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Abstract: We establish some properties of the bilateral Riemann–Liouville fractional derivative Ds.
We set the notation, and study the associated Sobolev spaces of fractional order s, denoted by
Ws,1(a, b), and the fractional bounded variation spaces of fractional order s, denoted by BVs(a, b).
Examples, embeddings and compactness properties related to these spaces are addressed, aiming to
set a functional framework suitable for fractional variational models for image analysis.

Keywords: fractional derivatives; distributional derivatives; Sobolev spaces; bounded variation
functions; embeddings; compactness; calculus of variations; Abel equation

1. Introduction

Among several different available definitions for fractional derivatives and corre-
sponding functional spaces, this paper focuses the analysis on some classical pointwise
defined or distributional fractional derivatives connected to integral-convolution operators.
Precisely, we refer to bilateral definitions of Riemann–Liouville fractional derivatives and
related Sobolev and bounded variation spaces that we introduced in [1]: here, we show
some compactness and embedding properties of these spaces.

First, we recall the classical Riemann–Liouville left and right fractional derivatives
(d/dx)s

+ and (d/dx)s
− and introduce the distributional Riemann–Liouville left and right

fractional derivatives Ds
+, Ds

− together with their bilateral even and odd versions, respec-
tively Ds

e , Ds
o, all of them defined for non-integer orders s, 0< s<1 (see Definition 4).

Second, we provide the definitions of the fractional Sobolev spaces Ws,1 and fractional
bounded variation spaces BVs, associated to these bilateral derivatives (see Definitions 9
and 10). These function spaces are studied here (see Theorem 6, Examples 2–5, 6 and 8) in
comparison with their non-bilateral counterpart ([2–8]).

The spaces Ws,1 and BVs turn out to be the natural setting for data of Abel integral
equations in order to make them well-posed problems in the distributional framework
too: see Propositions 2 and 3 showing that if f ∈ BVs(a, b) with −∞ < a ≤ b ≤ +∞,
then the distributional Abel integral equation Is

a+[u] = f admits a unique solution and
provides an explicit resolvent formula. Corollaries 1 and 2 state analogous results for
backward equations. This approach provides an alternative formulation of classical L1

representability (see [9]); precisely, this approach leads to a straightforward extension of
solvability for the Abel integral equation under conditions weaker than L1 representability,
namely with data possibly belonging to BVs(a, b).

Basic properties of the functional spaces introduced in present article (weak compact-
ness property stated by Theorems 3 and 11 together with comparison embeddings and
strict embeddings stated in Theorems 6 and 8 and by (92) and (93)), namely

BV(a, b) ⊂
6=

⋂
σ∈(0,1)

Wσ,1(a, b) ⊂
6=

Ws,1(a, b) ⊂
6=

BVs
+(a, b) ∀s ∈ (0, 1),
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Ws,1(a, b)⊂
6=

BVs
+(a, b) , Ws,1(a, b)⊂

6=
BVs
−(a, b) , ∀s ∈ (0, 1) .

are studied with the aim of providing a functional framework suitable to fractional varia-
tional models for image analysis ([10–17]), which are the object of a forthcoming paper [18].
The present preliminary study deals with the one-dimensional case only.

We thank an anonymous referee for useful remarks and pointing us to the recent article [19]
containing a different approach to the Sonin–Abel equation in weighted Lebesgue spaces.

2. Bilateral Fractional Integral and Derivative

In this paper (a, b) ⊂ R is a nonempty (possibly unbounded) open interval, u is
a real function of one variable and 0 < s < 1. The support of a function u is denoted
by spt u. The notation d/dx stands for the classical pointwise derivative; Dx, or shortly
D, denotes the distributional derivative with respect to the variable x. For every open
interval A ⊂ R, we denote by AC(A) the set of absolutely continuous functions with the
domain in the interval A, which coincides ([20]) with the space the Gagliardo–Sobolev
space W1,1

G (A) = {u ∈ L1(A) | Du ∈ L1(A)} when they are both endowed with the
standard norm ‖u‖L1(A) + ‖Du‖L1(A). Moreover, we set L1

loc(A) as the set of measurable
functions which are Lebesgue integrable on every compact subset of A, and ACloc(A) =

W1,1
G,loc(A) = {u ∈ L1

loc(A) | Du ∈ L1
loc(A)} and BV(A) = {u ∈ L1(A) | Du ∈M(A)},

whereM(A) denotes the measures whose total variation on A is bounded. We denote
by D′(A) and S ′(A) respectively the space of distributions and the space of tempered
distributions on the open set A. We denote by C0,α(K) the space of of Hölder continuous
functions on the set K.

For the reader’s convenience, we recall the definition of Gagliardo’s fractional Sobolev
spaces Ws,1

G ([21,22]). For any s ∈ (0, 1), we set

Ws,1
G =

{
u ∈ L1(a, b) :

|u(x)− u(y)|
|x− y|1+s ∈ L1([a, b]× [a, b])

}
, (1)

which is a Banach space endowed with the norm

‖u‖Ws,1
G

=

[∫
[a,b]
|u(x)|dx +

∫
[a,b]

∫
[a,b]

|u(x)− u(y)|
|x− y|1+s dx dy

]
,

and we recall also the definition of the Riemann–Liouville fractional integral and deriva-
tive of order s for L1-functions, whose standard references can be found in the book by
Samko et al. [9].

In the sequel, H denotes the Heaviside function H(x)=1 if x≥0, H(x)=0 if x<0, while
sign denotes the sign function sign(x)=1 if x>0, sign(x)=−1 if x<0, sign(0)=0.

Definition 1. (Riemann–Liouville fractional integral)
Assume u ∈ L1(a, b) and s > 0.
The left-side and right-side Riemann–Liouville fractional integrals RL Is

a+ and RL Is
b− are defined

by setting, respectively,

RL Is
a+[u](x) =

1
Γ(s)

∫ x

a

u(t)
(x− t)1−s dt , x ∈ [a, b] , (2)

RL Is
b−[u](x) =

1
Γ(s)

∫ b

x

u(t)
(t− x)1−s dt , x ∈ [a, b] , (3)

Here, Γ denotes the Euler gamma function [23].
Notice that RL I1

a+[u](x) =
∫ x

a u(t) dt and in general, for every strictly positive integer
value, s = n ∈ N, RL In

a+[u] coincides with the n-th order primitive, vanishing at x = a
together with all derivatives up to order n− 1.

Both RL Is
a+[u] and RL Is

b−[u] are absolutely continuous functions if s ≥ 1 since they are
primitives of L1 functions, whereas we can only say that they are Lq functions if 0< s<1,
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1≤q<1/(1− s) (see [9]): indeed, jump discontinuities are allowed if 0< s<1, as shown by
the next example.

Example 1. Set (a, b) = (−1, 1). Then for every 0< s < 1 there is u∈ Lp(−1, 1), 1≤ p < 1/s,
s.t. Is

(−1)+[u] is discontinuous. For instance, consider u(x)=H(x) x−s, thus, exploiting the Euler

beta function B(ν, µ)=
∫ 1

0 yν−1(1− y)µ−1dy = Γ(ν)Γ(µ)
Γ(ν+µ)

, one gets

RL Is
(−1)+[u](x) =

1
Γ(s)

∫ x

−1

H(t)
ts (x− t)1−s dt=H(x)

B(s, 1− s)
Γ(s)

=

{
0 if − 1< x≤0

Γ(1− s) if 0< x<1 .

Thus, Is
(−1)+[u] is a piecewise constant function on (−1,+1) with a jump at x = 0.

Next, we recall the classical definition of left and right Riemann–Liouville fractional
derivatives as in [9,24–27].

Definition 2. (Classical Riemann–Liouville fractional derivative)
Assume u ∈ L1(a, b) and 0 < s < 1.
The left Riemann–Liouville derivative of u at x ∈ [a, b] is defined by

RL

(
d

dx

)s

a+
[u](x) =

d
dx RL I1−s

a+ [u](x) =
1

Γ(1− s)
d

dx

∫ x

a

u(t)
(x− t)s dt (4)

for every value of x such that this derivative exists.
Similarly, we may define the right Riemann–Liouville derivative of u at x ∈ [a, b] as

RL

(
d

dx

)s

b−
[u](x) = − d

dx RL I1−s
b− [u](x) =

−1
Γ(1− s)

d
dx

∫ b

x

u(t)
(t− x)s dt (5)

for every value of x such that this derivative exists.

Then we introduce the distributional Riemann–Liouville fractional derivative as
in [25]: a refinement of the Riemann–Liouville fractional derivative, obtained by the plain
substitution of the pointwise classical derivative with the distributional derivative

Definition 3. (Distributional Riemann–Liouville fractional derivative)
Assume u ∈ L1(a, b) and 0 < s < 1. The distributional left Riemann–Liouville derivative of

u, RLDs
a+[u]∈D′(a, b), is defined by

RLDs
a+[u](x) = Dx RL I1−s

a+ [u](x) =
1

Γ(1− s)
Dx

∫ x

a

u(t)
(x− t)s dt . (6)

Similarly, we may define the distributional right Riemann–Liouville derivative of u,
RLDs

b−[u]∈D′(a, b), as

RLDs
b−[u](x) = −Dx RL I1−s

b− [u](x) =
−1

Γ(1− s)
Dx

∫ b

x

u(t)
(t− x)s dt . (7)

Remark 1. The distributional Riemann–Liouville fractional derivatives Ds
± provide a suitable

refinement of the classical ones (d/dx)s
± for the purposes of the present paper. However, we

emphasize that they coincide on every L1 function u such that I1−s[u] is absolutely continuous, as
it was always the case in the classical applications of fractional derivatives ([28–30]).

In Lemma 5 below, we examine the case when the above pointwise-defined derivative
d/dx exists a.e. and defines an L1 function coincident with the distributional derivative D,
respectively of RL I1−s

a+ [u] and RL I1−s
b− [u].
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In the sequel, we omit the suffix RL of the interval without loss of information, since in
this paper, we do not consider any other fractional derivative than the Riemann–Liouville
one; we omit also the endpoints a+ and b− suffix whenever they are clearly established.

Therefore, we will write shortly Is
+[u], Is

−[u], Ds
+[u], Ds

−[u], (d/dx)s
+[u] and (d/dx)s

−[u],
respectively, in place of RL Is

a+[u], RL Is
b−[u], RLDs

a+[u], RLDs
b−[u], RL(d/dx)s

a+[u] and
RL(d/dx)s

b−[u].
One of the disadvantages of the one-side Riemann–Liouville derivative and integral,

as defined above, is the fact that only one endpoint of the interval plays a role (see (56)
and (57) ) since they are “anisotropic” definitions (see [31] and Lemma 6). On the other
hand, if we aim to exploit such definitions in a variational context, we have to deal with
boundary conditions so that both interval endpoints must play a role ([32]). Therefore, we
introduced the bilateral fractional integral and derivative, by keeping separate their “even”
and “odd” parts:

Definition 4. For every u ∈ L1(a, b) we set the even and odd versions of bilateral fractional
integrals and derivatives:

Is
e [u](x) :=

1
2
(Is

+[u](x) + Is
−[u](x)) (8)

=
1

2 Γ(s)

∫ b

a

u(t)
|x− t|1−s dt =

(u ∗ 1/|t|1−s)(x)
2 Γ(s)

,

Ds
e [u](x) := Dx I1−s

e [u](x) (9)

=
1
2
(Ds

+[u](x)− Ds
−[u](x)) = Dx

(u ∗ 1/|t|s)(x)
2 Γ(1− s)

,

Is
o [u](x) :=

1
2
(Is

+[u](x)− Is
−[u](x)) (10)

=
1

2 Γ(s)

∫ b

a
u(t)

sign(x− t)
|x− t|1−s dt =

(u ∗ sign(t)
|t|1−s )(x)

2 Γ(s)
,

Ds
o[u](x) := Dx I1−s

o [u](x) (11)

=
1
2
(Ds

+[u](x) + Ds
−[u](x)) = Dx

(u ∗ sign(t)/|t|s)(x)
2 Γ(1− s)

.

So that

Is
+[u] = Is

e [u] + Is
o [u] , Ds

+[u] = Ds
e [u] + Ds

o[u] , (12)

Is
−[u] = Is

e [u] − Is
o [u] , Ds

−[u] = Ds
o[u] − Ds

e [u] . (13)

Whenever (a, b) 6= R, the convolution in (8)–(11) has to be understood, without re-
labeling, as the convolution of the trivial extension of u (still an L1(R) function with
support on [a, b]) with either 1/|t|s or sign(t)/|t|s (both belonging to L1

loc(R)). Also
Is
±[u](x), Is

e [u](x), Is
o [u](x) have to be understood, without relabeling, as the natural exten-

sion for x ∈ R\[a, b], provided by the convolution of the trivial extension of u with the
corresponding kernels (here, H denotes the Heaviside function):

Is
+[u] = u ∗ H(x)

Γ(s)|x|1−s , Is
−[u] = u ∗ H(−x)

Γ(s)|x|1−s , for every x ∈ R , (14)

Is
e [u] = u ∗ 1

2Γ(s)|x|1−s , Is
o [u] = u ∗ sign(x)

2Γ(s)|x|1−s , for every x ∈ R , (15)

namely
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Is
+[u](x) =

1
Γ(s)

∫ b

a

u(t) H(x− t)
|x− t|1−s dt for every x ∈ R , (16)

Is
−[u](x) =

1
Γ(s)

∫ b

a

u(t) H(t− x)
|x− t|1−s dt for every x ∈ R , (17)

Is
e [u](x) =

1
2 Γ(s)

∫ b

a

u(t)
|x− t|1−s dt for every x ∈ R , (18)

Is
o [u](x) =

1
2 Γ(s)

∫ b

a

u(t) sign(x− t)
|x− t|1−s dt for every x ∈ R . (19)

Moreover
spt Is

+[u] ⊂ [a,+∞) spt Is
−[u] ⊂ (−∞, b] . (20)

Remark 2. In (9) and (11), Dx denotes the distributional derivative in D′(R), but obviously its
restriction as a distribution on the open set (a, b) is understood whenever one works in the bounded
interval (a, b).

Up to a normalization constant (see (25)), Is
e [u] is called the Riesz potential of u ([1,9]).

These fractional integrals Is
+[u], Is

−[u], Is
e [u], Is

o [u] turn out to be in Lp
loc
(
R) (thus Lp(I) on

every bounded interval I) for every 1 ≤ p < 1/(1− s), since they are convolutions of
u ∈ L1(R) with an Lp

loc(R) kernel. Moreover, we have the next result.

Lemma 1. If −∞ < a < b < +∞, u ∈ L∞(R), spt(u) ⊂ [a, b] and 0 < s < 1 then
Is
+[u], Is

−[u], Is
e [u], Is

o [u] belong to L∞(R) ∩ C0,s.

Proof. See Lemmas 2.5 and 3.6 (iii) in [1].

The behavior of all the above operators, as s→ 0+ or s→ 1−, is clarified by subsequent
Lemmas of the present section, whose proof can be found in [1].

Notice that both 1/|x|s and sign(x)/|x|s belong to L1
loc(R), for 0 < s < 1; hence,

the convolution with any L1 function is well defined and belongs to L1
loc(R); moreover

sign(x)/|x|s → p.v. 1
x in S ′ as s→ 1−, while 1/|x|s has no limit in S ′ as s→ 1−, where S ′

denotes the space of tempered distributions.
Fractional derivatives degenerate developing singularities as s → 1−; nevertheless,

they can be made convergent to meaningful limits by suitable normalization.

Lemma 2. Assume 0 < s < 1 , u ∈W1,2
G (R) and choose the constants in the Fourier transform

such that û(ξ) =
∫
R exp(−iξx) u(x) dx . Then

Ds
e [u]

sin(s π/2)
−→ F−1 { i ξ û(ξ) } = Du in L2(R) as s→ 1− , (21)

Ds
o[u]

cos(s π/2)
−→ F−1 { |ξ| û(ξ) } in L2(R) as s→ 1− , (22)

Ds
+[u] −→ Du in L2(R) as s→ 1− , (23)

Ds
−[u] −→ −Du in L2(R) as s→ 1− . (24)

Remark 3. Notice that relations (21), (23) and (24) tell that, as s → 1−, both Ds
+[u] (left

Riemann–Liouville fractional derivative of order s of u) and Ds
e [u] (even Riemann–Liouville frac-

tional derivative of order s of u) converge in L2 to the distributional derivative Du, while Ds
−[u]

converges in L2 to −Du.
On the other hand relationship (22) means that Ds

o[u] (odd Riemann–Liouville fractional deriva-
tive of order s of u) fades as s→ 1− but, when suitably normalized as Ds

o[u]/ cos(s π/2), it con-
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verges in L2 to the Gagliardo fractional derivative of order 1 of u, say
(−∆)1/2u := F−1 { |ξ| û(ξ) } .

Fractional integrals degenerate developing singularities as s→ 0+; indeed the convo-
lution term fulfills |x|s−1/(2Γ(s) cos(sπ/2))→ δ in S ′ as s→ 0+; nevertheless, fractional
integrals are convergent to meaningful limits by suitable normalization.

Lemma 3. Assume 0 < s < 1 , u ∈ L1(R) with û ∈ L1(R) and set the constants in the Fourier
transform such that û(ξ) =

∫
R exp(−iξx) u(x) dx. Then

1
cos(s π/2)

Is
e [u](x) −→ u(x) uniformly in R as s→ 0+ , (25)

π

sin(s π/2)
Is
o [u](x) −→ (p.v. 1/x) ∗ u in S ′(R) as s→ 0+ . (26)

Lemma 4. Assume 0 < s < 1 , u ∈ L1(R) .
If I1−s

o [u] ∈ ACloc(R), then

1

(cos(s π/2))2 Is
e [ Ds

o[u] ] = u . (27)

If I1−s
e [u] ∈ ACloc(R), then

1

(sin(s π/2))2 Is
o [ Ds

e [u] ] = u . (28)

If I1−s
o [Is

e [u]] ∈ ACloc(R), then

1

(cos(s π/2))2 Ds
o[ Is

e [u] ] = u . (29)

If I1−s
e [Is

o [u]] ∈ ACloc(R), then

1

(sin(s π/2))2 Ds
e [ Is

o [u] ] = u . (30)

Lemma 5. Assume 0 < s < 1 , u ∈ L1(R) . Then

Ds
+[ Is

+[u] ] = u (31)

Ds
−[ Is
−[u] ] = u . (32)

If in addition I1−s
+ [u] ∈ ACloc(R), then

Is
+[ Ds

+[u] ] = u . (33)

If in addition I1−s
− [u] ∈ ACloc(R), then

Is
−[ Ds

−[u] ] = u . (34)

Remark 4. Every distributional fractional derivative (left, right, even, and odd) appearing in the
statements of Lemmas 3–5, which are proved in [1] with fractional classical derivatives (d/dx)s

±,
still hold true in the present formulation with corresponding distributional derivatives (Dx)s

± by
exactly the same proof, since the assumptions ensure that all derivatives are evaluated on local
absolute continuous functions.
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Remark 5. Notice that, when R is replaced by a bounded interval, the identities (27), (28), (33) and
(34) require an additional correction term, taking into account of boundary values (see (52) and (53)
in Theorem 1), whereas (31) and (32) remain true (see (136), (137)).

Symmetries of even or odd functions are inherited neither by fractional integrals, nor
by fractional derivatives. Nevertheless, the next lemma holds true.

Lemma 6. For every s∈ (0, 1), 0< a≤+∞ and v ∈ L1(−a, a), by setting

v̌(x) = v(−x) , (35)

we obtain
Is
+[v̌](x) = Is

−[v](−x) on (−a, a) , (36)

Ds
+[v̌](x) = −Ds

−[v](−x) on (−a, a) . (37)

For every s∈ (0, 1), 0< a≤+∞ and every even function v ∈ L1(−a, a), we get

Is
+[v](x) = Is

+[v̌](x) = Is
−[v](−x) on (−a, a) , (38)

Ds
+[v](x) = Ds

+[v̌](x) = −Ds
−[v](−x) on (−a, a) , (39)

For every s ∈ (0, 1) and every odd function v ∈ L1(−a, a), we obtain

Is
+[v](x) = − Is

+[v̌](x) = − Is
−[v](−x) on (−a, a) , (40)

Ds
+[v](x) = −Ds

+[v̌](x) = Ds
−[v](−x) on (−a, a) , (41)

Proof.

Is
+[v̌](x) =

1
Γ(s)

∫ x

−a

v(−t)
(x− t)1−s dt =

1
Γ(s)

∫ x

−a

v(−t)(
− t− (−x)

)1−s dt s=−t
=

= − 1
Γ(s)

∫ −x

a

v(s)(
s− (−x)

)1−s ds =
1

Γ(s)

∫ a

−x

v(s)(
s− (−x)

)1−s ds = Is
−[v](−x).

By inserting 1− s in place of s in (36), if v is even we obtain (37) via

Ds
+[v̌](x) = Dx I1−s

+ [v̌](x) = Dx I1−s
− [v](−x) = −Ds

−[v](−x) .

Even v entails v(x) = v(−x), v = v̌, Is
+[v](x) = Is

+[v̌](x) and Ds
+[v](x) = Ds

+[v̌](x);
hence, (36) and (37) entail, respectively, (38) and (39).

Odd v entails v(x) = −v(−x), v = −v̌, Is
+[v](x) = −Is

+[v̌](x) and
Ds
+[v](x) = −Ds

+[v̌](x); hence, (36), (37) entail, respectively, (40), (41).

Results listed above (mainly Lemmas 3 and 4 proved in [1]) lead to the natural defi-
nition of the operators representing the bilateral version of Riemann–Liouville fractional
derivatives and integrals, as stated below. Results similar to the ones in Lemma 6 can be
found also in [33].

Definition 5. (Bilateral Riemann–Liouville fractional integral of order s)

Is[u] =
1

cos(s π/2)
Is
e [u] =

1
2 Γ(s) cos(sπ/2)

(Is
+[u] + Is

−[u]) .

Definition 6. (Bilateral Riemann–Liouville fractional derivative of order s)

Ds[u] =
1

cos(s π/2)
Ds

o[u] =
1

2 Γ(s) cos(sπ/2)
(Ds

+[u] − Ds
−[u]) .
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3. The Bilateral Fractional Sobolev Space

From now on, we consider only functions defined on a bounded interval (a, b).
As already mentioned in [25], possible naïve definitions of bilateral fractional Sobolev

spaces could be set by Us,1 = Us,1
+ ∩Us,1

− , where s ∈ (0, 1) and

Us,1
+ = {u ∈ L1(a, b) | (d/dx)s

+ u ∈ L1(a, b)} ,

Us,1
− = {u ∈ L1(a, b) | (d/dx)s

− u ∈ L1(a, b)} ,

for example, a definition which refers to L1-functions whose classical Riemann–Liouville
fractional derivative of prescribed order s ∈ (0, 1) exists finitely almost everywhere and
belongs to L1(a, b).

Actually, if the classical Riemann–Liouville fractional derivative (d/dx)s
+ [u](x) of

u exists a.e. for x for some s ∈ (0, 1), then I1−s
a+ [u] is differentiable almost everywhere,

referring to the same s; nevertheless, such an a.e. derivative does not provide complete
information about the distributional derivative of the fractional integral I1−s

a+ [u], when
I1−s
a+ [u] is not an absolutely continuous function. Thus, the differential properties are not

completely described by the pointwise fractional derivative, though existing almost ev-
erywhere in (a, b). This shows that the previous definitions Us,1

+ and Us,1
− are not suitable

to obtain an integration by parts formula, whereas the appropriate ones refer to distribu-
tional Riemann–Liouville fractional derivative Ds

+ [u](x) in Definition 3, namely, they are
given by

Us,1
+ = {u ∈ L1(a, b) | Ds

+u ∈ L1(a, b)} , (42)

Us,1
− = {u ∈ L1(a, b) | Ds

−u ∈ L1(a, b)} , (43)

Therefore, to develop a satisfactory theory of fractional Sobolev spaces, we introduced
a more effective function space in [25], by defining the fractional Sobolev spaces related to
one-sided fractional derivatives, which are recalled in subsequent Definition 7, where we
confine to the case p = 1.

Definition 7. We recall the definitions of Riemann–Liouville fractional Sobolev spaces related
to one-sided fractional derivatives, as introduced in [25]:

Ws,1
+ (a, b) := {u ∈ L1(a, b) | I1−s

+ [u] ∈W1,1
G (a, b) } = Us,1

+ , (44)

Ws,1
− (a, b) := {u ∈ L1(a, b) | I1−s

− [u] ∈W1,1
G (a, b) } = Us,1

− . (45)

Explicitly, the properties u ∈ Ws,1
± (a, b) entail, respectively, that the distributional

derivatives D
[

I1−s
± [u]

]
belong to L1(a, b), thus Ws,1

+ (a, b) = Us,1
+ and Ws,1

− (a, b) = Us,1
− .

Here, we introduce also the “even” and “odd” fractional Sobolev spaces.

Definition 8. The even/odd Riemann–Liouville fractional Sobolev spaces are

Ws,1
e (a, b) := {u ∈ L1(a, b) | I1−s

e [u] ∈W1,1
G (a, b) } , (46)

Ws,1
o (a, b) := {u ∈ L1(a, b) | I1−s

o [u] ∈W1,1
G (a, b) } . (47)

Eventually, we define the bilateral Riemann–Liouville fractional Sobolev spaces, with
the aim to achieve a symmetric framework.

Definition 9. The (Bilateral) Riemann–Liouville Fractional Sobolev spaces.
For every s ∈ (0, 1), we set Ws,1(a, b) = Ws,1

+ (a, b) ∩Ws,1
− (a, b), that is,

Ws,1(a, b) := {u ∈ L1(a, b) | I1−s
+ [u] ∈W1,1

G (a, b) and I1−s
− [u] ∈W1,1

G (a, b)}. (48)
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Notice that, concerning Definition 9, by exploiting (12) and (13), we get also

Ws,1(a, b) = Ws,1
+ (a, b) ∩Ws,1

− (a, b) = Ws,1
o (a, b) ∩Ws,1

e (a, b) . (49)

Theorem 1. Assume 0 < s < 1 and (a, b) is bounded. Then, the (bilateral) Riemann–Liouville
fractional Sobolev space Ws,1(a, b) (Definition 9) is a normed space when endowed with the
natural norm

‖u‖Ws,1 := ‖u‖L1(a,b) + ‖Ds
a+[u] ‖L1(a,b) + ‖Ds

b−[u] ‖L1(a,b) . (50)

The set Ws,1(a, b) is a Banach space and, for every q ∈ [1, 1/(1− s)) there is C = C(s, q, a, b)
such that

‖u‖Lq(a,b) ≤ C(s, q, a, b) ‖u‖Ws,1(a,b) . (51)

Every u ∈Ws,1(a, b) can be represented by both

u(x) = Is
a+
[
Ds

a+[u]
]
(x) +

I1−s
a+ [u](a)

Γ(s)
(x− a)s−1 a.e x ∈ (a, b), (52)

and

u(x) = Is
b−
[
Ds

b−[u]
]
(x) +

I1−s
b− [u](b)

Γ(s)
(b− x)s−1 a.e x ∈ (a, b). (53)

Proof. The map u 7→ ‖u‖Ws,1 is a norm on Ws,1(a, b), indeed,
‖u‖L1(a,b) + ‖Ds

a+[u]‖L1(a,b) is equivalent to the norm ‖I1−s
a+ [u]‖W1,1

G (a,b) since I1−s
a+ [u]

belongs to W1,1
G , Ds

a+[u] = d
dx I1−s

a+ [u] = DI1−s
a+ [u] and ‖I1−s

a+ [u]‖L1(a,b) ≤ C‖u‖L1(a,b) ;

analogously ‖u‖L1(a,b) + ‖Ds
b−[u]‖L1(a,b) is a norm for I1−s

b− [u], due to I1−s
b− [u] ∈ W1,1

G ,

Ds
b−[u] =

d
dx I1−s

b− [u] = DI1−s
b− [u] and ‖I1−s

a+ [u]‖L1(a,b) ≤ C‖u‖L1(a,b) .
The completeness of Ws,1(a, b) with respect to such a norm when (a, b) is bounded,

follows by the completeness of L1 and W1,1
G together with the fact that uk is a Cauchy

sequence in the norm Ws,1(a, b) if and only if uk is a Cauchy sequence in L1(a, b) and
I1−s
± [uk] are Cauchy sequences in W1,1,

G .
Estimate (51) and representations (52) and (53) follow by (129), (130) and (135) of

Proposition 12, which is shown in Section 5.

Remark 6. Thanks to ‖I1−s
a+ [u]‖L1(a,b) ≤ ‖u‖L1(a,b), ‖I1−s

b− [u]‖L1(a,b) ≤ ‖u‖L1(a,b), we have

replaced the terms ‖I1−s
± [u]‖W1,1(a,b) in the norm (50) by ‖D

[
I1−s
± [u]

]
‖L1(a,b), where D denotes

the distributional derivative.
Obviously, the terms ‖Ds

+[u]‖L1(a,b) and ‖Ds
−[u]‖L1(a,b) in the norm (50) could be alterna-

tively replaced by ‖Ds
e [u]‖L1(R) and ‖Ds

o[u]‖L1(R), referring to (8), (16) and (17), still achieving
an equivalent norm on Ws,1(a, b).

Example 2. For every s ∈ (0, 1), the constant functions and v(x) = x(1 − x) both belong
to the space Ws,1(a, b). Spaces C∞

0 (a, b), test functions on (a, b), and C1([a, b]), continuously
differentiable functions, are contained in Ws,1(a, b).

Example 3. For every 0 < s < 1, the discontinuous piecewise constant H(x) belongs to
Ws,1(−1, 1)\W1,1

G (−1, 1).

Indeed, both I1−s
+ [H](x) = H(x) |x|

1−s

Γ(2−s) and I1−s
− [H](x) = H(x)(1−x)1−s+H(−x)(|1−x|1−s−|x|1−s)

Γ(2−s)

belong to W1,1
G (−1, 1).

Example 4. For every s∈ (0, 1) and β≥ 0, the function xβ belongs to Ws,1(0, 1). This claim is
straightforward for β = 0 and β ≥ 1; we refer to (97) and (98) for 0 < β < 1.
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Example 5. Function x−α with α > 0 belongs to Ws,1(0, 1) if and only if 0 < α < 1− s.
Indeed, I1−s

+ [x−α](x) = Γ(1−α)
Γ(2−s−α)

x1−s−α ∈ W1,1
G (0, 1) if −s− α > −1, while I1−s

+ [xs−1]

(x) = 1
Γ(1−s) ∈ W1,1

G (0, 1), summarizing x−α belongs to Ws,1
+ (0, 1) for α ≤ 1− s; on the other

hand, I1−s
− [x−α] belongs to L1(a, b) for α < 1 and is bounded on (0, 1) if and only if α < 1− s,

due to

I1−s
− [ x−α ](x) =

1
Γ(1− s)

∫ 1

x
t−α(t− x)−s dt

t=xy
=

=
x1−s−α

Γ(1− s)

∫ 1/x

1
y−α(y− 1)−s dy .

Summarizing, and taking into account Example 4 for α ≤ 0,

x−α ∈Ws,1
+ (0, 1)∩Ws,1

− (0, 1) if and only if α < 1− s . (54)

In the particular case α = 1− s, we recover

xs−1∈Ws,1
+ (0, 1)\Ws,1

− (0, 1) (55)

with I1−s
+ [xs−1](x)=Γ(s) and I1−s

− [xs−1](x) unbounded in a right neighborhood of x = 0.

Theorem 2. (Integration by parts in W s,1(a, b))
Next, identities hold true for 0< s< 1, −∞< a<b< +∞ :

∫ b

a
u(x) Ds

+[v](x) dx = −
∫ b

a

d
dx

u(x) I1−s
+ [v](x) dx + u(b) I1−s

+ [v](b)

∀ v ∈Ws,1
+ (a, b), ∀ u ∈W1,1,

G (a, b) ,
(56)


∫ b

a
u(x) Ds

−[v](x) dx = +
∫ b

a

d
dx

u(x) I1−s
− [v](x) dx + u(a) I1−s

− [v](a)

∀ v ∈Ws,1
− (a, b), ∀ u ∈W1,1,

G (a, b) ,
(57)



∫ b

a
u(x) Ds

e [v](x) dx =

−
∫ b

a

d
dx

u(x) I1−s
e [v](x) dx +

1
2

(
u(b) I1−s

+ [v](b)− u(a) I1−s
− [v](a)

)
∀ v ∈Ws,1(a, b), ∀ u ∈W1,1,

G (a, b) ,

(58)



∫ b

a
u(x) Ds

o[v](x) dx =

−
∫ b

a

d
dx

u(x) I1−s
0 [v](x) dx +

1
2

(
u(b) I1−s

+ [v](b) + u(a) I1−s
− [v](a)

)
∀ v ∈Ws,1(a, b), ∀ u ∈W1,1,

G (a, b) ,

(59)

Proof. Identity (56) follows by (2), (5) and

∫ b

a
u(x) Ds

+[v](x) dx =
1

Γ(1− s)

∫ b

a
u(x)

( d
dx

∫ x

a

v(t)
(x− t)s dt

)
dx =

= − 1
Γ(1− s)

∫ b

a

d
dx

u(x)
( ∫ x

a

v(t)
(x− t)s dt

)
dx + u(b)

1
Γ(1− s)

∫ b

a

v(t)
(x− t)s dt .

Identity (57) follows by (3), (4) and similar computations.
Identities (58) and (59) follow by the subtraction and sum of (56) and (57).
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Remark 7. Notice that when u is representable, e.g., under a slightly stronger condition, then we
find a more symmetric formulation. For instance, (59) translates into

∫ b

a
I1−s
o [w](x) Ds

o[v](x) dx =

−
∫ b

a
Ds

o[w](x) I1−s
o [v](x) dx +

1
2

(
I1−s
o [w](b) I1−s

+ [v](b) + I1−s
o [w](a) I1−s

− [v](a)
)

∀ v, w ∈Ws,1(a, b) .

(60)

Lemma 7. The strict embedding

W1,1
G (a, b) ⊂

6=
Ws,1(a, b) 0 < s < 1 (61)

holds true with the related uniform estimate: there is a constant K = K(s, a, b) such that

‖v‖Ws,1(a,b) ≤ K ‖v‖W1,1
G (a,b) (62)

Proof. By computations in Example 3, we know that the Heaviside function belongs to
Ws,1(−1, 1)\W1,1

G (−1, 1); thus if the embedding holds true, then it is strict.
Recalling the definition ([34]) of right Caputo fractional derivative CDs

+[u] and its
relationship with the right Riemann–Liouville fractional derivative

CDs
+[u](x) := I1−s

+ [u′](x) =
1

Γ(1− s)

∫ x

a

u′(t)
(x− t)s dt ∀u ∈W1,1

G (a, b) ,

RLDs
+[u](x) = CDss+[u](x) +

u(a)
Γ(1− s)

(x− a)−s =

= I1−s
+ [u′](x) +

u(a)
Γ(1− s)

(x− a)−s ∀u ∈W1,1
G (a, b) ,

and taking into account

‖I1−s
+ [u′]‖L1(a,b) ≤ K1 ‖u′‖L1(a,b) ≤ K1 ‖u‖W1,1

G (a,b) , |u(a)| ≤ K2 ‖u‖W1,1
G (a,b) ,

we get (7) and (62).

Theorem 3. [Compactness in W s,1(a, b)]
Assume that the interval (a, b) is bounded, the parameter s fulfills 0< s<1, and

‖un‖Ws,1(a,b) ≤ C . (63)

Then there exist u ∈ Lq(a, b), ∀q ∈ [1, 1/(1− s)), and a subsequence such that, without
relabeling,

(i) un ⇀ u weakly in Lq(a, b)) ∀q ∈ [1, 1/(1− s)) ,

(ii) I1−s
+ [un]→ I1−s

+ [u] strongly in Lp(a, b) , ∀p ∈ [1,+∞) ,

(iii) I1−s
− [un]→ I1−s

− [u] strongly in Lp(a, b) , ∀p ∈ [1,+∞) ,

I1−s
+ [un] ⇀ I1−s

+ [u] , I1−s
− [un] ⇀ I1−s

− [u] weakly in BV(a, b). (64)

Proof. Claim (i) follows by (51) and (63) and reflexivity of Lq(a, b) for any fixed
1 < qk < 1/(1− s); thus, by choosing a sequence qk → 1/(1− s) and extracting a di-
agonal sequence, we get the claim for a unique subsequence and unique u valid for every
q fulfilling 1 < q < 1/(1− s). Moreover, such u belongs to L1(a, b). Eventually, for q = 1
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there is a measure µ such that un ⇀ µ in M(a, b), but such µ must be equal to u, then
un ⇀ u in L1(a, b).

The compact embedding W1,1
G (a, b) ↪→ Lp(a, b) valid for any p ∈ [1,+∞) (Rellich

Theorem) entails the existence of z+ and z− in Lp(a, b) fulfilling, up to subsequences,

I1−s
+ [un]→ z+ strongly in Lp(a, b) , ∀p ∈ [ 1,+∞ ) , (65)

I1−s
− [un]→ z− strongly in Lp(a, b) , ∀p ∈ [ 1,+∞ ) , (66)

I1−s
e [un]→

1
2
(z+ + z−) strongly in Lp(a, b) , ∀p ∈ [ 1,+∞ ) , (67)

I1−s
o [un]→

1
2
(z+ − z−) strongly in Lp(a, b) , ∀p ∈ [ 1,+∞ ) . (68)

By (i) and the Mazur Theorem, there is a sequence of convex combinations yn, which
is strongly converging: precisely, yn → u strongly in Lq(a, b) for every q ∈ [1, 1/(1− s))
with yn = ∑n

j=1 cn,juj, cn,j ≥ 0, ∑n
j=1 cn,j = 1. Hence, by (63),

‖yn‖Ws,1 ≤
n

∑
j=1

cn,j‖uj‖Ws,1 ≤ C . (69)

I1−s is a continuous map from Lq to Lr, q∈
[
1, 1/(1− s)) and r∈ [1, q/

(
1− (1− s)sq

))
,

hence, we obtain

I1−s
± [yn]→ I1−s

± [u] strongly in Lr(a, b), r ∈ [1, q/
(
1− (1− s)sq

))
(70)

and hence, in D′(a, b). Moreover, by (69), I1−s[yn] is bounded in W1,1
G (a, b); then, there

exists w± ∈ BV(a, b) such that, possibly up to subsequences,

I1−s
+ [yn] ⇀ w+, I1−s

− [yn] ⇀ w− weakly in BV(a, b). (71)

Taking into account (70), (71) and the uniqueness of limit in D′(a, b), we obtain

w+ = I1−s
+ [u] ∈ BV(a, b), w− = I1−s

− [u] ∈ BV(a, b), I1−s
± [yn] ⇀ I1−s

± [u] in BV(a, b). (72)

Taking into account un ∈Ws,1(a, b), we set fn = I1−s[un], so un solves Abel integral
equation I1−s[un]= fn. By the semigroup property, Is

+[ fn](x)= Is[I1−s
+ [un]

]
(x)= I1

+[un]=∫ x
a un(t) dt; hence, Is

+[ fn](a) = 0. Therefore (by Proposition 2), the Abel integral equations
have a unique solution in L1(a, b), given by un = D1−s

+ [ fn] = D1−s
+

[
I1−s
+ [un]

]
, n ∈ N.

Set f = I1−s[u] ∈ BV(a, b). u ∈ L1(a, b). So u solves the Abel equation I1−s[u] = f .
Moreover, by the semigroup property, Is

+[ f ](x) = Is[I1−s
+ [u]

]
(x) = I1

+[u] =
∫ x

a u(t) dt;
hence, Is

+[ f ](a+) = 0. Therefore (Proposition 3), the Abel equation has a unique solution in
L1(a, b), given by u = D1−s

+ [ f ] = D1−s
+

[
I1−s
+ [u]

]
.

By (i), un → u strongly in Lq, hence,

fn = I1−s
+ [un]→ I1−s

+ [u] = f strongly in Lq, q ∈
[
1, 1/(1− s)).

Then, by (65), I1−s[u] = f = z+ . Hence we have shown claims (ii) and (iii) .
Moreover, the convergence is also in the sense of distributions and the sequence is

bounded in W1,1
G ; therefore, I1−s

+ [u] belongs to BV(a, b) and, again up to subsequences,

fn = I1−s
+ [un] ⇀ I1−s

+ [u] = f weakly in BV(a, b).

We can deal with z− by the same argument, exploiting Corollary 1 for the backward
Abel integral equation I1−s

− [un] = gn, leading to I1−s[u] = g = z−.
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Remark 8. The boundedness of (a, b) is an essential assumption in the previous compactness
theorem, not only to exploit the Rellich theorem, but also to avoid slow non-integrable decay at
infinity of the fractional integral: indeed, even for an integrable compactly supported u, we may
have I1−s

+ [u](x) ∼ (x− a)−s at +∞, e.g., if u = χ[a,b].

Remark 9. We emphasize that in Theorem 3, we cannot improve (64), since I1−s
+ [u] may belong to

BV(a, b) \W1,1
G (a, b).

Indeed, we can choose f (x) = sign(x) if −1 < x < 1, fn(x) = −1 if −1 < x < −1/n,
fn(x) = n x if −1/n< x < 1/n and fn(x) = 1 if 1/n< x < 1. Thus, f belongs to BV(−1, 1)\
W1,1(−1, 1) and ‖ fn‖W1,1

G (−1,1) is uniformly bounded. Solving the Abel equations I1−s
+ [un] = fn

and I1−s
+ [u] = f with Propositions 2 and 3 provides u = Ds

+[ f ] ∈ M(−1, 1)\L1(−1, 1), whereas
un = Ds

+[ fn] is uniformly bounded in L1; hence, un is uniformly bounded in Ws,1(−1, 1), due to
Lemma 7.

We recall a well-known result [9] (Theorem 2.1) concerning the L1-representability
of functions.

Theorem 4. [L1-representability] Given f ∈ L1(a, b), then
f ∈ Is

+(L1(a, b)) for some s ∈ (0, 1) if and only if

I1−s
+ [ f ] ∈W1,1(a, b) and I1−s

+ [ f ](a) = 0 .

f ∈ Is
−(L1(a, b)) for some s ∈ (0, 1) if and only if

I1−s
− [ f ] ∈W1,1(a, b) and I1−s

− [ f ](b) = 0 .

Moreover, in the affirmative case, say, when there exists u ∈ L1(a, b) such that f = Is
+[u]

(resp. f = Is
−[u]), we obtain

u = Ds
+ f (respectively u = Ds

− f ) . (73)

In Section 5, we provide a self-contained proof of the above result together with
a discussion of the related forward and backward Abel equation in the distributional
framework, even in the cases when I1−s

+ [ f ](a) 6= 0 or I1−s
− [ f ](b) 6= 0 (see Propositions 2

and 3 and Corollaries 1 and 2).
Here, we show that the representability result has a natural extension to the bilateral case.

Theorem 5. Assume 0 < s < 1. Then

f ∈ L1(a, b) and f ∈ Is
+(L1(a, b)) ∩ Is

−(L1(a, b))

if and only if

f ∈Ws,1(a, b), 2I1−s[ f ](a)− I1−s
− [ f ](a) = 0 = 2I1−s[ f ](b)− I1−s

+ [ f ](b) ,

if and only if

f ∈Ws,1(a, b), 2I1−s
+ [ f ](b)− I1−s

− [ f ](a) = 0 = 2I1−s
− [ f ](a)− I1−s

+ [ f ](b) .

Proof. Since
I1−s[ f ](a) =

1
2Γ(1− s)

∫ b

a

f (t)
(t− a)s dt = I1−s

+ [ f ](b) ,

I1−s[ f ](b) =
1

2Γ(1− s)

∫ b

a

f (t)
(b− t)s dt = I1−s

− [ f ](a) ,

I1−s
+ [ f ](a) = 2 I1−s[ f ](a) − I1−s

− [ f ](a) = 2 I1−s
+ [ f ](b) − I1−s

− [ f ](a) ,
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I1−s
− [ f ](b) = 2 I1−s[ f ](b) − I1−s

+ [ f ](b) = 2 I1−s
− [ f ](a) − I1−s

+ [ f ](b) ,

the claim follows by Definition 9, Theorem 4, Proposition 1 (semigroup property of frac-
tional integral), Propositions 2 and 3 and Corollaries 1 and 2.

Next, we make explicit some embedding relationship between Ws,1
± and Us,1

± .

Theorem 6. The following strict embeddings hold true:

Ws,1 ⊂
6=

Ws,1
+ ⊂6=

Us,1
+ , Ws,1 ⊂

6=
Ws,1
− ⊂6=

Us,1
− ∀s ∈ (0, 1) , (74)

where we refer to Definitions 7–9 about Ws,1(a, b), shortly denoted Ws,1 here, versus the naïve
definition Us,1

± at the beginning of the present Section 3.

Proof. Without loss of generality, we assume (a, b) = (0, 1).
Strict embeddings of Ws,1 in Ws,1

+ and of Ws,1 in Ws,1
− are shown respectively by xs−1

and (1− x)s−1: see (55) in Example 5.
Therefore, in order to show (74), it is sufficient to show an example for the strict

embedding Ws,1
+ ⊂6=

Us,1
+ : indeed, the proof of Ws,1

− ⊂6=
Us,1
− is achieved by replacing the

variable t with (1 − t) in the counterexample showing the other strict embedding by
exploiting the symmetry with respect to x = 1/2, analogous to the one with respect to
x = 0 in (36) and (37).

We first note that Ws,1
+ ⊂ Us,1

+ follows by definition (4): the existence of a weak deriva-
tive in L1 of I1−s

± [u] entails the existence of the fractional derivative Ds
±[u], coincident with

the almost everywhere defined fractional derivative (d/dx)s
±[u](x).

The strict embeddings Ws,1
+ ⊂6=

Us,1
+ , and Ws,1

− ⊂6=
Us,1
− follows by the subsequent argu-

ment, which, for any fixed s∈ (0, 1), provides the existence of a function in Us,1
+ \W

s,1
+ and a

function in Us,1
− \W

s,1
− .

Given s ∈ (0, ln 2/ln 3), we show a function z in Us,1
+ such that z 6∈Ws,1

+ .
Precisely, by denoting V the Cantor–Vitali function on [0, 1] ([21]), we claim that

z := D1−s
+ [V] ∈ Us,1

+ \W
s,1
+ s ∈ (α, 1) .

Indeed V is α-Hölder continuous with α := ln 2/ln 3. So Is
+[V] belongs to C1(a, b) for

every s ∈ (1− α, 1) by Theorem 3.1 in [9] and the fact that V(0) = 0. Therefore Is
+[V] ∈W1,1

G
(hence V∈W1−s,1

+ (0, 1)) for s ∈ (1− α, 1). Moreover, Is
+[V](0)=0 for s∈ (0, 1): indeed, due

to continuity of V in [0, 1], Is
+[V] is continuous in [0, 1] and we obtain

Γ(s)Is
+[V](0) = lim

x→0

∫ x

0

V(t)
(x− t)1−s dt = lim

x→0

(∫ x

0

V(t)−V(x)
(x− t)1−s dt +

xsV(x)
s

)
.

By Hölder continuity (V ∈ C0,α(a, b) ), we obtain |V(t)−V(x)| ≤ C|x− t|α. Then∣∣∣∣∫ x

0

V(t)
(x− t)1−s dt

∣∣∣∣ ≤ C
∫ x

0
(x− t)α+s−1dt +

xsV(x)
s

=
Cxs+α

s + α
+

xsV(x)
s

.

Therefore, the limit above is equal to 0, as x → 0+, thus proving the claim Is
+[V](0) = 0.

Summarizing, V ∈ BV(0, 1), Is
+[V](0) = 0 and Is

+[V] ∈W1,1(0, 1), for s ∈ (1− α, 1).
Therefore we can consider the Abel integral equation in the distributional setting

find z ∈ L1(0, 1) : I1−s
+ [z] = V on (0, 1), (75)

and solve it; by Proposition 3, the unique solution is given by z = D1−s
+ [V] = D Is

+[V],
and fulfils V = I1−s

+ [z]. Moreover (d/dx)s
+[z] = (d/dx)I1−s

+ [z] = (d/dx)V = 0 a.e. on
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(0, 1), whereas Ds
+[z] = D I1−s

+ [z] = DV, which is a nontrivial bounded measure. Explicitly
z = D1−s

+ [V] fulfills z ∈ Us,1
+ \W

s,1
+ . So far, we have proved the first embedding chain in (74)

for s ∈ (1− α, 1) = ( 1− ln 2/ln 3, 1).
In the sequel, we show that, given any σ ∈ (0, 1), we can adapt the Cantor–Vitali

function in such a way that it is s-Hölder continuous for any s ∈ (0, σ]; hence, we recover
the strict embedding for any s in (1− σ, 1), and hence, for any s in (0, 1), due to the generic
choice of σ.

Indeed, given τ ∈ (0, 1), we can replace the construction of Cantor 1/3 - middle set C (say,
a set whose Hausdorff dimension is ln 2/ ln 3 , which leads to the α = α(1/3) = ln 2/ ln 3
Hölder continuous Cantor–Vitali function V1/3 := V) with the Cantor-like τ - middle set
Cτ , with Hausdorff dimension dim(Cτ) = ln 2/

(
ln 2− ln(1− τ)

)
, which leads to the α(τ)

Hölder continuous Cantor–Vitali generalized function V = Vτ , where

α(τ) = dim(Cτ) = ln 2/
(

ln 2− ln(1− τ)
)

.

Notice that α(τ) → 1− as τ → 0+ and α(τ) → 0+ as τ → 1−, so that α(τ) spans the
interval (0, 1) as τ runs over (0, 1). Moreover, Vτ ∈ (BV ∩ C0)\W1,1 for τ∈ (0, 1).

Again by Proposition 3, we get that Vτ is representable, say there exists (unique)
zτ ∈ L1(0, 1) s.t. zτ = D1−s

+ [Vτ ] s.t. Vτ = I1−s
+ [zτ ] for s ∈ (1− α(τ), 1), and we claim that

Vτ(0) = 0, Is
+[Vτ ](0) = 0, zτ ∈ Us,1

+ \W
s,1
+ for s ∈ (1− α(τ), 1): indeed these claims about

the generalized Cantor–Vitali function Vτ can be proved by the same procedure dealing
with the definition of V = V1/3, as it is sketched below.

The function Vτ is of bounded variations since is monotone, as it is the uniform limit
of a sequence of monotone nondecreasing functions.

Continuity of Vτ follows from uniform convergence of standard iterative approxima-
tions by piecewise linear functions. The absolutely continuous part of the distributional
derivative D Vτ is identically 0 since Vτ is locally constant on an open set of Lebesgue
measure 1: indeed, it is a union of open intervals, which is iteratively obtained by ap-
proximation with finite unions An whose measure `n fulfills the recursive scheme: `1 = τ,
`n+1 = `n + 2nτ 1−`n

2n , so that `n = 1− (1− τ)n → 1 as n→ ∞.
The worst case for differential quotients of n-th approximations of Vτ is provided by

(1/2)n/
(
(1− `n)/2n) = 1/(1− τ)n, so that α(τ) is the biggest real α s.t.

(1/2)n/
(
(1− `n)/2n)α

= 2n(α−1)/(1− τ)nα

is uniformly bounded for n ∈ N, say

0 < α ≤ α(τ) = ln 2/
(

ln 2− ln(1− τ)
)

.

So Is
+[Vτ ] belongs to C1(a, b) for every s ∈ (1− α(τ), 1) by Theorem 3.1 of [9] and

taking into account that Vτ(0) = 0. Therefore, I1−s
+ [Vτ ] ∈ W1,1 that is Vτ ∈ Ws,1

+ (0, 1) for
s ∈ (0, α(τ)).

Moreover, I1−s
+ [Vτ ](0) = 0. Indeed, by continuity of Vτ in [0, 1], we obtain

Γ(s) Is
+[Vτ ](0) = lim

x→0

∫ x

0

Vτ(t)
(x− t)1−s dt = lim

x→0

(∫ x

0

Vτ(t)−Vτ(x)
(x− t)1−s dt +

xsVτ(x)
s

)
.

Since Vτ ∈ C0,α(τ)(a, b), we get |Vτ(t)−Vτ(x)| ≤ C|x− t|α(τ). Thus∣∣∣∣∫ x

0

Vτ(t)
(x− t)1−s dt

∣∣∣∣ ≤ C
∫ x

0
(x− t)α(τ)+s−1dt +

xsVτ(x)
s

=
Cxs+α(τ)

s + α(τ)
+

xsVτ(x)
s

.

Summarizing, if Vτ is the generalized Cantor–Vitali function and Uτ(x) = Vτ(1− x),

zτ := D1−s
+ [Vτ ] ∈ Us,1

+ \W
s,1
+ s ∈ (1− α(τ), 1) , (76)



Axioms 2022, 11, 30 16 of 31

since Ds
+[zτ ] = D Vτ is a nontrivial Cantor measure with no atomic part, whereas

(d/dx)s
+[zτ ] = 0 a.e.; moreover,

uτ := D1−s
− [Uτ ] ∈ Us,1

− \W
s,1
− s ∈ (1− α(τ), 1) , (77)

where, to achieve (77), we exploit Proposition 2 to solve the backward Abel integral equation
in the distributional framework I1−s[uτ ] = Uτ ; indeed, Uτ ∈ BV(0, 1), Is

−[Uτ ](1) = 0,
then the unique solution v ∈ L1(0, 1) of I1−s

− [v] = Uτ is v = uτ = D1−s
− [Uτ ], which fulfills

I1−s
− [uτ ] = Uτ. Hence, by evaluating the distributional derivative D, we get Ds

−[uτ ] = −D Uτ

which is a nontrivial Cantor measure with no atomic part, whereas (d/dx)s
−[uτ ] = 0 a.e.

We list some properties concerning the comparison of bilateral Riemann–Liouville
fractional Sobolev spaces Ws,1 with classical spaces: Gagliardo fractional Sobolev spaces
Ws,1

G , functions of bounded variation BV(0, 1) and SBV(0, 1), De Giorgi’s space of special
bounded variation functions, whose derivatives have no Cantor part ([21,35] for example).

Theorem 7. Let be s, r ∈ (0, 1) such that r > s. Then

Wr,1
G (0, 1) ∩ Is

+(L1(a, b)) ∩ Is
−(L1(a, b)) ⊂Ws,1(0, 1)

with continuous injection, say ∀u ∈Wr,1
G (0, 1) ∩ Is

+(L1(a, b)) ∩ Is
−(L1(a, b))

‖u‖Ws,1 := ‖u‖L1(a,b) + ‖I1−s
+ u‖W1,1(0,1) + ‖I1−s

− u‖W1,1(0,1) ≤ C‖u‖Wr,1
G (0,1) ,

Proof. Straightforward consequence of Theorem 3.2 of [25] and Definition 9.

In [25], we have compared Ws,1
+ (0, 1) and Ws,1

− (0, 1) with SBV(0, 1), and proved

SBV(0, 1) ⊂
⋂

s∈(0,1)

Ws,1(0, 1).

This inclusion was refined by a recent result (Theorem 3.4 in [2]) showing

BV(a, b) ⊂
⋂

s∈(0,1)

Ws,1(a, b). (78)

On the other hand, for every s ∈ (0, 1), Ws,1(a, b) is contained neither in W1,1
G (a, b) nor

in BV(a, b), due to remarkable examples of Weierstrass-type functions. Indeed a Weierstrass
function w can be defined ([36]) so that w belongs to Ws,1, but w does not belong to BV(0, 1)
since it is nowhere differentiable. Fix q > 1 and set

w(x) =
∞

∑
n=0

q−n( exp(iqnx)− exp(iqna)
)

. (79)

Notice that the the constant subtraction entails w(a) = 0, thus preventing a singularity
of Ds

a+[w](x) at x = a.

Theorem 8. Let s, r ∈ (0, 1) be such that r > s. Then

Wr,1
G (0, 1) ∩ Is

+(L1(a, b)) ∩ Is
−(L1(a, b)) ⊂Ws,1(0, 1)

with continuous injection. Precisely,

‖u‖Ws,1 := ‖u‖L1(a,b) + ‖I1−s
+ u‖W1,1(0,1) + ‖I1−s

− u‖W1,1(0,1) ≤ C‖u‖Wr,1
G (0,1) ,

∀u ∈Wr,1
G (0, 1) ∩ Is

+(L1(a, b)) ∩ Is
−(L1(a, b)).
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We emphasize that in the case of an unbounded interval (a, b), there is no chance for
a compactness statement analogous to Theorem 3 in Ws,1(a,b), since the Rellich theorem
cannot be applied.

On the other hand, the property u ∈Ws,1(R) entails a stronger qualitative condition
on u than in the case of u ∈ Ws,1(a, b) with a boundedness of (a, b), as clarified by the
next remark.

Remark 10. If u ∈ Ws,1(R), 0 < s < 1, then
∫
R u(t) dt = 0 and |ξ|s−1û(ξ) is bounded in a

neighborhood of ξ=0. Property
∫ b

a u(t) dt=0 may fail for u ∈Ws,1(a, b) if (a, b) 6= R.
Indeed, (a, b)=R entails û ∈ C0∩L∞(R), hence u∈L1(R), u∈Ws,1(R)⊂Ws,1

e (R), hence

I1−s
e [u] = u ∗ 1

2 Γ(1− s) |t|s ∈ W1,1
G (R) ⊂ L1(R) ,

then, exploiting the Fourier transform F , |ξ|s−1û(ξ) ∈ C0 ∩ L∞(R), hence |ξ|s−1û(ξ) is bounded
and

∫
R u(t)dt = û(0) = 0.
If (a, b) 6= R, then, referring to (8) and (10), neither I1−s

e [u] nor I1−s
o [u] belong to L1(R) (or

even to Lp(R) with 1 < p ≤ 2, when s > 1/2), moreover the summability of I1−s
o may fail at

infinity due to a decay of order |x|−s, therefore û may be unbounded around ξ = 0.

Remark 11. Notwithstanding Remark 10 (excluding nontrivial constant functions from the space
Ws,1(R)), if we restrict to bounded intervals, a constant function u ≡ K belongs to Ws,1(a, b), for
every bounded interval (a, b) and every value of K. Indeed,

I1−s
+ [K](x) =

K
Γ(2− s)

(x− a)1−s ∈ L1(a, b) ,

Ds
+[K](x) = Dx

[
I1−s
+ [K]

]
(x) =

d
dx

I1−s
+ [K](x) =

K
Γ(1− s)

(x− a)−s ∈ L1(a, b) .

4. Bilateral Fractional Bounded Variation Space

Possible naïve definitions could be provided, for s ∈ (0, 1), by

As
+ =

{
u ∈ L1(a, b) |

(
d

dx

)s

+
u is a bounded measure

}
,

As
− =

{
u ∈ L1(a, b) |

(
d

dx

)s

−
u is a bounded measure

}
,

As = As
+ ∩ As

−,

which refer to L1-functions whose classical pointwise-defined Riemann–Liouville fractional
derivative of prescribed order s ∈ (0, 1) is a bounded measure.

Actually, if the Riemann–Liouville fractional derivative Ds[u](x) of u exists for a.e. x
for some s ∈ (0, 1), then Is

a+[u] is differentiable almost everywhere, referring to the same
s; nevertheless, we have no information on the distributional derivative of the fractional
integral Is

a+[u].
These differential properties are not completely described by the point-wise derivative,

though it exists almost everywhere. This shows that the previous definitions of As, As
+ and

As
− are not suitable to obtain an integration by the parts formula. Therefore, to develop a

satisfactory theory of fractional bounded variation spaces, as we did for fractional Sobolev
spaces in [25], we introduce a more suitable function space: the bilateral fractional bounded
variation space BVs, as defined in the sequel.

Remark 12. We recall that, as long as these classical fractional derivatives are evaluated on
absolutely continuous functions, as it was done in all previous section, using the operators of the
classical Definition 2 provides the same results as the distributional Definition 3: for this reason,



Axioms 2022, 11, 30 18 of 31

we keep the usual classical notations (RLDs
a+, RLDs

b− and the corresponding short forms Ds
+,

Ds
−). However, in the present section, we evaluate fractional derivatives on functions of bounded

variations, a setting where the two definitions provide different evaluations.

Next, inspired by [2], where the nonsymmetric spaces are studied also in the case of
higher order derivatives, we introduce the bilateral Riemann–Liouville bounded variation
space, with the aim to achieve a symmetric framework.

Definition 10. The (bilateral) Riemann–Liouville fractional bounded variation spaces. For
every s ∈ (0, 1), we set

BVs = BVs
+ ∩ BVs

− (80)

where, referring to Definition 3,

BVs
+ = {u ∈ L1(a, b) | I1−s

+ [u] ∈ BV(a, b)} = {u ∈ L1(a, b) | Ds
+[u] ∈ M(a, b)} ,

BVs
− = {u ∈ L1(a, b) | I1−s

− [u] ∈ BV(a, b)} = {u ∈ L1(a, b) | Ds
−[u] ∈ M(a, b)} .

Theorem 9. Assume that the interval (a, b) is bounded and the parameter s fulfills 0< s<1.
Then, the space BVs(a, b) is a normed space endowed with the norm

‖u‖BVs := ‖u‖L1(a,b) + ‖Ds
a+[u] ‖M(a,b) + ‖Ds

b−[u] ‖M(a,b) . (81)

Contribution ‖Ds
+[u]‖M(a,b)+ ‖Ds

−[u]‖M(a,b) in the norm (81) can be replaced by
‖Ds

e [u]‖M(a,b)+ ‖Ds
o[u]‖M(a,b) .

Moreover, BVs(a, b) is a Banach space and for every q ∈ [1, 1/(1 − s)), there is
C = C(s, q, a, b), such that

‖u‖Lq(a,b) ≤ C(s, q, a, b) ‖u‖BVs(a,b), (82)

Every u ∈ BVs(a, b) can be represented by both

u(x) = Is
a+
[
Ds

a+[u]
]
(x) +

I1−s
a+ [u](a+)

Γ(s)
(x− a)s−1 a.e x ∈ (a, b), (83)

and

u(x) = Is
b−
[
Ds

b−[u]
]
(x) +

I1−s
b− [u](b−)

Γ(s)
(b− x)s−1 a.e x ∈ (a, b). (84)

Proof. We emphasize that here I1−s
a+ [u](a+) and I1−s

b− [u](b−) replace, respectively, I1−s
a+ [u](a)

and I1−s
b− [u](b) which were in representations (52) and (53) of Ws,1 functions, since in the

present BV setting, there are not pointwise defined values, though there are well-defined
finite right and left limits at every point in (a, b).

The map u 7→ ‖u‖BVs is a norm on Ws,1(a, b), indeed,
‖u‖L1(a,b) + ‖Ds

a+[u]‖M(a,b) is equivalent to the norm ‖I1−s
a+ [u]‖BVs,1(a,b), since I1−s

a+ [u]
belongs to BV, Ds

a+[u] = DI1−s
a+ [u] and ‖I1−s

a+ [u]‖L1(a,b) ≤ C‖u‖L1(a,b) ; analogously ‖u‖L1(a,b)

+‖Ds
b−[u]‖M(a,b) is a norm for I1−s

b− [u], due to I1−s
b− [u] ∈ BV, Ds

b−[u] = DI1−s
b− [u] and

‖I1−s
a+ [u]‖L1(a,b) ≤ C‖u‖L1(a,b) . Therefore, terms ‖I1−s

± [u]‖BVs(a,b) can be replaced, respec-

tively, by ‖D
[

I1−s
± [u]

]
‖M(a,b) in the natural norm

‖u‖BVs := ‖u‖L1(a,b) + ‖I1−s
+ [u]‖BVs(a,b) + ‖I1−s

− [u]‖BVs(a,b) .

The other claims follow by the same proof of Theorem 1 for the fractional Sobolev
setting, where actually only the Proposition 2 and Corollary 1 about Abel forward and
backward integral equation must be suitably tuned as stated in Remark 17.
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Example 6. The constant functions and v(x) = x(1 − x) belong to the space BVs(0, 1). In
general, the space C∞

0 (a, b) of test function on (a, b) is contained in BVs(a, b).

Example 7. Heaviside function H belongs to BVs(−1, 1), thanks to Example 3.

Example 8. Function H(x)|x|s−1 belongs to BVs
+(−1, 1)\Ws,1

+ (−1, 1) if 0 < s < 1, since
I1−s
+ [H(x) |x|s−1]=Γ(s)H(x) ∈ BVs

+(−1, 1) due to Example 1.
Due to the unboundedness of I1−s

− [ H(x) |x|s−1 ](x) in a right neighborhood of x = 0 (due to
Example 5), we obtain that H(x) |x|s−1 does not belong to BVs

−(−1, 1).
In general, for 0< s<1, H(x) |x|−α belongs to BVs

+(−1, 1)\BVs
−(−1, 1) if 0 < α < 1− s.

Theorem 10. (integration by parts in BV s(a, b))
Next, identities hold true for 0< s< 1, −∞< a<b< +∞ :

∫ b

a
u(x) d Ds

+[v](x) = −
∫ b

a
Dxu(x) I1−s

+ [v](x) dx + u(b) I1−s
+ [v](b)

∀ v ∈ BVs
+(a, b), ∀ u ∈W1,1,

G (a, b) ,
(85)


∫ b

a
u(x) d Ds

−[v](x) = +
∫ b

a
Dxu(x) I1−s

− [v](x) dx + u(a) I1−s
− [v](a)

∀ v ∈ BVs
−(a, b), ∀ u ∈W1,1,

G (a, b) ,
(86)



∫ b

a
u(x) d Ds

e [v](x) =

−
∫ b

a
Dxu(x) I1−s

e [v](x) dx +
1
2

(
u(b) I1−s

+ [v](b)− u(a) I1−s
− [v](a)

)
∀ v ∈ BVs(a, b), ∀ u ∈W1,1,

G (a, b) ,

(87)



∫ b

a
u(x) d Ds

o[v](x) =

−
∫ b

a
Dxu(x) I1−s

0 [v](x) dx +
1
2

(
u(b) I1−s

+ [v](b) + u(a) I1−s
− [v](a)

)
∀ v ∈ BVs(a, b), ∀ u ∈W1,1,

G (a, b) ,

(88)

Proof. Exactly the same proof of Theorem 2, but the facts that, here, the distributional
derivatives Dx in BV replaces the almost everywhere pointwise derivative d/dx in W1,1

G
and the integrals at the left-hand side are evaluated with respect to the measures Ds

+[v],
Ds
−[v], Ds

e [v] and Ds
o[v], in place of Lebesgue measure.

Theorem 11. [Compactness in BV s(a, b)]
Assume that 0< s<1, the interval (a, b) is bounded and

‖un‖BVs(a,b) ≤ C . (89)

Then, there exist u ∈ L1(a, b) and a subsequence such that, without relabeling,
(i) un ⇀ u weakly in Lq(a, b)) ∀q ∈ [1, 1/(1− s)) ,

(ii) I1−s
+ [un]→ I1−s

+ [u] strongly in Lp(a, b) , ∀p < +∞ ,

(iii) I1−s
− [un]→ I1−s

− [u] strongly in Lp(a, b) , ∀p < +∞ .

I1−s
+ [un] ⇀ I1−s

+ [u] , I1−s
− [un] ⇀ I1−s

− [u] weakly in BV(a, b). (90)

Proof. The proof can be achieved by exactly the same argument used in the proof of
compactness in Ws,1(a, b) (Theorem 3).
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Remark 13. We emphasize that

BV(a, b)⊂
6=

BVs(a, b) ∀s ∈ (0, 1), (91)

since BV⊂
6=

Ws,1 and Ws,1 ⊂ BVs.

Moreover,

BV(a, b) ⊂
6=

⋂
σ∈(0,1)

Wσ,1(a, b) ⊂
6=

Ws,1(a, b) ⊂
6=

BVs
+(a, b) ∀s ∈ (0, 1). (92)

Indeed, the first embedding follows by (78) and is strict due to (79); the second embedding is
obviously strict, about the third embedding notice that H(x)|x|s−1 ∈ BVs

+(−1, 1)\Ws,1
+ (−1, 1)

(see Example 8).
In addition, we can rewrite (74) as follows

Ws,1(a, b)⊂
6=

BVs
+(a, b) , Ws,1(a, b)⊂

6=
BVs
−(a, b) , ∀s ∈ (0, 1). (93)

since, referring to notations (76) and (77) in the proof of Theorem 6,

∃ zτ ∈ BVs
+(−1, 1)\Ws,1(−1, 1) , s ∈

(
1− ln 2/

(
ln 2− ln(1− τ)

)
, 1
)

, (94)

∃ uτ ∈ BVs
−(−1, 1)\Ws,1(−1, 1) , s ∈

(
1− ln 2/

(
ln 2− ln(1− τ)

)
, 1
)

(95)

5. Abel Equation in D′(R) and Some Useful Relationships

Here, for the reader’s convenience, first, we recall some basic algebra of fractional
differential calculus, then we extend to the distributional setting some classical results about
Abel integral equations: these suitably tuned claims are exploited in Sections 3 and 4 to
prove the main properties of Wα,1(a, b) and BVα(a, b), with α ∈ (0, 1):
Theorems 1, 3, 5, 6, 9 and 11.

All the results stated in this section are independent of the ones of previous sections.
To avoid confusion with the standard notation of variable s in the Laplace transform,

here, we label by α, instead of s, the index of fractional integral, fractional derivative and
fractional Sobolev space.

All along this section: the Laplace transformable function refers to a measurable
function v on R with support contained in [0,+∞) such that there exists λ ∈ R for which
e−λxv(x) is a Lebesgue-integrable function; the Laplace transformable distribution refers
to a distribution v on R with support contained in [0,+∞) such that there exists λ ∈ R for
which e−λxv(x) is a tempered distribution; and in all cases, V = L{v} denotes the Laplace
transform of v.

First we recall some relationships concerning fractional integral of powers of x in (0, 1):

I1−α
0+ [xβ] =

Γ(1 + β)

Γ(2 + β− α)
x1+β−α α ∈ (0, 1) , β > −1 , (96)

Iα
0+[x

β] =
Γ(1 + β)

Γ(1 + β + α)
xβ+α α ∈ (0, 1) , β > −1 , (97)

I1−α
1− [xβ] =

(
Γ(α− β− 1)

Γ(−β)
− B(x, α− β− 1, 1− α)

Γ(1− α)

)
x1+β−α α, β∈ (0, 1), (98)

where B=B(x, µ, ν) is the incomplete Beta function: B(x, ν, µ)=
∫ x

0 yν−1(1− y)µ−1dy.
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Hence, since both conditions I1−α
0+ [xβ] ∈ W1,1

G (0, 1) and I1−α
0+ [xβ](0) = 0 hold true

when β > α− 1, one obtains the fractional derivative of power functions of x in (0, 1):

Dα
0+ [x

β] = Dx I1−α
0+ [xβ] =

d
dx

I1−α
0+ [xβ] (99)

=
Γ(1 + β)

(1 + β− α)Γ(1 + β− α)

d
dx

x1+β−α

=
Γ(1 + β)

Γ(1 + β− α)
xβ−α α ∈ (0, 1) , β > α− 1 .

Moreover,

I1−α
0+ [xα−1] =

1
Γ(1− α)

∫ x

0

tα−1dt
(x− t)α

=
1

Γ(1− α)

∫ 1

0

dy
y1−α(1− y)α

=
B(α, 1− α)

Γ(1− α)
= Γ(α)

entails
Dα

0+ [x
α−1] ≡ 0 , α ∈ (0, 1) . (100)

In the particular case α = 1/2 we obtain

I1/2
0+ [x−1/2](x) =

√
π and D1/2

0+ [x−1/2] ≡ 0 . (101)

Thus D1/2 has a nontrivial kernel, as it is the case of the linear operators Dα.
More in general, by (100), we know that

Dα
a+ [ H(x− a)(x− a)α−1 ] ≡ 0 ∀ α ∈ (0, 1), ∀ a ∈ R , x ∈ R. (102)

The converse holds too (see Proposition 8).

Proposition 1. (Semigroup property of fractional integral Iα
a+ )

For every 0<α<1, v ∈ L1(R), spt v ⊂ [a,+∞) with a∈R, we have

I1−α
a+
[
Iα
a+[v]

]
(x) = I1

a+[v] =
∫ x

a
v(t) dt x∈R , (103)

D1−α
a+
[
Dα

a+[v]
]
= Dx[v] in D′(R) . (104)

In general, if −∞< a < b≤+∞, α, β∈ (0, 1), α + β<1, v ∈ L1(a, b), then

Iα
a+
[
Iβ
a+[v]

]
(x) = I α+β

a+ [v](x) x∈R , (105)

Dα
a+
[
Dβ

a+[v]
]
(x) = Dα+β

a+ [v] D′(R) . (106)

if −∞≤ a < b<+∞, α, β∈ (0, 1), α + β<1, v ∈ L1(a, b), then

Iα
b−
[
Iβ
b−[v]

]
(x) = I α+β

b− [v](x) x∈R , (107)

Dα
b−
[
Dβ

b−[v]
]
(x) = Dα+β

b− [v] D′(R) . (108)

Proof. Consider the trivial extension of v and the standard extension of related subsequent
fractional integrals as defined by

Iα
a+[v] = v ∗ 1

Γ(α)
H(x)
|x|1−α

x ∈ R .
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We assume first a = 0. By denoting V, the Laplace transform of v and taking into
account of L{H(x) xβ} = Γ(β + 1)/sβ+1 and (97), we obtain, for Re s>0,

L
{

I1−α
0+
[
Iα
0+[v]

]
(x)
}

=
1

Γ(1− α)

1
Γ(α)

L
{

v ∗ H(x)
|x|α ∗

H(x)
|x|1−α

}
=

1
s

V(s) = L
{∫ x

−∞
v(t)dt

}
= L

{∫ x

0
v(t)dt

}
,

hence, claim (103) follows by the injectivity of the Laplace transform.

L
{

D1−α
0+
[
Dα

0+[v]
]
(x)
}

=
1

Γ(α)
1

Γ(1− α)
L
{

Dx

(
H(x)
|x|1−α

∗ Dx

( H(x)
|x|α ∗ v

))}
=

1
Γ(α)

1
Γ(1− α)

s
Γ(α)

sα
s

Γ(1− α)

s1−α
V(s) = s V(s) = L{Dx v} ,

hence, claim (104) follows by the injectivity of the Laplace transform.
In general, we obtain, for Re s>0,

L
{

Iα
0+
[
Iβ
0+[v]

]
(x)
}

=
1

Γ(α)
1

Γ(β)
L
{

v ∗ H(x)
|x|1−α

∗ H(x)
|x|1−β

}
=

1
sα+β

V(s) =
1

Γ(α + β)
L
{

v ∗ H(x)
|x|1−(α+β)

}
= L

{
Iα+β
0+ [v](x)

}
,

which proves (105). Identity (106) is achieved in the same way. The case of general a ∈ R
is achieved by translation. Moreover, given v ∈ L1(a, b) with −∞ < a < b ≤ +∞, by
considering the trivial extension of v on R, we obtain

Iα
b−
[
Iβ
b−[v]

] (35)
=

(
Iα
a+

[(
Iβ
b−[v]

)̌ ])̌
=

(
Iα
a+

[((
Iβ
a+[v̌]

)̌)̌ ])̌
=
(

Iα
a+[I

β
a+[v̌]]

)̌
=

(105)
=

(
Iα+β
a+ [v̌]

)̌ (35)
=

((
Iα+β
b− [v]

)̌)̌
= Iα+β

b− [v] .

hence, (107) is proved. Identity (108) is achieved in the same way.

Proposition 2. Assume α ∈ (0, 1), −∞ < a < b ≤ +∞, I1−α
a+ [ f ](a) = 0 and f belongs to

Wα,1
+ (a, b) :=

{
v ∈ L1(a, b)| I1−α

a+ [v] ∈W1,1
G (a, b)

}
.

Then the Abel integral equation

Iα
a+[u](x) = f (x) for a.e. x in the interval (a, b) (109)

admits the solution u given by

u(x) = Dα
a+[ f ](x) for a.e. x in the interval (a, b). (110)

which is unique among Laplace-transformable functions evaluated with translated variable x− a.

Proof. Whenever necessary, we consider the trivial extension (namely, 0 valued) on (−∞, a)
of every function and if necessary on (b,+∞), without relabeling the function name. Thus,
every related fractional integral set as a function defined over (a, b) has a trivial extension,
which coincides on (a, b) with the same fractional integral of the trivial extension, namely,
it has support contained on [a,+∞).

First, we assume a = 0. In such a case, f is a Laplace-transformable function: we
denote by F(s) = L{ f }(s) and U(s) = L{u}(s) their Laplace transform evaluated at the
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variable s. If a Laplace transformable solution u exists, then its Laplace transform U must
fulfill the transformed equation. We have

Iα
0+[u](x) =

1
Γ(α)

∫ x

0

u(t) dt
(x− t)1−α

=
1

Γ(α)

(
H(x) xα−1

)
∗ u

Iα
0+[u](x) = f (x)

1
Γ(α)

Γ(α)
sα

U(s) = F(s)

U(s) = sαF(s) = s
F(s)
s1−α

We evaluate u = L−1U: reminding that L{Dxw(x)} = sL{w}, where w is any L-
transformable distribution, and here, Dx and d/dx denote respectively the distributional
derivative on the open set R and on (a,+∞). By taking into account that I1−α

+ [ f ] belongs
to W1,1

G (0, b) ⊂ L∞(0, b) ∩ C0[0, b], we know that I1−α
+ [ f ](0+) is a well-defined real value.

Thus, by formula s G(s) = L{Dxg} = L{(d/dx)g}+ g(0+) applied to g = I1−α
a+ [ f ] under

the assumption I1−α
a+ [ f ](0) = 0, we obtain

u(x) = L−1{U(s)} = L−1
{

s
F(s)
s1−α

}
(111)

= Dx

(
f ∗ 1

Γ(1− α) xα

)
= Dx

(
I1−α
+ [ f ](x)

)
=

d
dx

(
I1−α
+ [ f ](x)

)
=

1
Γ(1− α)

d
dx

∫ x

0

f (t) dt
(x− t)α

= Dα
+[ f ](x) ,

where the four last equalities are understood in the sense a.e. on (−∞, b), coherently
with the fact that u ∈ L1(−∞, b) because it coincides with the derivative of the function
I1−α
+ [ f ] ∈W1,1

G (0, b) and vanishes on (−∞, 0). Moreover u is unique due to the injectivity
of the Laplace transform. Then (110) is proved when a = 0.

If a 6= 0, we can exploit the solution Formula (111) proved in case a = 0: assume
Iα
a+[u] = f on (a, b) and set u(t) = v(t− a); then t 7→ v(t) = u(t + a) and t 7→ f (t + a)

have support on [0,+∞) and, hence, are Laplace transformable functions.

Iα
a+[u](x) =

1
Γ(α)

∫ x

a

u(t)dt
(x− t)1−α

=
1

Γ(α)

∫ x

a

v(t− a) dt(
(x− a)− (a + t)

)1−α

=
1

Γ(α)

∫ x−a

0

v(τ) dτ(
(x− a)− τ

)1−α
= Iα

0+[v](x− a) = Iα
0+[u(t + a)](x− a)

Thus we have the Abel equation Iα
0+[u(t + a)](x− a) = f (x), that is

Iα
0+[u(t + a)](x) = f (x + a) .

By (111), we get u(x + a) = v(x) = Dα
0+[ f (x + a)](x + a), that is

u(x) = Dα
a+[ f ](x) . (112)

Remark 14. At a first glance, both technical assumptions in Proposition 2, namely f ∈Wα,1
+ (a, b)

and I1−α
a+ [ f ](a) = 0, may look strange or unnatural.
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However, they cannot be circumvented: actually, they are both necessary conditions for the
existence of a solution u∈L1(a, b) of Equation (109).

Let us check this claim: if such a solution as u∈ L1(a, b) exists, then f = Iα
a+[u] belongs to

L1(a, b); moreover, due to the semigroup property of fractional integrals (see Proposition 1),

I1−α
a+ [ f ](x) = I1−α

a+ [Iα
+[u]](x) = I1

a+[[u]](x) =
∫ x

a
u(t) dt , (113)

hence, I1−α
a+ [ f ] is the primitive of an L1(a, b) function; thus I1−α

a+ [ f ] belongs to W1,1
G (a, b) and

I1−α
a+ [ f ](a) = 0.

Remark 15. Condition I1−α
+ [ f ](a) = 0 may be not easy to check. However, it can be replaced

by stronger conditions, which are much easier to check. Indeed, if either there exists a finite value
f (a+) := lim

x→a+
f (x) or f is bounded in a neighborhood of 0, then I1−α

+ [ f ](a) = 0.

Remark 16. For the unnormalized Abel equation , Γ(α) Iα
a+[u] = f , namely

∫ x

a

u(t)
(x− t)1−α

dt = f (x) for x in the interval (a, b), (114)

as a straightforward consequence of Proposition 2 and Euler reflection formula, Γ(z)Γ(1− z) =
π/ sin(πz) ∀z ∈ C\Z, under the assumption f ∈Ws,1(a, b), we recover the next formula for the
unique solution u in L1(a, b):

u(x) =
1

Γ(α)
Dα

a+[ f ](x) =
1

Γ(α)Γ(1− α)

d
dx

∫ x

a

f (t) dt
(x− t)1−α

=
sin(απ)

π

d
dx

∫ x

a

f (t) dt
(x− t)1−α

(115)

still under the requirement that necessary conditions f ∈Wα,1
+ (a, b) and I1−α

+ [ f ](a) = 0 hold true.

Now, we remove the assumption I1−α
a+ [v](a) = 0 and look for solutions in D′(R).

Proposition 3. Assume that α ∈ (0, 1), −∞ < a < b ≤ +∞ and f belongs to the space
BVα

+(a, b) :=
{

v ∈ L1(a, b)| I1−α
a+ [v] ∈ BV(a, b)

}
.

Then, the Abel integral equation in the distributional framework

Iα
a+[u] = f in D′(R), (116)

admits a unique solution u among Laplace transformable distributions evaluated at x− a (variable
translation), which is the bounded measure on R with support contained in [a,+∞) given by

u(x) = Dα
a+[ f ](x) + I1−α

a+ [ f ](a+) δ(x− a) in D′(R). (117)

In (116), actually u denotes the trivial extension outside (a, b), and

Iα
a+[u] = u ∗ 1

Γ(α)
H(x)
|x|1−α

represents the distributional convolution whose evaluation, namely f , is identically 0 on (−∞, a)
and possibly non-zero on [b,+∞).

Proof. Same proof of Proposition 2. Only the step in (111) with a = 0 has to be slightly

modified: denoting by ˜̃Dx and D̃x the distributional derivative respectively in D′(R\{0})
and D′(0,+∞), setting F(s) = L{ f }, g(x) = I1−α

a+ [ f ](x), G(s) = L{g} = F(s)/s1−α,
L{Dxg} = sG(s) and

Dx g = ˜̃Dx g + g(0+) δ(x) = D̃x g + g(0+) δ(x) ,
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we exploit the fact that I1−α
+ [ f ](0+) is a finite well-defined value (since f ∈BVα

+(0, b) entails
I1−α
+ [ f ]∈BV(0, b)), and we replace (111) by

u(x) = L−1{U(s)} = L−1
{

s
F(s)
s1−α

}
= L−1{ s G(s) }

= Dx g =
d

dx
g + g(0+) δ(x)

=
d

dx

(
f ∗ 1

Γ(1− α) xα

)
+ I1−α

a+ [ f ](0+) δ(x)

=
d

dx

(
I1−α
+ [ f ](x)

)
+ I1−α

a+ [ f ](0+) δ(x)

= Dα
+[ f ](x) + I1−α

a+ [ f ](0+) δ(x) .

Corollary 1. Assume α ∈ (0, 1), −∞ ≤ a < b < +∞, the value f (b−) := limx→b− f (x)
exists and is finite (possibly substituted by weaker condition I1−α

b−
[ f ](b) = 0 ) and f belongs to

Wα,1
− (a, b) :=

{
v ∈ L1(a, b)| I1−α

b− [v] ∈W1,1
G (a, b)

}
.

Then, the backward Abel integral equation

Iα
b−[u](x) = f (x) for a.e. x in the interval (a, b) (118)

admits a solution u, unique among Laplace transformable functions evaluated at b− x (sign change
and translation), which is given by

u(x) = Dα
b−[ f ](x) for a.e. x in the interval (a, b). (119)

Proof. Taking into account that b ∈ R, set v(t) = ǔ(t) := u(−t), and hence, u : (a, b)→ R,
v : (−b,−a)→ R, and choose x ∈ (a, b). Then

f (x) = Iα
b−[u](x) =

1
Γ(α)

∫ b

x

u(τ) dτ

(τ − x)1−α

=
1

Γ(α)

∫ 0

x−b

u(t + b) dt(
(b + t)− x

)1−α
=

1
Γ(α)

∫ 0

x−b

v(−(b + t)) dt(
− x + (b + t)

)1−α

=
−1

Γ(α)

∫ x−b

0

v(−(b + t)) dt(
− x + (b + t)

)1−α
=

1
Γ(α)

∫ −x

−b

v(y) dy(
− x− y)

)1−α
= Iα

(−b)+[v](−x)

Therefore, we can apply Proposition 2 to an Abel equation on (−b,−a):

Iα
(−b)+[v](x) = f (−x)

Iα
(−b)+[ǔ](x) = f̌ (x)

ǔ(x) = Dα
(−b)+[ f̌ ](x)

u(−x) =
1

Γ(1− α)

d
dx

∫ x

−b

f (−t) dt
(x− t)α

=
−1

Γ(1− α)

d
dx

∫ −x

b

f (τ) dτ

(x + τ)α

=
1

Γ(1− α)

d
dx

∫ b

−x

f (τ) dτ

(x + τ)α
=

d
dx

(
I1−α
b− [ f ](−x)

) chain-rule
=

= − d
dx

(
I1−α
b− [ f ]

)
(−x) = Dα

b−[ f ](−x) x ∈ (−b,−a) .
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u(x) = Dα
b−[ f ](x) x ∈ (a, b)

Corollary 2. Assume that α ∈ (0, 1), −∞ < a < b ≤ +∞ and f belongs to the space
BVα
−(a, b) :=

{
v ∈ L1(a, b)| I1−α

b− [v] ∈ BV(a, b)
}

.

Then the backward Abel integral equation in the distributional framework

Iα
b−[u](x) = f (x) in D′(R), (120)

admits a unique solution u among Laplace transformable distributions evaluated at b− x (say with
sign change and translation), which is the bounded measure with support contained in (−∞, b]
given by

u(x) = Dα
b−[ f ](x) + I1−α

b− [ f ](b−) δ(x− b) in D′(R). (121)

In (120), actually u denotes the trivial extension outside (a, b), and

Iα
b−[u] = u ∗ 1

Γ(α)
H(−x)
|x|1−α

.

represents the distributional convolution whose evaluation, namely f , is identically 0 on [b,+∞)
and possibly non-zero on (−∞, a).

Proof. Same proof of Corollary 1, but exploiting Proposition 3 instead of Proposition 2.
Notice that the trivial extension of a function in L1(a, b) has compact support and can be
dealt with as a Laplace transformable distribution evaluated at the variable (b− x).

Example 9. We mention some basic examples of solution u for Abel integral equation Iα
0+ [u] = f on

(0, b) with 0 < b ≤ +∞ and, more in general for distributional Abel integral equation Iα
a+ [u] = f

and Iα
b− [u] = f with support condition.

1. If f = xα, then u = Dα
a+[t

α](x) = Γ(α + 1) H(x), for α ∈ (0, 1), due to Proposition 2.

2. If f = H(x), then u = Dα
a+[H](x) =

x−α

Γ(1− α)
, for α ∈ (0, 1), due to Proposition 2.

3. If f = xβ, then u =
Γ(β + 1)

Γ(1 + β− α)
xβ−α, for α ∈ (0, 1), β > α− 1, due to Proposition 2.

These relationships are deduced by Proposition 2: in the first and second item, notice that
f ∈ L∞(a, b) entails I1−α

0+ [u](0) = 0 (see Remark 15), while in third item β > α− 1 entails

both I1−α
+ [xβ](x) = Γ(1+β)

Γ(2+β−α)
x1+β−α ∈W1,1

G (0, 1) and I1−α
0+ [xβ](0) = 0. Thus, we get the

three claims above by applying the relationships

Dα
0+ [x

β] =
Γ(1 + β)

Γ(1 + β− α)
xβ−α , (1− α) 6= α ∈ (0, 1), β > α− 1 , (122)

Dα
0+ [x

α−1] = 0 , α ∈ (0, 1) . (123)

4. If f (x)=(x− a)α−1, x∈ (a, b), α∈ (0, 1), then the solution u with support on [a,+∞) to dis-
tributional backward Abel equation Iα

a+[u] = (x − a)α−1H(x − a) is given by
u(x) = Γ(α) δ(x− a).
Indeed I1−α

a+ [(t − a)α−1](x) = Γ(α), Dα
a+[t

α−1](x) = Dx I1−α
a+ [tα−1](x) ≡ 0 thus, by

Proposition 3, u=Dα
a+[(t− a)α−1](x)+ I1−α

a+ [(t−a)1−α](a+)δ(x− a)=Γ(α)δ(x−a).
Then, u solves the Abel equation since, by representation (14), we obtain

Iα
a+[Γ(α) δ(x− a)] = Γ(α) δ(x− a) ∗ H(x) (x)α−1

Γ(α)
= H(x− a) (x− a)α−1 in D′(R).
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5. If f (x) = x2(1 − x), x ∈ (0, 1), α ∈ (0, 1), then the solution u to backward Abel equa-

tion Iα
1−[u] = f (x) is given by u(x) = Dα

1− f (x) =
(1−x)1−α(6x2−4αx+(α−1)α)

Γ(4−α)
, due to

Corollary 1 since I1−α
b− [ f ](b−) = 0.

6. If f (x)= (b− x)α−1, x∈ (a, b), α∈ (0, 1), then the solution u with support on (−∞, b] to
backward distributional Abel equation Iα

b−[u] = (b − x)α−1H(b − x) is given by
u(x) = Γ(α) δ(x− b). Indeed

I1−α
b− [(b− t)α−1](x) =

1
Γ(1− α)

∫ b

x

1
(b− t)1−α(t− x)α

dt
y = (b− t)x/(b− x)

=

=
1

Γ(1− α)

∫ x

0

1
y1−α(1− y)α

dy =
B(α, 1− α)

Γ(1− α)
= Γ(α) ,

so I1−α
b− [(b− t)α−1](x)=Γ(α), Dα

b−[t
α−1](x)=−Dx I1−α

b− [tα−1](x)≡0 so, by Corollary 2,
u = Dα

b−[(b− t)α−1](x)+ I1−α
b− [(b− t)α−1](b−) δ(b− x) = Γ(α) δ(b− x).

Then, such u solves the Abel equation since, by representation (14),

Iα
−[Γ(α) δ(b− x)] = Γ(α) δ(b− x) ∗ H(−x) (x)α−1

Γ(α)
= H(b− x) (b− x)α−1 in D′(R).

Lemma 8. Fix a value α ∈ (0, 1).
If a Laplace transformable function u fulfils Dα

0+[u] ≡ 0 on the half-line (0,+∞), then
u(x) = C xα−1, for a suitable constant C.

If a function u ∈ L1(a, b), with −∞ < a < b < +∞, fulfils Dα
a+[u] ≡ 0 on (a, b), then

u(x) = C (x− a)α−1, for a suitable constant K.
If a function u ∈ L1(a, b), with −∞ < a < b < +∞, fulfils Dα

b−[u] ≡ 0 on (a, b), then
u(x) = C (b− x)α−1, for a suitable constant C.

Proof. The property
Dx I1−α

a+ [u] = Dα
a+[u] ≡ 0

entails I1−α
a+ [u] is constant. Thus, for a suitable constant function K, we have that u fulfills

the Abel integral equation: I1−α
a+ [u] = K , moreover Iα

a+[K](a) = 0 since K ∈ L∞(a, b), and
due to (96) and the boundedness of (a, b)

Iα
a+[K] = K

(x− a)α

α Γ(α)
∈W1,1

G (a, b) ∀ α ∈ (0, 1).

Then, by Proposition 2, the solution u of the Abel equation I1−α
a+ [u] = K is

u(x) = D1−α
+ [K] = Dx Iα

a+[K] =
K

Γ(α)
d

dx
(x− a)α

α
=

K
Γ(α)

(x− a)α−1 .

This proves the first and second claim, since an L-transformable function is an L1

function on every bounded interval. The third one follows in the same way, by applying
Corollary 1 to the backward Abel equation I1−α

b− [u] = K.

Lemma 8 provides the inverse of (100). Hence, summarizing

u ∈ L1(a, b) fulfils Dα
a+[u] ≡ 0 on (a, b) iff u(x) = C(x− a)α−1 . (124)

Lemma 9. Assume that the interval (a, b) is bounded, 0<α<1, v∈L1(a, b), I1−α
a+ [v] belongs to

W1,1
G (a, b) and I1−α

a+ [v](a+) = 0.
Then

∃ unique V ∈ L1(a, b) : v = Iα
a+[V ] ; and V(x) = Dα

a+[v] = Dx I1−α
a+ [v] , (125)
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and v∈Lq(a, b) for every q∈
[
0, 1/(1− α)

)
; moreover, there is C = C(q) such that

‖v‖Lq(a,b)≤ C(q)
(
‖v‖L1(a,b) + ‖I1−α

a+ [v]‖W1,1,
G (a,b)

)
. (126)

The same claims hold true when Iα
a+[v], I1−α

a+ [v] and Dα
a+[v] are replaced, respectively, by

Iα
b−[v], I1−α

b− [v] and Dα
b−[v] in the assumptions and the claims.

Proof. By considering V as the unknown in the Abel integral equation

Iα
a+[V ] = v on (a, b) (127)

we know by Proposition 2 that there is a solution V ∈ L1(a, b) fulfilling the integral equation:
such V is the unique solution in L1(a, b) and fulfills

V(x) = Dα
a+[v] = Dx

(
I1−α
a+ [v]

)
. (128)

Thus V(x) ∈ L1(a, b). Moreover, by (127), I1−α
a+ [v](a) = 0 and the semigroup property

of s 7→ Is
a+ (Proposition 1),

I1−α
a+ [v](x) = I1−α

a+ [Iα
a+[V ]] = I1

a+[V ] =
∫ x

a
V(t) dt .

Summing up V ∈ L1(a, b), I1−α
a+ [V ](a+) = 0, I1−α

a+ [v](a+) = 0, I1−α
a+ [v− Iα

a+[V ]](a+)≡ 0;
then v = Iα

a+[V ], v ∈ Iα
a+
(

L1(a, b)
)

and (125), (126) follow by standard embedding of
fractional integrals.

If we remove the assumption I1−α
a+ [v](a+) = 0 in Lemma 9, then we must add suitable

corrections to both v and V , as stated by the next theorem.

Theorem 12. Assume that (a, b) bounded, 0<α<1, v∈L1(a, b), I1−α
a+ [v] belongs to BV(a, b).

Then

∃ V ∈M(R), sptV ⊂ [a,+∞), ∃K∈R : v = Iα
a+[V ] +

K

Γ(α)
(x− a)α−1; Dα

a+[v] = V(x) , (129)

and v∈Lq(a, b) for every q∈
[
1, 1/(1− α)

)
; moreover, there is B = B(q,K, α) such that

‖v‖Lq(a,b)≤ B(q,K, α)
(
‖v‖L1(a,b) + ‖I1−α

a+ [v]‖W1,1,
G (a,b)

)
. (130)

Explicitly, for every given α ∈ (0, 1), we have

v = Iα
a+[D

α
a+[v]] +

I1−α
a+ [v](a+)

Γ(α)
(x− a)α−1, a.e. x∈ (a, b), ∀v∈L1(a, b) : I1−α

a+ [v]∈BV(a, b). (131)

The same claims hold true when Iα
a+[v], I1−α

a+ [v] and Dα
a+[v] are replaced respectively by

Iα
b−[v], I1−α

b− [v] and Dα
b−[v] in the assumptions and the claims.

Proof. Since I1−α
a+ [v] belongs to BV(a, b), it has a finite right value I1−α

a+ [v](a+) at x = a,
labeled by K , say K := I1−α

a+ [v](a+). By (97), I1−α
a+ [(x− a)]α−1 ≡ Γ(α), 0<α<1. We set

w(x) = v(x)− K

Γ(α)
(x− a)α−1

then w∈L1(a, b), I1−α
a+ [w] ∈ BV(a, b) and I1−α

a+ [w](a+) = 0. We know by Proposition 3 that
there is a solutionW ∈M(R) with sptW⊂ [a,+∞) fulfilling the integral equation

v = Iα
a+[V ] in D′(R), (132)

suchW is the unique solution with support on [a,+∞) and fulfills

W(x) = Dα
a+[w](x) (133)
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ThusW(x) ∈ M. By (132), I1−α
a+ [w](a+) = 0 and the semigroup property of s 7→ Is

a+

I1−α
a+ [w](x) = I1−α

a+ [Iα
a+[W ]] = I1

a+[W ] =
∫ x

a
W(t) dt .

Hence, by setting V = W + I1−α
a+ [v](a+) δ(x − a) and taking into account (99),

we obtain

v(x) = w(x) +
K

Γ(α)
(x− a)α−1 = Iα

a+[V ](x) +
K

Γ(α)
(x− a)α−1 . (134)

Dα
a+[v] = Dα

a+[w] + Dα
a+

[
K

Γ(α)
(x− a)α−1

]
= Dx I1−α

a+ [v] = V(x) = Dα
a+[w]. (135)

Thus V ∈ L1(a, b), I1−α
a+ [V ](a+) = 0, I1−α

a+ [v](a+) = 0, I1−α
a+ [v − Iα

a+[V ]](a+) ≡ 0; then
v = Iα

a+[V ], v ∈ Iα
a+
(

L1(a, b)
)
. The function (x − a)α−1 belongs to Lq(a, b) for every

q ∈
[
1, 1/(1− α)

)
, due to the boundedness of the interval. By standard embedding of

fractional integrals, the function w = Iα
a+(V) belongs to Lq(a, b) for every q∈

[
1, 1/(1− α)

)
.

Summarizing, v∈Lq(a, b) for every q∈
[
1, 1/(1− α)

)
and (129) and (130) hold true.

Remark 17. We emphasize that in Theorem 12 the fractional integrals and derivatives I1−α
a+ , I1−α

b− ,
Dα

a+ and Dα
b− are understood in the distributional sense provided by Definitions 1 and 3. Referring

to Definition 10, with (a, b) bounded, (131) reads as follows

v(x) = Iα
a+[D

α
a+[v]](x) +

I1−α
a+ [v](a+)

Γ(α)
(x− a)α−1 a.e. x∈ (a, b), ∀v∈BVs

+(a, b), α∈ (0, 1). (136)

Moreover, in a bounded interval (a, b) we have

v = Dα
a+[I

α
a+[v]] a.e. on ∈ (a, b), ∀v∈L1(a, b), ∀α∈ (0, 1), (137)

since Dα
a+[I

α
a+[v]] = Dx[I1−α

a+ [Iα
a+[v]]] = Dx[[I1

a+[v]] = Dx[
∫ x

a v] = v ; whereas

v = Dα
a+[I

α
a+[v]] + C δ(x− a) on D′(R), ∀v∈M(R), spt v ⊂ [a, b], ∀α∈ (0, 1), (138)

where C= limx→a+ I1[v](x), indeed by Lemma 8 the kernel of Dα
a+ is made by functions of the kind

K(x− a)α−1, which all belong to BVs
+(a, b) and fulfill on R

C Γ(α)H(x− a)(x− a)α−1= C Γ(α) δ(x− a) ∗ 1
Γ(α)

H(x)
xα−1 = Iα

a+[C Γ(α) δ(x− a)] .

6. Conclusions

We establish some properties of the bilateral Riemann–Liouville fractional deriva-
tive Ds.

We set the notation and study the associated Sobolev spaces of fractional order s,
denoted by Ws,1(a, b), and the fractional bounded variation spaces of fractional order s,
denoted by BVs(a, b). The basic properties of these spaces are proved: weak compactness
properties, and comparison embeddings and strict embeddings with several related spaces,
namely,

BV(a, b) ⊂
6=

⋂
σ∈(0,1)

Wσ,1(a, b) ⊂
6=

Ws,1(a, b) ⊂
6=

BVs
+(a, b) ∀s ∈ (0, 1),

Ws,1(a, b)⊂
6=

BVs
+(a, b) , Ws,1(a, b)⊂

6=
BVs
−(a, b) , ∀s ∈ (0, 1).

Spaces Ws,1 and BVs are the natural setting for data of Abel integral equations in order
to make them well-posed problems in the distributional framework too.
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