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Abstract

The continuously evolving digitalized manufacturing industry is pushing quality engi-

neers to face new and complex challenges. Quality data formats are evolving from simple

univariate or multivariate characteristics to big data streams consisting of sequences of

images and videos in the visible or infrared range; manufacturing processes are moving

from series production to more and more customized applications. In this framework, novel

methods are needed to monitor and keep under statistical control the process. This study

presents two novel process monitoring techniques that rely on the partial first order stochas-

tic dominance (PFOSD) concept, applicable to in-line analysis of video image data aiming

at signaling out-of-control process states. Being non-parametric, they allow dealing with

complex underlying dynamics and wildly varying distributions that represent the natural

process conditions. A motivating case study in metal additive manufacturing is presented,

where the proposed methodology enables the in-line and in-situ detection of anomalous

patterns in thermal videos captured during the production of zinc samples. Performances

are investigated and compared in the presence of both simulated and real data.

Key Words: Stochastic dominance, statistical process monitoring, image analysis, thermal

images, additive manufacturing, laser powder bed fusion.
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1 Introduction

In the field of Statistical Process Control/Monitoring (SPC/M) a process (industrial or not) under

study is scrutinized, aiming to identify whether it acts under statistical stability or not. The tradi-

tional framework involves chronologically ordered quality characteristics (categorical/numerical,

discrete/continuous, univariate/multivariate) measured on different products that come out from

the process under study. Moving to novel manufacturing paradigms, like Additive Manufactur-

ing (AM), the aforementioned framework may be not valid anymore, as new paradigms allow

moving from mass production to one-of-a-kind and highly customized products, whose quality

needs to be assessed continuously. As such products are built layer by layer, we transfer our

interest of quality stability from being constant over several products to be stable over a single

product/process. To this aim, the layer-wise production methodology entailed in AM becomes

an enabler of a novel way to gather measurements about the process stability, while the part

is being built. Indeed, machine vision systems can be used to “look” at the part in each layer

but also to capture fast and transient phenomena, while the layer is being melted and solidified.

This results into the capability of identifying anomalies and out-of-control (OOC) states in-situ

and in-line, enabling the detection of possible defects and, when possible, the activation of in-

line defect mitigation or corrective actions (Colosimo et al., 2018; Grasso and Colosimo, 2017;

Everton et al., 2016).

Highly customized production has another consequence regarding the standard SPC/M

philosophy. Precisely, when dealing with multiple identical items from a process, we use a phase

I/II separation, where we learn some reference behavior while in phase I and test against it, in

an in-line fashion, during phase II. With highly customized products though, we lack the ability

of establishing such a reference or, in other words, we have a dynamically changing reference.

In-situ and in-line process monitoring by means of image and video image data shall then be

combined with a novel way of designing the control charts used to automatically signal any

departure from a natural, but dynamically changing, behavior.
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Image based SPC/M methodologies have been applied in the past. A review on this

topic can be found in Megahed et. al. (2011), while some more recent works have been devoted

to various (typically industrial but not only) problems as in Megahed et. al. (2012), Prats-

Montalbán and Ferrer (2014), Yan et al. (2015), He et al. (2016), Kan et al.( 2017), Kooshaet

al. (2017) and Menafoglio et al. (2018).

All the studies mentioned above, and the mainstream literature cited therein, focus on

SPC/M for image data, where single images of the same object are sequentially analyzed over

time. However, in-line process monitoring frequently involves video image data, which are not

just a sequence of images, as they capture process patterns that dynamically change from frame

to frame. Thus, SPC/M for video image data implies that the out-of-control state translates

into a perturbation of the underlying signature and only few methods have been explored and

proposed in the literature like Yan et al. (2020) Colosimo and Grasso (2019), Yan et al. (2015).

One way to deal with complex and dynamic patterns in image and video-image data

consists of modeling the inherent spatial or spatio-temporal structure representative of the IC

process behavior. Examples of methods belonging to this stream of research include Yan et al.

(2015, 2020), Megahed et al. (2012), Bui and Apley (2018), Qiu and Sun, (2007). The modeling

step entailed in these methods makes them suitable to capture the salient spatial or spatio-

temporal information, enabling the detection of OOC states even in the presence of complex

process patterns. Nevertheless, such data modeling may also lead to practical limitations, e.g.,

a possibly high computational cost and a large number of model parameters to be fine tuned

to achieve desired performances. Moreover, in some cases, modeling complex dynamic patterns

impose restricting assumptions on the nature of IC process pattern and/or OOC events, like in

Yan et al. (2020).

Another stream of methods was investigated in the literature (Wang and Tsung, 2005,

Menafoglio et al., 2018 and various studies reviewed in Megahed et al 2011). The underlying

idea consists of transforming high dimensional data (like images and video-image data) into a

lower dimensional format (e.g., curves and functions) to make in-line process monitoring compu-
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tationally tractable and, at the same time, achieve good anomaly detection performances despite

the intrinsic information loss.

Our study belongs to this second stream of research. Due to the big size of video-

image data (millions of pixels, tens to thousands of frames per second) it becomes evident that

efficient monitoring tools are needed to draw decisions in near real time. More and more frequent

industrial problems in digitalized production lines are characterized by big and fast streams of

image data but limited data storage capabilities. These problems usually involve also challenging

needs for a fast response to possible unstable process states. Aiming to address this kind of

problems, the proposed approach grounds on a dimensionality reduction that entails passing

from raw input video-image (with possibly high spatial and/or temporal resolution) to a 1D

dimensional representation to be used as “signature” of the information enclosed in the frame.

Previous works proposed methods following this path. The seminal study of Wang

and Tsung (2005) used the idea of testing with Q-Q plots the conformance of the new incoming

images against an IC reference, enabling the adoption of the profile monitoring suite of techniques

(Noorossana et al., 2011) to the 1D Q-Q plot pattern. In a different approach, profile monitoring

of the empirical probability density function (PDF) of synthetic features extracted from the image

was proposed by Menafoglio et al. (2018). Aforementioned methods rely on the assumption that

the probability distribution of pixel intensities or extracted features is either known or remains

the same in all images acquired under IC conditions. This assumption is not applicable to video

image data. Due to the underlying dynamic nature of the process captured in the video, pixel

intensities in different frames will have wildly varying distributions that will be rather challenging

to characterize using parametric modeling. Thus, non-parametric approaches could be the most

promising alternative.

In this study, we suggest the use of the empirical cumulative distribution function

(ecdf) of pixel values of each frame, to summarize the process signature in a frame. The ecdf

computation is combined with an image pre-processing operation aimed at limiting the analysis

of ecdf patterns in consecutive frames to the foreground region only, where relevant process
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dynamics occur. Instead of deriving or modeling a reference ecdf during phase I, the proposed

approach aims at estimating a benchmark that will demarcate the IC behavior. Thus, we will

establish what is the region of ecdf’s IC behavior and utilize the partial first order stochastic

dominance (PFOSD) properties to test (in-line during phase II) whether the process has moved

from the IC to the OOC state (for an extensive bibliographic review on the concept of stochastic

dominance refer to Bawa, 1982). Stochastic dominance is a form of stochastic ordering between

random variables. More specifically, a random variable X is first order stochastic dominant over

another random variable if its cumulative distribution function is lower than the cumulative

distribution function of Y over the entire domain. PFOSD is a relaxation of the first order

stochastic dominance concept as it entails a dominance over a predetermined subset of the

original domain only. In our proposed approach, the random variable of interest is the pixel

intensity. Comparing ecdf curves of pixel intensities corresponding to different video frames can

be viewed as a PFOSD problem, where the term “partial” refers to the restriction of the range

of pixel intensity values to foreground intensities only.

In this framework, we translate the PFOSD into two novel ways of designing non-

parametric control charts for video image data. The first, hereafter referred to as “Area Under

the ecdf” (AUecdf), exploits as monitoring statistic the area under the ecdf as an empirical

index to determine to what extent the ecdf of any newly acquired video frame is dominant with

respect to ecdfs observed during phase I. A video frame where the foreground region includes

more occurrences of high pixel intensity values can be viewed as stochastic dominant over video

frames mainly consisting of low intensity pixels. Thus, the AUecdf approach results into a one-

sided control chart aimed at signaling a stochastic dominant pattern with respect to phase I

observations, which can be related to an OOC process state.

Since the AUecdf approach implies that only anomalous dominant ecdfs can be signaled

as departures from on IC state, a second and more general approach is presented too. It is

referred to as “Sandwich ecdf (Secdf)” and it consists of a two-sided control chart suitable to

signal anomalous patterns that are either dominant or dominated by the ecdfs observed during
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phase I.

It is worth noting that, relying on the ecdf of pixel intensities in each frame and using the

AUecdf synthetic statistic, any spatial information about individual pixel locations is not used for

process monitoring purposes. Indeed, the field of application of the proposed approach regards

industrial problems characterized by the need for both an efficient synthesis of the image or video

image information, and a fast and effective response to OOC states. Within this field of research,

we show that the proposed approach can outperform benchmark methods, with the further

advantage of not requiring any parametric modeling step neither any in-control “template”,

making the method quite flexible and easily applicable regardless of the underlying (complex)

dynamics of the process. Surely, there are other application fields where capturing the spatial and

spatio-temporal dynamics of the process may be needed. In these cases, other families of methods

should be preferred, like approaches mentioned above or methods that combine dimensionality

reduction with spatial weighting schemes (Colosimo and Grasso, 2018).

The two proposed approaches are evaluated and compared in terms of various perfor-

mance metrics in the presence of both simulated and real data. A robustness analysis with

respect to the amount of data available in phase I is presented too. The method proposed in

Wang and Tsung (2005), slightly adapted to deal with video image data with an underlying vary-

ing signature, is used as a benchmark to highlight the benefits enabled by the novel proposed

methods.

1.1 Motivating Case Study

The motivation of this work comes from a real case study in laser powder bed fusion (L-PBF),

a metal additive manufacturing process to produce complex shapes by selectively melting a thin

layer of metal powder (Gibson et al., 2014). The case study, previously introduced by Grasso

et al. (2018) and Grasso and Colosimo (2019), regards the in-situ monitoring of L-PBF of

pure zinc via infrared (IR) video imaging. Zinc is a biodegradable material of great industrial
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interest for the production of novel and customized biomedical devices. However, due to the

low melting and boiling point, the L-PBF of zinc powder is a challenging task, involving the

risk for unstable metal vaporization states that could cause not fully dense and defective parts.

Figure 1 shows some examples of IR video frames converted into 8-bit grayscale images under IC

and OOC conditions. With pixel intensities ranging between 0 (black) and 255 (white), under

IC conditions low pixel intensities (dark pixels) refer to background, while high pixel intensities

(bright pixels) refer to foreground regions including hot areas of the layer scanned by the laser,

hot metal vapor emissions (also known as “plume”) and spatters (Grasso and Colosimo, 2019).

In this case study, the IC state refers to frames where the existing variation within the frame

and from frame to frame can be attributed to the natural result of the L-PBF process at that

time, while the OOC state involves frames where there exist exogenous source of variation. More

specifically, OOC states can be associated either to excessive material vaporization, like a too

large and too hot plume (Figure 1b) or even an exploding plume emission in more severe cases

(Figure 1c). The natural process dynamic prevents from defining a reference model, since the

laser scans different regions of the build area following a scan path that changes from one layer

to another and generates hot by-product emissions whose salient properties continuously change

along each scanned track. Because of this, such real case study motivates the development of a

new perspective for video image SPC/M and it represents a suitable test bench to evaluate the

potential and performance of our proposed approaches.

Despite being motivated by a real case application in AM, the two methods presented

in this study are believed to be characterized by a general validity that makes them suitable

for other practical SPC/M use cases involving video image data characterized by complex and

dynamically changing process patterns. This kind of use cases is becoming more and more

frequent in the continuously evolving digitalized manufacturing scenario.

The paper is organized as follows. Section 2 describes the PFOSD methodology. Sec-

tions 3 and 4 present the two non-parametric methods for process monitoring, namely the AUecdf

and Secdf methods respectively. Section 5 presents a simulation study to demonstrate and com-
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Figure 1: Examples of video frames (converted into 8-bit grayscale images) acquired during the
L-PBF process of pure zinc with in-situ / in-line long infrared thermography: a) examples of IC
plume emissions, b) and c) examples of OOC plume emissions.

pare the performance of the methods. Section 6 presents the real case study application and

Section 7 concludes the paper.

2 (Partial) First Order Stochastic Dominance (PFOSD)

We begin with the basic definition of stochastic dominance on univariate cumulative distribution

functions (cdf).

Definition 1 In the univariate setting, we say that a random variable X with cdf FX(·) will be
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first order stochastic dominant over the random variable Y with cdf FY (·), denoted as Y
sd

≤ X if:

FX(t) ≤ FY (t) ∀t ∈ R and ∃ t∗ ∈ R such that: FX(t∗) < FY (t∗) (1)

From this point on we will simply refer to the above property as stochastic dominance, implying

that we have first order. Alternative names of this property found in literature are stochastic

ordering, stochastic greater cdf etc. In case of first order stochastic dominance, the ecdfs are not

crossing each other. Various properties are linked to first order stochastic dominance with the

most noticeable that:

Y
sd

≤ X ⇒ E[Y ] < E[X] (2)

or slightly more general, if h(·) is any bounded increasing function we have that:

Y
sd

≤ X ⇒ E[h(Y )] < E[h(X)] (3)

The concept of stochastic dominance in practice is a rather strong argument as it requires a

pair of cdfs to be ordered and never cross over the entire region of real numbers. A bit less

restrictive concept is the partial stochastic dominance, where the first order stochastic dominance

is restricted over a predetermined set A. Specifically, we say that Y
psdA
≤ X if:

FX(t) ≤ FY (t) ∀t ∈ A and ∃ t∗ ∈ A such that: FX(t∗) < FY (t∗) (4)

As a consequence of partial stochastic dominance over a set A we have that:

Y
psdA
≤ X ⇒

∫
A

FX(t)dt <

∫
A

FY (t)dt (5)

i.e. the area under the cdf of X, over the subset A of the support set, will be smaller from the

respective area under the cdf of Y . Note that if A = R then the partial stochastic dominance

becomes simply stochastic dominance. In the next section we will carry the concept of (partial)

stochastic dominance to empirical cumulative distribution function (ecdf) of images.
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2.1 (Partial) Stochastic Dominance in image based ecdfs

For the grayscale video recording that we consider in this work each pixel value can be an integer

in the set {0, 1, 2, . . . , 254, 255} where 0/255 refer to absolute black/white. Thus for each frame

we can derive the frequency distribution of all possible values reflecting the empirical probability

mass function (epmf):

{p0, p1, . . . , p254, p255}, where 0 ≤ pi ≤ 1, i = 0, 1, 2, . . . , 255 and
255∑
i=0

pi = 1 (6)

along with the empirical cumulative distribution function (ecdf):

{P0, P1, . . . , P254, P255}, where P0 = p0, P1 = p0 + p1, . . . , Pi =
i∑

j=0

pj, . . . , P255 = 1 (7)

Given that the support set is a countable finite set, the ecdf will be a step function, where the

height of each step occurring at (the support set’s) value i, will be equal to pi, while the total

height of the ecdf at i will be Pi. To illustrate the concept of the frame based ecdfs we provide

in Figure 2 three scenarios which cover the whole spectrum:

(a) All pixels are black (i.e. take only the value of 0) indicating no action at all. Then:

p0 = 1, p1 = . . . = p255 = 0 and P0 = P1 = . . . = P255 = 1

(b) All pixels are white (i.e. take only the value of 255) indicating maximum action. Then:

p0 = p1 = . . . = p254 = 0, p255 = 1 and P0 = P1 = . . . = P254 = 0, P255 = 1

(c) All values {0, 1, 2, . . . , 254, 255} in the support set are equally likely. Then:

p0 = p1 = . . . = p255 =
1

256
, and Pi =

i+ 1

256
where i = 0, 1, 2, . . . 255
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Figure 2: The frames along with the respective ecdfs for three scenarios that span the entire
region: (a) only black pixels, (b) only white pixels, (c) all possible pixel values are equally likely
and randomly scattered.

For an additive manufacturing application, if the distance of the camera from the region

of interest is constant and so is the frame resolution over the working area (i.e. we do not

perform zoom in/out) we receive several IC frames that we can use in a phase I exercise to train

a monitoring scheme. For each IC frame we can easily derive and plot its ecdf. Figure 3 shows

two IC frames along with their respective ecdf, where in one of the two we have more action

(yet IC) compared to the other. In this paper, we use the term “action” to the process signature

occurring either in IC or OOC conditions. High action means that a large and intense foreground

area is observed in the video frame as a consequence of large process by-product emissions. On

the contrary, low action, means that few by-product emissions are present, and the video frame

mainly consist of uniform and dark background.

11



Figure 3: Two IC ecdfs of a low and high IC action frames

In SPC/M, the concept of OOC behavior is typically considered as any scenario that

it does not look like what we have during the IC calibration phase. In other words, during

phase I we construct some prototype behavior and then during phase II as each new frame

becomes available we compare it against the IC prototype, testing of whether it conforms or

not. For example Wang and Tsung (2005) looks for discrepancies from the linearity in QQ-plots,

Menafoglio et. all (2018) builds the IC type of profile for empirical probability density functions

(epdf) and check each new frame for conformance or not etc.

Using ecdfs we will attempt to slightly generalize the concept of testing against an IC

prototype frame by moving to the an IC region. The idea of OOC performance in the image

based SPC/M that we consider in this study is reflected as enlarged action space (area) compared

to what was established during the IC phase I. In other words we expect in OOC situations to

have more bright pixels, i.e. an increased portion of the frame with high values compared to

the IC video sequence, even at places of the frame that are not close to the area that the laser

operates. Generally speaking in the discrete pmf over {0, 1, 2, . . . , 254, 255} as we move from an

IC to an OOC frame, chunks of probability mass will travel from the smaller to the bigger values

forcing the ecdf to be moved to the right (see Figure 4).

Using standard methods from the literature, if an incoming frame has significantly

different (smaller/larger) action region compared to what we established in the IC phase I period,

then this frame will not conform to the reference built in phase I and it will alarm. On the

contrary, in our approach a frame will result an alarm only if significant probability mass travels
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Figure 4: An IC and an OOC frame, along with their respective ecdfs

to the right (i.e. bigger values) driving in the same direction the ecdf. When it travels to the

left (i.e. smaller values) then we consider this to conform to the IC region and we do not raise

an alarm (compare the ecdf of low IC versus high IC action in Figure 3).

So if we will consider various IC ecdfs, then when a new frame is compared against them,

the further to the left/right the ecdf is moving versus the IC ecdfs, the stronger the evidence that

the new frame refers to IC/OOC state. Making use of the stochastic dominance concept, the

above OOC behavior indicates that OOC ecdfs should (partially) dominate (i.e. be (partially)

stochastically greater from) the IC ecdfs. Next, we will utilize the idea of stochastic dominance

in ecdfs introducing the summary measure of the area under an ecdf and present two methods

that can be used to infer in an online fashion of whether an incoming frame is IC or OOC.

Precisely, if we call f1 and f2 the ecdfs of two frames, then for the area trapped below them over

a predetermined region A, we have by (5):

{f1 is PFOSD on A over f2} ⇒ {the area under f1 will be smaller than that under f2}

As the converse is not valid, in this manuscript the suggested methods will utilize the contrapos-

itive for identification of the IC frames. Anything that will not comply with this contrapositive

rule will indicate OOC performance.
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3 Area Under the ecdf (AUecdf) method

It is important to remember that in this study we consider pixel values in a bounded (countable)

set, namely {0, 1, 2, . . . , 254, 255}, while in other applications, e.g. infrared imaging, we might

have each pixel value to refer to temperature, giving rise to an unbounded (uncountable) set.

The bounded aspect makes the problem a bit more difficult, as it imposes certain constrains on

the ecdfs. For example, all frames will have an ecdf value of 1 at the maximum allowable pixel

value 255 (i.e. F (255) = 1 for all frames). In this context the idea of stochastic dominance is

a very strong requirement that is difficult to be valid when we consider the entire range of the

support set (i.e. {0, 1, . . . , 255}). In Figure 5 we provide an IC and an OOC frame, where despite

their notable difference (even in the ecdf) no stochastic ordering (over the whole support set)

can be established, as the ecdfs cross.

Figure 5: An IC and an OOC frame, with crossed ecdfs

Nevertheless, the upper values of the support set are expected to have inflated prob-

ability mass for an OOC frame compared to an IC frame. The situation though at the lower

values of the support set is not as clear since these values are quite sensitive to noise, i.e. they

are not as helpful in identifying the OOC behavior.

From an image analysis perspective, each frame can be partitioned in the:

• Foreground area, where the action is taking place (relates to high pixel values) and
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• Background area, where no significant action is observed, i.e. we can think of it as the

quiet region of the frame (relates to the small pixel values on the support set).

Taking into account all the above, one can argue that the foreground region and precisely its

extent, i.e. small or large, can reflect the IC or OOC status of a frame respectively. Computer

vision provides various algorithms that one could use to obtain the background/foreground sep-

aration in each frame. However, the dynamic aspect of the problem under study along with the

need to have a low computational cost (to allow near real time inference) makes most of the

existing methods prohibitive.

Our proposal will be to utilize partial stochastic dominance of ecdfs over a subset of

the support set that relates to the foreground, aiming to be efficient and with low computational

cost. Precisely, we will start with an offline calibration phase where:

(A.I.a) Collect N0 IC phase I frames from the process under study or from historical data of this

process. We will initially derive a threshold value called QB which will correspond to pixel

intensity that separates the background (smaller intensities) from the foreground (higher

intensities). The region Sf = {QB+1, QB+2, . . . , 254} will be called the foreground support

space (the value 255 -upper bound of the support set- was excluded as non-informative,

since on this value all ecdfs take the same value of 1).

(A.I.b) For each of the phase I IC frames we estimate the area under ecdf (from now on called

AUecdf) over the region Sf , i.e. the foreground support set.

(A.I.c) Use all the AUecdf values estimated in the previous step and derive the lower α× 100%

point of their distribution as the lower control limit, LL, of the proposed chart. The α

value will reflect the desired false alarm rate.

Next we are ready to start phase II, where online testing can be performed on a control chart

that will plot AUecdf versus frame number (or time). Specifically, the steps are as follow:
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(A.II.a) For each incoming phase II frame i, derive its ecdf and calculate the AUecdfi over Sf .

(A.II.b) Plot the AUecdfi versus time and compare it against the lower control limit LL. If

AUecdfi < LL then we draw an alarm.

In what follows we will provide all the details of how the above algorithm can be implemented

in practice. Starting with the chart calibration, we will need N0 representative IC frames of the

process under study either from a phase I exercise or from possibly available historical data.

To derive QB in step (A.I.a), we will need to know the image’s foreground region as

percent of the entire frame (f×100%). This can be considered as the maximum allowable area of

action, when the process is under the IC state. For industrial processes it is possible to evaluate

it in advance and is related to the process under study, the distance/zoom of the camera etc. In

the case that this percent is not known in advance, it can be estimated from the phase I sequence

of the N0 IC frames. Precisely, for each frame we perform cluster analysis to split the pixels into

two groups: background (small) and foreground (large), defining as fj × 100% the percentage of

pixel values belonging to the foreground (high values) region of frame j ∈ {1, 2, . . . , N0}. One

of the most widely used methods for such two-level segmentation is the k-means algorithm with

k = 2, which is also known to be computationally efficient. Next, for each of the N0 IC frames

derive the pixels value Qj
B so that:

Gj(Q
j
B−1) < 1− fj ≤ Gj(Q

j
B) (8)

where Gj(·) is the ecdf of all pixel values of frame j. In other words for each frame j we identify

Qj
B, which corresponds to the pixel intensity above which we have the fj × 100% percent of the

highest pixel intensities that refer to foreground. If the f × 100% was available in advance then

we do not need to perform clustering and in relationship (8), we replace fj by f for all frames.

Then we estimate the overall QB as the mean of the N0 intensities
{
Q1
B, . . . , Q

j
B, . . . , Q

N0
B

}
, which

is rounded to the closest integer with greater than or equal intensity (i.e. ceiling) and we finalize

the foreground support set as: Sf = {QB+1, QB+2, . . . , 254}.
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In step (A.I.b), for each of the N0 IC frames we derive the AUecdf over the subset Sf .

As we have a discrete random variable then for every frame j ∈ {1, 2, . . . , N0} we will have:

AUecdfj =
∑
x∈Sf

Fj(x) = Fj(QB+1) + Fj(QB+2) + . . .+ Fj(253) + Fj(254) (9)

where, Fj(·) is the ecdf corresponding to frame j ∈ {1, 2, . . . , N0} .

Next in step (A.I.c) we use all estimated AUecdfj, j = 1, 2, . . . , N0 to get their dis-

tribution and derive the lower control limit LL as the lower α quantile, where α refers to the

predetermined false alarm rate that we wish to have. The limit LL demarcates the IC region,

where the smaller the AUecdf (over Sf ) is, the more the evidence that the current frame is OOC

as the observed probabilities for the high intensity pixels are elevated indicating an extended

region of foreground action compared to what we expect from the phase I calibration. So as

opposed to establish in phase I, a prototype ecdf curve against which future frame ecdf’s will

be examined (a philosophy typically followed from other methods in the literature), we define a

lower limit below which we have evidence that the frame examined will partially dominate the

behavior observed in phase I. An AUecdf value, does not correspond to a single ecdf, as various

ecdfs can have the same AUecdf (i.e. it is not one-to-one) and so the limit LL does not really

correspond to a specific (prototype) ecdf established in phase I but instead puts the limit on the

distribution of the AUecdf values observed in phase I. The Area under the ecdf forms a synthetic

descriptor, capable to diagnose scenarios of partial stochastic dominance (over the foreground

intensity values) that are likely to occur in OOC conditions. It does not require to have some

prototype to compare against (as it happens in similar studies) and allows direct use to processes,

where the underlying spatio/temporal dynamics of the process are difficult or computationally

expensive to model. However, for processes where the OOC states of interest have either a local

effect and/or affect the spatio-temporal history of pixel intensities rather than their ecdf in each

image, other relevant methods should be used instead.

The suggested control chart will plot the AUecdf value versus time with the horizontal

line at LL splitting the IC/OOC regions as the area above/below LL. Putting the N0 frames
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of the calibration phase on the control chart only α × 100% of the frames will be below LL.

In phase II we operate in online fashion, where as a new frame arrives, we estimate its AUecdf

over Sf and plot the result in the control chart, raising an alarm if we are below the LL line.

As it is typically suggested in SPC/M when we get an alarm the user needs to stop the process

examine the root cause of the alarm, possibly take some corrective action and restart the whole

mechanism. Algorithm 1 provides in detail all the steps to obtain the Area Under ecdf control

chart for a process monitored with grayscale camera.

4 The Sandwich ecdfs method

The motivation in the AUecdf method was to derive a lower limit (LL), based on the phase I

input, that reflects on the maximum allowable size of the foreground region. So in phase II, if

for a frame we have an AUecdf value (over Sf ) smaller than LL that indicates an ecdf that will

partially stochastically dominate the IC ecdfs (of phase I), having a foreground region that is

too “large” (i.e. we have an enlarged plume or explosion or spatters etc.). Thus in the AUecdf

method, our interest is for one-sided tests only (i.e. against enlarged foreground). What happens

though if a frame in phase II has a foreground region that is too “small” (shrank)? For instance,

the laser has a problem and stops working, diminishing the foreground region. In that case, the

AUecdf will consider this frame as IC (as the phase I ecdfs will tend to partially stochastically

dominate it). To identify such frames as OOC we will need to have a two-sided scheme that will

“sandwich” the phase I IC ecdfs and indicate as OOC the frames that will tend to have either

too “large” (i.e. ecdfs will partially stochastically dominate the ecdfs of phase I) or too “small”

(i.e. ecdfs will be partially stochastically dominated by the ecdfs of phase I) foreground region.

Our proposal will be to create an IC region that will bound (“sandwich”) stochastically

the phase I IC ecdfs and judge in phase II each incoming ecdf against this region. Specifically, a

partial stochastic dominance based score will indicate in a control chart of whether the process is

IC or we have an enlarged or shrank foreground region, compared to the phase I standards that
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Algorithm 1 Area Under the ecdf (AUecdf)

1: ### Phase I (offline) ###

2: Obtain N0 representative IC frames (from phase I or historical data) . initial input
3: Define the desired false alarm rate: α
4: for (j = 1, 2, . . . N0) do . loop over phase I IC frames
5: if (image foreground region ratio over all pixels is known and constant tof) then
6: fj ← f
7: else
8: Use k-means clustering to split the frame pixels in k = 2 groups
9: The small/large clustered values, constitutes the Background/Foreground region

10: Define as fj the ratio of the foreground pixels over all pixels in the frame j
11: end if
12: Obtain Qj

B so that relationship (8) is satisfied
13: end for
14: Define QB ← ceiling

{
mean

(
Q1
B, . . . , Q

j
B, . . . , Q

N0
B

)}
15: Define the foreground support set as: Sf = {QB+1, QB+2, . . . , 254}
16: for (j = 1, 2, . . . N0) do . loop over phase I IC frames
17: Obtain AUecdfj using (9)
18: end for
19: Define LL← α empirical quantile of {AUecdf1, . . . , AUecdfj, . . . , AUecdfN0}
20: ### Phase II (online) ###

21: Create a 2D control chart of AUecdf values versus frame number.
22: Add on the chart the horizontal control limit LL.
23: i← 1
24: for (frame i in phase II) do . loop over phase II frames
25: Obtain the ecdf of frame i using (7)
26: Obtain AUecdfi using (9) and plot it on the control chart
27: if (AUecdfi < LL) then
28: Raise an alarm: the current frame is in the OOC region
29: end if
30: i← i+ 1
31: end for
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we will denote as OOC state 1 or 2 respectively. We begin with an off-line calibration scheme

where we:

(S.I.a) Collect N0 IC phase I frames from the process under study or from historical data of

this process and obtain the ecdf of each of the N0 frames.

(S.I.b) Obtain the lower and upper stochastic limits that will sandwich the (1−α)×100% ecdfs

of phase I at each pixel intensity value. The α value aims to robustify the limits against

possible outlying frames in phase I. These limits split the 2d space of {0, 1, 2, . . . , 254}×[0, 1]

where the ecdfs are plotted, in three zones:

• IC: within stochastic limits

• OOC1: below the lower stochastic limit indicating that we have frames that stochas-

tically dominate the phase I frames (i.e. foreground region is too large).

• OOC2: above the upper stochastic limit indicating that we have frames stochastically

dominated by the phase I frames (i.e. foreground region is too small).

(S.I.c) We use the above three zones to partition each phase I IC frame j into three segments,

based on the overlap of its ecdf with the three zones: IC, OOC1 and OOC2 respectively.

Next we weight each of the three segments of the ecdf accordingly and we derive an overall

score SCj.

(S.I.d) Use all the SCj scores (j = 1, 2, . . . , N0) estimated in the previous step and derive the

lower α?/2 and the upper 1− α?/2 point of their distribution as the lower (L) and upper

(U) limits respectively, of the proposed control chart. The choice of α? value will reflect

the desired false alarm rate.

Next, phase II can be started allowing online testing on a control chart that will plot the stochastic

dominance based score versus frame number (or time). The steps are as follow:

(S.II.a) For each incoming phase II frame i derive its ecdf and calculate the score SCi.
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(S.II.b) Plot SCi versus its order and compare it against the lower/upper control limits. If:

• L ≤ SCi ≤ U the frame is in par with the IC phase I frames

• SCi < L raise an OOC1 alarm (expanded foreground compared to phase I).

• SCi > U raise an OOC2 alarm (shrank foreground compared to phase I).

Next, we will explain and motivate all the details of the above algorithm. Initially, we will need

N0 representative IC frames of the process under study either from a phase I exercise or from

possibly available historical data. At (S.I.a) we will derive the ecdf of each IC frame j of Phase

I using (7), i.e.
{
P

(j)
0 , P

(j)
1 , . . . , P

(j)
k , . . . , P

(j)
254, 1

}
, j = 1, 2, . . . , N0.

In step (S.I.b) for each specific intensity value k ∈ {0, 1, . . . , 254} we bound the dis-

tribution of all phase I ecdfs at k using the lower (α/2) and upper (1− α/2) empirical quantile.

Precisely we derive:

Lαk =
α

2
empirical quantile of

{
P

(1)
k , P

(2)
k , . . . , P

(j)
k , . . . , P

(N0)
k

}
Uα
k =

(
1− α

2

)
empirical quantile of

{
P

(1)
k , P

(2)
k , . . . , P

(j)
k , . . . , P

(N0)
k

}
(10)

for each k ∈ {0, 1, . . . , 254}. The α value relates to the stochastic limit derivation and it aims

to provide some robustness against the presence of outlying phase I frames. Then we define as

lower (Lα) or upper (Uα) stochastic limits of phase I ecdfs:

Lα = {Lα0 , Lα1 , . . . , Lαk , . . . , Lα254} and Uα = {Uα
0 , U

α
1 , . . . , U

α
k , . . . , U

α
254} (11)

The stochastic limits will “sandwich” the (1−α)×100% of the observed ecdf values for each inten-

sity value in the support set {0, 1, . . . , k, . . . , 254} (intensity 255 was excluded as non-informative

since all ecdfs get the same value, i.e. 1). Therefore, the limits Lα and Uα will partition the

2d region: {0, 1, . . . , 254} × [0, 1] in three non-overlapping zones: IC, OOC1 and OOC2 , as

described in (S.I.b)

In next step, (S.I.c), for each phase I frame j, (j = 1, 2, . . . , N0) we derive an overall
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score SCj, relying on the overlap of its ecdf Fj(·) with the three 2d-zones. Precisely, for each

pixel intensity k, (k = 0, 1, 2, . . . , 254), we define:

SC
(k)
j =


−1 if (k, Fj(k)) lies in the OOC1 zone

0 if (k, Fj(k)) lies in the IC zone

1 if (k, Fj(k)) lies in the OOC2 zone

 (12)

and then for the whole frame j we obtain the average score:

SCj =
1

255

[
254∑
k=0

SC
(k)
j

]
(13)

The frame score SCj will be a number in [−1,+1]. In the last phase I calibration step, (S.I.d),

we derive the lower (L) and upper (U) limits of the distribution of all phase I scores using the

lower (α?/2) and upper (1− α?/2) empirical quantile respectively, i.e.:

L =
α?

2
empirical quantile of {SC1, SC2, . . . , SCj, . . . , SCN0}

U =

(
1− α?

2

)
empirical quantile of {SC1, SC2, . . . , SCj, . . . , SCN0} (14)

The control limits will define a region [L,U ] ⊂ [−1,+1], which will indicate conformance with the

IC standards. Scores that plot outside the [L,U ] region, indicate OOC behavior and specifically

values that are smaller (larger) compared to L(U), will provide evidence that we have a frame

with enlarged (shrank) foreground region compared to the IC phase I frames. Thus, just like

we did in the AUecdf methodology, we avoid to derive some IC prototype but instead we define

regions where the OOC frames will tend to have their ecdfs lying, depending on whether they

dominate or get dominated by the phase I IC ecdfs.

The proposed control chart will plot the score (SCj) value versus time along with two

control limits at L, U , which will mark the IC region, while values bellow (above) L(U) will

denote OOC1 (OOC2) scenarios. Initially, we will plot the N0 phase I calibration frames on the

control chart, where only α? × 100% of the frames will plot outside [L,U ]. In phase II we move
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to online inference, where as a new frame i arrives, we calculate its score SCi and plot it in the

control chart, raising an OOC1 (OOC2) type of alarm if we are below (above) the L(U) control

limit. As we mentioned in AUecdf method, when we get an alarm we need to stop the process

examine the root cause of the alarm, take some corrective action (if available) and restart the

whole mechanism. Algorithm 2 provides in detail all the steps to obtain the “Sandwich ecdf”

control chart for a process monitored with grayscale camera.

Sandwich modification:

The Sandwich ecdf method works with the ecdfs over the entire region {0, 1, 2, . . . , 254} of

the parameter space. Following the foreground/background separation defined in the AUecdf

methodology, we could apply the Sandwich ecdf method only at the foreground support set

Sf = {QB+1, QB+2, . . . , 254} to utilize further the partial stochastic dominance properties. The

motivation behind the use of the foreground region Sf , instead of the whole range [0,254] in both

methods lies in the fact that the PFOSD is more evident in the upper tail of the ecdf in OOC

situations as opposed to the lower values, where ecdfs tend to cross more often independently of

whether we are in the IC or OOC state (see also Figure 5).

5 Simulation study

5.1 Simulation settings

The aim of the simulation study discussed in this section was to evaluate and compare the

performances of the two proposed approaches in the presence of artificial but realistic out-of-

control video image patterns with controlled severity.

IC and OOC realizations of video frames were generated by processing a real sequence

of video frames acquired during the production of zinc samples via L-PBF. The starting real

dataset is the one gathered in our real case study (all details are discussed in Section 6) and
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Algorithm 2 Sandwich the ecdf (Secdf)

1: ### Phase I (offline) ###

2: Obtain N0 representative IC frames (from phase I or historical data) . initial input
3: Define the critical value α, needed in determining the stochastic limits
4: Define the desired false alarm rate α?, for the Sandwich control chart
5: for (j = 1, 2, . . . N0) do . loop over phase I IC frames

6: Obtain the ecdf of frame j:
{
P

(j)
0 , P

(j)
1 , . . . , P

(j)
k , . . . , P

(j)
254, 1

}
using (7)

7: end for
8: for (k = 0, 1, . . . 254) do . loop over intensity values

9: Obtain Lαk ← α/2 empirical quantile of
{
P

(1)
k , P

(2)
k , . . . , P

(j)
k , . . . , P

(N0)
k

}
10: Obtain Uα

k ← (1− α/2) empirical quantile of
{
P

(1)
k , P

(2)
k , . . . , P

(j)
k , . . . , P

(N0)
k

}
11: end for
12: Define Lα ← {Lα0 , Lα1 , . . . , Lαk , . . . , Lα254}
13: Define Uα ← {Uα

0 , U
α
1 , . . . , U

α
k , . . . , U

α
254}

14: for (j = 1, 2, . . . N0) do . loop over phase I IC frames
15: for (k = 0, 1, . . . 254) do . loop over intensity values

16: Obtain SC
(k)
j using (12)

17: end for
18: Obtain SCj using (13)
19: end for
20: Obtain L← α?/2 empirical quantile of {SC1, SC2, . . . , SCj, . . . , SCN0}
21: Obtain U ← (1− α?/2) empirical quantile of {SC1, SC2, . . . , SCj, . . . , SCN0}
22: ### Phase II (online) ###

23: Create a 2D control chart of SCj score values versus frame number.
24: Add on the control chart the horizontal control limits L and U .
25: i← 1
26: for (frame i in phase II) do . loop over phase II frames
27: Obtain the ecdf of frame i
28: Obtain its score SCi using (13) and plot it on the control chart
29: if (SCi < L) then
30: Raise an alarm: the current frame is in the OOC1 region (enlarged foreground)
31: end if
32: if (SCi > U) then
33: Raise an alarm: the current frame is in the OOC2 region (shrank foreground)
34: end if
35: i← i+ 1
36: end for
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the following image processing steps were applied. First, a pool of about 300 real video frames

was extracted from the original database. They were labelled as IC because the manufactured

samples showed high density and no evident defect. Then, an image thresholding operation based

on the Otsu’s method (Otsu, 1979) was used to segment each frame into a background region and

a foreground region, where the latter includes the plume emission and any other bright area. This

segmentation could have been achieved by the QB threshold used in the suggested methodology,

but instead we preferred to apply Otsu’s method and other basic image preprocessing techniques,

so that the simulated data generation mechanism has nothing in common to the data analysis

methods. A second step was applied to isolate the plume from all other foreground regions, by

setting a threshold on the size of each connected component and the location of its centroid. The

result of this operation was checked by a human expert to validate the proper identification of

the plume region in each frame.

The following step was aimed at generating a larger number of IC realizations of video

frames by randomly rescaling and changing the aspect ratio of the connected component labelled

as “plume”. Two scaling factors δx and δy were applied along the x and y directions of the image,

respectively, such that δx = 1 + 0.1kx and δy = 1 + 0.1ky with kx and ky independently drawn

from a uniform distribution U(0, 5). A total number of 2,200 unique video frames were generated

by applying random combinations of kx and ky. They were used as IC video frames to design

the control charts (first 200 frames) and test the IC performance (last 2,000 frames).

Four different OOC scenarios were then simulated, where the x and y directions of the

plume area were rescaled by δx +∆x and δy +∆y, such that the terms ∆x and ∆y were used to

insert OOC shifts of different severity.

• OOC scenario 1 refers to a linearly increasing trend of the plume size, which can be repre-

sentative of a heat accumulation in the part as the process goes on, leading to larger and

larger plume emissions. OOC scenario 1 was simulated by setting both ∆x and ∆y lin-

early increasing from 1 (first video frame) to ∆max (last video frame), where four different

severity levels were considered with ∆max ranging between 1 and 4.
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• OOC scenario 2 is representative of a non-sustained shift lasting for only three consecutive

video frames. In this case, the rescaling factors were δx and δy, in frames with no shift and

δx + ∆x and δy + ∆y in frames with the OOC shift, and same severity levels of scenario 1

for ∆x and ∆y were used.

• OOC scenario 3 presents of a sustained shift, where in all frames the plume was rescaled

by δx +∆x and δy +∆y with the same severity levels of previous scenarios for ∆x and ∆y.

• OOC scenario 4, eventually, is representative of sudden (unsustained) shifts that become

more and more frequent as the severity increases. This kind of OOC behavior is repre-

sentative of the real anomalies observed in our real case study. In this scenario, whenever

a sudden shift occurred, the plume was rescaled by δx + ∆max and δy + ∆max, and the

frequency of shifts increased from 10% to 80% with a random ordering of OOC shifts.

In each simulation run, 465 OOC video frames were generated for each scenario and

each severity level (4 scenarios × 4 severities = 16 OOC cases). The OOC video frames were

always preceded by 2000 IC frames for the proper estimation of all performance metrics, i.e.:

Sensitivity =
TP

TP + FN
, Specificity =

TN

TN + FP
and

Accuracy =
TP + TN

TP + TN + FP + FN
(15)

where TP is the number of true positives, FP is the number of false positives, TN is the number

of true negatives and FN is the number of false negatives.

The PFOSD for both the proposed approaches used only a subset of pixel intensities

resulting from the preliminary segmentation into foreground and background via k-means clus-

tering, with k = 2. According to this operation, pixel with intensity in the range {0, 1, . . . , 31}

were labelled as background pixels, belonging to cold (dark) areas, not affected by the process

and its by-products. Pixels with intensity in the range {32, 33, . . . , 255} were instead labelled

as foreground pixels, and defined the region of the ecdfs where the stochastic dominance phe-
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nomenon was examined. In both suggested methods the autocorrelation of the summary statistic

used in the monitoring was examined for possible time dependence and it found to be quite low.

This is somewhat expected as the area under ecdf is a summary measure of the deconstructed

frame (via its ecdf) and thus there is no need to involve some time dependence in either AUecdf

or Secdf monitoring schemes.

The two methods were also compared against the seminal method proposed by Wang

and Tsung (2005), although a slight adaptation was needed to transfer it to video image data,

rather than to sequences of images of the same object. In Wang and Tsung (2005) each monitored

image was translated into a 1-D profile format through the computation of a Q-Q plot, using the

normal distribution as in-control reference. In video image data capturing dynamic processes,

it is not possible to identify a reference distribution for the pixel intensity values, and hence

the benchmark Q-Q plot-based approach was here implemented by using, as a reference for the

Q-Q plot definition, the quantiles of pixel intensities obtained by averaging all phase I video

frames. For each video frame, the Q-Q plot curve was fitted through a least square regression

model of order 1 and two control charts were designed: a Hotelling’s T 2 control chart on the two

parameters of the regression model and a univariate control chart on the mean square error of

the model residuals. This competitor approach is referred to as “QQplot” in what follows.

The control charts for the two proposed methods were designed with a type I error

α = 0.01. The competitor approach based on the Q-Q plot modeling and monitoring was design

with a familywise type I error α = 0.01 using Bonferroni’s correction.

5.2 Simulation study results

The performances of all compared methods are summarized in Table 1, in terms of sensitivity,

specificity and accuracy metrics. Table 1 shows that the two proposed approaches have similar

performance metrics. The Secdf method is the one characterized by the highest sensitivity in all

simulated OOC scenarios, but its accuracy is slightly lower than the one of the AUecdf method
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in most cases, which is connected to a slightly lower specificity in identifying true negatives.

The high sensitivity highlights the capability of signaling actual OOC shifts. The benchmark

approach based on the Q-Q plot modeling and monitoring is less effective than the proposed

methods, resulting in a much lower sensitivity, i.e. lower capability of detecting actual OOC

patterns. Indeed, the Q-Q plot-based approach is designed for monitoring process data that are

identically distributed and the distribution is known. In the presence of video image data like

the ones considered in this study, the distribution of the pixel intensity values is not known, and

it may change from frame to frame. Under these premises, extracting a reference distribution

from phase I data (e.g., the distribution of pixel intensities obtained by averaging out all phase

I video frames) leads to a wild variability of Q-Q plot patterns under IC conditions as shown

in Figure 6, including curves that can be approximated by order 1 models but also Q-Q plot

curves with very different pattern. Such variability, partially masks actual OOC shifts unless

their severity is sufficiently high.

Sensitivity [%] Specificity [%] Accuracy [%]
Severity AUedcf Secdf QQplot AUedcf Secdf QQplot AUedcf Secdf QQplot

S
ce

n
ar

io
1 1 26.67 28.60 0.22 98.75 97.20 99.30 85.15 84.26 80.61

2 40.00 44.73 1.08 98.75 97.20 99.30 87.67 87.30 80.77
3 50.11 53.33 5.16 98.75 97.20 99.30 89.57 88.92 81.54
4 58.28 60.22 15.05 98.75 97.20 99.30 91.12 90.22 83.41

S
ce

n
ar

io
2 1 53.33 60.00 0.00 98.77 97.17 99.30 98.22 96.71 98.09

2 76.67 83.33 6.67 98.81 97.25 99.18 98.54 97.08 98.05
3 77.78 81.48 22.22 98.77 97.17 99.22 98.54 97.00 98.38
4 80.00 83.33 46.67 98.69 97.21 99.30 98.46 97.04 98.66

S
ce

n
ar

io
3 1 48.17 55.27 0.00 98.75 97.20 99.30 89.21 89.29 80.57

2 71.40 76.56 7.74 98.75 97.20 99.30 93.59 93.31 82.03
3 85.59 86.67 24.95 98.75 97.20 99.30 96.27 95.21 85.27
4 92.69 92.90 55.70 98.75 97.20 99.30 97.61 96.39 91.08

S
ce

n
ar

io
4 1 91.84 91.84 61.22 98.76 97.06 99.30 98.62 96.96 98.54

2 94.90 94.90 46.94 98.86 97.42 99.24 98.70 97.32 97.16
3 92.06 92.59 56.61 98.86 97.32 99.25 98.34 96.96 95.98
4 91.33 92.14 53.66 98.71 97.14 99.33 97.61 96.32 92.49

Table 1: Performance metrics (in percentage) for AUecdf, Secdf and QQplot methods (boldface
entries indicate the best performance across the three competitors)

Figures 7 and 8 present the AUecdf and the Secdf control charts respectively, in all

28



Figure 6: Q-Q plot curves corresponding to 200 IC video frames, where reference quantiles refer
to pixel intensities obtained by averaging out all phase I video frames.

simulated OOC scenarios for all different severity levels (the ecdfs plots for both IC and OOC

data can be found in the Appendix). Each panel of Figures 7 and 8 shows the phase II control

chart in one specific OOC scenario for one specific severity level, over all 465 simulated frames.

Figures 7 and 8 indicate that both the number of true positives and the entity of signaled

shifts grow as the OOC severity grows. Figure 8 also shows that, although all simulated OOC

conditions entailed a violation of the lower control limit, some violations of the upper control

limit are present as well in OOC scenario 1, 2 and 4. Such violations are labelled as false

positives in this specific case. They correspond to frames where the foreground pixel intensity

was first order stochastically dominated by the intensities observed in phase I, i.e., video frames

whose foreground pixel exhibited a significantly darker pattern with respect to the ones used for

control chart design. Although being labelled as false positives, generally speaking they represent

actual anomalies with respect to patterns observed in phase I. Thus, the capability of signaling
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such anomalies as well, makes the Secdf approach of greater general validity than the AUecdf

approach.
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Figure 7: Phase II AUecdf control charts in different OOC scenarios (columns) and different
severity levels (rows); the solid black line represents the lower control limit of the control chart.

5.3 Robustness analysis

The results reported in subsection 5.2 referred to a phase I consisting of L = 200 video frames.

However, for in-line monitoring applications, particular interest is devoted to the robustness of

the adopted method with respect to the amount of data used for control chart design. As a matter

of fact, the smaller is L, the sooner the control chart can be used to monitor the ongoing process.

To this aim, in this Section we compare the performances of the AUecdf and Secdf methods by

varying the number of frames used in phase I, namely the L parameter. This analysis was based

30



2200 2300 2400 2500 2600

−1
.0

−0
.8

−0
.6

−0
.4

−0
.2

0.
0

0.
2

OOC 1
linear trend shift

S
ec

df

2200 2300 2400 2500 2600

−1
.0

−0
.8

−0
.6

−0
.4

−0
.2

0.
0

0.
2

S
ec

df

2200 2300 2400 2500 2600

−1
.0

−0
.8

−0
.6

−0
.4

−0
.2

0.
0

0.
2

S
ec

df

2200 2300 2400 2500 2600

−1
.0

−0
.8

−0
.6

−0
.4

−0
.2

0.
0

0.
2

S
ec

df

Frame

2200 2300 2400 2500 2600

−1
.0

−0
.8

−0
.6

−0
.4

−0
.2

0.
0

0.
2

OOC 2
transient shift

2200 2300 2400 2500 2600

−1
.0

−0
.8

−0
.6

−0
.4

−0
.2

0.
0

0.
2

2200 2300 2400 2500 2600

−1
.0

−0
.8

−0
.6

−0
.4

−0
.2

0.
0

0.
2

2200 2300 2400 2500 2600

−1
.0

−0
.8

−0
.6

−0
.4

−0
.2

0.
0

0.
2

Frame

2200 2300 2400 2500 2600

−1
.0

−0
.8

−0
.6

−0
.4

−0
.2

0.
0

0.
2

OOC 3
persistent shift

2200 2300 2400 2500 2600

−1
.0

−0
.8

−0
.6

−0
.4

−0
.2

0.
0

0.
2

2200 2300 2400 2500 2600

−1
.0

−0
.8

−0
.6

−0
.4

−0
.2

0.
0

0.
2

2200 2300 2400 2500 2600

−1
.0

−0
.8

−0
.6

−0
.4

−0
.2

0.
0

0.
2

Frame

2200 2300 2400 2500 2600

−1
.0

−0
.8

−0
.6

−0
.4

−0
.2

0.
0

0.
2

OOC 4
random shift

S
everity 1

2200 2300 2400 2500 2600

−1
.0

−0
.8

−0
.6

−0
.4

−0
.2

0.
0

0.
2

S
everity 2

2200 2300 2400 2500 2600

−1
.0

−0
.8

−0
.6

−0
.4

−0
.2

0.
0

0.
2

S
everity 3

2200 2300 2400 2500 2600
−1

.0
−0

.8
−0

.6
−0

.4
−0

.2
0.

0
0.

2

Frame

S
everity 4

Phase II OOC performance (frames 2201−2665), foreground data

Figure 8: Phase II Secdf control charts in different OOC scenarios (columns) and different
severity levels (rows); the solid black lines represent the lower and upper control limits of the
control chart.

on the sensitivity metric only, since it is the one suitable to determine the capability of signaling

an actual OOC state.

Figure 9 shows the sensitivity of the AUecdf and Secdf control charts as a function

of the severity level for different OOC scenarios and for different sizes, L, of the dataset used

in phase I. Figure 9 shows that by varying L in the range 10 to 200, a very limited change of

the AUecdf control chart sensitivity is observed. This indicates that, even in the presence of a

very short design phase, the control chart keeps its ability of detecting OOC shifts. The Secdf

method, on the contrary, is much less robust than the AUecdf method. Indeed, its sensitivity

considerably drops to low values as L decreases. This is due to the two-sided Secdf monitoring

approach that, in case of few phase I observation, may be too conservative causing a high type
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II error.

Figure 9: Sensitivity of the AUecdf and Secdf control charts for different OOC scenarios (as a
function of the severity level) for different sizes, L, of the dataset used in phase I for control
chart design.

The performance analysis carried out in subsections 5.2 and 5.3 allows drawing the

following conclusions, which could also be used as guidelines to choose the most appropriate

approach:

• The AUecdf method is effective and robust even in the presence of a very limited phase

I dataset; being based on a one-sided control charting scheme, it represents a suitable

approach when expected OOC conditions involve pixel intensity patterns that stochastic

dominate the ones under IC conditions.

• The Secdf method is a more general approach, being based on a two-sided control chart-

ing scheme, enabling the detection of anomalies corresponding to pixel intensity patterns
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that are either stochastic dominating the patterns observed during phase I or stochastic

dominated by them. However, by construction, the Secdf is less robust than the AUecdf

method to limited availability of phase I data.

• Both the methods are more effective than the benchmark competitor based on profile

monitoring of pixel intensities’ Q-Q plots. The outperformance of the AUecdf and Secdf

methods are due to the fact that they do not need any estimation of an IC reference

distribution. The PFOSD approach represents a suitable and non-parametric alternative

whenever the process is characterized by natural dynamics that prevent the definition of a

reference distributional model.

6 Real Data Application

6.1 Experimental settings

The real case application that motivated the proposed methodology involves the in-situ monitor-

ing of the L-PBF process during the production of pure zinc samples. Pure zinc belongs to the

family of biodegradable materials, hence is suitable for the production of biomedical implants

like cardiovascular stents that dissolute inside the human body once fulfilled their duty. L-PBF

of pure zinc is particularly interesting thanks to the design complexity and high customization

enabled by the additive process, but zinc is highly prone to vaporization under laser irradiance,

which makes the production of defect-free parts a challenging task. Because of the intense and

hot metal vaporization generated as by-product of the process, in-situ and in-line thermal video

imaging could provide relevant information about the process stability. The real case study pre-

sented in this paper was previously introduced by Grasso et al. (2018) and Grasso and Colosimo

(2019). A prototype L-PBF system equipped with a fiber laser source with 1 kW maximum

power was used to produce cubic samples of size 5× 5× 5 mm exploiting different sets of process

parameters: three sets of process parameters that led to dense parts (density in the range 96.2 -
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98.7% measured with the Archimedes’s method) and two different sets of parameters that led to

OOC process states and severely defective parts. Both IC and OOC sets of process parameters

are summarized in Table 2. During the same process other samples were produced, but they are

not included into this analysis as they were outside the field of view of the thermal camera.

Process Process Sample Laser power Scan speed Hatch distance
state parameter set name P (W ) v(mm/s) hd(µm)

IC
1 S1, S8 110 475 160
2 S4 195 679 160
3 S7 195 475 160

OOC
4 S3 195 475 78
5 S5 195 270 160

Table 2: IC and OOC L-PBF process parameters (more details can be found in Grasso and
Colosimo, 2019)

In-situ thermal videos were acquired by means of a FLIR SC3000 camera with a long

infrared (IR) spectral range of 8−9µm. Thermal videos were acquired with a sampling frequency

fs = 50Hz and a frame size of 311 × 421 pixels. Figure 10 shows the in-situ sensing setup and

the manufactured samples.

Figure 10: a) Thermal camera setup for in-situ / in-line L-PBF process monitoring; b) samples
produced by varying the process parameters leading to either IC or OOC process states.

Thermal camera calibration for absolute temperature estimation is known to be a chal-

lenging task in L-PBF, since the material undergoes phase changes from powder to molten pool
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to solidified material with production of vaporized material as well (Colosimo and Grasso, 2020).

Such phase changes involve quick spatio-temporal variations of the material emissivity whose

accurate estimate is needed to convert the raw radiance measurement into absolute temperature

values. However, for in-situ monitoring purposes, the knowledge of the absolute temperature

is not strictly necessary, since the key issue is the variation of the thermal signature from one

frame to another, regardless of the measurement unit. Because of this, in the real case study

no IR camera calibration was applied. Moreover, the raw IR video frames were automatically

compressed as 8-bit grayscale images, with pixel intensity ranging from 0 (black/cold) to 254

(white/hot). This makes the proposed approach applicable to video image in the visible range

as well, without modifications.

The dataset consists of 14 IR videos gathered in 11 non-consecutive layers. During each

video, all six samples are sequentially scanned by the laser, and portions of videos corresponding

to each single sample where manually extracted to evaluate the performance of the proposed

approaches for different process states. In the real case study, the segmentation into foreground

and background via k-means clustering, led to the estimation of the ecdfs only for pixels with

intensity in the range {36, 37, . . . , 254}. The proposed methods were implemented by using the

video frames acquired during the production of the first monitored layer as phase I dataset,

whereas video frames acquired in all following monitored layers were used as phase II data.

6.2 Real case study results

Figure 11 shows the ecdf of foreground pixel intensities of all samples in different layers. Phase

I ecdfs (green curves) are superimposed to the Phase II ecdf curves in all following layers to

highlight the increasing entity of the OOC shifts (red dotted curves) as the process goes on.

Such increasing entity of OOC deviations is due to a gradually inflating heat accumulation in

the part as more and more layers are produced, which results into a more and more intense

material vaporization (large and hot plume emissions) when unproper process parameters are

applied. Under IC conditions, instead, the process’s plume emissions remain stable during the
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production of each layer and from one layer to another. In the last monitored layer (i.e., layer

11), the three most severe OOC shifts correspond to three frames where an exploding plume

emission took place (the one shown in Figure 1c). Such large or even exploding plume emission

is responsible for an excessive material evaporation and attenuation of the laser beam, with a

consequent unstable variation of the energy input to the material. Since a larger and hotter

plume emission results into a large number of high intensity pixels, the associated ecdf is first

order stochastic dominant over the ecdf of IC video frames where a smaller and more stable

plume is present.

Figures 12 and 13 show the AUecdf and Secdf control charts in all monitored layers.

Since different samples were sequentially scanned by the laser in each layer, vertical bands of dif-

ferent colors were used to distinguish the time windows during which each sample was produced.

More specifically, vertical pink bands indicate the time windows during which OOC samples (S3

and S5) were scanned by the laser. Vertical gray bands indicate the time windows during which

samples outside the monitored field of view of the camera were produced (they are not included

into the present analysis). Eventually, white bands indicate the time windows during which IC

samples were produced.

Table 3 summarizes the performances of the AUecdf and Secdf methods in terms of

percentage of video frames signalled as alarms in different layers and for different samples. In

this case, labelling each alarm as a true or false positive is difficult, since the plume emissions

exhibit sudden variations from one frame to another and the OOC state is characterized by

intermittent rather than permanent shifts. Because of this, the performance metrics used in

the simulation study are not directly applicable. The percentage of signaled alarms was used,

instead. The results summarized in Table 3 show that the AUecdf and Secdf methods signal

several alarms during the production of the OOC samples S3 and S5, but the main difference

between the two methods relies in their performances for IC samples. Indeed, the alarm rate of

the AUecdf method under IC conditions is consistent with the target type I error used for control

chart design. On the contrary, the Secdf method signals many alarms under IC conditions. A
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Figure 11: Ecdf of foreground pixel intensities of all samples in different layers. Phase I ecdfs
(green curves) are superimposed to the Phase II ecdf curves in all following layers. Blue solid
lines correspond to samples (1, 4, 7, 8) produced under IC conditions, whereas red dotted lines
correspond to samples (3, 5) produced under OOC conditions. The boldface black lines refer to
the stochastic limits used by the Secdf method.
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Figure 12: AUecdf control charts in all monitored layers (Phase I corresponds to the first layer,
Phase II corresponds to all other layers); vertical pink bands indicate the time windows during
which OOC samples (S3 and S5) were scanned by the laser; vertical gray bands indicate the time
windows during which samples outside the monitored field of view were produced; white bands
indicate the time windows during which IC samples were produced.
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Real Data: Sandwich ecdf control chart

Figure 13: Secdf control charts in all monitored layers (Phase I corresponds to the first layer,
Phase II corresponds to all other layers); vertical pink bands indicate the time windows during
which OOC samples (S3 and S5) were scanned by the laser; vertical gray bands indicate the time
windows during which samples outside the monitored field of view were produced; white bands
indicate the time windows during which IC samples were produced.
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better insight about this behavior is provided by Table 4, which separately shows the percentage

of crossing upper and lower control limits in the Secdf control chart, and Figure 13.

AUecdf Secdf
IC samples OOC samples IC samples OOC samples

Layer S1, S4, S7, S8 S3 S5 S1, S4, S7, S8 S3 S5
1 1.96 − − 1.96 − −
2 0.00 23.08 5.56 5.94 30.77 18.52
3 1.04 28.21 7.41 13.54 51.28 9.26
4 0.00 51.28 11.32 6.93 41.03 13.20
5 2.06 35.90 1.85 2.06 33.34 27.78
6 0.00 42.11 7.41 8.08 63.16 9.26
7 0.00 64.10 11.11 1.98 56.41 5.56
8 0.99 28.95 15.09 7.92 47.36 13.21
9 0.00 56.41 11.54 22.55 46.16 25.00
10 0.00 51.28 25.00 18.81 51.29 27.08
11 0.00 53.85 12.96 14.58 46.16 33.33

Table 3: Percentage of video frames signalled as alarms by the AUecdf and Secdf methods for
IC and OOC process conditions.

Crossing lower limit Crossing of upper limit
IC samples OOC samples IC samples OOC samples

Layer S1, S4, S7, S8 S3 S5 S1, S4, S7, S8 S3 S5
1 0.98 17.95 20.37 0.98 2.56 0.00
2 0.00 17.95 1.85 5.94 12.82 16.67
3 1.04 25.64 1.85 12.50 25.64 7.41
4 0.00 35.90 9.43 6.93 5.13 3.77
5 1.03 23.08 1.85 1.03 10.26 25.93
6 0.00 26.32 1.85 8.08 36.84 7.41
7 0.00 53.85 5.56 1.98 2.56 0.00
8 0.00 23.68 5.66 7.92 23.68 7.55
9 0.00 41.03 9.62 22.55 5.13 15.38
10 0.00 28.21 20.83 18.81 23.08 6.25
11 0.00 41.03 12.96 14.58 5.13 20.37

Table 4: Percentage of violations of lower and upper control limits in the Secdf method.

Table 4 and Figure 13 show that the high alarm rate of the Secdf method under IC

conditions is caused by violations of the upper control limit, i.e., video frames whose ecdfs are

first order stochastically dominated by ecdfs observed during phase I. A few examples of video
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frames belonging to this category are shown in Figure 14. In Figure 14, we observe that these

frames are characterized by almost no plume emission and they are signaled as alarms since such

low plume emission was not observed during the control chart design phase. In the real case

study presented here, a one-sided monitoring approach fits well the nature of the OOC signature

of plume emissions, which leads to a first order stochastic dominance over patterns deemed IC.

However, the Secdf entails a two-sided monitoring scheme that has a more general validity for

applications where anomalies of interest could be associated not only to first stochastic dominant

patterns but also patterns that are first order stochastically dominated by IC ecdfs.

Figure 14: Example of video frames that led to a violation of the upper control limit in the Secdf
control chart.

7 Concluding Remarks

The way in which statistical quality modelling and monitoring methods are designed and imple-

mented in the manufacturing industry shall adapt to a continuously evolving digitalized frame-

work. The sources of information are more and more in the form of real-time sensor signals, image

and video image data. High value-added applications move from mass production to highly cus-

tomized products, but also from simple shapes to complex and innovative geometries. In this

scenario, quality engineers shall face novel challenges and they need novel statistical methods.

The present study proposed a statistical process monitoring approach that aims to tackle some of

these challenges. First, the information enclosed in video image data, related to complex process

signature, is translated into a synthetic format through the estimation of the ecdf of pixel inten-
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sities. Then, the partial stochastic dominance methodology is used to determine whether newly

acquired video frames are IC or OOC. Being a non-parametric approach, it allows dealing with

any natural and, at the same time, dynamically changing process behavior. Both the simulation

analysis and the application to a real case study in additive manufacturing showed that this

method could outperform other techniques that, despite relying on a similar data synthesis step,

fail in dealing with naturally changing process signature. The proposed approach was presented

in form of two control charting schemes, a one-sided (AUecdf), suitable to detect anomalies and

OOC states, formed by an inflation of the process intensity and variability, and a more general

one (Secdf), based on a two-sided control chart. The AUecdf resulted to be also quite robust to

the number of training IC observations, which is a nice-to-have property in small-lot or even one-

of-a-kind frameworks, where little to no historical data are available, and few initial observations

during the present process shall be used for control chart design. The Secdf is less robust but

characterized by a wider validity, as is allows detecting OOC realizations associated not only to

first stochastic dominant patterns but also patterns that are first order stochastic dominated by

IC ecdfs. Thus, the choice of the most appropriate method is application-dependent, and, more

precisely, it depends on the nature of OOC events of interest. Future research directions may

be envisaged to tune the proposed methodology. In particular, rather than relying on a phase

I/phase II separation, so called “self-starting” methods can be used to combine training and

monitoring since the very beginning of the process, coping with the lack of historical data and

aiming to anticipate the detection of possible anomalies. Furthermore, apart from the area under

the ecdf concept proposed in this manuscript, other features like the foreground area, could be

involved in the modeling leading to multivariate monitoring. The proposed methods can also

be extended and tested in the presence of different video image data formats (e.g., calibrated

temperature measurements, color video images or multispectral images), not necessarily limited

to manufacturing applications.
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8 Supplementary material

The data set used in the real case study in Section 6 is available to download in Figshare at the

url: https://doi.org/10.6084/m9.figshare.14829033
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Appendix

Figures 15 to 18 show the edcf of pixel intensities in phase I and phase II video frames included

into the simulation study presented in Section 5, for different OOC scenarios and different severity

levels.

Figure 15: Ecdfs of phase I and phase II video frames in OOC scenario 1 included in the simulated
study (different panels refer to different severity levels).
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Figure 16: Ecdfs of phase I and phase II video frames in OOC scenario 2 included in the simulated
study (different panels refer to different severity levels).
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Figure 17: Ecdfs of phase I and phase II video frames in OOC scenario 3 included in the simulated
study (different panels refer to different severity levels).
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Figure 18: Ecdfs of phase I and phase II video frames in OOC scenario 4 included in the simulated
study (different panels refer to different severity levels).
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