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ABSTRACT 
This article addresses the orchestration of scientific communities, which encompass 
a variety of competing and/or collaborating autonomous actors – mainly universities 
and researchers – which aim at developing theory. Scientific communities – which 
are part of more comprehensive scientific ecosystems, comprising also public and 
private organizations, civil society, etc. – are a very interesting subject to be studied 
because some of their features – specifically data building and sharing – are 
increasingly assuming importance for organizations that post-COVID will have to 
cope with the ‘new normal’, which requires them to experiment on the basis of 
collectively gathered data in order to accelerate their learning “on the fly”. 
Specifically, business ecosystems challenged by the ‘new normal’ can leverage on 
the experience that scientific ecosystems have always had regarding data building 
and sharing. 
Considering conferences as decentralized orchestrating moments capable of pulling 
together dispersed resources/capabilities by ensuring knowledge mobility, and 
building on a social network analysis of the CINet conferences between 2011 and 
2019, we aim at understanding the characteristics of the CINet scientific ecosystem 
in order to infer how well connected and close its researchers are and how effectively 
information is shared among them. 
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1. INTRODUCTION 
COVID-19 has so rapidly and deeply challenged economies all over the world that firms, 
consultants and academics are wondering how to approach innovation for competing in 
the “new normal” to come. The newness of this scenario is so challenging that it is almost 
impossible to build on past lessons learned (Verganti, 2020). Everyone is required to learn 
“on the fly” how to compete through innovation – extensively experimenting new 
solutions and business models (Edmondson, 2018). Although experimenting in isolation 
is a viable way, experimenting in collaboration with partners seems to be more promising 
since it allows firms to build on the others’ mistakes and achievements (Verganti, 2020). 
Hence, while leveraging on collective experimentation, firms are able to get most from 
their reciprocal experimental efforts and speed up their own learning (Verganti, 2020).  
One way for collaboratively experimenting is putting in place the “learning by sharing” 
approach, which consists of sharing data and results between firms in order to learn as 
rapidly as possible (Verganti, 2020). Very recent examples underpin this direction: 
private firms that share results on their advancements in the development of a vaccine for 
COVID-19, Microsoft that threw its weight fully behind the open data movement, Airbus 
with its Skywise – aviation’s open data platform. Obviously, data sharing does not mean 
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that every firm allows any other firm accessing its data/results, but rather entails that the 
right partners within its ecosystem are identified (Adner, 2017). 
Thus, through “learning by sharing” (Verganti, 2020), firms are putting into place the 
approach historically followed by researchers and scientists, who, indeed, are used to 
building data together and share them (Petersen et al., 2019). Obviously, and similarly to 
what happens for firms, data building and sharing in the academic environment do not 
imply that anyone indistinctively can access them. Rather, data building and sharing take 
place in environments that can be defined as scientific ecosystems, composed of a variety 
of competing and/or collaborating autonomous actors, aiming at developing theory. Data 
building and sharing within scientific ecosystems can take place between scientists 
working together in research projects, or between scientists and firms within research 
projects with well-defined objectives and governance rules.  
Therefore, scientific communities and scientific ecosystems are interesting not only per 
se, but also because they can provide an inspirational example for business ecosystems 
coping with the need of implementing a “learning by sharing” approach in order to 
succeed in the ‘new normal’. In this paper, we start analyzing scientific ecosystems, with 
the aim of investigating the way they work and possibly learn some lesson for business 
ecosystems. 

2. THEORETICAL BACKGROUND 
Three main conceptually distinct archetypes of ecosystems inspire researchers in 

management studies (Hakala et al., 2019): entrepreneurial ecosystems (Cohen, 2006; 
Isenberg, 2010; Neck et al., 2004), business ecosystems (Adner, 2017; Moore, 1993; 
Zahra and Nambisan, 2012), and innovation ecosystems (Adner, 2006; Iansiti and Levien, 
2004; Ritala and Almpanopoulou, 2017). Although innovation ecosystems draw upon 
business ecosystems (Gomes et al., 2018), and hence some overlap between the two is 
possible, these three ecosystems markedly diverge in terms of plot (focal point, involved 
actors, relationships between them) and desired outcome (Jacobides et al., 2018).  
Given that ecosystems are structures formed by interrelated entities that have significant 
autonomy (Jacobides et al., 2018), ecosystems can be managed, albeit not fully 
hierarchically controlled (Hakala et al., 2019). Therefore, an interesting topic regarding 
ecosystems is their governance or orchestration (Paquin and Howard-Grenville, 2013). 
Specifically, an orchestrator can coordinate and motivate activities by: (i) setting rules 
and norms (Colombo et al., 2017); (ii) establish the legitimacy of the ecosystem activities 
with a wide audience; (iii) attract potential actors who will create ties (Paquin and 
Howard-Grenville, 2013); and (iv) support them in thinking strategically about the 
ecosystem in which they operate (Zahra and Nambisan, 2012). 
Orchestration has been investigated in the three archetypes of ecosystems. For instance, 
Colombo et al. (2017: 421) investigate if entrepreneurial ecosystems are “governed top-
down by a “visible hand”, or navigated bottom-up by an “invisible” Darwinian process”. 
In innovation ecosystems the anchoring point is not a firm, but rather “the system of 
innovations that allows customers to use the end product” (Jacobides et al., 2018,: 2257). 
With reference to business ecosystems, the literature stresses the role of ecosystem 
managers – “hub” or “keystone” firms – as the providers of stability (Iansiti and Levien, 
2004), knowledge mobility, innovation appropriability, and network stability (Dhanaraj 
and Parkhe, 2006). Zahra and Nambisan (2012) distinguish four different models of 
business ecosystems that differ in terms of the nature of the innovation space they inhabit 
and the nature of governance. Specifically, one of these four – the Jam Central Model – 
is an ecosystem in which research centers collaborate to develop an innovation in an 
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emergent/radically new field emerging from the collaboration, with no dominant 
company regarding governance responsibility, which indeed is diffused among partners. 
To the best of our knowledge, scientific ecosystems have not been investigated, yet. 
Specifically, as scientific researchers, we are adamant to claim that researchers operate in 
scientific ecosystems, i.e. decentralized systems of autonomous actors characterized by a 
specific plot and desired outcome. Specifically, the focal point concerns research, with 
the aim of developing theory, i.e. a body of understanding cumulatively built through 
descriptive and normative stages (Christensen, 2006). Scientific ecosystems are 
composed of a variety of actors: senior and junior academics, universities, private and 
public institutions providing funding, editors of journals, and also firms (as object of 
investigation, if the investigated research topic is management, or proposer of topics to 
be investigated). In this paper, due to data availability, we focus only on the scientific 
community within the ecosystem, i.e. on those actors – senior and junior academics, 
universities, editors of journals – that are directly involved in the production of scientific 
knowledge. 
Relationships of collaboration and competition take place between all these actors. For 
instance, on the one hand, researchers need to collaborate with other academics to achieve 
the critical mass needed to cope with challenging research projects and attract financial 
resources raffled off by (public) funding bodies. Although researchers sometimes need to 
prevent knowledge leakages to other researchers, achieving visibility to colleagues is 
generally important. The development of theory very often entails different knowledge 
requirements, depending on the features of the research objective to be framed and 
achieved. For instance, some actors are very knowledgeable about specific scientific 
fields and the related theories, others are very knowledgeable about methodological 
aspects (specific research methodologies or techniques), while yet others may act as 
senior experts who are endowed with a higher level perspective needed to identify the 
most promising research questions or the right research setup.  
The phases along which theory building proceeds may entail specific patterns of coupling 
among the ecosystem’s actors, i.e. specific linkages among the actors characterized by 
different levels of strength and intensity. According to Brusoni and Prencipe (2013), who 
build on Orton and Weick (2010), coupling can be operationalized through the interplay 
between responsiveness (the property of the system elements to maintain a degree of 
consistency with each other, even in a changing environment) and distinctiveness (the 
property in the system elements to retain their identities). The system is defined as “tightly 
coupled” or “decoupled” if responsiveness or distinctiveness prevail, respectively; the 
system is described as “loosely coupled” if distinctiveness and responsiveness are quite 
well balanced.  
For instance, when researchers are confronted with ambiguous situations – as it is now, 
for instance, with COVID – new theories have to be developed. In such situations, 
researchers do not yet have the interpretative knowledge that is necessary to identify the 
constructs involved, i.e. the “abstractions that help us rise above the messy detail to 
understand the essence of what the phenomena are and how they operate” (Christensen, 
2006: 40) and to bring them together in a coherent theoretical framework. The necessity 
to set up a shared framework is at odds with distinctiveness and rather requires 
responsiveness: many researchers need to interact, share ideas, communicate and 
exchange their knowledge. In this case, conferences may provide researchers with a 
socially cohesive environment in which they share their ideas on the pivotal constructs at 
play and their relationships, in order to get to a common and shared frame of reference. 
On these premises, the scientific ecosystem is tightly coupled.  
However, as soon as researchers achieve a general theoretical framework, ambiguity 
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leads to complexity. More precisely, within the shared general framework, which works 
as a sort of agreed-upon architecture, researchers dig deeper in order to better detail the 
framework, enriching it with a finer-grained operationalization of the constructs, adding 
new constructs that enrich the general framework and elaborating new categorization 
schemes that attempt to simplify and organize the world. While the framework grows in 
complexity, researchers in the ecosystem can work independently of and concurrently 
with other researchers. In this scientific environment, in which researchers’ 
distinctiveness prevails on responsiveness, conferences may serve as stages where results 
regarding the developments of the general framework are presented and debated. 
Although scientific ecosystems and scientific communities share some of the 
characteristics of business ecosystems (value creation), specifically of the Jam Central 
model type (research with no dominant actor with governance responsibility), some 
important differences emerge. In scientific ecosystems, research is mainly conducted by 
(groups of) researchers and not by firms, with the aim of developing theory and not 
innovation. In addition, in scientific ecosystems there are not dominant actors with 
governance responsibility, but rather moments/events, such as 
conferences/seminars/workshops that, while pulling together the dispersed 
resources/capabilities and hence assuring knowledge mobility (Dhanaraj and Parkhe, 
2006), seem to orchestrate the ecosystem in order to create value. 
This approach consisting in interpreting the orchestrator as something different from an 
organization is not new. For instance, Longo and Giaccone (2017) speak about 
institutions as socially shared and embedded institutional arrangements (rules for access, 
ways of interaction and operational mechanisms). Institutions and institutional 
arrangements, while aiming at coordinating the co-creation of value, “are not intended as 
organizations but as sets of rules, norms and beliefs” (ibid.: 883) guiding and 
coordinating innovation activities inside the hub.  
However, since scientific ecosystems have not been studied in the literature, questions 
regarding their orchestration emerge. While aiming at answering them, we will analyze 
events, in this case conferences, as opportunities for a decentralized orchestration of 
scientific ecosystems, interpreted as a set of evolving actions, not a static structural 
activity (Paquin and Howard-Grenville, 2013). More precisely, we investigate the 
questions: To what extent and how does event-based orchestration favor 1) collaboration 
between the key actors of the community, and 2) international collaboration? 

3. RESEARCH DESIGN 
We investigated the Continuous Innovation Network (CINet) as a scientific community. 
In order to answer the research questions, we utilized Social Network Analysis (SNA) 
(Burt and Minor, 1983; Wasserman and Faust, 1994). SNA is a discipline aiming at 
investigating social structures through the exploitation of graph theory and networks (Otte 
and Rousseau, 2002). It finds application in different fields, including sociology, 
anthropology, economics, marketing and computer science. SNA characterizes networks 
in terms of nodes (e.g. individual people or organizations) and edges (relationships or 
interactions) connecting them (Wasserman and Faust, 1994). 
In this study, instead of using citations and co-citation methods, the analysis was based 
on the co-authorship networks (Santonen and Ritala, 2014; Vidgen et al., 2007), which 
allows evaluating the actual relationships between researchers and investigating how the 
scientific community is orchestrated. Co-authorship networks are made up of nodes, i.e., 
the authors, who are connected by one or more links representing co-authored papers 
(Santonen and Ritala, 2014; Abrahams et al., 2019; Vidgen et al., 2007). Co-authorship 
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networks and their evolution in terms of key authors are analyzed for the period 2011-
2019. 
Starting from the co-authorships of publications, we also investigated the structure of the 
research collaboration network within CINet and its evolution over the period 2014-2017, 
by considering international collaborations. 

3.1 DATA COLLECTION 
We collected data from four CINet conferences between 2011 and 2019.1 The data source 
used was the CINet conference database, from which we extracted two datasets, including 
all papers accepted for the four conferences and all participants to the events over the 
years. Altogether, 696 research papers and 990 authors have been included in the analysis 
of co-authorhip networks (years 2011-2019), while 385 research papers and 580 authors 
are involved in the more detailed analysis focusing also on the international dimension 
(years 2014-2017). Data included basic information about these research papers 
submitted to CINet these years (i.e., title, co-authors and keywords) and their authors (i.e., 
name, country, affiliation, and institutional position).  
To carry out the co-authorship analysis, we firstly checked the two datasets to ensure that 
each author and each paper was identified correctly. In case of missing information, we 
conducted an additional web-based search, exploring the authors’ personal pages. Then, 
for each paper, we explicitly specified the co-authorship relationships between the authors. 
The resulting dataset was visualized and analyzed using Gephi (Bastian et al., 2009).    

3.2 SNA METRICS 
To characterize the CINet co-authorship network and evaluate the importance of all actors 
within it, we resorted to the common and widely used SNA measures: size, density, 
average path length and centrality (Freeman 1978; Wasserman and Faust, 1994). 
Understanding the characteristics of the CINet community allows inferring how well 
connected and close authors are to each other, how effectively information passes across 
the network, and whether some members have a central role within the network. A brief 
description of each metric is provided next: 
• Size: The size of the network was measured in terms of number of nodes, which 

expresses the number of authors within the network, and the number of edges, which 
represents the number of co-authored papers among the network nodes. If the number 
of nodes remains the same over the years but the number of edges increases, 
connectivity between the nodes also growths. 

• Density: The density of the network was calculated as the actual number of edges 
divided by the number of possible combinations of edges. This metric indicates the 
degree of network connectivity, i.e. how the nodes in the network are interconnected. 
A dense network means that many authors communicate and collaborate with many 
other members of the community.  

• Average Path Length (APL): This dimension was measured as the mean of the shortest 
distances between each pair of nodes (Watts and Strogatz, 1998; Lee and Kim, 2018). 
A low value of APL indicates a highly efficient diffusion of information within the 
network. If there are many nodes in a bridge position within the network, APL is 
short. If, in contrast, there are many local hubs within the network, APL is large.  

• Centrality: Centrality measures the importance of each node within the network 

 
1 The initial dataset comprised data from 1995 to 2019; however, the data on co-authorships for the years 
1995-2010 were too fragmented to produce a meaningful network analysis. 
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(Abbasi et al., 2011). To compute centrality, we adopted three common metrics: 
degree centrality (DC), betweenness centrality (BC), and eigenvector centrality (EC). 
In more detail, DC measures the number of other nodes connected directly to the node 
of interest. It specifies the popularity of a node within the network. A high DC 
indicates that the node has a central position and it is quite active within the network. 
BC measures how often a node is found on the shortest path between any pair of nodes 
in the network. A node with the highest value of BC is the most effective node for 
transferring information, which also influences other nodes, assuming the role of 
broker or leader (Lee and Kim, 2018; Freeman 1978). Finally, EC measures the 
influence of a node in a network, based on the centrality measures of neighboring 
nodes. A node, which is connected to many other nodes that are themselves well-
connected, has a high EC score.  

4. RESULTS  

4.1 NETWORK ANALYSIS  
Table 1 summarizes the changes in network metrics over time, from 2011 to 2019. The 
number of nodes and the number of edges (i.e., the number of authors and the number of 
papers, respectively) show a growing trend until the years 2015-2016, and start deflecting 
in 2017. If we look at the growth rates over the years, we can see that nodes and edges 
are usually correlated, although the variations in terms of authors-nodes (e.g., +17,4% in 
2019) are typically less amplified than those in terms of papers-edges (e.g., +27,0% in 
2019); this means that there are scale effects and possibly bridging effects when new 
authors enter (or exit) the community. 
 

Table 1: Network metrics changes from 2011 to 2019 

Year	 Nodes	 Edges	 Density	 APL	
2011	 132	 169	 0.017	 1.4	
2012	 168	 234	 0.017	 1.3	
2013	 142	 267	 0.02	 1.7	
2014	 162	 228	 0.016	 1.7	
2015	 220	 332	 0.012	 1.7	
2016	 219	 347	 0.013	 1.7	
2017	 205	 294	 0.014	 2.1	
2018	 138	 185	 0.02	 1.3	
2019	 162	 235	 0.018	 1.5	
TOTAL	 992	 2291	 0.04	 6.1	

	

The graph density of the CINet network is pretty low and remains quite steady over the 
years, peaking in 2013 and 2018. This means that the connectivity of the entire network 
is low. Since the CINet community encompasses a different number of research areas 
within, or related to, (continuous) innovation, and the results suggest that the authors are 
dispersed along these areas, reducing the possibility of collaborations. A visual inspection 
of the paper titles supports this suggestion. 
Finally, the APL shows an inverse u-shaped trend. i.e., a decrease followed by in increase 
of the efficiency of the diffusion of information within the network over time. 
 
Figure 1 shows the detail of the CINet co-authorship networks from 2014 to 2017. The 
thickness of the edges gives an indication of the number of co-authored papers. The size 
of the nodes defines the authors’ position within the network in terms of betweenness. 
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Figure 1: CINet co-authorship networks from 2014 to 2017 

 
 
The network diagram for each year indicates that the scientific community is largely 

fragmented with few researchers acting as bridge between two or more different sets of 
co-authors. Also, several single nodes are present, representing the authors who have 
submitted single-author papers. Lastly, the scene is dominated by a few individuals with 
a central role and high popularity (see the largest nodes in Figure 1). 
  

4.2 ANALYSIS OF KEY AUTHORS  
After the analysis of the characteristics of the CINet network as whole, we investigated 
the individual nodes of the network, i.e., the authors, in terms of their centrality within 
the network.   
 

Table 2: Key authors of CINet community over the years 

Year Betweenness Weighted Degree Eigenvector 
2011 1. Magnusson Mats 

2. Sandström Christian 
3. Johansson Magnus 
4. Kallio Anne 
5. Wolf Patricia 

37 
31 
18 
5 
3 

1. Heidemann Astrid 
2. Wandahl Søren 
3. Sørensen Henrik 
4. Jacobsen Alexia 
5. Bolvig Poulsen Søren 

8 
8 
8 
8 
8 

1. Magnusson Mats 
2. Kallio Anne 
3. Ölundh Gunilla 
4. Binder Sven 
5. Wadell Carl 

0.84 
0.55 
0.54 
0.54 
0.54 

2015 1. Martini Antonella 
2. Magnusson Mats 
3. Paolucci Emilio 
4. Gastaldi Luca 
5. Corso Mariano 

103 
71 
70 
27 
27 

1. Martini Antonella 
2. Magnusson Mats 
3. Paolucci Emilio 
4. Neirotti Paolo 
5. Corso Mariano 

15 
13 
13 
12 
11 

1. Neirotti Paolo 
2. Paolucci Emilio 
3. Gastaldi Luca 
4. Corso Mariano 
5. Paolo Appio Francesco 

0.92 
0.88 
0.85 
0.85 
0.74 

2019 1. Gerstlberger Wolfgang 
2. Wolf Patricia 
3. Harbo Marianne 
4. Schweisfurth Tim 
5. Yu Fei 

58 
41 
36 
12 
11 

1. Wolf Patricia 
2. Gerstlberger Wolfgang 
3. Sudbrack Catherine 
4. Gattringer Regina 
5. Schweisfurth Tim 

13 
9 
9 
8 
6 

1. Wolf Patricia 
2. Sudbrack Catherine 
3. Arsan Leyla 
4. Gaudenz Urs 
5. Obrist Chris 

1 
0.89 
0.79 
0.79 
0.79 

Total 1. Magnusson Mats 
2. Kianto Aino 
3. Martini Antonella 
4. Aloini Davide 
5. Wolf Patricia 

40530 
33732 
31947 
28000 
22993 

1. Pellegrini Luisa 
2. Lazzarotti Valentina 
3. Manzini Raffaella 
4. Gastaldi Luca 
5. Magnusson Mats 

92 
92 
82 
65 
64 

1. Manzini Raffaella 
2. Pellegrini Luisa 
3. Lazzarotti Valentina 
4. Lakemond Nicolette 
5. Bengtsson Lars 

1 
0.99 
0.96 
0.71 
0.70 

 
 
Specifically, Table 2 lists the five individuals scoring highest in terms of betweenness, 
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weighted degree and eigenvector, for three years over the period 2011-2019, together 
with the tot. 
Looking at the role of each author, the evolution of the co-authorship network shows the 
emergence of new different key authors over time. In addition, from 2014 to 2017, most 
of the authors who occupied central positions in the network come from Italy, followed 
by Sweden. The authors’ nationality is intended in the sense of their first affiliation 
nationality. 
However,	for each single year, nearly the same authors occupy the highest positions with 
respect to all the three aforementioned metrics. Specifically, when all metrics of a 
particular node are high (for example, Woòf in 2019), this means that such a node is likely 
to be the global hub within the CINet community because it has multiple connections to 
other nodes, particularly to well-connected nodes (both from the same and from different 
countries), and it controls the information transfer towards other nodes. 
Conversely, authors with high betweenness but low weighted degree (for example 
Gastaldi in 2015) have a central role within the network despite a lower number of 
connections and act as bridges linking different subgroups. 
Finally, authors with a high weighted degree or eigenvector but low betweenness (for 
example Ölundh in 2011) represent local hubs within the CINet network because they 
have co-authored different papers with many different collaborators, but information 
flows bypass them. 

4.3 ANALYSIS OF INTERNATIONAL COLLABORATIONS 
Figure 2 reports the results of the evolution of the CINet in terms of international 
collaborations over the years 2014-2017. As expected, most of the collaborations take 
place between authors from the same country (in terms of affiliation nationality). 
However, the percentage of international collaborations shows an increasing trend in the 
last years (up to +37% in 2016).  
 

Figure 2. Evolutions of CINet collaborations 

 
 
More in detail, Figure 3 depicts the co-authorship network diagrams from 2014 to 2017 
from a country viewpoint. Specifically, the color of the edges indicates the type of 
relation: blue for international papers, i.e. co-authored by authors affiliated to different 
country institutions, and black for papers with authors affiliated to institutions (possibly 
different) from the same country. The color of the nodes represents the institutional 
country of the author. 
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Figure 3. CINet co-authorship networks at country level from 2014 to 2017 

 
 
As shown in the figure, the countries that cooperate the most are Italy, Sweden and 
Denmark (purple, green and azure dots, respectively). Anyway, collaborations between 
countries have been characterized by other different protagonists over the years, such as 
Finland, Germany and UK.  

5. DISCUSSION AND CONTRIBUTION 
This paper broaches a key, unexplored issue in scientific ecosystem orchestration. First, 
scientific research is a distributed and collective process involving a variety of actors such 
as senior and junior academics, universities, private and public institutions providing 
funding, editors of journals, and also firms as proposer of topics to be investigated and/or 
object of investigation (especially in management disciplines). These actors are involved 
in cumulatively building theory through descriptive and normative stages (Christensen, 
2006). Along each stage, scientific research usually shows distributed and collective 
features because it entails knowledge requirements which unlikely are mastered only by 
one single researcher. Hence, in this article we put forward the construct of scientific 
community – a fundamental part of a scientific ecosystem –, which seems to be able to 
capture the complexity of theory building.  
Within this understanding of scientific research, conferences can be seen as opportunities 
for a decentralized orchestration of scientific communities, interpreted as a set of evolving 
actions, not a static structural activity (Paquin and Howard-Grenville, 2013). 
In analyzing the CINet conferences in a four-year time span (2014-17), in this paper we 
aimed at understanding how expansion occurred in CINet, viewed as a scientific 
community, and how collaborations evolved, in that this can enable more effective 
orchestration of the network structure, in order to maximize value creation and extraction 
from the actors, including increased integration of knowledge and increased research 
productivity.  
Very preliminary results show that a conference in itself is an event that spurs the creation 
of a number of groups of researchers working together. These groups, which change their 
morphology over the years, see a variety of authors collaborating with each other. The 
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authors who play a central role within the network (i.e. who are the most influential 
authors) change over the years. Moreover, the preliminary findings reveal that the CINet 
collaboration network is mainly based on the authors’ home country. It appears that, in 
each of the four investigated years, groups of researchers work together within their 
respective scientific subcommunities on the basis of agreed-upon research frameworks 
that function as shared architectures (responsiveness). Given that collaborations are 
mainly at the national level, the countries seem to work mostly independently from each 
other. This means that the enrichment of the general framework in terms of more fine-
grained operationalization, new constructs and new categorizations schemes happen 
“locally”.  
In such subcommunities, senior researchers, as shown in Table 2, seem to retain their 
identities (distinctiveness); hence, because both responsiveness and distinctiveness are 
balanced, the subcommunities appear to be loosely coupled (Brusoni and Prencipe, 2013). 

5.1 CONTRIBUTION 
We recognize that this paper develops a largely descriptive contribution in that it 
describes what happened in an example of a scientific community, over a relatively short 
period of time, using constructs borrowed from adjacent areas. Thus, this paper just 
presents a first step towards theory development on scientific ecosystems, but an 
important one in that it shows that (an example of) such systems can be fruitfully 
described and analyzed using ecosystem theory, starting from the concept of scientific 
community. A lot of further work is needed to develop robust understanding of, i.e. theory 
on scientific ecosystems. Some important directions for further research come from the 
limitations of this study. 

5.2 LIMITATIONS AND FURTHER RESEARCH 
Our analysis focuses only on a single type of actors, i.e. researchers, so disregarding other 
possible actors such as universities, private and public institutions, editors of journals, 
and firms who may play important roles in the ecosystem. This is an important venue for 
further research. Furthermore, only four years have been used for the more detailed 
analysis. It will be important to extend the thorough analyses to include the 1996 to 2013 
and 2018 to 2020 conferences. Then, CINet is just one of many scientific communities. 
An analysis of other communities focused on innovation research as well as networks in 
other disciplines such as operations management, strategic management and 
organizational theory, would strengthen the results of this study and allow more robust 
scientific ecosystem theory. Finally, the analyses presented here are largely a-contextual. 
Not only time but also a range of other factors such as changes in funding patterns and 
expectations, the inherent fashionability of management research and the effects of global 
events such as the financial crisis and, now, the COVID pandemic, should be considered 
to further explain the patterns identified in this study. 
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