fact
that, at each iteration, it needs checking not only the feasibility of the cur-
rent solution found by MP4 but also, finding α∗.

However, observing the results instance by instance, we can conclude
that there is not an approach that always dominates the others. Figure 4
shows the percentage of instances in which each approach dominates the oth-
ers. Instead, the A-ILP model closes to optimality only 12.96% of instances
while, for the 28.40% of instances, the solver is not able to certificate the
optimality in 1 hour. Finally, on the 58.64% of instances, the A-ILP model
is not suitable to find even a feasible solution in 1 hour (cases in which TD
value is indicated by NFS, i.e., No Feasible Solution, in the tables).

7.3. Results on instances with 200 customers

In this section, we discuss a comparison between the results obtained by
T-ILP model and those of CBC6 that, among the other CBC approaches,
shows the best performances on the instances with 100 customers.
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Table 3: Results on instances with 25 customers: Part I
A-ILP T-ILP

Instance |K| TD CPU GAP(%) TD CPU GAP(%)
c107 25 25 0 1 768.24 0.14 0.00 768.24 0.56 0.00
c107 25 25 1 1 595.29 32.34 0.00 595.29 0.64 0.00
c107 25 25 2 1 559.47 † 8.80 559.47 0.77 0.00
c107 25 50 0 1 898.05 0.13 0.00 898.05 0.39 0.00
c107 25 50 1 1 659.93 5.50 0.00 659.93 0.56 0.00
c107 25 50 2 1 634.78 14.08 0.00 634.78 0.75 0.00
c107 25 75 0 1 792.76 0.25 0.00 792.76 0.61 0.00
c107 25 75 1 1 603.53 204.35 0.00 603.53 1.41 0.00
c107 25 75 2 1 539.03 1844.99 0.00 539.03 1.48 0.00
c107 50 25 0 1 908.66 0.14 0.00 908.66 0.38 0.00
c107 50 25 1 1 761.44 1.08 0.00 761.44 0.42 0.00
c107 50 25 2 1 725.07 11.51 0.00 725.07 0.59 0.00
c107 50 50 0 1 794.07 0.11 0.00 794.07 0.41 0.00
c107 50 50 1 1 586.36 0.38 0.00 586.36 0.86 0.00
c107 50 50 2 1 557.80 8.92 0.00 557.80 0.77 0.00
c107 50 75 0 1 873.61 0.09 0.00 873.61 0.36 0.00
c107 50 75 1 1 810.24 0.69 0.00 810.24 0.47 0.00
c107 50 75 2 1 794.02 12.22 0.00 794.02 1.13 0.00
c107 75 25 0 1 914.85 0.09 0.00 914.85 0.34 0.00
c107 75 25 1 1 858.66 0.14 0.00 858.66 0.39 0.00
c107 75 25 2 1 788.36 0.50 0.00 788.36 0.59 0.00
c107 75 50 0 1 883.23 0.09 0.00 883.23 0.34 0.00
c107 75 50 1 1 701.40 0.17 0.00 701.40 0.38 0.00
c107 75 50 2 1 661.46 0.27 0.00 661.46 0.45 0.00
c107 75 75 0 2 994.82 0.09 0.00 994.82 0.37 0.00
c107 75 75 1 1 891.64 0.13 0.00 891.64 0.42 0.00
c107 75 75 2 1 831.63 0.17 0.00 831.63 0.44 0.00
c204 25 25 0 1 856.01 0.17 0.00 856.01 0.36 0.00
c204 25 25 1 1 738.82 129.41 0.00 738.82 0.61 0.00
c204 25 25 2 1 682.12 3091.02 0.00 682.12 0.88 0.00
c204 25 50 0 1 883.80 0.13 0.00 883.80 0.61 0.00
c204 25 50 1 1 746.62 109.45 0.00 746.62 1.06 0.00
c204 25 50 2 1 714.51 † 12.55 714.51 1.00 0.00
c204 25 75 0 1 999.95 1.33 0.00 999.95 0.59 0.00
c204 25 75 1 1 814.05 1.22 0.00 814.05 0.55 0.00
c204 25 75 2 1 795.20 19.09 0.00 795.20 1.36 0.00
c204 50 25 0 1 1016.70 0.09 0.00 1016.70 0.34 0.00
c204 50 25 1 1 1014.47 0.33 0.00 1014.47 0.55 0.00
c204 50 25 2 1 982.30 2.70 0.00 982.30 0.44 0.00
c204 50 50 0 1 886.50 0.14 0.00 886.50 0.34 0.00
c204 50 50 1 1 710.02 0.61 0.00 710.02 0.50 0.00
c204 50 50 2 1 648.42 8.08 0.00 648.42 0.89 0.00
c204 50 75 0 1 893.21 0.22 0.00 893.21 0.39 0.00
c204 50 75 1 1 724.24 9.59 0.00 724.24 0.88 0.00
c204 50 75 2 1 686.19 107.57 0.00 686.19 0.69 0.00
c204 75 25 0 1 991.22 0.09 0.00 991.22 0.36 0.00
c204 75 25 1 1 877.94 0.14 0.00 877.94 0.47 0.00
c204 75 25 2 1 853.63 0.58 0.00 853.63 0.55 0.00
c204 75 50 0 1 1026.18 0.11 0.00 1026.18 0.42 0.00
c204 75 50 1 1 876.06 0.16 0.00 876.06 0.38 0.00
c204 75 50 2 1 814.15 0.19 0.00 814.15 0.55 0.00
c204 75 75 0 2 1083.95 0.11 0.00 1083.95 0.41 0.00
c204 75 75 1 1 922.15 0.13 0.00 922.15 0.36 0.00
c204 75 75 2 1 906.29 0.28 0.00 906.29 0.45 0.00
r101 25 25 0 1 989.49 0.13 0.00 989.49 0.41 0.00
r101 25 25 1 1 855.85 2.86 0.00 855.85 0.72 0.00
r101 25 25 2 1 809.65 24.48 0.00 809.65 0.84 0.00
r101 25 50 0 1 942.06 0.16 0.00 942.06 0.39 0.00
r101 25 50 1 1 747.08 5.28 0.00 747.08 0.69 0.00
r101 25 50 2 1 696.45 98.79 0.00 696.45 1.61 0.00
r101 25 75 0 1 1019.41 0.13 0.00 1019.41 0.38 0.00
r101 25 75 1 1 813.72 4.55 0.00 813.72 0.72 0.00
r101 25 75 2 1 766.84 85.82 0.00 766.84 0.94 0.00
r101 50 25 0 1 981.95 0.11 0.00 981.95 0.39 0.00
r101 50 25 1 1 800.29 0.69 0.00 800.29 0.89 0.00
r101 50 25 2 1 789.48 10.81 0.00 789.48 0.84 0.00
r101 50 50 0 1 1038.76 0.13 0.00 1038.76 0.36 0.00
r101 50 50 1 1 864.63 0.34 0.00 864.63 0.55 0.00
r101 50 50 2 1 806.89 1.30 0.00 806.89 0.78 0.00
r101 50 75 0 1 1069.61 0.13 0.00 1069.61 0.37 0.00
r101 50 75 1 1 939.93 0.30 0.00 939.93 0.50 0.00
r101 50 75 2 1 907.59 1.61 0.00 907.59 1.22 0.00
r101 75 25 0 1 1119.24 0.08 0.00 1119.24 0.39 0.00
r101 75 25 1 1 1070.84 0.13 0.00 1070.84 0.64 0.00
r101 75 25 2 1 1034.65 0.30 0.00 1034.65 0.70 0.00
r101 75 50 0 1 1093.76 0.09 0.00 1093.76 0.34 0.00
r101 75 50 1 1 969.64 0.17 0.00 969.64 0.39 0.00
r101 75 50 2 1 909.40 0.30 0.00 909.40 0.70 0.00
r101 75 75 0 2 1064.31 0.17 0.00 1064.31 0.41 0.00
r101 75 75 1 1 951.95 0.19 0.00 951.95 0.48 0.00
r101 75 75 2 1 940.24 0.53 0.00 940.24 0.50 0.00
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Table 4: Results on instances with 25 customers: Part II
A-ILP T-ILP

Instance |K| TD CPU GAP(%) TD CPU GAP(%)
r202 25 25 0 1 1040.78 0.11 0.00 1040.78 0.39 0.00
r202 25 25 1 1 873.25 5.23 0.00 873.25 0.52 0.00
r202 25 25 2 1 838.37 51.59 0.00 838.37 0.77 0.00
r202 25 50 0 1 988.74 0.14 0.00 988.74 0.39 0.00
r202 25 50 1 1 774.23 1.16 0.00 774.23 0.75 0.00
r202 25 50 2 1 710.15 10.91 0.00 710.15 1.30 0.00
r202 25 75 0 1 1081.92 0.13 0.00 1081.92 0.36 0.00
r202 25 75 1 1 957.27 0.56 0.00 957.27 0.44 0.00
r202 25 75 2 1 929.94 6.42 0.00 929.94 0.84 0.00
r202 50 25 0 1 1119.77 0.11 0.00 1119.77 0.36 0.00
r202 50 25 1 1 978.45 0.17 0.00 978.45 0.52 0.00
r202 50 25 2 1 931.40 0.41 0.00 931.40 0.48 0.00
r202 50 50 0 1 1043.97 0.11 0.00 1043.97 0.41 0.00
r202 50 50 1 1 908.72 0.24 0.00 908.72 0.47 0.00
r202 50 50 2 1 898.57 2.45 0.00 898.57 0.88 0.00
r202 50 75 0 1 1080.52 0.11 0.00 1080.52 0.36 0.00
r202 50 75 1 1 905.68 0.20 0.00 905.68 0.47 0.00
r202 50 75 2 1 882.81 0.47 0.00 882.81 0.83 0.00
r202 75 25 0 2 1124.48 0.09 0.00 1124.48 0.44 0.00
r202 75 25 1 1 959.51 0.13 0.00 959.51 0.39 0.00
r202 75 25 2 1 959.51 0.17 0.00 959.51 0.53 0.00
r202 75 50 0 2 1077.29 0.11 0.00 1077.29 0.41 0.00
r202 75 50 1 1 863.14 0.09 0.00 863.14 0.41 0.00
r202 75 50 2 1 840.97 0.16 0.00 840.97 0.56 0.00
r202 75 75 0 2 1161.85 0.14 0.00 1161.85 0.41 0.00
r202 75 75 1 1 979.63 0.14 0.00 979.63 0.44 0.00
r202 75 75 2 1 960.76 0.17 0.00 960.76 0.47 0.00
rc108 25 25 0 1 1364.73 0.16 0.00 1364.73 0.34 0.00
rc108 25 25 1 1 1104.76 2.22 0.00 1104.76 0.53 0.00
rc108 25 25 2 1 982.27 40.69 0.00 982.27 0.78 0.00
rc108 25 50 0 1 1306.69 0.14 0.00 1306.69 0.38 0.00
rc108 25 50 1 1 1041.13 3.30 0.00 1041.13 0.69 0.00
rc108 25 50 2 1 871.09 16.75 0.00 871.09 0.84 0.00
rc108 25 75 0 1 1334.70 0.17 0.00 1334.70 0.36 0.00
rc108 25 75 1 1 1205.54 4.47 0.00 1205.54 0.81 0.00
rc108 25 75 2 1 1149.82 48.26 0.00 1149.82 0.88 0.00
rc108 50 25 0 2 1493.89 0.13 0.00 1493.89 0.42 0.00
rc108 50 25 1 2 1316.91 3.22 0.00 1316.91 0.56 0.00
rc108 50 25 2 2 1290.27 11.08 0.00 1290.27 0.69 0.00
rc108 50 50 0 2 1401.34 0.23 0.00 1401.34 0.42 0.00
rc108 50 50 1 1 1030.03 0.36 0.00 1030.03 0.45 0.00
rc108 50 50 2 1 994.76 6.06 0.00 994.76 1.38 0.00
rc108 50 75 0 2 1563.45 0.11 0.00 1563.45 0.45 0.00
rc108 50 75 1 2 1246.31 3.63 0.00 1246.31 0.52 0.00
rc108 50 75 2 1 1146.98 4.23 0.00 1146.98 0.78 0.00
rc108 75 25 0 2 1741.50 0.11 0.00 1741.50 0.39 0.00
rc108 75 25 1 2 1586.04 0.49 0.00 1586.04 0.49 0.00
rc108 75 25 2 2 1536.06 6.31 0.00 1536.06 0.55 0.00
rc108 75 50 0 2 1516.28 0.13 0.00 1516.28 0.47 0.00
rc108 75 50 1 2 1343.63 1.05 0.00 1343.63 0.49 0.00
rc108 75 50 2 2 1240.96 0.73 0.00 1240.96 0.61 0.00
rc108 75 75 0 2 1658.87 0.13 0.00 1658.87 0.41 0.00
rc108 75 75 1 2 1383.92 0.59 0.00 1383.92 0.48 0.00
rc108 75 75 2 2 1379.93 3.25 0.00 1379.93 0.75 0.00
rc205 25 25 0 1 1274.65 0.23 0.00 1274.65 0.42 0.00
rc205 25 25 1 1 885.27 182.46 0.00 885.27 0.72 0.00
rc205 25 25 2 1 781.96 † 10.79 781.96 1.19 0.00
rc205 25 50 0 1 1334.79 2.94 0.00 1334.79 0.38 0.00
rc205 25 50 1 1 902.44 23.55 0.00 902.44 0.69 0.00
rc205 25 50 2 1 794.91 † 1.59 794.91 1.50 0.00
rc205 25 75 0 1 1370.37 0.14 0.00 1370.37 0.36 0.00
rc205 25 75 1 1 1072.39 4.45 0.00 1072.39 0.89 0.00
rc205 25 75 2 1 970.22 14.45 0.00 970.22 0.75 0.00
rc205 50 25 0 2 1679.02 0.14 0.00 1679.02 0.48 0.00
rc205 50 25 1 2 1405.13 3.17 0.00 1405.13 0.49 0.00
rc205 50 25 2 2 1359.23 70.79 0.00 1359.23 0.91 0.00
rc205 50 50 0 2 1432.56 0.22 0.00 1432.56 0.42 0.00
rc205 50 50 1 1 1,012.82 1.20 0.00 1,012.82 0.52 0.00
rc205 50 50 2 1 977.86 22.16 0.00 977.86 0.66 0.00
rc205 50 75 0 2 1463.48 0.19 0.00 1463.48 0.44 0.00
rc205 50 75 1 2 1,280.18 1.66 0.00 1,280.18 0.84 0.00
rc205 50 75 2 1 1183.02 0.77 0.00 1183.02 0.83 0.00
rc205 75 25 0 2 1610.07 0.13 0.00 1610.07 0.41 0.00
rc205 75 25 1 2 1248.10 0.44 0.00 1248.10 0.47 0.00
rc205 75 25 2 2 1156.81 0.59 0.00 1156.81 0.61 0.00
rc205 75 50 0 2 1536.81 0.17 0.00 1536.81 0.39 0.00
rc205 75 50 1 2 1273.82 0.41 0.00 1273.82 0.49 0.00
rc205 75 50 2 2 1170.12 2.52 0.00 1170.12 0.86 0.00
rc205 75 75 0 2 1574.34 0.09 0.00 1574.34 0.41 0.00
rc205 75 75 1 2 1258.22 0.22 0.00 1258.22 0.53 0.00
rc205 75 75 2 2 1212.17 0.44 0.00 1212.17 0.69 0.00

Average 1005.25 128.61 0.21 1005.25 0.60 0.00
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Figure 4: Percentage of instances in which each approach dominates all the others

Tables 7-8 show that on average CBC6 closes the instances to optimality
in an average CPU time that is about 65% less than that required by the
T-ILP model.

In 10% of the instances, the T-ILP model is not able to find even a
feasible solution (cases marked in the tables with the acronym NFS in the
TD column) in the time limit of one hour. Indeed, in these cases, the
average number of trips generated is more than 1 million. While, on all
the instances, the average number of trips is about 242, 688 generated in an
average CPU time of about 13 seconds. Moreover, in 3% of the instances,
the T-ILP model reaches the CPU time limit of one hour and therefore, it
provides only a feasible solution.

Concerning CBC6, in the tables, the cases marked with the symbol ‘∗’
(about 6% of the instances) are those in which we report the solution found
by the MP at the final iteration, i.e., not a feasible solution for the problem,
since the CPU time limit of one hour is reached. CBC6 is able to solve
to optimality all instances except two, for which, it provides only infeasible
solutions (while the T-ILP model is able to solve them to optimality).

8. Conclusions and future work

In this paper, we introduced a new variant of the Containers Drayage
Problem (CDP), i.e., the Multi-period Multi-trip CDP with Release and
Due Dates (MM-CDP-RDD), in which the planning horizon is divided into
discrete time periods (days), each truck can perform more than one trip in
a period and customers have to be served in specific periods (Release and
Due Dates, RDDs).

We addressed the MM-CDP-RDD through exact approaches. In particu-
lar, we proposed an Arc-based Integer Linear Programming (A-ILP) model,
representing the problem on a direct graph, properly pre-processed in or-
der to remove infeasible arcs considering both the truck load capacity and
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Table 5: Results on instances with 100 customers: Part I
A-ILP T-ILP CBC1 CBC2 CBC3 CBC4 CBC5 CBC6

Instance |K| TD CPU GAP(%) TD CPU CPU CPU CPU CPU CPU CPU
c106 25 25 0 4 3643.51 † 18.81 3640.19 4.06 3.47 3.16 3.03 5.38 3.28 3.27
c106 25 25 1 3 NFS † - 3127.14 21.41 5.23 5.11 7.75 6.84 5.22 5.17
c106 25 25 2 3 NFS † - 3018.09 89.03 78.96 78.43 128.52 814.40 29.51 12.38
c106 25 50 0 3 NFS † - 3258.41 4.25 5.06 5.33 3.34 3.13 3.59 3.14
c106 25 50 1 3 2846.02 † 31.13 2656.92 31.01 5.77 5.55 14.56 6.83 5.58 7.08
c106 25 50 2 3 NFS † - 2521.93 151.91 † † † † † 82.06
c106 25 75 0 3 NFS † - 3462.39 4.61 3.27 3.45 3.66 5.08 3.41 4.50
c106 25 75 1 3 3059.36 † 26.27 2908.49 36.78 6.84 6.48 13.66 7.56 6.52 7.13
c106 25 75 2 3 NFS † - 2791.04 201.28 49.98 50.62 280.51 442.00 37.61 25.56
c106 50 25 0 4 3946.48 † 7.93 3946.48 3.47 3.56 3.61 3.02 2.92 3.30 3.53
c106 50 25 1 4 3563.41 † 23.34 3541.00 6.27 3.70 4.20 3.67 4.03 3.59 3.17
c106 50 25 2 4 3452.99 † 28.03 3437.90 22.78 5.63 5.50 6.94 5.36 5.53 5.16
c106 50 50 0 4 3528.52 † 4.90 3520.58 5.52 5.09 5.13 3.11 5.08 4.98 3.02
c106 50 50 1 3 NFS † - 2879.79 47.45 4.58 4.78 6.03 5.80 4.37 3.53
c106 50 50 2 3 NFS † - 2626.06 94.40 1012.09 1005.53 1019.07 † 244.17 367.08
c106 50 75 0 4 3949.40 † 4.80 3949.40 1.50 3.11 3.16 3.20 4.88 3.02 4.06
c106 50 75 1 4 3459.67 † 10.99 3424.65 7.53 2.92 2.84 4.77 2.81 2.59 2.72
c106 50 75 2 4 3427.29 † 15.65 3375.71 30.62 6.33 6.39 15.30 8.44 6.23 6.94
c106 75 25 0 5 4528.44 90.50 0.00 4528.44 0.73 0.55 0.56 0.61 0.61 0.52 0.53
c106 75 25 1 4 4045.87 † 2.87 4045.87 2.24 3.69 2.91 4.31 3.25 3.92 4.72
c106 75 25 2 4 3977.54 † 8.06 3971.76 4.28 1.73 1.44 1.67 2.89 2.66 2.64
c106 75 50 0 4 4011.42 43.95 0.00 4011.42 0.81 0.59 0.56 0.66 0.59 0.53 0.58
c106 75 50 1 4 3493.91 † 2.39 3493.91 3.00 0.89 2.16 1.37 2.34 3.52 0.95
c106 75 50 2 4 3298.12 † 5.51 3294.26 3.61 1.44 1.41 1.61 3.11 2.50 2.36
c106 75 75 0 5 4554.96 15.906 0.00 4554.96 0.69 0.56 0.63 0.61 0.66 0.56 0.53
c106 75 75 1 4 4135.05 † 1.20 4135.05 2.92 2.89 3.08 1.20 2.38 1.05 1.99
c106 75 75 2 4 3977.10 † 3.06 3977.10 3.89 1.33 1.20 1.48 2.77 1.09 3.25
c202 25 25 0 4 3854.04 † 21.49 3835.40 3.24 3.16 3.13 3.27 5.42 3.16 3.17
c202 25 25 1 3 NFS † - 3392.28 22.67 4.20 4.56 5.69 4.66 4.80 4.47
c202 25 25 2 3 NFS † - 3249.86 72.39 10.87 11.00 35.47 12.91 11.03 13.28
c202 25 50 0 3 NFS † - 3291.61 8.97 3.39 5.41 3.23 3.25 5.38 4.70
c202 25 50 1 3 2992.99 † 33.51 2707.84 37.45 5.80 5.61 12.20 6.58 5.75 5.34
c202 25 50 2 3 NFS † - 2509.13 119.93 25.28 25.33 127.66 200.78 26.20 15.64
c202 25 75 0 3 NFS † - 3421.68 4.16 3.34 3.58 3.55 3.45 3.36 3.25
c202 25 75 1 3 3147.40 † 29.06 2961.19 43.00 6.83 6.92 17.11 7.92 6.83 8.17
c202 25 75 2 3 NFS † - 2842.55 183.50 24.70 24.70 196.35 28.95 24.92 27.62
c202 50 25 0 4 4214.37 † 7.88 4214.37 2.64 1.44 2.97 3.81 3.23 3.05 4.83
c202 50 25 1 4 3843.97 † 22.71 3804.34 5.23 3.44 3.49 3.56 3.22 3.61 3.45
c202 50 25 2 4 3769.37 † 27.68 3689.85 21.59 5.31 5.12 9.47 6.28 5.14 4.91
c202 50 50 0 4 3795.12 † 1.36 3795.12 2.41 0.86 0.75 0.95 0.86 0.77 0.86
c202 50 50 1 4 3142.52 † 8.31 3123.99 5.66 2.36 3.75 3.50 3.72 3.45 3.37
c202 50 50 2 4 3108.96 † 14.92 2976.90 16.50 4.34 4.41 7.88 4.41 4.45 3.75
c202 50 75 0 4 4008.06 † 0.82 4008.06 1.30 3.44 3.33 3.17 3.16 3.09 3.05
c202 50 75 1 4 3597.99 † 8.54 3595.81 4.45 3.41 2.36 3.17 3.61 3.58 3.20
c202 50 75 2 4 3642.34 † 18.75 3533.13 18.23 4.36 5.11 9.45 5.88 4.36 4.86
c202 75 25 0 5 4736.41 253.58 0.00 4736.41 0.63 0.59 0.55 0.59 0.66 0.56 0.56
c202 75 25 1 5 4496.52 † 6.65 4496.52 3.20 3.80 3.86 1.14 2.42 1.78 3.63
c202 75 25 2 4 NFS † - 4376.46 5.33 2.67 1.63 1.83 2.67 2.56 2.56
c202 75 50 0 4 4121.54 47.33 0.00 4121.54 0.77 0.53 0.55 0.59 0.56 0.55 0.58
c202 75 50 1 4 3521.33 † 0.95 3521.33 5.14 3.45 3.30 3.53 3.48 4.66 3.03
c202 75 50 2 4 3378.33 † 2.73 3378.33 3.28 1.50 1.59 1.59 3.19 1.78 3.28
c202 75 75 0 5 4669.75 10.828 0.00 4669.75 0.64 0.59 0.61 0.66 0.63 0.63 0.55
c202 75 75 1 4 4256.14 † 1.10 4256.14 3.58 1.08 1.13 5.03 5.19 1.05 1.74
c202 75 75 2 4 4157.07 † 3.59 4157.07 5.06 2.56 3.34 2.77 3.44 2.78 1.61
r109 25 25 0 3 3061.91 † 16.83 3055.01 3.31 5.05 3.30 3.30 3.00 3.27 3.17
r109 25 25 1 3 2854.21 † 35.18 2707.94 15.52 4.06 3.91 5.44 4.22 4.33 4.00
r109 25 25 2 3 2862.56 † 42.25 2620.80 72.28 10.64 10.70 49.47 13.23 10.86 11.22
r109 25 50 0 3 2789.39 † 18.57 2785.85 3.34 3.25 3.36 5.16 4.86 3.25 3.08
r109 25 50 1 3 2582.48 † 33.25 2425.50 40.75 8.59 8.72 17.72 9.81 9.13 8.94
r109 25 50 2 3 NFS † - 2305.31 196.32 23.06 23.05 195.17 27.53 22.91 25.70
r109 25 75 0 3 3058.76 † 6.86 3058.76 5.95 2.47 5.33 5.58 5.73 5.67 5.20
r109 25 75 1 3 2882.79 † 24.31 2791.33 16.97 3.56 3.84 6.14 5.75 3.61 3.99
r109 25 75 2 3 3083.84 † 37.61 2714.56 83.95 11.84 12.13 53.09 14.45 12.05 13.73
r109 50 25 0 4 3477.66 † 2.93 3477.66 2.63 4.59 3.09 2.92 3.08 5.19 2.97
r109 50 25 1 4 3196.71 † 16.21 3191.45 5.41 3.75 2.48 3.53 3.56 3.55 2.78
r109 50 25 2 4 3126.26 † 20.06 3100.93 18.62 4.17 4.28 6.16 5.56 4.03 4.31
r109 50 50 0 4 3053.22 † 3.84 3053.22 2.08 2.89 3.23 3.02 2.95 3.08 2.97
r109 50 50 1 4 2653.79 † 9.77 2646.40 5.14 3.56 3.69 3.84 3.70 2.25 2.36
r109 50 50 2 3 NFS † - 2492.81 37.06 518.62 517.51 522.08 † 65.17 4.27
r109 50 75 0 4 3261.69 † 5.99 3244.50 3.17 3.48 3.06 3.28 3.27 3.08 2.95
r109 50 75 1 3 NFS † - 2897.54 11.19 2.98 3.33 4.30 5.03 3.64 3.39
r109 50 75 2 3 NFS † - 2833.67 41.26 6.55 6.56 19.39 8.14 6.41 6.89
r109 75 25 0 4 3876.00 46.83 0.00 3876.00 0.69 0.53 0.52 0.56 0.55 0.53 0.55
r109 75 25 1 4 3694.25 † 0.35 3694.25 2.34 2.03 1.05 1.16 2.36 2.02 2.50
r109 75 25 2 4 3648.58 † 8.03 3648.58 2.84 2.27 1.39 2.05 2.72 1.27 2.39
r109 75 50 0 4 3466.09 4.92 0.00 3466.09 0.69 0.63 0.59 0.58 0.63 0.58 0.56
r109 75 50 1 4 3023.52 † 1.44 3023.52 3.61 2.17 1.31 1.50 6.48 2.31 3.70
r109 75 50 2 4 2922.18 † 3.44 2922.18 4.48 2.53 2.72 2.80 2.69 1.62 3.47
r109 75 75 0 4 3863.58 3.38 0.00 3863.58 0.63 0.47 0.52 0.53 0.58 0.52 0.50
r109 75 75 1 4 3670.58 145.25 0.00 3670.58 1.41 0.75 0.73 0.86 0.80 0.75 0.70
r109 75 75 2 4 3624.69 † 1.02 3624.69 3.11 1.59 2.63 2.73 2.66 2.67 1.24
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Table 6: Results on instances with 100 customers: Part II
A-ILP T-ILP CBC1 CBC2 CBC3 CBC4 CBC5 CBC6

Instance |K| TD CPU GAP(%) TD CPU CPU CPU CPU CPU CPU CPU
r207 25 25 0 3 NFS † - 3270.26 3.75 3.61 3.13 3.23 3.56 3.09 3.05
r207 25 25 1 3 3059.99 † 41.02 2988.41 11.50 4.08 3.66 4.23 6.38 4.30 4.36
r207 25 25 2 3 3053.63 † 47.16 2889.33 30.09 5.59 5.48 10.63 6.37 5.44 5.55
r207 25 50 0 3 2734.67 † 13.79 2728.26 4.05 3.31 3.34 5.30 3.33 3.31 3.22
r207 25 50 1 3 2492.90 † 29.00 2344.16 37.83 7.53 7.28 16.16 8.89 7.53 7.64
r207 25 50 2 3 2608.60 † 40.24 2199.11 254.08 † † † † † 114.32
r207 25 75 0 3 3047.58 † 9.46 3022.39 3.67 2.94 3.33 3.28 2.95 3.88 3.16
r207 25 75 1 3 2780.16 † 23.42 2726.13 30.90 5.66 5.84 18.33 7.81 5.72 5.88
r207 25 75 2 3 NFS † - 2640.11 128.76 16.48 17.01 99.56 20.25 16.44 19.36
r207 50 25 0 4 3527.80 † 9.82 3527.80 2.77 3.03 3.31 4.92 3.05 3.09 2.95
r207 50 25 1 4 3190.98 † 25.71 3179.64 5.58 2.77 3.50 3.59 4.16 2.38 3.67
r207 50 25 2 4 3154.99 † 28.32 3131.35 23.01 5.27 5.25 9.03 7.19 5.75 5.41
r207 50 50 0 4 3079.74 † 4.07 3079.74 2.91 3.19 3.41 3.28 3.25 3.17 3.06
r207 50 50 1 3 NFS † - 2642.37 10.03 2.78 3.09 3.81 3.36 2.98 4.42
r207 50 50 2 3 NFS † - 2455.68 58.43 1936.14 1930.89 1939.28 † 251.72 8.00
r207 50 75 0 4 3481.45 † 2.78 3481.45 5.11 4.33 4.83 3.17 2.97 2.97 3.00
r207 50 75 1 4 3265.55 † 9.66 3265.55 4.50 2.83 2.81 2.62 3.03 3.08 2.86
r207 50 75 2 4 3181.16 † 11.75 3178.10 24.19 4.33 4.12 6.00 6.22 4.16 4.05
r207 75 25 0 4 3926.16 748.126 0.00 3926.16 0.64 0.53 0.55 0.58 0.59 0.56 0.56
r207 75 25 1 4 3678.48 † 1.97 3678.48 3.59 0.78 0.89 1.00 1.02 0.84 0.84
r207 75 25 2 4 3615.82 † 7.83 3615.82 4.89 2.55 2.59 2.09 3.20 2.75 2.27
r207 75 50 0 4 3521.76 123.232 0.00 3521.76 2.34 2.69 2.59 2.64 2.36 2.59 2.61
r207 75 50 1 4 2889.62 † 2.02 2889.62 2.14 1.08 1.11 1.08 1.44 1.03 2.33
r207 75 50 2 4 2815.52 † 4.11 2814.72 4.67 3.39 2.45 3.66 3.44 3.58 3.14
r207 75 75 0 4 3691.74 16.695 0.00 3691.74 0.73 0.56 0.59 0.66 0.58 0.58 0.56
r207 75 75 1 4 3399.89 † 1.44 3399.89 3.34 1.73 4.55 4.83 4.78 5.16 1.09
r207 75 75 2 4 3303.45 † 3.24 3303.45 4.83 1.88 1.67 4.34 5.36 3.14 3.88
rc108 25 25 0 4 4006.06 † 19.20 4005.57 3.19 3.23 4.92 5.22 3.09 3.19 3.05
rc108 25 25 1 4 NFS † - 3484.63 11.66 3.83 4.08 6.06 4.23 3.92 4.27
rc108 25 25 2 4 3766.30 † 44.59 3362.70 55.79 9.20 9.16 21.22 11.03 9.20 10.06
rc108 25 50 0 4 3665.40 † 12.69 3660.40 4.70 5.41 5.50 5.23 3.37 5.53 5.20
rc108 25 50 1 3 NFS † - 2947.32 32.83 5.25 5.36 20.67 6.72 5.48 5.94
rc108 25 50 2 3 NFS † - 2812.14 148.29 15.36 14.91 136.12 19.09 15.47 17.20
rc108 25 75 0 4 3782.00 † 11.49 3776.60 3.80 3.30 3.38 5.25 3.44 3.38 3.14
rc108 25 75 1 3 NFS † - 3310.69 49.12 5.77 5.73 12.27 6.95 5.61 6.94
rc108 25 75 2 3 NFS † - 3156.96 160.88 324.23 328.51 552.28 † 75.26 22.41
rc108 50 25 0 4 4334.44 † 6.11 4334.44 3.03 0.94 0.92 1.13 1.17 0.88 0.84
rc108 50 25 1 4 4042.23 † 21.12 4011.33 12.64 3.64 3.95 4.13 4.80 3.88 3.73
rc108 50 25 2 4 3933.99 † 24.85 3885.29 57.36 8.77 8.89 23.73 10.37 8.45 9.30
rc108 50 50 0 4 4165.72 † 5.14 4165.72 2.98 0.75 0.88 1.02 0.92 0.92 0.81
rc108 50 50 1 4 3495.09 † 17.76 3465.60 12.00 4.25 4.03 4.56 4.30 4.02 3.94
rc108 50 50 2 4 3442.89 † 24.29 3292.93 50.29 7.06 7.17 21.92 9.33 7.39 7.73
rc108 50 75 0 4 4770.45 † 0.60 4770.45 1.17 5.42 4.74 4.33 4.48 4.12 3.97
rc108 50 75 1 4 4338.01 † 7.85 4338.01 4.59 3.36 3.09 3.37 3.70 3.48 2.92
rc108 50 75 2 4 4292.27 † 11.97 4292.27 12.81 2.97 3.14 3.80 4.53 2.81 5.72
rc108 75 25 0 5 5336.06 7.819 0.00 5336.06 0.56 0.52 0.52 0.61 0.66 0.53 0.49
rc108 75 25 1 5 5049.05 † 1.93 5049.05 1.34 0.83 0.86 0.97 0.88 0.80 0.81
rc108 75 25 2 5 4967.61 † 5.22 4967.61 4.42 1.36 1.30 1.47 2.77 1.25 2.78
rc108 75 50 0 5 4709.75 10.53 0.00 4709.75 0.84 1.64 0.61 0.64 0.70 0.66 0.58
rc108 75 50 1 4 4179.12 780.01 0.00 4179.12 2.84 2.56 2.34 1.59 2.56 2.64 2.08
rc108 75 50 2 4 3994.11 † 2.04 3994.11 4.95 1.58 1.42 2.03 3.81 1.39 2.38
rc108 75 75 0 5 5134.52 6.946 0.00 5134.52 0.67 0.61 0.56 0.66 0.58 0.52 0.52
rc108 75 75 1 5 4785.87 3593.941 0.00 4785.87 3.34 3.58 1.03 1.30 3.67 1.02 4.59
rc108 75 75 2 5 4777.81 † 3.77 4777.81 3.34 2.78 2.48 2.14 2.58 2.56 2.66
rc205 25 25 0 4 3941.90 † 31.09 3923.66 4.02 3.48 3.13 3.42 5.23 3.50 3.19
rc205 25 25 1 3 NFS † - 3435.78 25.70 6.70 5.16 14.95 6.78 5.05 6.36
rc205 25 25 2 3 NFS † - 3339.83 128.16 17.69 15.19 74.73 18.42 16.39 16.80
rc205 25 50 0 3 NFS † - 3512.72 4.45 3.48 3.39 3.20 3.33 3.25 3.64
rc205 25 50 1 3 3132.04 † 36.75 2853.17 50.22 14.78 14.95 50.06 65.56 15.56 11.14
rc205 25 50 2 3 NFS † - 2622.99 266.98 32.36 33.00 598.12 42.48 33.56 36.25
rc205 25 75 0 4 4329.62 † 6.43 4328.99 4.95 3.06 3.13 3.14 3.17 2.91 2.78
rc205 25 75 1 4 3899.40 † 19.69 3894.89 8.77 3.28 3.19 3.78 4.36 4.55 3.89
rc205 25 75 2 4 3851.37 † 28.15 3787.87 40.69 7.05 7.06 17.31 8.61 6.66 7.56
rc205 50 25 0 4 4554.98 † 5.39 4554.98 2.86 3.16 3.27 4.98 3.20 3.19 2.94
rc205 50 25 1 4 4202.91 † 23.28 4198.08 4.70 3.56 3.44 3.58 3.63 5.52 2.89
rc205 50 25 2 4 4184.31 † 28.47 4139.36 15.86 4.36 4.05 5.78 5.77 4.83 4.38
rc205 50 50 0 4 4011.97 † 2.63 4011.97 2.91 0.89 1.84 2.41 1.95 0.83 2.75
rc205 50 50 1 4 3406.10 † 17.74 3399.79 9.62 3.23 3.03 5.61 3.80 3.37 3.27
rc205 50 50 2 4 3385.27 † 26.45 3202.24 48.25 6.75 6.59 25.59 8.30 6.61 7.19
rc205 50 75 0 4 4601.11 † 2.35 4601.11 2.84 5.02 3.22 5.11 4.84 4.95 3.06
rc205 50 75 1 4 4234.35 † 10.65 4234.09 5.56 2.34 3.16 3.53 3.70 2.28 5.17
rc205 50 75 2 4 NFS † - 4126.74 26.44 3.73 3.98 6.20 4.48 3.97 4.17
rc205 75 25 0 5 4846.58 41.534 0.00 4846.58 0.69 0.56 0.59 0.63 0.69 0.56 0.58
rc205 75 25 1 5 4393.80 † 3.61 4393.80 3.66 4.89 5.08 3.58 3.75 3.48 0.92
rc205 75 25 2 4 NFS † - 4260.67 5.55 2.02 2.89 3.30 3.86 1.69 2.72
rc205 75 50 0 4 4306.66 99.869 0.00 4306.66 0.80 0.59 0.55 0.63 0.69 0.56 0.55
rc205 75 50 1 4 3795.39 † 3.68 3795.39 3.78 1.06 1.09 1.28 1.25 1.00 1.03
rc205 75 50 2 4 3707.18 † 6.59 3706.77 5.34 1.98 1.83 3.67 2.31 5.73 1.88
rc205 75 75 0 5 5019.14 13.187 0.00 5019.14 0.64 0.63 0.55 0.63 0.70 0.56 0.59
rc205 75 75 1 5 4653.22 † 1.12 4653.22 2.66 0.97 2.28 1.17 1.33 0.98 1.19
rc205 75 75 2 5 4488.86 † 3.50 4488.86 4.09 2.67 3.63 2.53 3.25 2.50 2.38
Average 3171.01 3562.94 24.50 72.75 72.72 86.25 147.37 52.96 8.18
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Table 7: Results on instances with 200 customers: Part I
T-ILP CBC6

Instance |K| TD CPU GAP TD CPU
C1 2 1 25 25 0 8 11283.51 68.31 0.00 11283.51 9.53
C1 2 1 25 25 1 8 10404.67 1556.78 0.00 10404.67 159.46
C1 2 1 25 25 2 8 NFS † – 10200.63 646.94
C1 2 1 25 50 0 8 10734.76 129.85 0.00 10734.76 13.39
C1 2 1 25 50 1 8 9359.18 1626.06 0.00 9359.18 178.20
C1 2 1 25 50 2 8 NFS † – 9019.17∗ †
C1 2 1 25 75 0 9 12196.92 69.56 0.00 12196.92 15.20
C1 2 1 25 75 1 8 11305.77 990.47 0.00 11305.77 115.48
C1 2 1 25 75 2 8 11251.82 † 0.02 11064.58 541.15
C1 2 1 50 25 0 11 15078.61 16.47 0.00 15078.61 3.34
C1 2 1 50 25 1 10 14404.63 138.93 0.00 14404.63 19.72
C1 2 1 50 25 2 10 14254.11 656.03 0.00 14254.11 67.76
C1 2 1 50 50 0 10 12549.10 20.02 0.00 12549.10 4.17
C1 2 1 50 50 1 9 11251.10 297.80 0.00 11251.10 21.30
C1 2 1 50 50 2 9 11015.23 2728.24 0.00 11015.23 96.67
C1 2 1 50 75 0 10 14533.41 39.33 0.00 14533.41 4.78
C1 2 1 50 75 1 10 13539.88 106.49 0.00 13539.88 13.30
C1 2 1 50 75 2 10 13422.07 570.63 0.00 13422.07 48.72
C1 2 1 75 25 0 12 16011.96 4.48 0.00 16011.96 1.83
C1 2 1 75 25 1 11 15362.15 28.78 0.00 15362.15 5.34
C1 2 1 75 25 2 11 15289.95 101.07 0.00 15289.95 9.75
C1 2 1 75 50 0 10 13187.62 9.44 0.00 13187.62 1.95
C1 2 1 75 50 1 10 11813.52 109.62 0.00 11813.52 7.30
C1 2 1 75 50 2 10 11466.82 373.78 0.00 11464.51∗ †
C1 2 1 75 75 0 11 14475.00 5.41 0.00 14475.00 3.11
C1 2 1 75 75 1 11 13607.58 28.51 0.00 13607.58 7.84
C1 2 1 75 75 2 10 13288.32 1626.34 0.00 13288.32 12.30
C2 2 3 25 25 0 8 10123.42 89.54 0.00 10123.42 13.55
C2 2 3 25 25 1 7 9423.27 3199.97 0.00 9423.27 265.97
C2 2 3 25 25 2 7 NFS † – 9121.84 650.19
C2 2 3 25 50 0 7 9251.42 381.03 0.00 9251.42 22.97
C2 2 3 25 50 1 7 8209.24 † 0.01 8161.40 250.99
C2 2 3 25 50 2 7 NFS † – 7766.10∗ †
C2 2 3 25 75 0 8 10450.37 88.90 0.00 10450.37 15.16
C2 2 3 25 75 1 8 9882.38 1052.79 0.00 9882.38 137.52
C2 2 3 25 75 2 8 NFS † – 9696.51 547.51
C2 2 3 50 25 0 10 13105.34 13.98 0.00 13105.34 4.31
C2 2 3 50 25 1 10 12296.73 156.98 0.00 12296.73 17.73
C2 2 3 50 25 2 10 12113.05 644.92 0.00 12113.05 62.81
C2 2 3 50 50 0 9 11342.06 18.20 0.00 11342.06 5.56
C2 2 3 50 50 1 8 9755.95 3343.90 0.00 9755.95 28.28
C2 2 3 50 50 2 8 NFS † – 9560.23∗ †
C2 2 3 50 75 0 9 11844.75 19.03 0.00 11844.75 5.69
C2 2 3 50 75 1 9 10969.32 159.79 0.00 10969.32 17.87
C2 2 3 50 75 2 9 10789.53 688.15 0.00 10789.53 67.00
C2 2 3 75 25 0 11 13946.50 4.31 0.00 13946.50 1.86
C2 2 3 75 25 1 11 13374.59 18.53 0.00 13374.59 4.42
C2 2 3 75 25 2 10 13314.91 944.55 0.00 13314.91 8.94
C2 2 3 75 50 0 10 12016.59 7.19 0.00 12016.59 2.41
C2 2 3 75 50 1 9 11084.88 566.03 0.00 11084.88 7.56
C2 2 3 75 50 2 9 10909.36 1375.34 0.00 10909.36 18.78
C2 2 3 75 75 0 10 12865.15 6.80 0.00 12865.15 2.30
C2 2 3 75 75 1 10 11711.98 54.23 0.00 11711.98 8.56
C2 2 3 75 75 2 10 11587.07 338.37 0.00 11587.07 29.19
R1 2 5 25 25 0 8 11399.57 132.21 0.00 11399.57 12.14
R1 2 5 25 25 1 8 10653.12 1099.92 0.00 10653.12 134.99
R1 2 5 25 25 2 8 NFS † – 10418.51 419.67
R1 2 5 25 50 0 8 9865.13 97.51 0.00 9865.13 21.08
R1 2 5 25 50 1 7 8599.48 1999.45 0.00 8599.48 543.11
R1 2 5 25 50 2 7 NFS † – 8231.49∗ †
R1 2 5 25 75 0 8 11349.44 67.11 0.00 11349.44 11.66
R1 2 5 25 75 1 8 10402.82 1670.65 0.00 10402.82 151.31
R1 2 5 25 75 2 8 NFS † – 10077.01 481.90
R1 2 5 50 25 0 10 13933.99 20.41 0.00 13933.99 5.23
R1 2 5 50 25 1 10 13231.03 235.38 0.00 13231.03 23.81
R1 2 5 50 25 2 10 12930.91 973.64 0.00 12930.91 81.61
R1 2 5 50 50 0 9 11209.97 38.11 0.00 11209.97 6.78
R1 2 5 50 50 1 8 9822.99 513.19 0.00 9822.99 40.50
R1 2 5 50 50 2 8 9612.11 † 0.02 9445.51∗ †
R1 2 5 50 75 0 10 12997.89 29.87 0.00 12997.89 5.16
R1 2 5 50 75 1 10 12212.10 253.80 0.00 12212.10 25.64
R1 2 5 50 75 2 10 11950.30 1394.59 0.00 11950.30 107.64
R1 2 5 75 25 0 11 15720.41 4.64 0.00 15720.41 2.06
R1 2 5 75 25 1 11 15167.18 29.55 0.00 15167.18 5.13
R1 2 5 75 25 2 11 15032.09 99.67 0.00 15032.09 10.47
R1 2 5 75 50 0 10 12991.71 9.48 0.00 12991.71 1.73
R1 2 5 75 50 1 10 11672.34 37.86 0.00 11672.34 6.19
R1 2 5 75 50 2 10 11334.87 149.29 0.00 11334.87 523.43
R1 2 5 75 75 0 11 14995.54 5.36 0.00 14995.54 1.97
R1 2 5 75 75 1 11 14439.77 41.73 0.00 14439.77 6.89
R1 2 5 75 75 2 11 14216.79 94.00 0.00 14216.79 13.14
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Table 8: Results on instances with 200 customers: Part II
T-ILP CBC6

Instance |K| TD CPU GAP TD CPU
R2 2 9 25 25 0 10 11971.75 69.93 0.00 11971.75 9.31
R2 2 9 25 25 1 8 11121.18 713.70 0.00 11121.18 81.33
R2 2 9 25 25 2 8 NFS † – 10895.77 335.48
R2 2 9 25 50 0 8 10199.67 97.73 0.00 10199.67 18.11
R2 2 9 25 50 1 8 NFS † – 8818.51 197.38
R2 2 9 25 50 2 8 NFS † – 8412.13∗ †
R2 2 9 25 75 0 9 12104.21 73.46 0.00 12104.21 8.81
R2 2 9 25 75 1 8 11366.36 2583.36 0.00 11366.36 90.90
R2 2 9 25 75 2 9 11388.06 † 0.03 11117.62 393.06
R2 2 9 50 25 0 10 13733.07 19.51 0.00 13733.07 4.55
R2 2 9 50 25 1 10 12980.70 187.96 0.00 12980.70 21.61
R2 2 9 50 25 2 10 12694.18 786.35 0.00 12694.18 74.76
R2 2 9 50 50 0 9 11550.48 31.61 0.00 11550.48 4.69
R2 2 9 50 50 1 9 10152.71 396.81 0.00 10152.71 47.61
R2 2 9 50 50 2 9 9951.32 † 0.01 9813.56∗ †
R2 2 9 50 75 0 10 13670.67 20.55 0.00 13670.67 5.22
R2 2 9 50 75 1 10 12818.61 258.38 0.00 12818.61 26.69
R2 2 9 50 75 2 10 12563.97 991.31 0.00 12563.97 100.64
R2 2 9 75 25 0 11 15528.91 23.56 0.00 15528.91 2.45
R2 2 9 75 25 1 11 14954.69 21.87 0.00 14954.69 3.92
R2 2 9 75 25 2 11 14773.89 84.78 0.00 14773.89 9.55
R2 2 9 75 50 0 10 13056.48 7.20 0.00 13056.48 2.17
R2 2 9 75 50 1 10 11572.47 51.67 0.00 11572.47 7.61
R2 2 9 75 50 2 10 11228.07 278.24 0.00 11228.07 856.79
R2 2 9 75 75 0 11 15776.70 82.12 0.00 15776.70 2.53
R2 2 9 75 75 1 11 15239.62 29.06 0.00 15239.62 4.45
R2 2 9 75 75 2 11 15048.26 92.09 0.00 15048.26 9.64

RC1 2 2 25 25 0 8 11465.54 116.04 0.00 11465.54 14.50
RC1 2 2 25 25 1 8 10849.64 787.62 0.00 10849.64 97.15
RC1 2 2 25 25 2 8 NFS † – 10680.33 356.81
RC1 2 2 25 50 0 8 9873.04 115.90 0.00 9873.04 20.28
RC1 2 2 25 50 1 7 8485.05 1914.00 0.00 8485.05 324.25
RC1 2 2 25 50 2 7 NFS † – 8083.75∗ †
RC1 2 2 25 75 0 8 11407.10 72.15 0.00 11407.10 12.67
RC1 2 2 25 75 1 8 10633.50 678.44 0.00 10633.50 95.42
RC1 2 2 25 75 2 8 NFS † – 10479.76 336.06
RC1 2 2 50 25 0 10 12685.85 21.67 0.00 12685.85 4.75
RC1 2 2 50 25 1 9 11743.68 285.58 0.00 11743.68 31.83
RC1 2 2 50 25 2 9 11538.25 1919.08 0.00 11538.25 139.03
RC1 2 2 50 50 0 9 11901.84 29.67 0.00 11901.84 7.17
RC1 2 2 50 50 1 9 10389.54 360.47 0.00 10389.54 46.42
RC1 2 2 50 50 2 9 10179.69 2638.32 0.00 10179.69 276.22
RC1 2 2 50 75 0 10 14026.09 17.22 0.00 14026.09 5.77
RC1 2 2 50 75 1 10 13322.63 111.95 0.00 13322.63 15.36
RC1 2 2 50 75 2 10 13159.21 611.49 0.00 13159.21 58.25
RC1 2 2 75 25 0 12 15790.92 4.22 0.00 15790.92 2.14
RC1 2 2 75 25 1 11 15473.16 68.83 0.00 15473.16 4.22
RC1 2 2 75 25 2 11 15315.91 81.53 0.00 15315.91 8.30
RC1 2 2 75 50 0 10 12801.00 4.84 0.00 12801.00 1.73
RC1 2 2 75 50 1 10 11439.60 27.77 0.00 11439.60 5.42
RC1 2 2 75 50 2 10 11147.26 120.09 0.00 11147.26 10.66
RC1 2 2 75 75 0 11 15241.89 4.20 0.00 15241.89 2.20
RC1 2 2 75 75 1 11 14493.83 28.61 0.00 14493.83 4.72
RC1 2 2 75 75 2 11 14408.80 134.99 0.00 14408.80 11.36
RC2 2 2 25 25 0 9 11996.43 67.72 0.00 11996.43 10.38
RC2 2 2 25 25 1 8 11112.52 567.46 0.00 11112.52 68.40
RC2 2 2 25 25 2 8 10880.95 2566.52 0.00 10880.95 257.74
RC2 2 2 25 50 0 8 10288.10 81.67 0.00 10288.10 11.61
RC2 2 2 25 50 1 8 9049.90 1290.97 0.00 9049.90 166.18
RC2 2 2 25 50 2 8 NFS † – 8768.07 665.42
RC2 2 2 25 75 0 9 12390.03 38.92 0.00 12390.03 8.12
RC2 2 2 25 75 1 9 11702.26 589.61 0.00 11702.26 59.51
RC2 2 2 25 75 2 9 11554.80 2161.88 0.00 11554.80 201.46
RC2 2 2 50 25 0 10 13935.33 21.01 0.00 13935.33 4.89
RC2 2 2 50 25 1 10 13157.47 203.38 0.00 13157.47 22.00
RC2 2 2 50 25 2 10 13011.45 715.73 0.00 13011.45 73.20
RC2 2 2 50 50 0 9 11753.09 30.14 0.00 11753.09 5.89
RC2 2 2 50 50 1 8 9687.19 505.96 0.00 9687.19 56.43
RC2 2 2 50 50 2 8 9382.32 † 0.01 9271.31 197.02
RC2 2 2 50 75 0 10 13083.61 23.69 0.00 13083.61 4.94
RC2 2 2 50 75 1 9 12309.00 294.35 0.00 12309.00 26.09
RC2 2 2 50 75 2 9 12129.82 1103.73 0.00 12129.82 97.15
RC2 2 2 75 25 0 11 14765.00 6.45 0.00 14765.00 1.83
RC2 2 2 75 25 1 11 13917.72 40.97 0.00 13917.72 7.78
RC2 2 2 75 25 2 11 13700.43 157.77 0.00 13700.43 17.45
RC2 2 2 75 50 0 11 13466.10 5.56 0.00 13466.10 1.81
RC2 2 2 75 50 1 10 11406.55 35.67 0.00 11406.55 6.22
RC2 2 2 75 50 2 10 10803.64 733.54 0.00 10803.36∗ †
RC2 2 2 75 75 0 12 16883.64 3.34 0.00 16883.64 1.69
RC2 2 2 75 75 1 12 16476.26 18.69 0.00 16476.26 3.42
RC2 2 2 75 75 2 12 16440.09 65.61 0.00 16440.09 7.77

Average 870.73 302.75
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the RDDs. However, due to both the maximum truck load capacity and
the RDDs, the number of feasible trips may be very limited. Therefore,
we also designed a Trip-based solution approach where all the feasible non-
dominated trips are firstly determined and then, a Trip-based ILP (T-ILP)
model is solved. Moreover, because the number of feasible non-dominated
trips may become high on medium/large-sized instances, we also proposed
six different Combinatorial Benders’ Cuts (CBC) approaches for efficiently
solving T-ILP model, by defining, beyond the traditional CBC, ad hoc both
valid inequalities and stronger cuts.

The proposed approaches were tested on 486 instances, with different
number of customers (25, 100 and 200), derived from those proposed for
the VRP. On 25-customers instances, T-ILP model outperformed all the
other approaches including A-ILP model that reached the CPU time limit
in 4 cases. On 100-customers instances, on average, the sixth CBC method
outperformed the others, although it is shown that, instance by instance,
it did not always dominate the others. Finally, on the instances with 200
customers, the sixth CBC method strongly outperformed the T-ILP model
closing to optimality almost all the instances in an average CPU time that
is about 65% less than that required by the T-ILP model (302.75 vs 870.73
seconds).
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