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Abstract. Italy has been the first country to be affected by the COVID-19 epidemic in Europe.6
In the past months, predictive mathematical models have been used to understand the proportion7
of this epidemic and identify effective policies to control it, but few have considered the impact of8
asymptomatic or paucisymptomatic infections in a structured setting. A critical problem that hinders9
the accuracy of these models is indeed given by the presence of a large number of asymptomatic in the10
population. This number is estimated to be large, sometimes between 3 and 10 times the diagnosed11
patients. We focus on this aspect through the formulation of a model that captures two types12
of interactions, one with asymptomatic individuals and another with symptomatic infected. We13
also extend the original model to capture the interactions in the population via complex networks,14
and, in particular, the Watts-Strogatz model, which is the most suitable for social networks. The15
contributions of this paper include: i) the formulation of an epidemic model, which we call SAIR,16
that discriminates between asymptomatic and symptomatic infected through different measures of17
interactions and the corresponding stability analysis of the system in feedback form through the18
calculation of the R0 as H∞ gain; ii) the analysis of the corresponding structured model structure19
model involving the Watts and Strogatz interaction topology, to study the case of heterogeneous20
connectivity in the population; iii) a case study on the Italian case, where we take into account the21
Istat seroprevalence study in the homogeneous case first, and then we analyze the impact of summer22
tourism and of the start of school in September in the heterogeneous case.23
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1. Introduction. Asymptomatic cases pose a real threat in controlling the26

spread of the COVID-19 disease. Recent seroprevalence studies have estimated the27

real number of asymptomatic individuals affected by COVID-19. Despite the surge in28

testing over the past months and due to a slower than expected vaccination campaign,29

understanding the impact of these infections in order to prevent other waves is still30

a crucial aspect. This work aims to study this problem and model the heterogeneous31

interactions in the population by means of a complex network in order to shed some32

light on the effectiveness of localized control measures in Italy, and to provide a better33

understanding of the impact of summer tourism and schools.34

The model that we propose aims to capture the asymptomatic infections, or pau-35

cisymptomatic, namely individuals with one or two symptoms not including anosmia36

or ageusia, and the spread of latent infections. Early estimates of the transmission37

rate of a disease, as well as other disease parameters, play a crucial role in limiting38

its spread through effective policies, but subclinical cases, namely those who do not39

show clinical symptoms, can be misleading for an early estimate of the basic repro-40

duction number of the disease [1]. We use official data from Protezione Civile, the41
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Italian department in charge of dealing with emergencies, to fit the model, both at42

a national level as well as regional level. The case study provides insight on the po-43

tential effects of localized restrictions, without the coordination at a national level.44

The results of this study highlight the importance of coordinating the deployment45

of appropriate control measures that take into account the impact of asymptomatic46

infections, especially in younger individuals, and inter-regional movements in Italy.47

Previous attempts at modeling asymptomatic infections are common in the litera-48

ture, for example the 2009 influenza H1N1 virus [2]. The authors in [2] discuss a49

model similar to the one we propose here and study the local asymptotic stability for50

the disease-free equilibrium and the corresponding endemic state, in presence of drug51

resistance. In [3], the authors consider asymptomatic infections with application to52

traditional models such as SIR and SEIR and to a version of the SAIR model. In53

that work, the main contribution is the global asymptotic stability of the SAIR model54

through Lyapunov stability analysis and the parameter estimation for several coun-55

tries including India. The main difference with our work is that we investigate the56

impact of subclinical cases through two distinct measures of interactions and provide57

the calculation of the basic reproduction number R0 as the H∞ gain.58

The COVID-19 respiratory syndrome, associated with the novel strand of Coro-59

navirus called SARS-CoV-2, has had a massive impact worldwide. Initially found in60

Wuhan, in the heart of Hubei Province, China [4], it has quickly spread since last61

December to almost every country in the world, with the most affected being the62

US, Spain, UK, Italy, France, Germany, Russia, Turkey, Iran, and China. This has63

caused severe consequences and a large number of deaths, mostly due to the ease of64

transmission, i.e. the virality, of this disease. For an infectious disease outbreak such65

as the one caused by COVID-19, predictive mathematical models play an important66

role for the planning of effective control strategies. Among the models formulated67

over the years [5, 6], the susceptible-infected-recovered model (SIR) is possibly one68

of the most used epidemic models: the population is split into three stages of infec-69

tion, sometimes called compartments, thus the terminology compartmental models,70

as reported in an early work by Kermack and McKendrick in 1927 [7]. A variant of71

these classic compartmental models used to tackle the specific features of SARS can72

be found in the work of Gumel et al. [8] and similar equations can be found in the73

framework developed for the HIV transmission in heterogeneous populations [9]. In74

view of different strands of SARS-CoV-2, namely the East Asian one and the Euro-75

pean one [10], the framework developed by Liu et al. can provide useful insight on76

the way in which two competing viruses spread in from a control perspective [11].77

Several aspects of this virus have been investigated: some research assessed the78

effectiveness of different response strategies [12], another study focused on modeling79

the various stages of the disease and the death rate in response to population-wide80

interventions et al. [13], recently extended to include vaccination rollout and non-81

pharmaceutical interventions (NPIs) in Italy [14]. Early research in China showed82

unique epidemiological traits of the COVID-19 virus [15], most notably the fact that83

a large portion of transmissions were caused by asymptomatic individuals, whether84

they were showing mild or no symptoms at all. Indeed, further research demonstrated85

that asymptomatic and symptomatic individuals have the same viral load and thus the86

same capability to further spread the virus [16], and the work of Rothe et al. provides87

evidence for transmission from an asymptomatic individual in Germany [17]. In the88

context of data driven models, Bertozzi et al. find a relation between branching point89

processes and classical compartmental models such as susceptible-infected-recovered90

(SIR) and susceptible-exposed-infected-recovered (SEIR), whilst fitting the models91
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with data from a variety of countries, including China, Italy, Japan, and other coun-92

tries [18]. A study that investigates whether daily test reports can help authorities to93

control the epidemic [19], discusses how mitigation strategies can fail when modelled94

because of various factors, such as delay, unstable dynamics, and uncertainty in the95

feedback loop. For the Italian situation, the work of Della Rossa et al. provides in-96

teresting insight on the need to coordinate the efforts in controlling the situations in97

an inter-regional setting, and highlights the need of such coordination by means of a98

network model [20]. In the work of Yilmaz et al., the authors discuss how to identify99

and analyze bridges between communities in graphs with the purpose to understand100

how to track and where to start tests on which individuals [21]. Another study in-101

cludes a particle-based mean field model that investigates the pros and cons of social102

distancing through an approach that compares individuals to molecules in a chemical103

solution [22]. A very early model of this disease was given in the work by Calafiore104

et al., where the novelty lies in including a proportionality factor in a standard SIR105

model to account for hidden infections [23]. In a model on the case for the UK, the106

authors account for four main elements and a finer level of detail for each of them in107

assessing the impact of the speed in which the immunity is lost [24]. A risk sensitivity108

analysis is conducted on the economic impact of the disease where the optimizing be-109

havior of agents to influence future transitions is considered by Garibaldi et al. [25].110

The work by Pastor-Satorras provides a survey of the literature on complex networks111

for epidemic processes [26], and applications of complex networks to epidemic pro-112

cesses in evolutionary dynamics can be found in the work by Tan et al. [27]. Finally,113

in [28], the authors study the equilibria, stability and convergence of classical virus114

propagation models. Of specific interest for our study is their analysis of the SIR115

model over contact networks with a strongly-connected topology, whereas we focus116

on heterogeneous connectivity via complex networks. Another difference with our117

work is the investigation of the epidemic outbreak in relation to our parameters of118

infections to establish a threshold in relation to the epidemic outbreak.119

Highlights of contributions. We propose an epidemic predictive model that dis-120

criminates between asymptomatic and symptomatic cases of COVID-19 through two121

different measures of connectivity, as interactions with these two classes are captured122

separately, allowing for a study on the impact of asymptomatic cases. The main rea-123

son as to discuss this model in place of the well-known SEIR model is twofold: first,124

a distinctive feature of COVID-19 is the presence of a large number of asymptomatic125

infected; second, unlike the traditional SEIR model, the asymptomatic class can in-126

fect and indeed is responsible for the vast majority of infections in line with the ones127

reported for COVID-19. By rewriting the proposed model in feedback form we study128

the equilibrium and convergence via the calculation of the basic reproduction number129

R0 as the H∞ gain. We extend the model to consider heterogeneous connectivity in130

the form of the Watts-Strogatz complex network, which is commonly used to model131

social interactions because of its small world property. The stability and convergence132

analysis of this model is carried out in an analogous manner to the homogeneous133

case. Finally, a case study on the situation in Italy is given: first, the homogeneous134

model is used to compare the official data with the data of the recent seroprevalence135

study from Istat; second, in view of the return to school in mid-September and the136

diverse impact of tourism across the regions, a study at regional level is conducted.137

The results emphasize the need for coordinated control measures that account for the138

interactions among different regions in Italy, or in general different countries.139

Relevance of this work. This work is one of the first attempts to use the Istat140

seroprevalence study to model the evolution of SARS-CoV-2 at national level and by141
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making use of complex networks to model the inter-regional spread of the virus for the142

situation in Italy. This work develops a predictive model which highlights the impact143

of asymptomatic infections in spreading the disease through two different measures144

of their interactions. The analysis of the possible scenarios following the return to145

schools in mid-September 2020 is carried out via heterogeneous connectivity in the146

population by means of a complex network. Finally, a case study for the Italian case147

confirms that only centralized coordinated policy decisions at national level can be148

effective when inter-regional movements are allowed.149

The paper is organized as follows. In Section 2, we discuss the main results of150

our work when the population is homogeneous and carry out the stability analysis of151

our model. Section 3 extends the previous results to a structured model, where the152

structure is captured by a complex network. In Section 4, we provide a numerical153

analysis and discuss our algorithm to estimate the parameters of the homogeneous154

model, while the main case studies are discussed in Section 5. Finally, in Section 6155

conclusions are drawn and future research is discussed.156

2. Homogeneous Epidemic Model. In this section, we present the formula-157

tion of the model that we propose, which takes inspiration from popular compart-158

mental models such as the widely used susceptible-infected-recovered (SIR) model,159

and more precisely from the susceptible-exposed-infected-recovered (SEIR) model. In160

a compartmental model, the population is divided into a discrete set of states, or161

compartments. For instance, in the SIR model, individuals can be susceptible to the162

virus, then get infected, and finally recover or pass away. The SIR model accounts for163

those diseases that do provide long term immunity to future infections from the same164

virus through the presence of antibodies in the host organism, but other models, e.g.165

the SIS model, consider the possibility of re-infections.166

In line with previous works [2, 3], we named the model SAIR, because of the167

state variables we chose to include: Susceptible, Asymptomatic infected, symptomatic168

Infected and Removed. We choose to use the term removed in place of the more169

common recovered because we do not discriminate between individuals that recover170

from the disease and those that pass away. The term removed is also used commonly171

in the literature, see e.g. [29]. As previously mentioned, our model is a variation of172

the susceptible-exposed-infected-recovered (SEIR) [30], but with notable differences:173

• Our (A)symptomatic class captures the infections in the population with little174

or no symptoms. After a while, asymptomatic infected can show symptoms or175

recover from the virus, which is usually different from the traditional Markov176

chain associated with the SEIR model (Exposed usually need to become In-177

fected first). Furthermore, infections spread by asymptomatic individuals are178

possible and indeed are common, in line with what reported for COVID-19.179

• Our study focuses on the impact of the undetected asymptomatic individuals180

in spreading the virus. Some of these can show symptoms at a later stage,181

and we assume that in an initial stage no individuals show symptoms. The182

susceptible individuals can interact with asymptomatic or symptomatic in-183

fected and become asymptomatic first. In the model this is done through184

different parameters of infection and two separate measures of connectivity.185

In the rest of the paper, we provide an estimation of the parameters of infection186

through a case study for Italy. We estimate the ratio between asymptomatic and187

symptomatic infected and support our work with the estimate from the Istat sero-188

prevalence study [31]. We then investigate the impact of the lockdown measures in189

controlling the spread of the virus, by modelling the frequency of contacts among190
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the individuals in the population via an average number of contacts, first, and then191

through the small-world complex network model.192

The susceptible-asymptomatic-infected-removed (SAIR) model that we present193

in the following is a discrete-state continuous-time system. In a first approximation,194

individuals are considered homogeneous, namely they share the same properties when195

in the same state (or compartment). The state variables of the model represent the196

densities of susceptible, asymptomatic infected, symptomatic infected and removed197

individuals. These quantities are denoted by S(t), A(t), I(t) and R(t), respectively.198

Each state variable belongs to R+
0 . In the mean-field limit, the following system of199

ODEs describes the time evolution of the population:200

(2.1)


Ṡ(t) = −S(t)(k̄1γA(t) + k̄2λI(t)),

Ȧ(t) = S(t)(k̄1γA(t) + k̄2λI(t))−A(t)(α+ σ),

İ(t) = αA(t)− µI(t),

Ṙ(t) = σA(t) + µI(t),

201

where the uppercase Latin letters represent the known classes, k̄1 and k̄2 take values202

in [0 1] and describe the amount of interactions with asymptomatic and symptomatic203

individuals, respectively: the lower bound represents no interactions, and the upper204

bound represents the situation where individuals have the normal daily interactions.205

These parameters can be seen as control/tuning parameters based on the NPIs at206

any given point in time. The lower bound represents an absence of the usual inter-207

actions in the population and the upper bound represents the daily interactions in208

the population without any restrictions. The lowercase Greek letters represent the209

parameters of the system. In particular, these parameters are constant positive quan-210

tities and have the following physical interpretation: γ and λ denote the microscopic211

transmission rate, the former due to contacts between a susceptible person and an212

asymptomatic infected, the latter due to contacts between a susceptible person and213

a symptomatic infected; infected individuals decay into the removed class at rate σ214

from the asymptomatic infected state and at rate µ from the symptomatic infected215

state, respectively; finally, α is the rate at which asymptomatic individuals develop216

symptoms.217

System (2.1) is a nonlinear positive system, more precisely it is bilinear, since the
highest degree that we have is at most two, obtained from the multiplication between
two state variables. The fact that the system is positive means that, given an initial
condition S(0), A(0), I(0), R(0) ≥ 0, all the state variables take nonnegative values for
t ≥ 0. Furthermore, due to the conservation of mass, namely Ṡ(t)+Ȧ(t)+İ(t)+Ṙ(t) =
0, all state variables are linked through the normalisation condition:

S(t) +A(t) + I(t) +R(t) = 1,

meaning that the sum of all the state variables is constant at any given time and218

equal to one.219

In line with the work by Giordano et al. [13], the following conditions hold:220

γk̄1 > λk̄2, due to the fact that people are more likely in contact with, or closer221

to, asymptomatic infected rather than with individuals that show clear symptoms. In222

our model we assume the homogeneous mixing hypothesis [5], which asserts that the223

rate of infection per capita of the susceptible individuals is proportional to the num-224

ber of people already infected. Because of this hypothesis, system (2.1) is treated as225

a mean-field model where the rate of contacts between susceptibles and both symp-226

tomatic and asymptomatic individuals is assumed constant, independently of any227
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S
Susceptible

A
Asymptomatic

Infected

I
Symptomatic

Infected

R
Removed

γA+ λI

α

σ

µ

Fig. 1: Markov chain representation describing the transition rates between the states
of the SAIR model in (2.1).

source of heterogeneity present in the system. Figure 1 depicts the Markov chain228

corresponding to system (2.1).229

Let z(t) = [S(t)A(t) I(t)R(t)]>, system (2.1) can be rewritten in matrix form as:

ż(t) = G(S(t))z(t),

which is equivalent to230

(2.2)


Ṡ

Ȧ

İ

Ṙ


︸ ︷︷ ︸

ż

=


0 −k̄1γS −k̄2λS 0
0 k̄1γS − α− σ k̄2λS 0
0 α −µ 0
0 σ µ 0


︸ ︷︷ ︸

G(S)


S
A
I
R


︸ ︷︷ ︸

z

,231

where the dependence on time is implicit, e.g. S := S(t), for the sake of brevity. As232

depicted in Fig. 2, the above system can be rewritten in feedback form, where the233

subsystem consisting of variables A and I can be seen as a positive linear system234

under feedback. Let x(t) = [A(t) I(t)]>, system (2.2) can be rewritten in feedback235

form as:236

ẋ(t) = Fx(t) + bu(t),(2.3)237

y(t) = cx(t),(2.4)238

u(t) = S(t)y(t),(2.5)239240

where F , b and c are defined as241

F =

[
−α− σ 0

α −µ

]
, b =

[
1
0

]
, c = [k̄1γ k̄2λ].242

243

The remaining variables satisfy the following differential equations:244

Ṡ(t) = −S(t)y(t) = −u(t),(2.6)245

Ṙ(t) = Ex(t) = [σ µ]x(t).(2.7)246247
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Σ

S(t)

x(0)

y(t)

Fig. 2: The SAIR system in feedback form corresponding to equations in (2.3)-(2.5),
where the subsystem indicated by Σ can be seen as a positive linear system under
feedback.

Lemma 2.1. System (2.2) with constant parameters admits the following equilib-248

ria: z∗ = (S̄, 0, R̄), with S̄ + R̄ = 1.249

Proof of Lemma 2.1. The equilibria (S̄, 0, 0, R̄), with S̄ + R̄ = 1, follow from either250

S = 0 or k̄1γA + k̄2λI = 0, which in turns means A = I = 0 (or both at the same251

time). In the first case, if S = 0, Ȧ = 0 and İ = 0, if and only if A = 0 and I = 0,252

and Ṙ = 0. In the second case, if A = I = 0, then Ȧ = İ = 0 and also Ṙ = 0. This253

concludes the proof. �254

A fundamental result on stability and convergence of the system in feedback form
(2.3)-(2.5) hinges on the definition of the so-called basic reproduction number R0,
defined as the H∞ norm of the transfer function of the open-loop positive system
(F, b, c) in (2.3)-(2.4) with constant parameters in F and c, i.e.

R0 = −cF−1b =
k̄1γµ+ k̄2λα

(α+ σ)µ
.

The above satisfies the well-known property (inherited by standard small gain argu-255

ment) that stability of the positive LTI system (2.3)-(2.5) with constant susceptible256

population S̄ is equivalent to R0S̄ < 1 [13].257

Remark. The basic reproduction number R0 is the initial value at the outbreak258

of the epidemic. For instance, in the case of COVID-19 in Italy it was calculated to259

range from 2.43 to 3.1 [32]. Parameters k̄1 ≤ 1 and k̄2 ≤ 1 reflect the NPIs (non-260

pharmaceutical interventions) such as closure of social activities, wearing masks, social261

distancing or in response to the vaccination campaign [14]. The well-known current262

reproduction number is defined as R(t) = R0S(t). This parameter becomes smaller263

for decreasing S(t). Therefore, in absence of containment measures (k̄1 = 1, k̄2 = 1),264

the herd immunity is reached at time S(t̄) when S(t̄) = 1/R0, i.e. assuming R0 = 2.5265

for the COVID-19, S(t̄) = 0.4, meaning that 60% of the population has been exposed266

to the virus and is infected, recovered, dead or immunized through vaccination.267

We now study our system to assess the presence of a nonzero epidemic threshold268

for our model. The significance of this threshold is such that it can be used to predict269

the propagation of the virus at the initial stage of the epidemic. Indeed, if the value of270

the infection rates is greater than this threshold, the fraction of infected individual at271

the end of the epidemic (also called epidemic prevalence), namely R̄ = limt→∞R(t),272
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8 L. STELLA, A. PINEL-MARTÍNEZ, D. BAUSO AND P. COLANERI

attains a finite value in a large population. However, when the value of the infection273

rates is below the threshold, the epidemic prevalence is infinitesimally small for large274

populations [29, 30]. In the following, we provide an analytic expression for this275

critical threshold as a function of the connectivity measures k̄1 and k̄2 and we show276

the connection between this value and the basic reproduction number R0.277

Let us consider system (2.1) and, without lack of generality, set the initial condi-278

tions R(0) = 0 and S(0) ' 1, which implies that only a very small number of infected279

individuals A(0) = I(0) ' 0 is present at the start of the epidemic. The following280

result provides the value of the epidemic threshold ensuring R0 > 1 that means the281

rise of the infection variables and the surge of the epidemic.282

Theorem 2.2. Consider system (2.1) with initial conditions R(0) = 0, A(0) =283

I(0) ' 0, S(0) ' 1. This system admits a nonzero epidemic prevalence if and only if284

γ > γc(1− p), λ > λcp,285286

for some p ∈ [0 1] where γc and λc are the thresholds for the asymptomatic and287

symptomatic infection rates, respectively. These are defined as:288

γc ,
(α+ σ)

k̄1
, λc ,

(α+ σ)µ

k̄2α
.(2.8)289

290

Proof of Theorem 2.2. We start by integrating the equation for S(t) in system (2.1)291

as in the following:292

S(t) = S(0)e−
∫ t
0
φ(τ)dτ ,293

where the integral is defined as294 ∫ t

0

φ(τ)dτ = [k̄1γ k̄2λ]

[
α −µ
σ µ

]−1 [
I(t)− I(0)
R(t)−R(0)

]
.295

The above then yields296

S(t) = S(0)e−
(
k̄1γµ−k̄2λσ

(α+σ)µ
(I(t)−I(0))+

k̄1γµ+k̄2λα

(α+σ)µ
(R(t)−R(0))

)
,297

which can be simplified by taking into account the initial conditions, namely S(0) ' 1,298

I(0) ' 0 andR(0) = 0 as specified in the statement of the theorem, and the fact that at299

the end of the epidemic the number of infected is limt→∞ I(t) = 0 as in the following:300

S̄ = e−R0R̄,301

where the total number of infected R̄ = limt→∞R(t) and R0 is the basic reproduction302

number. We can now combine the above equation with the normalization condition303

and we can see that the total number of infected R̄ fulfils the following equation:304

R̄ = 1− e−R0R̄.305

A trivial solution of the above equation is R̄ = 0, but we seek nonzero solutions.306

Notice that such solution is equivalent to the basic reproduction number307

R0 =
d

dR̄

(
1− e−R0R̄

)∣∣∣
R̄=0

.308
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Therefore, thanks to (2.8), if γ > γc(1− p) and λ > λcp, it turns out that the above309

equation is equivalent to the following:310

R0 = γ
k̄1

α+ σ
+ λ

k̄2σ

(α+ σ)µ
> (1− p) + p =1.311

312

Conversely, if R0 > 1, there exists p for which γ > γc(1 − p) and λ > λcp. This313

concludes the proof. �314

In the following, we characterize the stability and convergence property of the315

infection stage variables, i.e. A and I, along with the susceptible and recovered316

classes S and R. We start by assuming that the parameters are constant after time t̄317

that is set to zero for sake of simplicity of the notation.318

Theorem 2.3. Assume that the parameters in F and c are constant for t ≥ 0,319

and E � 0. Then,320

log
S(0)

S(t)
−R0(S(0)− S(t)) =

k̄2λ

µ
(I(0)− I(t)) +R0(A(0)−A(t)), ∀t ≥ 0,(2.9)321

lim
t→∞

A(t) = 0,(2.10)322

lim
t→∞

I(t) = 0,(2.11)323

lim
t→∞

S(t) = S̄ <
1

R0
,(2.12)324

325

where S̄ is the only solution of326

(2.13) log
S(0)

S̄
−R0(S(0)− S̄) =

k̄2λ

µ
I(0) +R0A(0).327

Finally,328

(2.14) R̄ = lim
t→∞

R(t) = 1− S̄.329

Proof of Theorem 2.3. In the following, recall that x = [A I]>. The equation (2.9)
comes from integrating ẋ = (F + bSc)x = Fx − bṠ and taking into account that
Ṡ/S = −cx. Consider function W = 1>x + S, and take the derivative along the
trajectories of system (2.2). Since 1>F = −E � 0 we have that:

Ẇ (x, S) = 1>(F + bSc)x+ Ṡ = 1>(F + bSc)x− Scx = −Ex < 0, x 6= 0.

This means that x → 0, and therefore claims (2.10)-(2.11) are met, and S → S̄330

for a nonnegative S̄, see the characterization of the equilibrium point in Lemma 2.1.331

Therefore, (2.13) follows from (2.9) because of claims (2.10)-(2.11). As for the in-332

equality in (2.12), notice that the left-hand side of (2.13) is ∞ for S̄ = 0 and 0 for333

S̄ = S(0). Moreover its derivative with respect to S̄ is R0 − 1/S̄. The only point of334

intersection between the LHS and (positive) RHS of (2.13) is such that S̄ < 1/R0.335

This justifies the inequality in (2.12). The proof of (2.14) is trivial. �336

Remark. The above result allows us to calculate the equilibrium point of our model337

when the parameters in F and c are known and the initial conditions are given. This338

result can be extended for any t > 0 by using the values of the parameters in F and c339

and the value of each compartment at t > 0. Most importantly, note that formula (2.9)340

defines a “potential” function of the epidemic system. Indeed, the function341

f(S,A, I) = −log(S) +R0S +R0A+
λ

µ
k̄2I(2.15)342

343
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is constant along the trajectories of the system.344

Due to the triangular structure of the SAIR epidemic model, the linear part345

ẋ = Fx is robustly stable under uncertain time-varying parameters in F and c [33].346

This property implies convergence of A(t) and I(t) of the nonlinear feedback system347

(2.3)-(2.5) to zero for any bounded time-varying parameters in F and c.348

Theorem 2.4. Assume that the parameters in F and c are bounded time-varying349

parameters for t ≥ 0. The nonlinear feedback system (2.3)-(2.5) is exponentially350

convergent to Ā = 0, Ī = 0 and some constant value S̄ ≥ 0 that depends on the351

time-evolution of the parameters.352

Proof of Theorem 2.4. In the following, recall that x = [A I]>. The linear system
ẋ = Fx is robustly stable with the common copositive linear Lyapunov function 1>x.
Then 1>Fx = −Ex < 0, x 6= 0, for any bounded time-varying parameters in F .
Consider now the function

V (x, S) = 1>x+ S.

Therefore,
V̇ = 1>Fx = −Ex < 0, x 6= 0.

Therefore x converges to 0 and from Ṡ ≤ 0, S converges to a constant S̄ that depends353

of the time-varying parameters in F and c. This concludes the proof. �354

In the following, we focus on the impact that asymptomatic infections have on355

the equilibrium and stability. In order to assess this impact, we study the dynamics of356

the ratio between the symptomatic infected and the asymptomatic infected, namely357

Ĩ := I/A. We can calculate the corresponding ODE as:358

˙̃I =
İA− IȦ
A2

(2.16)359

=
(αA− µI)A

A2
− (k̄1γA+ k̄2λI)IS

A2
+

(α+ σ)IA

A2
360

=α− (µ+ k̄1γS − α− σ)Ĩ − k̄2λSĨ
2,361362

and therefore ˙̃I satisfies a differential Riccati equation as363

˙̃I = α− (µ+ k̄1γS − α− σ)Ĩ − k̄2λSĨ
2,(2.17)364365

where the state variables S and A can be rewritten as:366

(2.18)
Ṡ = −SA(k̄1γ + k̄2λĨ),

Ȧ = SA(k̄1γ + k̄2λĨ)−A(α+ σ).
367

Therefore, the equilibrium ˜̄I of (2.17) is the stabilizing solution (max solution) of368

the associated algebraic Riccati equation as stated in the following theorem, reported369

without proof since it is straightforward.370

Theorem 2.5. Assume that all parameters are constant. Equation (2.17) tends371

to the equilibrium372

(2.19) ¯̃I =
1

2k̄2λS̄

(
h− k̄1γS̄ +

√
(h− k̄1γS̄)2 + 4αk̄2λS̄

)
,373

where h := α + σ − µ, and S̄ is the equilibrium in Theorem 2.3. Furthermore, the374

equilibrium ¯̃I is asymptotically stable.375
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3. Heterogeneous Interaction Model. In the previous section, we have stud-376

ied the model where all individuals in the population are homogeneous, namely they377

are indistinguishable, as they have the same value to measure the average number378

of contacts. In this section, we extend the previous model to address the effects of379

contact heterogeneity in the form of complex networks. Given a large population,380

let P (k) be the probability distribution of the node degrees for a complex network381

representing the interactions of the individuals in the population. Similarly to (2.3),382

let x[k](t) = [Ak(t) Ik(t)]> for any k-th class of connectivity, for k = 1, . . . , N . Let383

θi(t) := 1
〈f〉
∑N
k=1 n(k)P (k)x

[k]
i (t) be the probability that a randomly chosen link will384

point to x
[k]
i (t), namely an asymptomatic infected for i = 1 for any class k, and a385

symptomatic infected for i = 2 for any class k, where 〈f〉 represents the average386

connectivity and is obtained from taking the mean value of the connectivity across387

all classes k, and the measure of connectivity n(k) assigns the number of connec-388

tions to each class of connectivity. Finally, let ψi,k := n(k)/ki,max, where ki,max is389

the maximum number of contacts without restrictions. When n(k) is the maximum390

number of contacts without restrictions, namely n(k) = ki,max, for all classes k, we391

return to the homogeneous case. Parameters ψi,k describe the connectivity towards392

the asymptomatic and symptomatic infected for i = 1 and i = 2, respectively.393

Let zk(t) = [Sk(t)Ak(t) Ik(t)Rk(t)]> be the population state at time t of degree
of connectivity n(k). The magnitudes Sk(t), Ak(t), Ik(t) and Rk(t) represent the
density of the susceptible, asymptomatic infected, symptomatic infected and removed
nodes of connectivity k at time t, respectively. As before, these variables must satisfy
the normalization condition for each k:

Sk(t) +Ak(t) + Ik(t) +Rk(t) = 1.

For each k, system (2.1) becomes:394

(3.1)


Ṡk(t) = −Sk(t)(ψ1,kγθ1(t) + ψ2,kλθ2(t)),

Ȧk(t) = Sk(t)(ψ1,kγθ1(t) + ψ2,kλθ2(t))−Ak(t)(α+ σ),

İk(t) = αAk(t)− µIk(t),

Ṙk(t) = σAk(t) + µIk(t).

395

Each node of the network represents an individual and their corresponding state,396

i.e. susceptible, asymptomatic infected, symptomatic infected and removed. In matrix397

form, where the dependence on time is implicit for the sake of brevity, the above398

system becomes:399

(3.2)

 Ṡk
Ȧk
İk
Ṙk

 =

 −(ψ1,kγθ1 + ψ2,kλθ2) 0 0 0
(ψ1,kγθ1 + ψ2,kλθ2) −(α+ σ) 0 0

0 α −µ 0
0 σ µ 0


︸ ︷︷ ︸

Gk(θ)

[
Sk
Ak
Ik
Rk

]
,400

where θ := [θ1 θ2]> is a function of the infection states as defined above and Gk(θ)401

depends explicitly on the measure of connectivity n(k) and on θ.402

As for the homogeneous case, we can rewrite the above system in feedback form.403

We start by writing each system corresponding to the degree of connectivity n(k) and404

then we write the whole system comprising all k ∈ [1 N ]. Let x[k](t) = [Ak(t) Ik(t)]>,405
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Σ

S1(t)

S2(t)

...

Sn(t)

x(0)

y1(t)
y2(t)...
yn(t)

Fig. 3: The heterogeneous SAIR system in feedback form corresponding to equa-
tions (3.3)-(3.5).

system (3.2) in feedback form is the following:406

ẋ[k](t) = Fx[k](t) + buk(t),(3.3)407

yk(t) = ck

N∑
j=1

n(j)P (j)x[j](t),(3.4)408

uk(t) = Sk(t)yk(t),(3.5)409410

where F and b are defined as in the homogeneous case and ck is:411

ck =

[
ψ1,kγ

〈f〉
ψ2,kλ

〈f〉

]
.412

413

The remaining variables satisfy the following differential equations:414

Ṡk(t) = −Sk(t)yk(t) = −uk(t),(3.6)415

Ṙk(t) = Ex[k](t) = [σ µ]x[k](t).(3.7)416417

The overall infection-stage networked system is described by:418

ẋ = (IN ⊗ F )x+ (IN ⊗ b)diag(S)cPx,(3.8)419

Ṡ = −diag(S)cPx,(3.9)420421

where x = [x>1 x>2 · · · x>N ]> ∈ R2N
+ where R2N

+ is the nonnegative orthant in R2N ,

c = [c>1 c>2 · · · c>N ]> ∈ R2×N
+ , S = [S1 S2 · · · SN ]> ∈ RN+ ,

P =
1

〈f〉
[n(1)P (1)I2 n(2)P (2)I2 · · ·n(N)P (N)I2]∈ R2×2N

+ ,
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where IN is the N×N identity matrix, diag(S) is the diagonal matrix whose diagonal422

consists of S1, S2, . . . , SN , and A⊗B is the Kronecker product between matrix A and423

matrix B. The removed state is defined as in the following:424

Ṙ = (IN ⊗ E)x,(3.10)425426

where R = [R1 R2 · · · RN ]>.427

The transfer matrix of the positive system from vector u = [u1 u2 · · · uN ]>

to vector y = [y1 y2 · · · yN ]> at zero frequency is the so-called networked basic
reproduction matrix and it turns out to be the following:

R0,net =
1

〈f〉


R0,1

R0,2

...
R0,N

 [ n(1)P (1) n(2)P (2) · · · n(N)P (N)
]
∈ RN×N+ ,

where R0,k are the local basic reproduction number for every subsystem k, i.e.

R0,k =
ψ1,kγµ+ ψ2,kλα

(α+ σ)µ
.

428

For constant S̄, the system is a feedback multivariable positive linear system,
whose stability is equivalent to R0,netdiag(S̄) being contractive, i.e.

1

〈f〉

N∑
k=1

R0,kn(k)P (k)S̄k < 1.

429

Similarly to the homogeneous case, we provide a calculation of the nonzero epi-
demic threshold in the case of structured environment. Without loss of generality, let
us consider system (3.1) with the following initial conditions, identical for all classes
k: Rk(0) = 0 and Sk(0) ' 1, for which Ak(0) = Ik(0) ' 0. We find an expression for
the epidemic threshold in the case of complex networks based on the spectral radius
of R0,net, i.e.

ρ(R0,net) =
1

〈f〉

N∑
k=1

R0,kn(k)P (k).

When this value is less than 1, we are in the situation where the virus does not become430

an epidemic and instead wears off at the start.431

Theorem 3.1. Consider system (3.1) with initial conditions Rk(0) = 0, Ak(0) =432

Ik(0) ' 0, Sk(0) ' 1. This system admits a nonzero epidemic prevalence if and only433

if434

γ > γc(1− p), λ > λcp,435436

for some p ∈ [0 1], where γc and λc are the thresholds for the structured case and are437

defined as in the following:438

γc ,
〈f〉(α+ σ)∑N

k=1 n(k)P (k)ψ1,k

, λc ,
〈f〉(α+ σ)µ

α
∑N
k=1 n(k)P (k)ψ2,k

.(3.11)439

440

This manuscript is for review purposes only.
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Proof of Theorem 3.1. Consider the equation for Sk(t) in system (3.1), by integrating441

it we have:442

Sk(t) = Sk(0)e−ck
1
〈f〉

∑N
j=1 n(j)P (j)

∫ t
0
x[j](τ)dτ .443

From444 [
İk
Ṙk

]
=

[
α −µ
σ µ

]
x[k],445

446

we have447 [
µ µ
−σ α

] [
Ik
Rk

]
=

∫ t

0

x[k](τ)dτ.448
449

By taking into account the initial conditions Sk(0) ' 1, Ik(0) ' 0 and Rk(0) = 0, we450

have451

ck

∫ t

0

x[j](τ)dτ =
γµ(Ij +Rj)ψ1,k + (αRj − σIj)ψ2,kλ

µ(α+ λ)
,452

453

and for t→∞454

Sk(t) = e−
1
〈f〉

∑N
j=1 n(j)P (j)

γµψ1,k+αλψ2,k
µ(α+λ)

R̄j455

= e−
R0,k
〈f〉

∑N
j=1 n(j)P (j)R̄j ,456457

where the total number of infected for each class k is R̄k = limt→∞Rk(t) and R0,k is458

the local basic reproduction number for subsystem k. We can now combine the above459

equation with the normalization condition and we can see that the total number of460

infected R̄k fulfils the following equation:461

R̄k = 1− e−
R0,k
〈f〉

∑N
j=1 n(j)P (j)R̄j .462

We seek a nonzero solution for R̄k. As such, notice that:463

R0,k

〈f〉
n(k)P (k) =

∂

∂R̄k

(
1− e−

R0,k
〈f〉

∑N
j=1 n(j)P (j)R̄j

)∣∣∣
R̄=0

.464

When γ > γc and λ > λc,465

1

〈f〉

N∑
k=1

R0,kn(k)P (k)S̄k '
1

〈f〉

N∑
k=1

R0,kn(k)P (k) > 1− p+ p = 1.466

467

Conversely, when 1
〈f〉
∑N
k=1R0,kn(k)P (k) > 1 there exists p such that γ > γc(1− p)468

and λ > λcp. This concludes the proof. �469

470

We now investigate the stability and convergence properties of the networked471

system. Analogously to the homogeneous case, we first consider constant parameters472

after time t̄ = 0.473
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Theorem 3.2. Assume that the parameters in F and c are constant for t ≥ 0.474

Then,475

log
Sk(0)

Sk(t)
− R0,k

〈f〉

N∑
j=1

n(j)P (j)(Sj(0)− Sj(t))(3.12)476

=
R0,k

〈f〉

N∑
j=1

n(j)P (j)(Aj(0)−Aj(t)) +
1

〈f〉
ψ2,kλ

µ

N∑
j=1

n(j)P (j)(Ij(0)− Ij(t)),477

lim
t→∞

Ak(t) = 0, ∀k = 1, . . . , N,(3.13)478

lim
t→∞

Ik(t) = 0, ∀k = 1, . . . , N,(3.14)479

lim
t→∞

Sk(t) = S̄k, ∀k = 1, . . . , N,(3.15)480
481

where S̄k are such that 1
〈f〉
∑N
k=1 n(k)P (k)S̄kR0,k < 1 and S̄ is the only solution of482

log
Sk(0)

S̄k
− R0,k

〈f〉

N∑
j=1

n(j)P (j)(Sj(0)− S̄j)(3.16)483

=
R0,k

〈f〉

N∑
j=1

n(j)P (j)Aj(0) +
1

〈f〉
ψ2,kλ

µ

N∑
j=1

n(j)P (j)Ij(0).484

485

Finally,486

(3.17) R̄k = lim
t→∞

Rk(t) = 1− S̄k.487

Proof of Theorem 3.2. In the following, recall that x[j] = [Aj Ij ]
>. The first condition488

(3.12) comes from integrating ẋ = (IN ⊗ F )x + (IN ⊗ b)diag(S)cPx = (IN ⊗ F )x −489

(IN ⊗ b)Ṡ and taking into account that Ṡ/S = −cx (element-wise). Consider now the490

Lyapunov function491

(3.18) V (x, S) = 1>2Nx+ 1>N (S − S̄),492

and take the derivative along the trajectories of system (3.1). Since 1>F = −E � 0493

we have that494

V̇ (x, S) = 1>2N (IN ⊗ F + (IN ⊗ b)diag(S)cP )x+ 1>N Ṡ495

= 1>2N (IN ⊗ F )x = −E
N∑
j=1

x[j] < 0, x 6= 0.496

497

This means that xk → 0, and therefore this justifies claims (3.13)-(3.14), and Sk → S̄k
for a nonnegative S̄k. Therefore, (3.16) follows from (3.12) because of claims (3.13)-
(3.14). The left-hand-side of (3.16) (element-wise) can be compactly rewritten as

log
S(0)

S̄
−R0,net(S(0)− S̄),

whose gradient with respect S̄ is matrix −diag(S̄)−1+R0,net. Since all Sk are decreas-498

ing, it follows that −diag(S̄)−1+R0,net < 0. This means 1
〈f〉
∑N
k=1 n(k)P (k)S̄kR0,k <499

1. The proof of (3.17) is trivial. �500
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Remark. The above result provides the calculation of the equilibrium point of501

each subsystem k when the parameters and an initial condition for the subsystem are502

given. It can be seen as the extension of Theorem 2.3 to the heterogeneous case of a503

set of interlinked subsystems: when all subsystems have the same basic reproduction504

number, same distribution and the mean is equal to 1, we return to the homogeneous505

case. Analogously to Theorem 2.3, this result can be extended to any t > 0, provided506

that the parameters are known and the initial condition is replaced with the current507

values for each compartment at time t > 0.508

The linear part ẋ = (IN ⊗ F )x is robustly stable under uncertain time-varying509

parameters in F . This important property implies convergence of the infection state510

variables of the nonlinear feedback system, namely Ak(t) and Ik(t), to zero for all k511

for any (bounded) time-varying parameters in F and c.512

Theorem 3.3. The nonlinear feedback system (3.8)-(3.9) is exponentially con-513

vergent to Ā = 0, Ī = 0 and some constant vector S̄ ≥ 0 that depends on the time-514

evolution of the parameters.515

Proof of Theorem 3.3. The linear system ẋ = (I⊗F )x is robustly stable with the com-

mon copositive linear Lyapunov function 1>2Nx, since 1>2N (I ⊗F )x = −E
∑N
j=1 x

[j] <
0, x 6= 0, for any bounded time-varying parameters in F . Consider now the function

V (x, S) = 1>2Nx+ 1>NS.

Therefore,516

V̇ = 1>2N (IN ⊗ F + (IN ⊗ b)diag(S)cP )x+ 1>N Ṡ517

= 1>2N (IN ⊗ F )x = −E
N∑
j=1

x[j] < 0, x 6= 0.518

519

Therefore x converges to 0 and from Ṡ ≤ 0, S converges to a constant S̄ that depends520

of the time-varying parameters in F and c. This concludes the proof. �521

Remark. The above result extends the results obtained in the homogeneous case522

to the structured case. In this setting, parameters ψ̄1,k ≤ 1 and ψ̄2,k reflect the lower523

connectivity in the population as a result of the NPIs (non-pharmaceutical interven-524

tions) that are different within each class of connectivity k. In the homogeneous case,525

the parameters k̄1 and k̄2 are the same for the whole population, whereas we can526

see the heterogeneous case as a multi-population scenario with different parameters527

ψ̄1,k ≤ 1 and ψ̄2,k. These classes can be seen as a local area or region.528

We end this section by investigating the ratio between infected and asymptomatic529

individuals for all classes of connectivity, in a similar manner as for the homogeneous530

system. To this end, let Ĩk := Ik/Ak, and let us define the coupling between class531

j and k as vjk := Aj/Ak. Therefore we have the following system of cross-coupled532

Riccati equations:533

(3.19)


˙̃Ik = α− µĨk + Sk(α+ σ)Ĩk − Sk ĨkZk,
v̇jk = (Sj − vjkSk)Zk, forj 6= k,

Zk = 1
〈f〉

[
ψ1,kγ

∑N
j=1 n(j)P (j)vjk + ψ2,kλ

∑N
j=1 n(j)P (j)vjk Ĩj

]
.

534

The following result is straightforward and therefore it is stated without proof.535
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Theorem 3.4. Given S̄1, . . . , S̄N as in Theorem 3.2, it holds v̄jk = S̄j/S̄k at536

steady state and system (3.19) converges to the equilibrium537

¯̃Ik =
α

µ− S̄k(α+ σ) + S̄kZ̄k
,(3.20)538

S̄kZ̄k〈f〉 =

N∑
j=1

n(j)P (j)S̄j(ψ1,kγ + ψ2,kλ
¯̃Ij),(3.21)539

540

which is asymptotically stable.541

4. Numerical Analysis. In this section, we present the numerical analysis con-542

ducted on the Watts-Strogatz model to show the impact of heterogeneous connectivity543

in system (3.1). For the purpose of illustration, we consider a WS model for N = 1000544

nodes, given 〈f〉 = 2m and m = 4. To generate the network we use a discretized ver-545

sion of the formula P (k) = m(k−m)/((k−m)!e−m), for k ≥ m, where the node degrees546

vary between 4 and 14. The discretized version is obtained from discarding the values547

less than 4 and greater than 14, and rounding up the fractions of the populations in548

the other classes such that the total population across the classes sums up to 1. We549

also set p = 1, where p is the probability of rewiring a node from the starting ring550

graph, each node being connected to its 2m nearest neighbors [34]. Figure 4 shows551

the corresponding WS complex network, where the colour of each node corresponds552

to its node degree as in the colorbar on the right.553

Fig. 4: Small world network with N = 1000, m = 4 and p = 1, where the colour of
each node corresponds to its node degree as in the colorbar.

4.1. Parameter Estimation. In this section, we discuss the algorithm that we554

used to estimate the parameters of the homogeneous model in (2.1). It consists of an555

adaptation of the widely used nonlinear least squares minimization algorithm under556

the set of constraints coming from the physical interpretation that we have provided557

for these parameters after (2.1). The objective of the least squares optimization558

problem is to estimate the values of the parameters of infection indicated by lowercase559
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Greek letters, namely γ, λ, α, σ and µ, and the parameters of interaction indicated560

by k̄1 and k̄2 to best fit the official data. We assume that the parameters of infection561

are constant throughout the entire time window and that the only parameters that562

change are k1 and k2, which represent the average number of contacts per unit time563

of susceptible with asymptomatic and with symptomatic infected, respectively.564

One of the crucial aspect of the parameter estimation is the way in which we565

treat k̄1 and k̄2. As previously mentioned, they are the only parameters that we566

update in relation to the policy-making from the government. A sensible approach567

is to model these two values through a logarithmic function with given constraints:568

at the beginning and during the whole time window k̄1 > k̄2, as it is more likely569

to get in contact with an asymptomatic individual than with a symptomatic one;570

these values vary between 0 and 1, and the value represents the average number571

of interactions within your network (1 being interacting with all your network as572

normal and 0 with nobody). We give a physical interpretation on this choice: these573

parameters represent the change in social habits before and after the lockdown and574

similar NPIs. We use the following function to model the evolution of k̄i: k̄i =575

(k0
i − kTi )/(1 + e−C(−t+LD+LO) + kTi ), for i = 1, 2, where k0

i is the initial value of k̄i,576

kTi = 0.9k0
i is the final value where 0.9 is a decreasing factor, C is a constant that577

measure the abruptness of the change, LD is the lockdown date and LO is an offset to578

the lockdown date. The motivation to use this function can be explained as, although579

the lockdown significantly alters the behavior of the population, the change is smooth580

over a few days and the tangible effects are delayed.581

We are now ready to present our algorithm, as illustrated in Table 1. Our algo-582

rithm is designed to fit the official data and estimate the parameters of our model.583

It extends an implementation of the non-linear least squares regression built in the584

python library LMFIT, see [35] and [36]. In particular, we used an implementation of585

a non-linear least squares regression, using the Levenberg-Marquardt algorithm [37].586

This is an iterative optimization algorithm that fits a function to a desired output,587

obtaining the parameters that minimize the square error between the output of the588

function and the objective value given. In this specific case, the values that were fit589

were the number of symptomatic active cases and the number of removed. This algo-590

rithm is widely used because of its versatility and efficient use of data, even on small591

datasets [38]. However, it is very sensitive to the hyperparameters so an educated592

initial estimation of them was done based on [13] as well as the specific range of val-593

ues that each parameter could take. These parameter values, which were analytically594

extracted, were used as a starting point, and were later adapted to better match the595

official data, especially for the heterogeneous case. A comprehensive review of the596

identifiability and observability of the parameters in COVID-19 data driven models597

has been conducted in [39]. In the heterogeneous case, a network structure based on598

the density of the population in each region is assumed; however, we refer the reader599

to [40] for a study on the network reconstruction in the context of epidemic outbreaks.600

5. Case Study. In this section, we propose a case study where we use the offi-601

cial data from Dipartimento della Protezione Civile [41, 42], and also we provide an602

investigation on the impact of asymptomatic infected through the recent seropreva-603

lence study conducted by Istat [31]. We provide two case studies, the first one uses604

the homogeneous model and the second uses the heterogeneous model. The first case605

study includes two sets of simulations: in the first one, we use the official data to esti-606

mate the parameters of our model and study the difference between the data and the607

estimated number of individuals with antibodies found in the seroprevalence study;608
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Table 1: Algorithm used to estimate the parameters of the homogeneous model.

Algorithm

Input: Official data, model initial states and initial guess of the parameters.
Output: Estimation of the parameters in param.

1 : Initialization:
Initialize the parameters and the model.
data: infected data concat removed data.
param: γ, λ, α, σ, µ, k̄i.

2 : Function Increasing(y, t, param):
3 : dS(t)/dt = −S(t)(γk̄1A(t) + λk̄2I(t)),
4 : dA(t)/dt = S(t)(γk̄1A(t) + λk̄2I(t))−A(t)(α+ σ),
5 : dI(t)/dt = A(t)α− I(t)µ,
6 : dR(t)/dt = A(t)σ + I(t)µ.
7 : return dS(t),dA(t),dI(t),dR(t).
8 : Function Model(y, param):
9 : for t = 1 : T
10 : y(t) = y(t− 1)+ Increasing(y, t, param)
11 : end
12 : return y.I[0 T ] concat y.R[0 T ]
13 : return

Minimize LSE(Model(y, t, param), data)
14 : STOP

in the second one, we do the opposite, i.e. we fit our model with the seroprevalence609

study and compare our model to the official data. In the second case study, we in-610

vestigate the interactions across different regions in Italy and provide a prediction on611

the evolution of the pandemic for two specific regions, Lombardy and Campania, over612

the first weeks of September in the context of school opening.613

5.1. Homogeneous Model: Data and Seroprevalence Study. In the first614

investigation, we use the official data to fit our model and estimate the parameters and615

then we compare our model to the value of the Istat seroprevalence study. We set the616

portion of the population in each stage as: A(0) = 94/(60∗106), I(0) = 127/(60∗106),617

R(0) = 0, and S(0) = 1−A(0)−I(0)−R(0), where these values are taken from the data618

for the isolated at home and hospitalized infected [42]. The reason behind this choice619

is that we believe that people that are not hospitalized must either be asymptomatic620

or paucisymptomatic and thus would fall in our category of asymptomatic infected.621

The parameters being learnt by the least squares optimization problem stated in the622

previous section are the ones as in the following: γ = 0.46952, σ = 0.025501, k̄1 =623

0.99209, λ = 0.48521, µ = 0.10004, k̄2 = 0.65056, α = 0.185017. Due to the similar624

viral load between symptomatic and asymptomatic individuals [16], we set the values625

of γ and λ to be very close. Parameter k̄1 is chosen to be larger than k̄2 at the626

start (and also in future time instants), because it accounts for the likelihood that627

people interact with asymptomatic individuals more likely than with infected that628

show symptoms. On March 6th, prime minister Giuseppe Conte imposed a set of629

localized lockdowns to isolate the outbreaks, and on March 9th a national quarantine630
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6 Analysis: Seroprevalence Study vs Data
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Fig. 5: Model vs. data: the symptomatic and asymptomatic classes in the model are
plotted against hospitalized and isolated data from [42] (left). Analysis: symptomatic
and asymptomatic classes in the model vs the prediction from the Istat seroprevalence
study [31] vs the official data from [42] (right).

was imposed, which restricted the movements of the population and therefore their631

contacts and interactions. We account for this by lowering the values of k̄1 and k̄2632

slowly over the days following the lockdown, down to k̄1 = 0.2957 and k̄2 = 0.0305633

before the end of the quarantine period. Following the ease of the lockdown measures,634

we set k̄1 = 0.3636 and k̄2 = 0.0594 to account for the increased interactions during635

mid-August holidays. At the end of February and thus before the lockdown, we636

estimate R0 = 4.98, in accordance with studies that place it between 2 and 5 [43–46],637

depending on the estimation of the number of asymptomatic cases. Towards the638

end of the quarantine, the value of R0 goes below 1 and then it oscillates around639

R0 = 1.06 during August. As it can be seen in Fig. 5 (left), our model matches640

quite accurately the recovered and hospitalized infected, but it does not do the same641

with the asymptomatic infected. Even in that case, we can see from Fig. 5 (right)642

that our estimation of the cumulative infected is higher that the confirmed cases. It643

is matching quite closely an early estimate of the undetected asymptomatic being644

around 30%, but far from the current Istat estimate depicted in red.645

In the second investigation, we use the seroprevalence study to fit our model and646

estimate the parameters. We set the initial conditions as in the previous investigation.647

This time, the parameters being learnt are set as in the following: γ = 0.46952, σ =648

0.065501, k̄1 = 0.99209, λ = 0.48521, µ = 0.15004, k̄2 = 0.65056, α = 0.050017.649

During the days following the local and national quarantine, we lower the values of650

k̄1 and k̄2 to 0.1916 and 0.0478, respectively, and then we account for the increased651

connectivity during August by setting them to k̄1 = 0.2738 and k̄2 = 0.0971. The basic652

reproduction number is calculated as R0 = 4.9432 at the beginning of the pandemic,653

and R0 = 1.2490 at the end of August. As it can be seen in Fig. 6 (left), our model654

matches with the hospitalized infected accurately, but it suggests a higher number of655

asymptomatic to balance for matching the value of the seroprevalence study. As it is656

done in the previous case, we interpolate the value of the seroprevalence study by using657

an exponential regression as depicted in red in Fig. 6 (right). We chose the parameters658

such that our estimation of the cumulative infected, i.e. the purple dotted curve,659

matches the predicted infected from the seroprevalence study. By taking into account660

the seroprevalence study, we first calculate the value of ¯̃I = 0.2876 in accordance661
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Fig. 6: Model vs data: the symptomatic and asymptomatic classes in the model are
plotted against hospitalized and isolated data from [42] (left). Analysis: symptomatic
and asymptomatic classes in the model vs the prediction from the Istat seroprevalence
study [31] vs the official data from [42].

with Theorem 2.5, and this value is identical to the one obtained at the end of our662

simulation. We explicitly calculate the total number of people that have contracted663

the disease through our model by subtracting the confirmed deaths from the Removed664

state. We estimate a total of 8.48 ∗ 105 individuals who contracted the disease and665

are currently healthy. When using the work of Böhning et al. to estimate the hidden666

infection, we obtain a different value of hidden infections, namely 264240 [47]. This667

value would account for twice as many infected individuals as the number of detected668

infections, but it is underestimated if compared with seroprevalence studies [31,48]. A669

high percentage of individuals (estimated around 90%) remained undetected because670

these individuals did not show symptoms. This large value is in accordance with671

what was reported in the following months, namely October and November, with an672

increased number of tests performed.673

5.2. Complex Networks: Model vs Data. Now, we use the proposed struc-674

tured model, namely system (3.1), to discuss the impact of increased interactions in675

the population corresponding to school opening in September and to the effects of in-676

creased tourism during August, especially in the southern regions. We set the initial677

conditions as in the data [42], where we take the regional data and set different pa-678

rameters of connectivity ψ1,k and ψ2,k depending on the region and the corresponding679

exposure to the virus in Italy. As before, we set the general parameters of the model as680

γ = 0.49952, σ = 0.05050, α = 0.03351, λ = 0.59952, µ = 0.15044. The population681

in each class is split according to a similar discretized version of the Watts-Strogatz682

network as the one used in the numerical analysis (Section 4). The distribution corre-683

sponding to each region is equal to portion of the actual population of that region in684

Italy as in the following: Abruzzo 0.022, Basilicata 0.009, Calabria 0.032, Campania685

0.096, Emilia-Romagna 0.073, Friuli-Venezia Giulia 0.02, Lazio 0.098, Liguria 0.026,686

Lombardy 0.166, Marche 0.025, Molise 0.005, A.P. Bolzano 0.009, A.P. Trento 0.009,687

Piedmont 0.072, Apulia 0.068, Sardinia 0.027, Sicily 0.083, Tuscany 0.062, Umbria688

0.015, Aosta Valley 0.002 and Veneto 0.081.689

As in the previous case study, we gradually lower the values of ψ1,k and ψ2,k690

around the lockdown date and the following few days in an identical manner for all691
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regions. Then, we fit our model with the data until October 7th. We start raising692

the connectivity values in correspondence of early August to account for an increased693

number of tourists in a way that considers a larger incidence for southern regions.694

We increase these values further in correspondence to the opening of schools in mid-695

September to account for secondary infections (which are very limited as reported by696

ISS). It is worth noting that the increase is proportional to the value of ψ1,k and ψ2,k,697

namely we increase these parameters by a percentage of their actual value at time t,698

more for the southern regions to reflect what has been discussed before. Therefore,699

regions with a higher connectivity (taken from fitting the model to the data) would700

have a higher increase. As shown in Fig. 7, our model captures the evolution of the701

cumulative infected for all regions with an error of 1%-3%. It is worth noting that702

this multi-population scenario is very difficult to fit with the data as we consider a703

general interaction model instead of a selective one, in the sense that individuals in one704

region interact with individuals in other regions by means of θ1 and θ2. The increase705

in social interactions, and thus the parameters of connectivity in our model, because706

of the summer holidays and return to school would explain the start of the second707

wave in Europe and specifically in Italy. In accordance with Theorem 3.4, we can708

calculate the value of ¯̃Ik for each class k, and we can see that it takes values between709

0.2229 and 0.2713, similarly to the homogeneous case. With the given parameters, we710

also calculate the S̄k and can estimate that without any other NPIs or vaccinations711

most of the population would become infected. Our model would therefore support712

the need for NPIs until the vaccination campaign can ensure the attainment of the713

herd immunity.714

Finally, we use the official data up to October, 7th, to highlight the impact of715

tourism and of the return to school in a region in the north, i.e. Lombardy, and in716

a region in the south, i.e. Campania. On account of these two aspects, we model717

the parameters ψ1,k and ψ2,k asymmetrically, meaning that for Campania the values718

are increasing twice as much as for Lombardy. Figure 8 depicts the evolution of719

system (3.1) for these two regions. Despite the lower number of cases in early August,720

the number of infections in Campania is dramatically increasing due to the large721

amount of tourists during summer, and possibly also due to the less adherence to722

the policies. In Lombardy, the situation is different: although the number of cases is723

increasing slowly but steadily, the curve is almost flat. We have also estimated the724

effective reproductive numberRt for both regions, and this is depicted in the top-right725

box for each figure. It is interesting to note that while the value of Rt is almost stable726

in the case of Lombardy, and it is slightly above 1, the situation in Campania is more727

worrying, as higher peaks are present between September and October.728

Our case study provides two clear messages. When we use the Istat seroprevalence729

study and fit our model with the official data, we can see a plausible evolution of the730

number of cumulative infected in the early stages of the pandemic. The number of731

asymptomatic is clearly underestimated in the official data and their role is crucial in732

that they can undermine the stability of the system and force another wave. This is733

even more true in recent times, where the vast majority of new infections are younger734

individuals who rarely manifest symptoms (currently the estimate of asymptomatic735

infections is around 95% of the total). When we look at the regional level, our work736

shows the need to keep our guard up at all times. Southern regions in Italy have737

been experiencing a massive increase in new cases, despite the relatively low numbers738

at the beginning of August. This can be linked to the impact of the asymptomatic739

cases because of the higher number of social interactions due to tourism (much more740

This manuscript is for review purposes only.



THE ROLE OF ASYMPTOMATIC INFECTIONS IN THE COVID-19 PANDEMIC 23

Mar Apr May Jun Jul Aug Sep Oct Nov

2020   

0

2384

4768

7152
Abruzzo

Mar Apr May Jun Jul Aug Sep Oct Nov

2020   

0

823

1646

2469
Basilicata

Mar Apr May Jun Jul Aug Sep Oct Nov

2020   

0

1299

2598

3897
Calabria

Mar Apr May Jun Jul Aug Sep Oct Nov

2020   

0

1.5526

3.1052

10
4 Campania

Mar Apr May Jun Jul Aug Sep Oct Nov

2020   

0

1.9144

3.8288

5.7432
10

4 Emilia-Romagna

Mar Apr May Jun Jul Aug Sep Oct Nov

2020   

0

2207

4414

6621
Friuli-Venezia Giulia

Mar Apr May Jun Jul Aug Sep Oct Nov

2020   

0

1.6973

3.3946

5.0919
10

4 Lazio

Mar Apr May Jun Jul Aug Sep Oct Nov

2020   

0

0.7418

1.4836

2.2254
10

4 Liguria

Mar Apr May Jun Jul Aug Sep Oct Nov

2020   

0

6.0944

12.1888

18.2832
10

4 Lombardy

Mar Apr May Jun Jul Aug Sep Oct Nov

2020   

0

4656

9312

13968
Marche

Mar Apr May Jun Jul Aug Sep Oct Nov

2020   

0

383

766

1149
Molise

Mar Apr May Jun Jul Aug Sep Oct Nov

2020   

0

1974

3948

5922
A.P. Bolzano

Mar Apr May Jun Jul Aug Sep Oct Nov

2020   

0

3134

6268

9402
A.P. Trento

Mar Apr May Jun Jul Aug Sep Oct Nov

2020   

0

1.9648

3.9296

5.8944
10

4 Piedmont

Mar Apr May Jun Jul Aug Sep Oct Nov

2020   

0

4390

8780

13170
Apulia

Mar Apr May Jun Jul Aug Sep Oct Nov

2020   

0

4405

8810

13215
Sardinia

Mar Apr May Jun Jul Aug Sep Oct Nov

2020   

0

0.7453

1.4906

2.2359
10

4 Sicily

Mar Apr May Jun Jul Aug Sep Oct Nov

2020   

0

0.9284

1.8568

10
4 Tuscany

Mar Apr May Jun Jul Aug Sep Oct Nov

2020   

0

1199

2398

3597
Umbria

Mar Apr May Jun Jul Aug Sep Oct Nov

2020   

0

730

1460

Aosta Valley

Mar Apr May Jun Jul Aug Sep Oct Nov

2020   

0

1.7517

3.5034

5.2551
10

4 Veneto

Model: Total Infected

Data_Cumulative_Infected

Date

N
u
m

b
e
r 

o
f 
c
a
s
e
s

Cumulative Infected per Region: CN Model vs Data

Fig. 7: Total cumulative infected: heterogeneous model vs regional data [31]. We
increase the parameters of connectivity over the time window that corresponds to the
holidays (mid-August) and the return to school (mid-September).

extensive in the southern regions during summer) and return to school.741

6. Conclusion. In this paper, we have studied an epidemic model, which we742

called SAIR, as a compartmental discrete-state continuous-time system. We have743

studied the equilibrium and stability of the homogeneous system in feedback form in744

terms of the basic reproduction number R0 and discussed the corresponding epidemic745

threshold above which the virus propagates and becomes an epidemic. Additionally,746

we have investigated the role of asymptomatic infections through the ratio between747

symptomatic and asymptomatic infected in the population. We have extended our748

analysis to the structured case, where the structure is captured by a complex net-749

work. Also in this case, we have carried out the stability analysis of each subsystem750

and of the whole system for all classes of connectivity. We have found the corre-751

sponding expression of the epidemic threshold in the structured case. Finally, we752
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Fig. 8: Propagation of the disease on account of tourism and estimate of the effective
reproduction number Rt in Lombardy (left) and in Campania (right).

have presented a case study for the situation in Italy, analyzing the homogeneous and753

heterogeneous cases and the impact of tourism and schools via the structured model.754

Our study highlights the relevance of heterogeneous interactions in spreading SARS-755

CoV-2 while emphasizing the threat of asymptomatic individuals yet not detected756

and therefore not being isolated. In the asymptomatic category, our model includes757

those individuals that do not have symptoms or are paucisymptomatic. The Istat758

seroprevalence study, as well as official data from Protezione Civile, for the propaga-759

tion of COVID-19 in Italy guided our data-driven modelling approach. Future works760

include the data analysis and parameter estimation in the networked case, the study761

of the corresponding Markovian dynamics via numerical simulations, as well as the762

extension to the Barabási-Albert and Erdős-Rényi models.763

Data Sources. The data used in this manuscript were downloaded on 31 August764

2020 for all figures. Policy decisions based upon models fit to these data must take765

these ascertainment and data quality issues into account. The code used to generate all766

figures can be downloaded from GitHub at: https://github.com/lleonardostella/SAIR767
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