12

16
17
18
19
20
21

99

23

26
27
28
29

THE ROLE OF ASYMPTOMATIC INFECTIONS IN THE COVID-19
EPIDEMIC VIA COMPLEX NETWORKS AND STABILITY
ANALYSIS*

LEONARDO STELLA', ALEJANDRO PINEL MARTINEZ', DARIO BAUSOf, AND
PATRIZIO COLANERIS

Abstract. Italy has been the first country to be affected by the COVID-19 epidemic in Europe.
In the past months, predictive mathematical models have been used to understand the proportion
of this epidemic and identify effective policies to control it, but few have considered the impact of
asymptomatic or paucisymptomatic infections in a structured setting. A critical problem that hinders
the accuracy of these models is indeed given by the presence of a large number of asymptomatic in the
population. This number is estimated to be large, sometimes between 3 and 10 times the diagnosed
patients. We focus on this aspect through the formulation of a model that captures two types
of interactions, one with asymptomatic individuals and another with symptomatic infected. We
also extend the original model to capture the interactions in the population via complex networks,
and, in particular, the Watts-Strogatz model, which is the most suitable for social networks. The
contributions of this paper include: i) the formulation of an epidemic model, which we call SAIR,
that discriminates between asymptomatic and symptomatic infected through different measures of
interactions and the corresponding stability analysis of the system in feedback form through the
calculation of the Ro as Heo gain; ii) the analysis of the corresponding structured model structure
model involving the Watts and Strogatz interaction topology, to study the case of heterogeneous
connectivity in the population; iii) a case study on the Italian case, where we take into account the
Istat seroprevalence study in the homogeneous case first, and then we analyze the impact of summer
tourism and of the start of school in September in the heterogeneous case.

Key words. COVID-19 | Complex Networks | Control Systems | Compartmental Models.

AMS subject classifications. 92D30, 93C10, 05C82.

1. Introduction. Asymptomatic cases pose a real threat in controlling the
spread of the COVID-19 disease. Recent seroprevalence studies have estimated the
real number of asymptomatic individuals affected by COVID-19. Despite the surge in
testing over the past months and due to a slower than expected vaccination campaign,
understanding the impact of these infections in order to prevent other waves is still
a crucial aspect. This work aims to study this problem and model the heterogeneous
interactions in the population by means of a complex network in order to shed some
light on the effectiveness of localized control measures in Italy, and to provide a better
understanding of the impact of summer tourism and schools.

The model that we propose aims to capture the asymptomatic infections, or pau-
cisymptomatic, namely individuals with one or two symptoms not including anosmia
or ageusia, and the spread of latent infections. Early estimates of the transmission
rate of a disease, as well as other disease parameters, play a crucial role in limiting
its spread through effective policies, but subclinical cases, namely those who do not
show clinical symptoms, can be misleading for an early estimate of the basic repro-
duction number of the disease [1]. We use official data from Protezione Civile, the
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2 L. STELLA, A. PINEL-MARTINEZ, D. BAUSO AND P. COLANERI

Italian department in charge of dealing with emergencies, to fit the model, both at
a national level as well as regional level. The case study provides insight on the po-
tential effects of localized restrictions, without the coordination at a national level.
The results of this study highlight the importance of coordinating the deployment
of appropriate control measures that take into account the impact of asymptomatic
infections, especially in younger individuals, and inter-regional movements in Italy.
Previous attempts at modeling asymptomatic infections are common in the litera-
ture, for example the 2009 influenza HIN1 virus [2]. The authors in [2] discuss a
model similar to the one we propose here and study the local asymptotic stability for
the disease-free equilibrium and the corresponding endemic state, in presence of drug
resistance. In [3], the authors consider asymptomatic infections with application to
traditional models such as SIR and SEIR and to a version of the SAIR model. In
that work, the main contribution is the global asymptotic stability of the SAIR model
through Lyapunov stability analysis and the parameter estimation for several coun-
tries including India. The main difference with our work is that we investigate the
impact of subclinical cases through two distinct measures of interactions and provide
the calculation of the basic reproduction number Ry as the H., gain.

The COVID-19 respiratory syndrome, associated with the novel strand of Coro-
navirus called SARS-CoV-2, has had a massive impact worldwide. Initially found in
Wuhan, in the heart of Hubei Province, China [4], it has quickly spread since last
December to almost every country in the world, with the most affected being the
US, Spain, UK, Italy, France, Germany, Russia, Turkey, Iran, and China. This has
caused severe consequences and a large number of deaths, mostly due to the ease of
transmission, i.e. the virality, of this disease. For an infectious disease outbreak such
as the one caused by COVID-19, predictive mathematical models play an important
role for the planning of effective control strategies. Among the models formulated
over the years [5, 6], the susceptible-infected-recovered model (SIR) is possibly one
of the most used epidemic models: the population is split into three stages of infec-
tion, sometimes called compartments, thus the terminology compartmental models,
as reported in an early work by Kermack and McKendrick in 1927 [7]. A variant of
these classic compartmental models used to tackle the specific features of SARS can
be found in the work of Gumel et al. [8] and similar equations can be found in the
framework developed for the HIV transmission in heterogeneous populations [9]. In
view of different strands of SARS-CoV-2, namely the East Asian one and the Euro-
pean one [10], the framework developed by Liu et al. can provide useful insight on
the way in which two competing viruses spread in from a control perspective [11].

Several aspects of this virus have been investigated: some research assessed the
effectiveness of different response strategies [12], another study focused on modeling
the various stages of the disease and the death rate in response to population-wide
interventions et al. [13], recently extended to include vaccination rollout and non-
pharmaceutical interventions (NPIs) in Italy [14]. Early research in China showed
unique epidemiological traits of the COVID-19 virus [15], most notably the fact that
a large portion of transmissions were caused by asymptomatic individuals, whether
they were showing mild or no symptoms at all. Indeed, further research demonstrated
that asymptomatic and symptomatic individuals have the same viral load and thus the
same capability to further spread the virus [16], and the work of Rothe et al. provides
evidence for transmission from an asymptomatic individual in Germany [17]. In the
context of data driven models, Bertozzi et al. find a relation between branching point
processes and classical compartmental models such as susceptible-infected-recovered
(SIR) and susceptible-exposed-infected-recovered (SEIR), whilst fitting the models
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with data from a variety of countries, including China, Italy, Japan, and other coun-
tries [18]. A study that investigates whether daily test reports can help authorities to
control the epidemic [19], discusses how mitigation strategies can fail when modelled
because of various factors, such as delay, unstable dynamics, and uncertainty in the
feedback loop. For the Italian situation, the work of Della Rossa et al. provides in-
teresting insight on the need to coordinate the efforts in controlling the situations in
an inter-regional setting, and highlights the need of such coordination by means of a
network model [20]. In the work of Yilmaz et al., the authors discuss how to identify
and analyze bridges between communities in graphs with the purpose to understand
how to track and where to start tests on which individuals [21]. Another study in-
cludes a particle-based mean field model that investigates the pros and cons of social
distancing through an approach that compares individuals to molecules in a chemical
solution [22]. A very early model of this disease was given in the work by Calafiore
et al., where the novelty lies in including a proportionality factor in a standard SIR
model to account for hidden infections [23]. In a model on the case for the UK, the
authors account for four main elements and a finer level of detail for each of them in
assessing the impact of the speed in which the immunity is lost [24]. A risk sensitivity
analysis is conducted on the economic impact of the disease where the optimizing be-
havior of agents to influence future transitions is considered by Garibaldi et al. [25].
The work by Pastor-Satorras provides a survey of the literature on complex networks
for epidemic processes [26], and applications of complex networks to epidemic pro-
cesses in evolutionary dynamics can be found in the work by Tan et al. [27]. Finally,
in [28], the authors study the equilibria, stability and convergence of classical virus
propagation models. Of specific interest for our study is their analysis of the SIR
model over contact networks with a strongly-connected topology, whereas we focus
on heterogeneous connectivity via complex networks. Another difference with our
work is the investigation of the epidemic outbreak in relation to our parameters of
infections to establish a threshold in relation to the epidemic outbreak.

Highlights of contributions. We propose an epidemic predictive model that dis-
criminates between asymptomatic and symptomatic cases of COVID-19 through two
different measures of connectivity, as interactions with these two classes are captured
separately, allowing for a study on the impact of asymptomatic cases. The main rea-
son as to discuss this model in place of the well-known SEIR model is twofold: first,
a distinctive feature of COVID-19 is the presence of a large number of asymptomatic
infected; second, unlike the traditional SEIR model, the asymptomatic class can in-
fect and indeed is responsible for the vast majority of infections in line with the ones
reported for COVID-19. By rewriting the proposed model in feedback form we study
the equilibrium and convergence via the calculation of the basic reproduction number
Ro as the Hy, gain. We extend the model to consider heterogeneous connectivity in
the form of the Watts-Strogatz complex network, which is commonly used to model
social interactions because of its small world property. The stability and convergence
analysis of this model is carried out in an analogous manner to the homogeneous
case. Finally, a case study on the situation in Italy is given: first, the homogeneous
model is used to compare the official data with the data of the recent seroprevalence
study from Istat; second, in view of the return to school in mid-September and the
diverse impact of tourism across the regions, a study at regional level is conducted.
The results emphasize the need for coordinated control measures that account for the
interactions among different regions in Italy, or in general different countries.

Relevance of this work. This work is one of the first attempts to use the Istat
seroprevalence study to model the evolution of SARS-CoV-2 at national level and by
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4 L. STELLA, A. PINEL-MARTINEZ, D. BAUSO AND P. COLANERI

making use of complex networks to model the inter-regional spread of the virus for the
situation in Italy. This work develops a predictive model which highlights the impact
of asymptomatic infections in spreading the disease through two different measures
of their interactions. The analysis of the possible scenarios following the return to
schools in mid-September 2020 is carried out via heterogeneous connectivity in the
population by means of a complex network. Finally, a case study for the Italian case
confirms that only centralized coordinated policy decisions at national level can be
effective when inter-regional movements are allowed.

The paper is organized as follows. In Section 2, we discuss the main results of
our work when the population is homogeneous and carry out the stability analysis of
our model. Section 3 extends the previous results to a structured model, where the
structure is captured by a complex network. In Section 4, we provide a numerical
analysis and discuss our algorithm to estimate the parameters of the homogeneous
model, while the main case studies are discussed in Section 5. Finally, in Section 6
conclusions are drawn and future research is discussed.

2. Homogeneous Epidemic Model. In this section, we present the formula-
tion of the model that we propose, which takes inspiration from popular compart-
mental models such as the widely used susceptible-infected-recovered (SIR) model,
and more precisely from the susceptible-exposed-infected-recovered (SEIR) model. In
a compartmental model, the population is divided into a discrete set of states, or
compartments. For instance, in the SIR model, individuals can be susceptible to the
virus, then get infected, and finally recover or pass away. The SIR model accounts for
those diseases that do provide long term immunity to future infections from the same
virus through the presence of antibodies in the host organism, but other models, e.g.
the SIS model, consider the possibility of re-infections.

In line with previous works [2, 3], we named the model SAIR, because of the
state variables we chose to include: Susceptible, Asymptomatic infected, symptomatic
Infected and Removed. We choose to use the term remowved in place of the more
common recovered because we do not discriminate between individuals that recover
from the disease and those that pass away. The term removed is also used commonly
in the literature, see e.g. [29]. As previously mentioned, our model is a variation of
the susceptible-exposed-infected-recovered (SEIR) [30], but with notable differences:

e Our (A)symptomatic class captures the infections in the population with little
or no symptoms. After a while, asymptomatic infected can show symptoms or
recover from the virus, which is usually different from the traditional Markov
chain associated with the SEIR model (Exposed usually need to become In-
fected first). Furthermore, infections spread by asymptomatic individuals are
possible and indeed are common, in line with what reported for COVID-19.

e Our study focuses on the impact of the undetected asymptomatic individuals
in spreading the virus. Some of these can show symptoms at a later stage,
and we assume that in an initial stage no individuals show symptoms. The
susceptible individuals can interact with asymptomatic or symptomatic in-
fected and become asymptomatic first. In the model this is done through
different parameters of infection and two separate measures of connectivity.

In the rest of the paper, we provide an estimation of the parameters of infection
through a case study for Italy. We estimate the ratio between asymptomatic and
symptomatic infected and support our work with the estimate from the Istat sero-
prevalence study [31]. We then investigate the impact of the lockdown measures in
controlling the spread of the virus, by modelling the frequency of contacts among
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THE ROLE OF ASYMPTOMATIC INFECTIONS IN THE COVID-19 PANDEMIC 5

the individuals in the population via an average number of contacts, first, and then
through the small-world complex network model.

The susceptible-asymptomatic-infected-removed (SAIR) model that we present
in the following is a discrete-state continuous-time system. In a first approximation,
individuals are considered homogeneous, namely they share the same properties when
in the same state (or compartment). The state variables of the model represent the
densities of susceptible, asymptomatic infected, symptomatic infected and removed
individuals. These quantities are denoted by S(t), A(¢), I(t) and R(t), respectively.
Each state variable belongs to R{. In the mean-field limit, the following system of
ODEs describes the time evolution of the population:

S(t) = —S(t)_(k‘wA(t) + ko M (1)),

A(t) = S() (kv A(t) + ko A (1) — A(t) (e + 0),
I(t) = aA(t) — pl (),

R(t) = c A(t) + pl(2),

(2.1)

where the uppercase Latin letters represent the known classes, k1 and ko take values
in [0 1] and describe the amount of interactions with asymptomatic and symptomatic
individuals, respectively: the lower bound represents no interactions, and the upper
bound represents the situation where individuals have the normal daily interactions.
These parameters can be seen as control/tuning parameters based on the NPIs at
any given point in time. The lower bound represents an absence of the usual inter-
actions in the population and the upper bound represents the daily interactions in
the population without any restrictions. The lowercase Greek letters represent the
parameters of the system. In particular, these parameters are constant positive quan-
tities and have the following physical interpretation: v and A denote the microscopic
transmission rate, the former due to contacts between a susceptible person and an
asymptomatic infected, the latter due to contacts between a susceptible person and
a symptomatic infected; infected individuals decay into the removed class at rate o
from the asymptomatic infected state and at rate p from the symptomatic infected
state, respectively; finally, « is the rate at which asymptomatic individuals develop
symptoms.

System (2.1) is a nonlinear positive system, more precisely it is bilinear, since the
highest degree that we have is at most two, obtained from the multiplication between
two state variables. The fact that the system is positive means that, given an initial
condition S(0), A(0), I(0), R(0) > 0, all the state variables take nonnegative values for
t > 0. Furthermore, due to the conservation of mass, namely S(t)+A(t)+1(t)+R(t) =
0, all state variables are linked through the normalisation condition:

S(t)+ A(t) + I(t) + R(t) =

meaning that the sum of all the state variables is constant at any given time and
equal to one.

In line with the work by Giordano et al. [13], the following conditions hold:
vk1 > Mka, due to the fact that people are more likely in contact with, or closer
to, asymptomatic infected rather than with individuals that show clear symptoms. In
our model we assume the homogeneous mizing hypothesis [5], which asserts that the
rate of infection per capita of the susceptible individuals is proportional to the num-
ber of people already infected. Because of this hypothesis, system (2.1) is treated as
a mean-field model where the rate of contacts between susceptibles and both symp-
tomatic and asymptomatic individuals is assumed constant, independently of any
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A

Asymptomatic
Infected

S

Susceptible

Symptomatic
Infected

Fig. 1: Markov chain representation describing the transition rates between the states
of the SAIR model in (2.1).

source of heterogeneity present in the system. Figure 1 depicts the Markov chain
corresponding to system (2.1).
Let z(t) = [S(t) A(t) I(t) R(t)]T, system (2.1) can be rewritten in matrix form as:

£(t) = G(S(1))=(1),

which is equivalent to

S 0  —kiyS ~k2AS 0 S
A o 0 ]€1’}/S —a—0 kz)\S 0 A
(2:2) Il 10 a - 0 I\
R 0 o i 0 R
~—— S——
z G(S) z

where the dependence on time is implicit, e.g. S := S(t), for the sake of brevity. As
depicted in Fig. 2, the above system can be rewritten in feedback form, where the
subsystem consisting of variables A and I can be seen as a positive linear system
under feedback. Let x(t) = [A(t) I(t)]T, system (2.2) can be rewritten in feedback
form as:

(2.3) #(t) = Fa(t) + bu(t),
(2.4) y(t) = ca(t),
(2.5) u(t) = S(t)y(t),

where F', b and c are defined as

F:[_O‘_” 0 ] b:{”, ¢ = [y Fal.

o —p
The remaining variables satisfy the following differential equations:
(2.6) S(t) = =S(t)y(t) = —u(t),

(2.7 R(t) = Ex(t) = [o p]z(t).

This manuscript is for review purposes only.
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Z y(t)

Fig. 2: The SAIR system in feedback form corresponding to equations in (2.3)-(2.5),
where the subsystem indicated by ¥ can be seen as a positive linear system under
feedback.

LEMMA 2.1. System _(2 2)_ with constant parameters admits the following equilib-
ria: z* = (5,0, R), with S + R = 1.

Proof of Lemma 2.1. The equilibria (S,0,0, R), with S + R = 1, follow from either
S =0 or kyyA + kAT = 0, which in turns means A = I = 0 (or both at the same
time). In the first case, if S =0, A=0and I =0, if and only if A =0 and I = 0,
and R = 0. In the second case, if A = I = 0, then A=1=0and also R = 0. This
concludes the proof. |

A fundamental result on stability and convergence of the system in feedback form
(2.3)-(2.5) hinges on the definition of the so-called basic reproduction number Ry,
defined as the H., norm of the transfer function of the open-loop positive system
(F,b,c) in (2.3)-(2.4) with constant parameters in F' and ¢, i.e.

Ro=—cF b=

The above satisfies the well-known property (inherited by standard small gain argu-
ment) that stability of the positive LTI system (2.3)-(2.5) with constant susceptible
population S is equivalent to RS < 1 [13].

Remark. The basic reproduction number R is the initial value at the outbreak
of the epidemic. For instance, in the case of COVID-19 in Italy it was calculated to
range from 2.43 to 3.1 [32]. Parameters k; < 1 and ky < 1 reflect the NPIs (non-
pharmaceutical interventions) such as closure of social activities, wearing masks, social
distancing or in response to the vaccination campaign [14]. The well-known current
reproduction number is defined as R(t) = RoS(t). This parameter becomes smaller
for decreasing S(t). Therefore, in absence of containment measures (k; = 1, ko = 1),
the herd immunity is reached at time S(¢) when S(f) = 1/Ro, i.e. assuming Ro = 2.5
for the COVID-19, S(f) = 0.4, meaning that 60% of the population has been exposed
to the virus and is infected, recovered, dead or immunized through vaccination.

We now study our system to assess the presence of a nonzero epidemic threshold
for our model. The significance of this threshold is such that it can be used to predict
the propagation of the virus at the initial stage of the epidemic. Indeed, if the value of
the infection rates is greater than this threshold, the fraction of infected individual at
the end of the epidemic (also called epidemic prevalence), namely R = lim; oo R(t),
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8 L. STELLA, A. PINEL-MARTINEZ, D. BAUSO AND P. COLANERI

attains a finite value in a large population. However, when the value of the infection
rates is below the threshold, the epidemic prevalence is infinitesimally small for large
populations [29, 30]. In the following, we provide an analytic expression for this
critical threshold as a function of the connectivity measures k1 and ko and we show
the connection between this value and the basic reproduction number Rg.

Let us consider system (2.1) and, without lack of generality, set the initial condi-
tions R(0) = 0 and S(0) ~ 1, which implies that only a very small number of infected
individuals A(0) = I(0) ~ 0 is present at the start of the epidemic. The following
result provides the value of the epidemic threshold ensuring Rg > 1 that means the
rise of the infection variables and the surge of the epidemic.

THEOREM 2.2. Consider system (2.1) with initial conditions R(0) = 0, A(0) =
I(0) ~ 0, S(0) ~ 1. This system admits a nonzero epidemic prevalence if and only if

’Y>'Yc(1 _p)a A > Aep,

for some p € [0 1] where 4. and A, are the thresholds for the asymptomatic and
symptomatic infection rates, respectively. These are defined as:

s (@+0)

(2.8) e 2 latom

- A e
k‘l ’ k‘gOé

Proof of Theorem 2.2. We start by integrating the equation for S(¢) in system (2.1)
as in the following:

S(t) = S(0)e Jo o()dr

where the integral is defined as

e g I
The above then yields

kivpn—koio k1vp+koda

S(t) = 5(0)67(W(I(t)*I(O)HW(R(t)*R(O)))

)

which can be simplified by taking into account the initial conditions, namely S(0) ~ 1,
I(0) ~ 0 and R(0) = 0 as specified in the statement of the theorem, and the fact that at
the end of the epidemic the number of infected is lim;_, I(¢) = 0 as in the following:

—RoR
S =e 0,

where the total number of infected R = lim;_,, R(t) and R is the basic reproduction
number. We can now combine the above equation with the normalization condition
and we can see that the total number of infected R fulfils the following equation:

R=1-¢ RoR,

A trivial solution of the above equation is R = 0, but we seek nonzero solutions.
Notice that such solution is equivalent to the basic reproduction number

Ro = % (1 B eiRDR) ’R:o'
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Therefore, thanks to (2.8), if ¥ > v.(1 — p) and A > A.p, it turns out that the above
equation is equivalent to the following;:

]2‘1 \ EQO’
a+o (a4 o)

Ro=1 >(1-p)+p=L

Conversely, if Ry > 1, there exists p for which v > ~.(1 — p) and A > A.p. This

concludes the proof. |
In the following, we characterize the stability and convergence property of the

infection stage variables, i.e. A and I, along with the susceptible and recovered

classes S and R. We start by assuming that the parameters are constant after time £

that is set to zero for sake of simplicity of the notation.

THEOREM 2.3. Assume that the parameters in F and c are constant for t > 0,

and E > 0. Then,

5(0) 9

2.9 log——~= —Ru(S(0) — S(t)) = —

(2:9) ol ~ Ro(S(0) - (1) = ==
(2.10) tlirgo A(t) =0,

(£(0) = I(2)) + Ro(A(0) — A(1)), ¥t = 0,

(211)  lim I(t) =0,
, L
(212) Jlim 5()=5 < 2.

where S is the only solution of

(2.13) log@ —Ro(S(0) — S) = %I(O) + RoA(0).
Finally,
(2.14) R=lim R(t)=1-5.

t—o0

Proof of Theorem 2.3. In the following, recall that = [A I]T. The equation (2.9)
comes from integrating @ = (F 4 bSc)z = Fa — bS and taking into account that
S/S = —cx. Consider function W = 17z + S, and take the derivative along the
trajectories of system (2.2). Since 1T F = —E < 0 we have that:

W(z,8) =1T(F+bSc)z+ S =1T(F +bSc)x — Sex = —Ex <0, x#0.

This means that  — 0, and therefore claims (2.10)-(2.11) are met, and S — S
for a nonnegative S, see the characterization of the equilibrium point in Lemma 2.1.
Therefore, (2.13) follows from (2.9) because of claims (2.10)-(2.11). As for the in-
equality in (2.12), notice that the left-hand side of (2.13) is oo for S = 0 and 0 for
S = S(0). Moreover its derivative with respect to S is Rg — 1/S. The only point of
intersection between the LHS and (positive) RHS of (2.13) is such that S < 1/Ro.
This justifies the inequality in (2.12). The proof of (2.14) is trivial. |

Remark. The above result allows us to calculate the equilibrium point of our model
when the parameters in F' and ¢ are known and the initial conditions are given. This
result can be extended for any ¢ > 0 by using the values of the parameters in F' and ¢
and the value of each compartment at ¢t > 0. Most importantly, note that formula (2.9)
defines a “potential” function of the epidemic system. Indeed, the function

(2.15) f(S, A, I) = —ZOQ(S) + R()S + RQA + %%2]
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10 L. STELLA, A. PINEL-MARTINEZ, D. BAUSO AND P. COLANERI

is constant along the trajectories of the system.

Due to the triangular structure of the SAIR epidemic model, the linear part
& = Fz is robustly stable under uncertain time-varying parameters in F' and ¢ [33].
This property implies convergence of A(t) and I(t) of the nonlinear feedback system
(2.3)-(2.5) to zero for any bounded time-varying parameters in F' and c.

THEOREM 2.4. Assume that the parameters in F and c are bounded time-varying
parameters for t > 0. The nonlinear feedback system (2.3)-(2.5) is exponentially
convergent to A = 0, I = 0 and some constant value S > 0 that depends on the
time-evolution of the parameters.

Proof of Theorem 2.J. In the following, recall that = = [A I]T. The linear system
& = Fz is robustly stable with the common copositive linear Lyapunov function 17 z.
Then 1"Fa = —Ex < 0, x # 0, for any bounded time-varying parameters in F.
Consider now the function

V(r,8)=1"Tz+ 5.

Therefore, )
V=1"Fz=-FEzx<0, z#0.

Therefore x converges to 0 and from $<0,S8 converges to a constant S that depends
of the time-varying parameters in F' and c¢. This concludes the proof. |

In the following, we focus on the impact that asymptomatic infections have on
the equilibrium and stability. In order to assess this impact, we study the dynamics of
the ratio between the symptomatic infected and the asymptomatic infected, namely
I:=1/A. We can calculate the corresponding ODE as:

s JA-TA
(@A —puh)A  (kiyA+kADIS  (a+0)IA
= A2 - A2 + A2

=a — (u+k1vS — a — )T — ke ASI?,

and therefore I satisfies a differential Riccati equation as

(2.17) IT=a—(u+kyS—a—o)l —kA\SI?
where the state variables S and A can be rewritten as:

(2.18) = —SA(k1y+koAD),

’ A= SA(kiy+ kAI) — A(a+ o).
Therefore, the equilibrium I of (2.17) is the stabilizing solution (max solution) of
the associated algebraic Riccati equation as stated in the following theorem, reported
without proof since it is straightforward.

THEOREM 2.5. Assume that all parameters are constant. Equation (2.17) tends
to the equilibrium

(2.19) i- (h—FivS+ V(= F78)2 + 10k2)5),

1
2k \S
where h == o+ 0 — u, and S is the equilibrium in Theorem 2.3. Furthermore, the
equilibrium I is asymptotically stable.

This manuscript is for review purposes only.
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3. Heterogeneous Interaction Model. In the previous section, we have stud-
ied the model where all individuals in the population are homogeneous, namely they
are indistinguishable, as they have the same value to measure the average number
of contacts. In this section, we extend the previous model to address the effects of
contact heterogeneity in the form of complex networks. Given a large population,
let P(k) be the probability distribution of the node degrees for a complex network
representing the interactions of the individuals in the population. Similarly to (2.3),
let z*l(¢ ) [Ak( ) I (t)] T for any k-th class of connectivity, for K = 1,..., N. Let

0:(t) = (T Zk L (k)P (k)xgk] (t) be the probability that a randomly chosen link will

point to x[ ]( t), namely an asymptomatic infected for ¢ = 1 for any class k, and a
symptomatic infected for ¢ = 2 for any class k, where (f) represents the average
connectivity and is obtained from taking the mean value of the connectivity across
all classes k, and the measure of connectivity n(k) assigns the number of connec-
tions to each class of connectivity. Finally, let v; x := n(k)/ki maz, Where ki mqz is
the maximum number of contacts without restrictions. When n(k) is the maximum
number of contacts without restrictions, namely n(k) = ki mqq, for all classes k, we
return to the homogeneous case. Parameters 1); ;, describe the connectivity towards
the asymptomatic and symptomatic infected for ¢ = 1 and i = 2, respectively.

Let zx(t) = [Sk(t) Ar(t) Ix(t) Ri(t)] T be the population state at time t of degree
of connectivity n(k). The magnitudes Si(t), Axr(t), Ix(t) and Ry(t) represent the
density of the susceptible, asymptomatic infected, symptomatic infected and removed
nodes of connectivity k at time t, respectively. As before, these variables must satisfy
the normalization condition for each k:

Sk(t) + Ag(t) + L(t) + Ry(t) =

For each k, system (2.1) becomes:

Sk(t) =Sk (t) (V1,701 (t) + b2 1 AO2(t)),

(3.1) Ag(t) = Sk(t) (1, k701 (t) + 2k A02(t)) — Ak(t) (@ + o),
) In(t) = k( ) — wly(t),
Ry (t) = 0 Ap(t) + pIi(t).

Each node of the network represents an individual and their corresponding state,
i.e. susceptible, asymptomatic infected, symptomatic infected and removed. In matrix
form, where the dependence on time is implicit for the sake of brevity, the above
system becomes:

Sk — (91,5701 + ok A02) 0 0 0 Sk
(3 2) Ak _ (Y1,6701 +2,kN02)  —(a+o) 0 0O Ag
: Iy 0 a —u 0 Iy, ’
Rk 0 4 12 0 Ry
G (9)

where 6 := [f; 62] T is a function of the infection states as defined above and Gy, (6)
depends explicitly on the measure of connectivity n(k) and on 6.

As for the homogeneous case, we can rewrite the above system in feedback form.
We start by writing each system corresponding to the degree of connectivity n(k) and
then we write the whole system comprising all k € [1 N|. Let 2*l(t) = [Ax(t) Iu(t)] T,
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Y
Ya!
Z yn:(t)
Si(1)

Sa(1)

Sn(t)

Fig. 3: The heterogeneous SAIR system in feedback form corresponding to equa-
tions (3.3)-(3.5).

406 system (3.2) in feedback form is the following:

107 (3.3) ™ (t) = Fa™(t) + bug (1),
N
108 (3.4) ye(t) = Y n(j)P(j)al(t),
j=1
19y (3:9) up(t) = Sk(t)yr(t),

411  where F' and b are defined as in the homogeneous case and ¢y, is:

1 kY ¢2,kA1
412 cr = .
" [ GERY
414 The remaining variables satisfy the following differential equations:
15 (3.6) Sk(t) = —Sk(t)y(t) = —ux(t),
s (3.7) Ry(t) = Ex™(t) = [o pla™(2).

418 The overall infection-stage networked system is described by:

119 (3.8) 2= Iy @ F)z + (Iy ® b)diag(S)cPx,
129 (3.9) S = —diag(S)cPx,
where z = [z{ 27 -+ z}]" € R?Y where R?"V is the nonnegative orthant in R*V,
c=le] ¢ eyt RN S =[98, -+ Sy|T e RY,
P= %[n(l)P(l)Hg n(2)P(2)Iy - --n(N)P(N)I]e RZ**N
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where Iy is the N x N identity matrix, diag(S) is the diagonal matrix whose diagonal
consists of S1,53,...,5n, and A® B is the Kronecker product between matrix A and
matrix B. The removed state is defined as in the following;:

(3.10) R=(Iy ® E)z,
where R =[R; Ry -+ Ry]|".

The transfer matrix of the positive system from vector u = [u; ugy -+ un]'
to vector y = [y1 y2 --- yn|' at zero frequency is the so-called networked basic

reproduction matrix and it turns out to be the following;:

Ro1

1 RO’2 NxN

Ro,net h 3 [ n(1)P(1) n(2)P(2) -+ n(N)P(N) JeRY*Y,
Ro,~

where R j are the local basic reproduction number for every subsystem £, i.e.

R Y1 kyp + o A
0k =—"7—~—.
(a+o)p

For constant S, the system is a feedback multivariable positive linear system,

whose stability is equivalent to R nerdiag(S) being contractive, i.e.
LN
> Roxn(k)P(k)S < 1.
7 &

Similarly to the homogeneous case, we provide a calculation of the nonzero epi-
demic threshold in the case of structured environment. Without loss of generality, let
us consider system (3.1) with the following initial conditions, identical for all classes
k: Ri(0) = 0 and Sk(0) ~ 1, for which A (0) = I}(0) ~ 0. We find an expression for
the epidemic threshold in the case of complex networks based on the spectral radius
of RO,netv Le.

N
pRoset) = 777 D Rosn(k)P(E).
k=1

When this value is less than 1, we are in the situation where the virus does not become
an epidemic and instead wears off at the start.

THEOREM 3.1. Consider system (3.1) with initial conditions Ry (0) =0, Ax(0) =
1;:(0) = 0, Si(0) =~ 1. This system admits a nonzero epidemic prevalence if and only

if
v > (1 —p), A > Aep,

for some p € [0 1], where v, and A. are the thresholds for the structured case and are
defined as in the following:

N (fHla+o) \ A (fHlato)u
- N ) c — N .
Ek:l n(k‘)P(k)wl,k azk:1 ”(k)P(k)¢2,k

(3.11) Ye
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141 Proof of Theorem 3.1. Consider the equation for Sk (t) in system (3.1), by integrating
442 it we have:

443 Sk(t) = Sj(0)e~ T Tz nDPG) [y @ (ryar.
444 From

445 Lo o =nm,

446 Ry g K

147 we have

t
O B L I T
EMIP A S

50 By taking into account the initial conditions Si(0) ~ 1, I}(0) ~ 0 and R (0) = 0, we
451 have

t
53 o MCESY
154 and for t — oo
490 S(t) = e T T nPO) R,

Ro .k . N\ D
456 — e T n@POIR;
458 where the total number of infected for each class k is Ry, = limy_, o0 Ry (t) and Ro is
459  the local basic reproduction number for subsystem k. We can now combine the above
460 equation with the normalization condition and we can see that the total number of
461 infected Ry fulfils the following equation:

462 Re=1—¢" TS SN n(G)PGIR;

163 We seek a nonzero solution for Rj. As such, notice that:

Ro,k 9 ~Rok SN () PU)R;
164 Zn(k)P(k 1—e & 2=2"00U ’ .
‘ oy kP (R) = 6Rk( ¢ ’) =0

465 When v > v, and A > A,

N N
166 Zngn ZRokn (k) >1—-p+p=1.
467 k: k:

168 Conversely, when ﬁ Zszl Ro,xn(k)P(k) > 1 there exists p such that v > ~.(1 — p)

469 and A > Acp. This concludes the proof. |
470
471 We now investigate the stability and convergence properties of the networked

472 system. Analogously to the homogeneous case, we first consider constant parameters
473 after time ¢ = 0.
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THEOREM 3.2. Assume that the parameters in F' and ¢ are constant for t > 0.
Then,

Se(0)  Rox — .
(3.12) log'g = 5 ;nww@ (0) = 55(1))
N N
= T S )P 0) = Ay(0) + 75 P2 S 0GP 0) = 10
(3.13) lim Ag(t)=0, Vk=1,...,N,

(3.14) lim Iy(t) =0, Vk=1,...,N,
(315) lim Sk(t)ZSk, Vk:].,...,N,

where Sy, are such that ﬁ Z,ICV 1 n(k)P(k)SkRok < 1 and S is the only solution of

0o k() Ro Nn N DG (&
(3.16) log— 0 ; ()P ()(S5;(0) = 55)
N N
= TS n)PGIA0) + S n(i)
Finally,
(317) Rk = tlirgo Rk(t) =1- Sk.

Proof of Theorem 3.2. In the following, recall that 21/} = [A; I;]T. The first condition
(3.12) comes from integrating & = (Ixy ® F)z + (Iy ® b)d1ag(S)ch =(Iy ® F)z —
(Iy ®b)S and taking into account that $/S = —ca (element-wise). Consider now the
Lyapunov function

(3.18) V(z,S)=1gyz +14(S - 9),

and take the derivative along the trajectories of system (3.1). Since 1" F = —F < 0
we have that

V(z,S)=14y(Ixy @ F + (Iy ® b)diag(S)cP)x +15S

=15y ® F)z :—sz[ﬂ 0, x#0.

This means that 23 — 0, and therefore this justifies claims (3.13)-(3.14), and Sy — Sy,
for a nonnegative S;. Therefore, (3.16) follows from (3.12) because of claims (3.13)-
(3.14). The left-hand-side of (3.16) (element-wise) can be compactly rewritten as

S(0 -
log% — Ronet(S(0) = 5),
whose gradient with respect S is matrix —diag(S)~! +7Ro, net Since all S), are decreas-
ing, it follows that —diag(S) '+ R ner < 0. This means Zk L n(k)P(k)SkRok <

1. The proof of (3.17) is trivial. |
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Remark. The above result provides the calculation of the equilibrium point of
each subsystem k when the parameters and an initial condition for the subsystem are
given. It can be seen as the extension of Theorem 2.3 to the heterogeneous case of a
set of interlinked subsystems: when all subsystems have the same basic reproduction
number, same distribution and the mean is equal to 1, we return to the homogeneous
case. Analogously to Theorem 2.3, this result can be extended to any ¢ > 0, provided
that the parameters are known and the initial condition is replaced with the current
values for each compartment at time ¢ > 0.

The linear part © = (Iy ® F)z is robustly stable under uncertain time-varying
parameters in F. This important property implies convergence of the infection state
variables of the nonlinear feedback system, namely Ay (t) and Ij(t), to zero for all k
for any (bounded) time-varying parameters in F' and c.

THEOREM 3.3. The nonlinear feedback system (3.8)-(5.9) is exponentially con-
vergent to A = 0, I = 0 and some constant vector S > 0 that depends on the time-
evolution of the parameters.

Proof of Theorem 3.3. The linear system @ = (I ® F')x is robustly stable with the com-
mon copositive linear Lyapunov function 1]z, since 15 (I ® F)z = —F Z;\le 2l <
0, x # 0, for any bounded time-varying parameters in F'. Consider now the function

V(z,S) = 1gyx + 148S.
Therefore,

V =1y ® F + (Iy ® b)diag(S)cP)z + 1S

N
=Liy(IveFz=-EY 2V <o0, z#0.
j=1

Therefore x converges to 0 and from §<0,8 converges to a constant S that depends
of the time-varying parameters in F' and c¢. This concludes the proof. |

Remark. The above result extends the results obtained in the homogeneous case
to the structured case. In this setting, parameters 1/_)1,,C <1 and 1/_)2,;C reflect the lower
connectivity in the population as a result of the NPIs (non-pharmaceutical interven-
tions) that are different within each class of connectivity k. In the homogeneous case,
the parameters k; and ko are the same for the whole population, whereas we can
see the heterogeneous case as a multi-population scenario with different parameters
1/_)1,;C <1 and 1/72,1« These classes can be seen as a local area or region.

We end this section by investigating the ratio between infected and asymptomatic
individuals for all classes of connectivity, in a similar manner as for the homogeneous
system. To this end, let I, = I /Ag, and let us define the coupling between class
j and k as v := A;/Ai. Therefore we have the following system of cross-coupled
Riccati equations:

fk = — Mfk + Sk(a + O')INk — Skkak,
(3.19) Ok = (S5 —vjeSk)Zk,  forj #k,
Zn = |1y S0 nG)PGYosn + 2sd 2y n()PG)osnd; -

The following result is straightforward and therefore it is stated without proof.
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536 THEOREM 3.4. Given S1,...,8y as in Theorem 3.2, it holds Uik, = Sj/Sk at
537 steady state and system (3.19) converges to the equilibrium
= @

538 (3.20 I, = = =

(3.20) "= Sea+ o) + Sk

N —

539 (3.21) SkZi(f) = Z n(5)P(5)S; (1ky + ha kM),
540 J=1

541 which is asymptotically stable.

542 4. Numerical Analysis. In this section, we present the numerical analysis con-
543  ducted on the Watts-Strogatz model to show the impact of heterogeneous connectivity
544 in system (3.1). For the purpose of illustration, we consider a WS model for N = 1000
545 mnodes, given (f) = 2m and m = 4. To generate the network we use a discretized ver-
516 sion of the formula P(k) = m*=™) /((k—m)le~™), for k > m, where the node degrees
547 vary between 4 and 14. The discretized version is obtained from discarding the values
548 less than 4 and greater than 14, and rounding up the fractions of the populations in
the other classes such that the total population across the classes sums up to 1. We
50 also set p = 1, where p is the probability of rewiring a node from the starting ring
graph, each node being connected to its 2m nearest neighbors [34]. Figure 4 shows
the corresponding WS complex network, where the colour of each node corresponds
to its node degree as in the colorbar on the right.

e

[\

ot oot Ot Ot Ot
[ SN, SR S, S

w

Watts-Strogatz Graph - Node Degree by Colour

Fig. 4: Small world network with N = 1000, m = 4 and p = 1, where the colour of
each node corresponds to its node degree as in the colorbar.

4.1. Parameter Estimation. In this section, we discuss the algorithm that we
used to estimate the parameters of the homogeneous model in (2.1). It consists of an
adaptation of the widely used nonlinear least squares minimization algorithm under
the set of constraints coming from the physical interpretation that we have provided
for these parameters after (2.1). The objective of the least squares optimization
problem is to estimate the values of the parameters of infection indicated by lowercase

Y Ot
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Greek letters, namely v, A, «, 0 and p, and the parameters of interaction indicated
by ki and ks to best fit the official data. We assume that the parameters of infection
are constant throughout the entire time window and that the only parameters that
change are k1 and ko, which represent the average number of contacts per unit time
of susceptible with asymptomatic and with symptomatic infected, respectively.

One of the crucial aspect of the parameter estimation is the way in which we
treat k; and ko. As previously mentioned, they are the only parameters that we
update in relation to the policy-making from the government. A sensible approach
is to model these two values through a logarithmic function with given constraints:
at the beginning and during the whole time window k; > kg, as it is more likely
to get in contact with an asymptomatic individual than with a symptomatic one;
these values vary between 0 and 1, and the value represents the average number
of interactions within your network (1 being interacting with all your network as
normal and 0 with nobody). We give a physical interpretation on this choice: these
parameters represent the change in social habits before and after the lockdown and
similar NPIs. We use the following function to model the evolution of k;: k; =
(9 — kI /(1 4 e CHLDHLO) L T for j = 1,2, where kY is the initial value of &;,
kI = 0.9k) is the final value where 0.9 is a decreasing factor, C' is a constant that
measure the abruptness of the change, LD is the lockdown date and LO is an offset to
the lockdown date. The motivation to use this function can be explained as, although
the lockdown significantly alters the behavior of the population, the change is smooth
over a few days and the tangible effects are delayed.

We are now ready to present our algorithm, as illustrated in Table 1. Our algo-
rithm is designed to fit the official data and estimate the parameters of our model.
It extends an implementation of the non-linear least squares regression built in the
python library LMFIT, see [35] and [36]. In particular, we used an implementation of
a non-linear least squares regression, using the Levenberg-Marquardt algorithm [37].
This is an iterative optimization algorithm that fits a function to a desired output,
obtaining the parameters that minimize the square error between the output of the
function and the objective value given. In this specific case, the values that were fit
were the number of symptomatic active cases and the number of removed. This algo-
rithm is widely used because of its versatility and efficient use of data, even on small
datasets [38]. However, it is very sensitive to the hyperparameters so an educated
initial estimation of them was done based on [13] as well as the specific range of val-
ues that each parameter could take. These parameter values, which were analytically
extracted, were used as a starting point, and were later adapted to better match the
official data, especially for the heterogeneous case. A comprehensive review of the
identifiability and observability of the parameters in COVID-19 data driven models
has been conducted in [39]. In the heterogeneous case, a network structure based on
the density of the population in each region is assumed; however, we refer the reader
to [40] for a study on the network reconstruction in the context of epidemic outbreaks.

5. Case Study. In this section, we propose a case study where we use the offi-
cial data from Dipartimento della Protezione Civile [41,42], and also we provide an
investigation on the impact of asymptomatic infected through the recent seropreva-
lence study conducted by Istat [31]. We provide two case studies, the first one uses
the homogeneous model and the second uses the heterogeneous model. The first case
study includes two sets of simulations: in the first one, we use the official data to esti-
mate the parameters of our model and study the difference between the data and the
estimated number of individuals with antibodies found in the seroprevalence study;
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Table 1: Algorithm used to estimate the parameters of the homogeneous model.

Algorithm

Input: Official data, model initial states and initial guess of the parameters.
Output: Estimation of the parameters in param.
1 : Initialization:
Initialize the parameters and the model.
data: infected data concat removed data.

param: v, A\, o, o, @, k;.

2: Function Increasing(y, t, param):

3: dS(t)/dt = —S(t)(vki1 A(t) + Nk2I (1)),

4: dA(t)/dt = S(t)(vk1 A(t) + Ak2I(t)) — A(t) (e + o),
5: dI(t)/dt = A(t)a — I(t)ps,

6: dR(t)/dt = A(t)o + I(t)p.

7: return dS(t),dA(t),dI(t),dR(t).

8 :  Function Model(y, param):

9: fort=1:T

10 : y(t) = y(t — 1)+ Increasing(y, t, param)

11: end

12: return y.I[0 T concat y.R[0 T
13 : return

Minimize LSE(Model(y, t, param), data)
14 : STOP

in the second one, we do the opposite, i.e. we fit our model with the seroprevalence
study and compare our model to the official data. In the second case study, we in-
vestigate the interactions across different regions in Italy and provide a prediction on
the evolution of the pandemic for two specific regions, Lombardy and Campania, over
the first weeks of September in the context of school opening.

5.1. Homogeneous Model: Data and Seroprevalence Study. In the first
investigation, we use the official data to fit our model and estimate the parameters and
then we compare our model to the value of the Istat seroprevalence study. We set the
portion of the population in each stage as: A(0) = 94/(60x10°), I(0) = 127/(60%10°),
R(0) =0, and S(0) = 1—A(0)—1(0)—R(0), where these values are taken from the data
for the isolated at home and hospitalized infected [42]. The reason behind this choice
is that we believe that people that are not hospitalized must either be asymptomatic
or paucisymptomatic and thus would fall in our category of asymptomatic infected.
The parameters being learnt by the least squares optimization problem stated in the
previous section are the ones as in the following: v = 0.46952, ¢ = 0.025501, k; =
0.99209, A = 0.48521, p = 0.10004, ko = 0.65056, o = 0.185017. Due to the similar
viral load between symptomatic and asymptomatic individuals [16], we set the values
of v and X\ to be very close. Parameter k; is chosen to be larger than ky at the
start (and also in future time instants), because it accounts for the likelihood that
people interact with asymptomatic individuals more likely than with infected that
show symptoms. On March 6th, prime minister Giuseppe Conte imposed a set of
localized lockdowns to isolate the outbreaks, and on March 9th a national quarantine
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Fig. 5: Model vs. data: the symptomatic and asymptomatic classes in the model are
plotted against hospitalized and isolated data from [42] (left). Analysis: symptomatic
and asymptomatic classes in the model vs the prediction from the Istat seroprevalence
study [31] vs the official data from [42] (right).

was imposed, which restricted the movements of the population and therefore their
contacts and interactions. We account for this by lowering the values of k; and ko
slowly over the days following the lockdown, down to k; = 0.2957 and ky = 0.0305
before the end of the quarantine period. Following the ease of the lockdown measures,
we set k1 = 0.3636 and ks = 0.0594 to account for the increased interactions during
mid-August holidays. At the end of February and thus before the lockdown, we
estimate Ro = 4.98, in accordance with studies that place it between 2 and 5 [43-46],
depending on the estimation of the number of asymptomatic cases. Towards the
end of the quarantine, the value of Ry goes below 1 and then it oscillates around
Ro = 1.06 during August. As it can be seen in Fig. 5 (left), our model matches
quite accurately the recovered and hospitalized infected, but it does not do the same
with the asymptomatic infected. Even in that case, we can see from Fig. 5 (right)
that our estimation of the cumulative infected is higher that the confirmed cases. It
is matching quite closely an early estimate of the undetected asymptomatic being
around 30%, but far from the current Istat estimate depicted in red.

In the second investigation, we use the seroprevalence study to fit our model and
estimate the parameters. We set the initial conditions as in the previous investigation.
This time, the parameters being learnt are set as in the following: v = 0.46952, o =
0.065501, k; = 0.99209, A\ = 0.48521, p = 0.15004, ko = 0.65056, o = 0.050017.
During the days following the local and national quarantine, we lower the values of
k1 and ky to 0.1916 and 0.0478, respectively, and then we account for the increased
connectivity during August by setting them to k; = 0.2738 and ks = 0.0971. The basic
reproduction number is calculated as Rg = 4.9432 at the beginning of the pandemic,
and Ry = 1.2490 at the end of August. As it can be seen in Fig. 6 (left), our model
matches with the hospitalized infected accurately, but it suggests a higher number of
asymptomatic to balance for matching the value of the seroprevalence study. As it is
done in the previous case, we interpolate the value of the seroprevalence study by using
an exponential regression as depicted in red in Fig. 6 (right). We chose the parameters
such that our estimation of the cumulative infected, i.e. the purple dotted curve,
matches the predicted infected from the seroprevalence study. By taking into account

the seroprevalence study, we first calculate the value of I = 0.2876 in accordance
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Fig. 6: Model vs data: the symptomatic and asymptomatic classes in the model are
plotted against hospitalized and isolated data from [42] (left). Analysis: symptomatic
and asymptomatic classes in the model vs the prediction from the Istat seroprevalence
study [31] vs the official data from [42].

with Theorem 2.5, and this value is identical to the one obtained at the end of our
simulation. We explicitly calculate the total number of people that have contracted
the disease through our model by subtracting the confirmed deaths from the Removed
state. We estimate a total of 8.48 * 10° individuals who contracted the disease and
are currently healthy. When using the work of Bohning et al. to estimate the hidden
infection, we obtain a different value of hidden infections, namely 264240 [47]. This
value would account for twice as many infected individuals as the number of detected
infections, but it is underestimated if compared with seroprevalence studies [31,48]. A
high percentage of individuals (estimated around 90%) remained undetected because
these individuals did not show symptoms. This large value is in accordance with
what was reported in the following months, namely October and November, with an
increased number of tests performed.

5.2. Complex Networks: Model vs Data. Now, we use the proposed struc-
tured model, namely system (3.1), to discuss the impact of increased interactions in
the population corresponding to school opening in September and to the effects of in-
creased tourism during August, especially in the southern regions. We set the initial
conditions as in the data [42], where we take the regional data and set different pa-
rameters of connectivity 1 and 1 depending on the region and the corresponding
exposure to the virus in Italy. As before, we set the general parameters of the model as
v = 0.49952, 0 = 0.05050,« = 0.03351, A = 0.59952, p = 0.15044. The population
in each class is split according to a similar discretized version of the Watts-Strogatz
network as the one used in the numerical analysis (Section 4). The distribution corre-
sponding to each region is equal to portion of the actual population of that region in
Italy as in the following: Abruzzo 0.022, Basilicata 0.009, Calabria 0.032, Campania
0.096, Emilia-Romagna 0.073, Friuli-Venezia Giulia 0.02, Lazio 0.098, Liguria 0.026,
Lombardy 0.166, Marche 0.025, Molise 0.005, A.P. Bolzano 0.009, A.P. Trento 0.009,
Piedmont 0.072, Apulia 0.068, Sardinia 0.027, Sicily 0.083, Tuscany 0.062, Umbria
0.015, Aosta Valley 0.002 and Veneto 0.081.

As in the previous case study, we gradually lower the values of v and sk
around the lockdown date and the following few days in an identical manner for all
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regions. Then, we fit our model with the data until October 7th. We start raising
the connectivity values in correspondence of early August to account for an increased
number of tourists in a way that considers a larger incidence for southern regions.
We increase these values further in correspondence to the opening of schools in mid-
September to account for secondary infections (which are very limited as reported by
ISS). It is worth noting that the increase is proportional to the value of 91 ; and s ,
namely we increase these parameters by a percentage of their actual value at time ¢,
more for the southern regions to reflect what has been discussed before. Therefore,
regions with a higher connectivity (taken from fitting the model to the data) would
have a higher increase. As shown in Fig. 7, our model captures the evolution of the
cumulative infected for all regions with an error of 1%-3%. It is worth noting that
this multi-population scenario is very difficult to fit with the data as we consider a
general interaction model instead of a selective one, in the sense that individuals in one
region interact with individuals in other regions by means of 6; and 6. The increase
in social interactions, and thus the parameters of connectivity in our model, because
of the summer holidays and return to school would explain the start of the second
wave in Europe and specifically in Italy. In accordance with Theorem 3.4, we can
calculate the value of I, for each class k, and we can see that it takes values between
0.2229 and 0.2713, similarly to the homogeneous case. With the given parameters, we
also calculate the Sj, and can estimate that without any other NPIs or vaccinations
most of the population would become infected. Our model would therefore support
the need for NPIs until the vaccination campaign can ensure the attainment of the
herd immunity.

Finally, we use the official data up to October, 7th, to highlight the impact of
tourism and of the return to school in a region in the north, i.e. Lombardy, and in
a region in the south, i.e. Campania. On account of these two aspects, we model
the parameters 15 , and 13, asymmetrically, meaning that for Campania the values
are increasing twice as much as for Lombardy. Figure 8 depicts the evolution of
system (3.1) for these two regions. Despite the lower number of cases in early August,
the number of infections in Campania is dramatically increasing due to the large
amount of tourists during summer, and possibly also due to the less adherence to
the policies. In Lombardy, the situation is different: although the number of cases is
increasing slowly but steadily, the curve is almost flat. We have also estimated the
effective reproductive number R; for both regions, and this is depicted in the top-right
box for each figure. It is interesting to note that while the value of R, is almost stable
in the case of Lombardy, and it is slightly above 1, the situation in Campania is more
worrying, as higher peaks are present between September and October.

Our case study provides two clear messages. When we use the Istat seroprevalence
study and fit our model with the official data, we can see a plausible evolution of the
number of cumulative infected in the early stages of the pandemic. The number of
asymptomatic is clearly underestimated in the official data and their role is crucial in
that they can undermine the stability of the system and force another wave. This is
even more true in recent times, where the vast majority of new infections are younger
individuals who rarely manifest symptoms (currently the estimate of asymptomatic
infections is around 95% of the total). When we look at the regional level, our work
shows the need to keep our guard up at all times. Southern regions in Italy have
been experiencing a massive increase in new cases, despite the relatively low numbers
at the beginning of August. This can be linked to the impact of the asymptomatic
cases because of the higher number of social interactions due to tourism (much more
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Fig. 7: Total cumulative infected: heterogeneous model vs regional data [31]. We
increase the parameters of connectivity over the time window that corresponds to the
holidays (mid-August) and the return to school (mid-September).

extensive in the southern regions during summer) and return to school.

6. Conclusion. In this paper, we have studied an epidemic model, which we
called SAIR, as a compartmental discrete-state continuous-time system. We have
studied the equilibrium and stability of the homogeneous system in feedback form in
terms of the basic reproduction number Ry and discussed the corresponding epidemic
threshold above which the virus propagates and becomes an epidemic. Additionally,
we have investigated the role of asymptomatic infections through the ratio between
symptomatic and asymptomatic infected in the population. We have extended our
analysis to the structured case, where the structure is captured by a complex net-
work. Also in this case, we have carried out the stability analysis of each subsystem
and of the whole system for all classes of connectivity. We have found the corre-
sponding expression of the epidemic threshold in the structured case. Finally, we

This manuscript is for review purposes only.



Ot o W

(=]

b I I B B B R I e N N |
o Oy O O Ut Ut Ot Ot ot Ot Ut
W NN R O © o3

764
765
766

767

768

769

-

~N ~J ~
~N
Y O W N =

|
(=]

J ~1 I
-3

IS RS IS IES EEN IR
00 00 00 00 00 =1 =1 ~J
B LR~ OS©w

7
785

24

x10°

----- Model: Total Infected
351 Data_Cumulative_Infected

Number of cases
r
Lockdown

T

051

0 el

M

Impact of Tourism in Lombardy
— T3

=

May Jul  Sep
Date 2020 |

DO PP D PR RO O P QPP

¥
N & ¥ X
L R S N S

Date

2020

Number of cases
N

0

L. STELLA, A. PINEL-MARTINEZ, D. BAUSO AND P. COLANERI

x10*

Impact of Tourism in C;

Lockdown

bl

LTI

Model: Total Infected

3
Data_Cumulative_Infected 2
1
0

e anadt)

May Jul Sep
Date 2020 |

PO DL RIRRD R DON O P DL G
TS LXYINS NNV NY L VPN S
N & ¥ NP
S W ST N E P e

Date

2020

Fig. 8: Propagation of the disease on account of tourism and estimate of the effective
reproduction number R; in Lombardy (left) and in Campania (right).

have presented a case study for the situation in Italy, analyzing the homogeneous and
heterogeneous cases and the impact of tourism and schools via the structured model.
Our study highlights the relevance of heterogeneous interactions in spreading SARS-
CoV-2 while emphasizing the threat of asymptomatic individuals yet not detected
and therefore not being isolated. In the asymptomatic category, our model includes
those individuals that do not have symptoms or are paucisymptomatic. The Istat
seroprevalence study, as well as official data from Protezione Civile, for the propaga-
tion of COVID-19 in Italy guided our data-driven modelling approach. Future works
include the data analysis and parameter estimation in the networked case, the study
of the corresponding Markovian dynamics via numerical simulations, as well as the
extension to the Barabési-Albert and Erdés-Rényi models.

Data Sources. The data used in this manuscript were downloaded on 31 August
2020 for all figures. Policy decisions based upon models fit to these data must take
these ascertainment and data quality issues into account. The code used to generate all
figures can be downloaded from GitHub at: https://github.com/lleonardostella/SAIR
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