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Continuous-time quantum walks (CTQW) have shown the capability to perform efficiently the spatial search
of a marked site on many kinds of graphs. However, most of such graphs are hard to realize in an experimental
setting. Here we study CTQW spatial search on a planar triangular lattice by means of both numerical simu-
lations and experiments. The experiments are performed using two-dimensional waveguide arrays fabricated
by femtosecond laser pulses, illuminated by coherent light. We show that the retrieval of the marked site by
the quantum walker is accomplished with higher probability than the classical counterpart, in a convenient time
window placed early in the evolution.

I. INTRODUCTION

The goal of spatial search algorithms is to find a marked
item in a collection of entries, or a database, in the presence of
displacement constraints. Such constraints define a topology,
i.e. which of the entries are directly connected, and can be
modelled as the edges of a graph G, whose vertices are the
entries of the database. One simple strategy to find the target
item is to traverse the graph along its edges, upon defining a
classical random walk on the graph vertices. Such strategy
would result in an average hitting time, i.e. number of jumps
needed to hit the target item, linearly scaling with the number
of vertices N of G [1].

Quantum random walks on graphs exhibit, in general,
a different behaviour than their classical counterparts [2–
5]. A continuous-time quantum walk (CTQW), for exam-
ple, spreads on the line quadratically faster than its classi-
cal analogue, whereas there are particular graphs, such as the
glued-tree graph [6] where such “speed-up” is even exponen-
tial. Because of the close connection between graph traversing
and the solution of decision problems, these observations have
triggered an intensive research, aiming to assess the possible
gain achievable by quantum walks, both in the continuous-[7–
14] and in the discrete-time [15–19] setting. Spatial search on
graphs by means of CTQWs has been thoroughly investigated
in the last decades. Differently from a quantum transport set-
ting, which focuses on moving a localized walker from one
input site to a target one, in a spatial search the initial state
of a search protocol is a uniform distribution over all the sites
of the graph, indicating unbiasedness toward the target state.
Moreover, an oracle is necessary in quantum search to cor-
rectly identify the solution node, while this is not required in
transport where the target vertex is well identified. Starting
from the seminal work from Childs and Goldstone [8], the
advantage provided by CTQW to quantum spatial search on
different families of graphs has been analyzed [20–27].

Implementing the spatial search algorithm in experiments
is not trivial. To realize a CTQW, an experimental system has
to be realized where a quantum particle can tunnel among the
sites of a network, which are interconnected by some physi-
cal interaction. However, the simplest versions of the spatial

search algorithm based on CTQW finds the target with unit
probability only for spatial dimensions equal or larger than 4
(hypercube), or for fully-connected graphs [8]. Since phys-
ical interactions rapidly decay with the distance, it is hard
to implement a physical system of quantum sites with such
a high degree of connectivity. Variations of the original al-
gorithm have been shown to work efficiently also for two-
dimensional graphs with Dirac points in the spectrum [20, 28],
such as honeycomb graphs. Other algorithms, working in
two-dimensional graphs such as triangular ones, require on
the other hand discrete-time quantum walks [29, 30] and pose
additional experimental difficulties, such as the implementa-
tion of the coin operator and of the conditional shift operator.
Whereas a large number of implementations of CTQW for the
study of quantum information transfer and diffusion processes
in different physical platforms are described in the literature
[31, 32], a single experiment of CTQW-based spatial search,
implementing the spatial search on a honeycomb lattice, has
been reported [33]. Such experiment used classical waves in
a microwave setup containing weakly coupled dielectric res-
onators. In addition, the spatial search algorithm was recently
run on a photonic processor [34]; however, in that case the
Hamiltonian was artificially codified in a multi-photon quan-
tum interference experiment.

In this paper, we address the experimental implementa-
tion of quantum spatial search on two-dimensional triangular
graphs by means of a photonic CTQW. In particular, graphs
are encoded in two-dimensional arrays of optical waveguides
fabricated by the femtosecond laser writing technique [35–
37], while walkers are photons from a coherent continous-
waved laser beam. The coherent beam illuminates the input
facet of the array, providing a delocalized input state. Optical
waveguides, weakly coupled by evanescent-field interaction,
represent quantum sites across which photons can tunnel at
controlled amplitudes along propagation, and thus provide a
convenient setting for implementing a CTQW [38–41]. The
photon distribution is retrieved by imaging the output facet of
the array onto a CCD camera.

We show that, in the presence of an engineered “defect”
marking the target database entry, the walker wave function
tends to concentrate at the defect allowing for an identifica-
tion of the target. To quantify the advantage gained by using
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CTQW, we introduce and evaluate a suitable figure of merit
that takes into account the fact that time is a resource to be
used parsimoniously. In particular, we observe that such con-
centration process is faster than the classical random search
on the same graph in a convenient time window.

II. THE MODEL

We consider the spatial search problem on finite triangular
lattices, i.e. Bravais lattice with parameters |~a| = |~b|, ϑ =
120◦ (see Fig. 1). The corresponding graph G = (V,E) is
fully defined by the n×n adjacency matrixA, whereAi,j = 1
if {i, j} ∈ E and 0 otherwise, and |V | = n is the number of
vertices.

The basis state |j〉, j = 1, 2, ..., n of the n-dimensional
Hilbert space of states H, identifies a configuration where a
single excitation, or walker, is located at the vertex j. The ad-
jacency matrix generates a quantum walk on G through the
unitary evolution (~ = 1): |ψ(t)〉 = e−iγAt |ψ(0)〉, with
|ψ(0)〉 any initial state in H and γ > 0 a constant setting the
transition rate of the walker. In order to perform the search
of a target vertex w, we introduce a local perturbation in the
form of a diagonal matrix β| w 〉〈 w |, with β > 0, which acts
as an oracle [8]. The quantum Hamiltonian for the search of a
target site w reads, therefore

HQ
w = −γA− β| w 〉〈 w |. (1)

We will moreover consider the linear superposition of all the
nodes as the initial condition |ψ0〉 = 1√

n

∑n
j=1 |j〉. The prob-

ability of finding the walker at the target site w at time t,

pQw(t) =
∣∣∣〈w| e−itHQ

w |ψ0〉
∣∣∣2 . (2)

We note that the parameter γ governs the overall time-scale
of the system dynamics. If one considers a normalized evo-
lution time γt, the probability pQw(γt) will be determined by
the ratio β/γ. In order to compare the features of the quan-
tum spatial search with those of a classical random search,
we define the following stochastic process on G. The dynam-
ics of a classical random walk in the absence of the marked
vertex is generated by the graph Laplacian matrix, defined as
L = A−D, where D = (d1, d2, . . . , dn) is a diagonal matrix
and dj indicates the degree of the j-th vertex.

In order to mark a site and to model the fact that when
the process hits the target vertex w the search task is com-
pleted, we modify the graph by making all the transitions
to the marked vertex irreversible. We do that by setting the
edges entering into w as directed. It follows that the gen-
erator of the classical dynamics is determined by the Lapla-
cian of a directed graph, Lc, such that [Lc]jw = 0 ∀j (w is
called a sink) and with diagonal entries fixed such that the
sum of the elements of each column of Lc is equal to zero, i.e.∑
j [Lc]jk = 0∀k. In this way, Lc is a proper generator of the

trace-preserving semi-group {C(t) = exp (−γtLc), t ≥ 0},
with γ > 0 the transition rate. For the sake of uniformity, we

C

S

~a

~b
θ

FIG. 1. The graph considered in this work is the finite portion of
triangular lattice shown on the left, having |V | = n = 31 vertices.
The target, if present, may be placed on the central site (C) or on
a shifted position (S). On the right we report the microscope pic-
ture of the output facet of one waveguide array, implementing such
graph in our experiments. The waveguide arrangement follows the
Bravais parameters ~a and ~b with |~a| = |~b| and ϑ = 120◦. For the
array in this picture |~a| = 23.4 µm and the target is placed on the
C site. Note that the target is implemented by a slight variation in
the inscription parameters of the correspondent waveguide, which do
not result in discernible changes in the appearence of the waveguide
cross-section.

call |p0〉 = |ψ0〉 /
√
n = (p01, p

0
2, . . . , p

0
n) the vector describ-

ing the initial probability distribution of the classical walker
on the graph sites, with the property that

∑
j p

0
j = 1. The

probability of reaching the target at time t is given by:

pCw(t) = 〈w|C(t) |p0〉 . (3)

III. SIMULATION OF SPATIAL SEARCH BY CTQW

We study the spatial search on the finite graph sketched in
Fig. 1 composed of 31 sites, and we consider two possible po-
sitions for the target: the central site (C) and a site in a shifted
position, adjacent to the central one (S). We report in Fig. 2a,b
the classical and quantum probability to reach the two differ-
ent target sites, calculated numerically through Eqs. (2) and
(3) respectively.

In order to compute the quantum evolution, we fix in both
cases β/γ = 4.16, a value that optimizes the maximum value
reached by pQw(γt) for a target placed at the centre of the
graph. We thus make the target on-site energy independent of
its location since, in principle, in a search problem the target
location is not known a-priori. As shown in Fig. 3, the qualita-
tive behavior of the target probability pw(γt, β/γ) presents a
smooth dependence, for fixed value of the dimensionless time
γt, on the value of the ratio β/γ. It follows that a small detun-
ing in β/γ does not significantly degrade the spatial search.

We note that pCw(γt) is monotonically increasing in time,
because of the irreversible nature of the dynamics described
by the generator Lc. Namely, in the classical search as defined
in the previous section, the walker always finds the target node
if we wait long enough. However, pQw(γt) surpasses pCw(γt)
in both considered cases, for wide time intervals early in the
walk evolution.
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To provide an immediate comparison of the quantum dy-
namics versus the classical counterpart, and thus reliable in-
formation about the speedup of the quantum search with re-
spect to the classical case, we introduce the ratio R(t) of the
two probabilities:

R(t) =
pQw(t)

pCw(t)
. (4)

In fact, our aim is not only to identify the target node |w〉 using
a CTQW, but also to perform the spatial search in the short-
est possible time. Since in the classical case the probability
of finding the target is a monotonically increasing function
of time, while in the quantum case it has an oscillatory be-
haviour, R(t) naturally takes into account both the fact that
we want the pQW (t) to be large and time to be small. Plots of
R(γt), for the two considered target sites in our finite graph,
are reported in panels (c) and (d) of Fig. 2: The orange re-
gion highlights the time-intervals where the quantum walker
outperforms its classical analogue in finding the target node.
Remarkably enough, we do not need to measure the walker
position at a specific single time, but we have a large time
interval in which the CTQW better identifies the target node
with respect to a classical continuous-time random walk, i.e.
R(γt) > 1.

We should note that these results are not specific to the
graph of Fig. 1. The qualitative trend of the quantity R(γt)
keeps indeed its validity if we increase the size of the graph.
In Appendix A we report the scaling behavior of R(γt) for a
triangular lattice with increasing number of vertices, and we
show that there is always an advantage in using a quantum
walk to perform the search, with respect to its classical coun-
terpart.

IV. SPATIAL SEARCH IN A WAVEGUIDE SETTING

In our experiments we study the spatial search problem in
a photonic setting, exploiting lattices of single-mode waveg-
uides, weakly coupled to each other. Considering only first-
neighbour coupling, the dynamics of one photon propagat-
ing in the array can be precisely mapped to a single-particle
CTQW described by the Hamiltonian (1). In fact, the states
|j〉 represent the occupation of the optical mode of the j-th
waveguide of the array. Because of evanescent-field coupling,
during the propagation the photon can tunnel in neighbour-
ing waveguides with a rate γ. A detuning in the propagation
constant of the w-th optical mode implements the parameter
β. In addition, the evolution time is directly mapped onto the
propagation coordinate; indeed, we can take directly the lon-
gitudinal spatial coordinate as a measure of the evolution time
t.

We fabricated lattices of 31 waveguides in fused-silica sub-
strates, with the geometry as in Fig. 1, using the femtosecond
laser waveguide writing technique. In detail, we employed a
commercial laser system (LightConversion Pharos) providing
180 fs pulses with up to 40 µJ energy and repetition rates up
to 1 MHz. For the waveguide inscription we used a repetition
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FIG. 2. Time evolution of the probabilities pw(γt) for the quantum
(blue solid line) and the classical (dashed orange line) search, for the
central (a) and shifted (b) target. In the lower panels we display the
quantity R(γt) for the central (c) and shifted (d) target. As a guide
for the eye, we color in orange the region where the quantum walk
outperforms the classical walk, while the yellow shadow indicates
the opposite regime. The detuning β/γ is set to 4.16.

FIG. 3. Target probability pQw(γt) as a function of the target onsite
energy β/γ and time γt, for central (C) and shifted (S) target.

rate of 50 kHz and pulses with 250 nJ energy, which were fo-
cused in the bulk of the substrate by means of a 20× (0.45 NA)
microscope objective. The average depth of the waveguide
arrays below the substrate surface is 170 µm, for which the
objective provides optimal compensation of spherical aberra-
tions. Individual waveguides sustain a single guided mode at
the wavelength of 633 nm, with mode size of about 13 µm
(1/e2 diameter) and propagation loss of about 0.5 dB/cm.

The waveguide arrays were realized with different length
and waveguide separation, to provide different values of γt
(see Appendix B). To implement the target site, the corre-
spondent waveguide was inscribed with a different speed with
respect to the other ones. In fact, for femtosecond laser writ-
ten waveguides the coupling coefficient γ is typically an ex-
ponentially decreasing function of the waveguide separation,
while the propagation constant can be modulated by varying
the writing speed [36]. We note that, for the inscription pa-
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FIG. 4. (a) Experimental apparatus used for the characterization of the waveguide arrays. A He:Ne laser beam (633 nm wavelength) is first
passed through a half waveplate (HWP) and a polarizing beam-splitter cube, to arbitrarily attenuate the beam intensity and to select horizontal
polarization state. The beam is focused by a convex lens (with focal length f = 40 cm) on the input facet of the glass sample containing the
waveguide arrays (WG). The glass sample is mounted onto micrometric manipulation stages allowing three orthogonal translations and two
tilts. The output facet is imaged onto a CCD camera using a 10× objective. (b) On the right, the experimentally measured output distribution
for the fabricated waveguide arrays, for the different values of nominal propagation coordinate γt and for the different target position (or
absence of target). On the left, numerical simulation of the same distributions, assuming the nominal detuning β/γ = 4.1 on the target
waveguide. The intensity scale of each picture is normalized to the maximum value of that picture.

rameters adopted in our experiment, mode size and propaga-
tion losses are negligibly affected by these changes in writing
speed. For a given value of γt, three kind of arrays were fab-
ricated, one next to the other in the glass: one without target

(i.e. with all identical waveguides), one with the target on the
site C, one with the target shifted on the site S (see Fig. 1).
The nominal ratio β/γ was kept fixed to ≈ 4.16 well within
the range of values that optimize the search of a target placed
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at the centre of the graph (see Fig. 3).
To realize the spatial search algorithm, we employed the ap-

paratus sketched in Fig. 4a. To provide a stream of photons at
the input, delocalized with (approximately) equal probability
amplitude and phase across all the optical modes of the array,
we mildly focused a He:Ne laser beam using a f = 40 cm con-
vex lens and we placed the input facet of the array in the focal
point.

The f = 40 cm lens produces a focal spot of about 400 µm
1/e2 diameter, experimentally measured with the knife-edge
technique, which is larger than the array size. This beam di-
ameter is sufficient to approximate, in our experiments, a uni-
form excitation; indeed, the output distribution is found ex-
perimentally to be marginally affected by small shifts in the
transverse alignment of the beam with respect to the center of
the array. Besides, a Gaussian beam yields a planar wavefront
in its waist and such planar phase condition is maintained with
good approximation in the Rayleigh region, which in this case
is a few centimeters long. Thus, also the longitudinal position-
ing of the glass chip is not critical. On the other hand, the tilt
degrees of freedom need to be carefully adjusted: if the prop-
agation vector of the impinging beam is not parallel to the
propagation vector of the optical modes of the array, a phase
gradient results to be imposed to the input state, with possible
severe consequences on the evolution (see Appendix C and
Fig. 9).

Output light was collected with a 10 × (0.25 NA) micro-
scope objective and imaged onto a monochromatic CCD cam-
era. The pixel intensities are proportional to the average pho-
ton number impinging on the pixel area. We note that the out-
put photon distribution measured by our experimental setup
is identical to the one obtainable using pure single-photon
sources at the input, and single-photon-sensitive imaging de-
vices at the output.

V. EXPERIMENTAL RESULTS

Experimental images of the output light distribution, for all
the fabricated waveguide arrays, are reported in Fig. 4b. The
figure also shows, for comparison, the results of numerical
simulation, performed considering the nominal values for the
normalized time γt and for the ratio β/γ in each array. Sim-
ulations also assumed an ideal flat input wavefront. The sim-
ulated distribution of a classical random walker in analogous
conditions is given, as a further comparison, in Fig. 10.

Figure 5 reports the occupation probability pQj (t) for each
waveguide, obtained from the images in Fig. 4b. In detail,
to retrieve these values the pixel intensities were integrated
within circles of about the size of the optical modes, centered
on the position of each waveguide. The obtained distribution
was then normalized to sum up to one. We note that the optical
losses of the waveguides, which are uniform across the array,
do not influence the normalized distribution.

From both figures we can observe a clear concentration of
the light on the target waveguide (in the arrays where a target
is implemented) for quite a wide range of values of γt. Im-
portantly, in a large part of the investigated time interval, the
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p
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R
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0.5 1 1.5 2 2.5
0

0.5

1

1.5

γt

FIG. 5. Experimental values of pQj (γt) at each waveguide output
measured in the arrays with the target on the central site (top left
graph) and in shifted position (top right graph). Blue circles represent
the measured values for the target waveguide while crosses represent
non-target sites. Blue thin lines represent the classical probability
pCw(γt) to find the target in a classical random walk setting. In the
top-right graph (target S), red crosses correspond to the values of the
central waveguide. Experimental values ofR(γt) are plotted (bottom
left and bottom right graphs), as calculated from the experimental
values of pQw(γt) and the calculated values of pCw(γt), as plotted in
the above graph.

probability to find a photon in the target waveguide is domi-
nant over the correspondent probability for a classical walker
to have reached that site. Thus the ratio R(γt), estimated by
combining the result of the experimental measurements for
the CTQW, and numerical simulations of the classical case,
robustly exceeds one for both target positions.

Some light concentration in the central waveguide is also
observed in the case of shifted target and even in the case of
the uniform arrays, at evolution times γt < 1.5 (see Fig. 4).
We attribute this to boundary effects, i.e. to the partial reflec-
tion of the delocalized initial state from the edges of the finite-
sized lattice, which tends to focus in the middle at certain evo-
lution times. The occurrence of this spurious focusing effect,
which influences the convergence of the spatial search algo-
rithm, explains why the target is reached with higher proba-
bility when this is placed in the central position with respect
to the case in which it is shifted.

The differences between the simulated and measured dis-
tributions, which are noted in Figs. 4b and Fig. 5, may be
due to contributions from several causes. For instance, the
fabrication technique presents tolerances in implementing the
desired values of coupling coefficients γ and detuning β. In
particular, the experimental laws that relate these quantities to
the inter-waveguide distance and to the writing speed are cru-
cially dependent on the microscopic refractive index distribu-
tion of the waveguide, which in turn is a result of complex
interactions between the laser pulses and the substrate. Drifts
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in the performance of the femtosecond laser used for the fab-
rication (e.g. in the pulse length), may cause these laws to
change slightly from day to day, with respect to the prelimi-
nary calibration. As a matter of fact, these non-idealities do
not prevent the observation of a favourable localization of the
quantum walker on the target, as discussed above.

VI. CONCLUSION AND OUTLOOK

We have experimentally demonstrated the spatial search
algorithm on a finite-size triangular graph, exploiting two-
dimensional waveguide arrays and coherent light excitation.
The target site was encoded as an engineered defect in the lat-
tice. We have shown that there is a relevant time window in
which the walker wavefunction concentrates at the target site
with higher probability than the corresponding classical ran-
dom search on the same graph.

We have therefore provided evidence that 2D graphs, while
not optimal, are able to achieve interesting results with a rea-
sonable experimental effort. In particular, we have shown that
the quantum advantage is clear also with these topologies, es-
pecially in comparison with a classical random walk search,
without the need to implement a fully connected graph.

Our results are particularly interesting in any situation
where time is a constrained resource, and the database corre-
sponds to a poorly connected structure. In those cases, in fact,
finding the target with certainty is impossible with classical
resources, and no simple quantum algorithms are available.
Indeed, we have found that a simple CTQW may provide an
advantage over the classical counterpart, in identifying the tar-
get with larger probability.

This study provides an experimental implementation of the
CTQW spatial-search algorithm in a photonic system, where
the quantum walk dynamics is effectively reproduced in an
analogical setting. Optical waveguide arrays are indeed a
highly versatile platform, which may allow in the future to
explore not only different graph geometries, such as square or
hexagonal lattices, but also to implement different search pro-
tocols, as the vacancy-based search scheme proposed in [28].

In addition, we observe that the search problem stated
through Eq. (1) can be reinterpreted as a strategy to identify
defects in physical systems. The projector onto the target state
β|w 〉〈w |modifies the on-site energy of a particular vertex by
a detuning β, being akin to the effect of a fabrication defect in
a lattice. As shown in our numerical simulations, the localiza-
tion effect is robust with respect to variations in β. Therefore,
a CTQW which starts in a superposition of all sites may be
used to detect the flawed node, i.e. the target site.
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Appendix A: Scaling behaviour of the quantum search
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FIG. 7. (a) Scaling behavior of the maximumR(topt) as a function of
the size of the graph, for three different target positions: ‘C’ central,
‘1N’ nearest neighbor, ‘2N’ second nearest neighbor. (b) Optimal
time topt as a function of N . (c) Value of the target probabilities at
the optimal time, for the quantum and classical search. The target
detuning is set to β/γ = 4.

In this section we show that the quantum advantage found
in Section III through the quantity R(t) is still valid when the
size of the graph is increased, i.e. the number of nodes N gets
larger. We consider finite-size triangular lattices, as sketched
in Figure 6. The number of nodes is increased by adding new
external layers of vertices. We focus on three positions for
the target node: the central one (C), nearest neighbour to the
target (1N) and second-neighbor to the target (2N). Due to the
symmetry of the considered topology, it is always possible to
unequivocally identify the central target C and, in turn, its 1N
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FIG. 8. R(topt) as a function of the size N of the graph and the parameter β/γ, for three different target positions: ’C’ central, ’1N’ nearest
neighbor, ’2N’ second nearest neighbor.

and 2N nodes.
In Figure 7, we report the behaviour of the maximum value of
the ratio R(topt) over time, i.e.

R(topt) = max
t
R(t). (A1)

We call topt the optimal time. As the number of nodes N is
increased, R(topt) remains larger than 1, indicating an advan-
tage of the quantum search over the classical analogue (Fig.
7a); on the other hand, the optimal time increases with larger
sizes of the lattice (Fig. 7b). The sudden drop in topt is due to
the presence of two competitive peaks in R(t), independently
on the target. As N becomes large enough, the absolute max-
imum is reached at shorter times.

In Fig. 7c, we also show the behaviors of the quantum
(blue) and classical (orange) target probabilities at the optimal
time. Their values decreases with increasingN , but the proba-
bility of identifying the target with a quantum walker is always
larger than with a classical walk. In Figure 8 we display the
optimal value of R as a function of the target detuning β/γ
and of the increasing number of graph nodes N , for the three
target sites considered. The quantum advantage, as quantified
by R(γt), is robust with respect to variations in β/γ through-
out a wide region in the parameter-space, thus indicating that
there is no need to precisely select a single optimal value for
the detuning in Eq. (1).

Appendix B: Details of the fabricated waveguide arrays

Waveguide arrays were inscribed in a 60 mm long fused-
silica chip, according to the four sets of parameters (A, B,
C, D) listed in Table I. As mentioned in Section IV , three
arrays were realized for each of these set of parameters: one
without target (i.e. with all identical waveguides), one with
the target on the site C, one with the target shifted on the site
S. The waveguide separation a and inscription speeds v and
v0 were chosen to give the nominal coupling coefficient γ and
target detuning β (where target is present) listed in the Table,
according to preliminary calibration experiments. Note that
the nominal ratio β/γ is kept fixed to about 4.1.

The glass chip was later cut into two parts, with lengths
of about 20 mm and 40 mm respectively. End facets were

polished at optical quality (this further removed a few hun-
dreds of microns). In this way, devices were obtained span-
ning eight different values of the normalized propagation co-
ordinate (ranging from 0.77 to 2.32) as shown in Table II.

Type fabrication parameters nominal
optical parameters

a (µm) v (mm/s) v0 (mm/s) γ (1/mm) β (1/mm)
A 23.40 3.69 2.00 0.060 0.25
B 24.37 3.32 2.00 0.053 0.22
C 25.30 3.03 2.00 0.047 0.19
D 26.56 2.78 2.00 0.040 0.17

TABLE I. List of the geometrical and optical parameters of the fab-
ricated arrays. a is the interwaveguide distance, v is the inscription
speed of all waveguides except the target one, v0 is the inscription
speed of the target waveguide. γ is the nominal coupling coefficient
and β is the nominal target detuning, which are predicted from pre-
liminary calibration experiments, given the values of a, v and v0.

Type nominal γt
t = 19.3 mm t = 38.6 mm

A 1.16 2.32
B 1.02 2.05
C 0.91 1.81
D 0.77 1.54

TABLE II. Values of the normalized propagation coordinate corre-
sponding to the eight types of arrays available after cutting and pol-
ishing the laser-inscribed glass sample. For each of these eight types,
three arrays are present, with the different target possibilities as in
Fig. 1.
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Appendix C: Alignment of the waveguide array with the
coherent illumination beam

In order to perform reliable measurements, the waveguide
arrays must be accurately aligned with respect to the laser
beam, especially in the tilt degrees of freedom. To this pur-
pose, the glass chip was mounted on a multi-axis micrometric
manipulator (three translation and two rotation axes) and the
alignment was operated according to the following procedure.

As a first thing, one uniform array is selected and centered
with respect to the input laser beam. A rough adjustment of
the transverse position and inclination of the glass chip is con-
ducted without any collection objective, by overlapping the
far-field interference pattern produced by the array output with
the far-field spot of the uncoupled light, while maximizing the
intensity of the former.

In fact, part of the light focused by the f = 40 cm lens is
not effectively coupled into the waveguides, but keeps propa-
gating and diverging, first within the glass and then out of it.
The light coupled into the waveguides and then exiting at the
array output, instead, produces a complex interference pattern
in the far-field. On the one side, by micrometrically adjusting
the sample transverse position, one can maximize the intensity

of such interference pattern and thus optimize the overlap of
the impinging wavefront with the optical modes of the array.
On the other side, action on the tilt degrees of freedom has the
effect of translating the far-field position of the interference
pattern. If the latter is overlapped to the spot of the uncoupled
light, this means that the uncoupled light has the same av-
erage wavevector as the light propagating in the waveguides
(and then out of them). Given the symmetry of the array, this
also imply that the desired input condition has been reached,
with all modes excited with the same phase.

The alignment is completed by placing the collection ob-
jective in front of the array output, and by imaging the output
facet onto a CCD camera. The sample tilt is now finely tuned
in order to achieve the most symmetric output distribution (see
also Fig. 9).

Since the arrays are inscribed parallel one to the other, we
could observe that, once the tilts are optimized for one device,
the alignment can be safely maintained also for the neighbour-
ing ones, which can be coupled by just a rigid translation of
the glass sample. Thus, the uniform array serves for align-
ment purposes, and allows for reliable measurements on the
neighbouring two, which are interesting for the spatial search
experiment.
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FIG. 10. Numerical simulation of a classical random walk on a
31-sites graph, as described in Section II. We consider the case of
the absence of target, target on the central site C and target on a
site shifted from center S as in Fig. 1. At the initial time t = 0
the walker populates with identical probabilities all sites. We have
chosen to represent the probability distribution of the walker at each
γt in a graphical way that matches the optical intensity distributions
in Fig. 4, to facilitate comparison. The intensity scale of each picture
is normalized to the maximum value of that picture.


