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Abstract

Large Eddy Simulation (LES) has become an attractive simulation method even for
technical processes and it usually provides space and time resolved fluctuations of
a significant portion of the spectrum. However, in contrast to a RANS simulation
an accurate LES requires the definition of suitable initial and boundary conditions,
which includes turbulent structures with physically sound spatial and temporal corre-
lations. Such turbulent structures are usually generated artificially at the boundary.
Three different algorithms for generating turbulent fluctuations are evaluated in the
present work. The investigated methods are Filtered noise (Klein et al. Klein et al.
[2003]), Diffused noise (Kempf et al. Kempf et al. [2005]) and an Inverse Fourier ap-
proach (Billson Billson et al. [2003], Davidson Davidson [2007a]). These techniques
were developed for generating inflow data for LES and have already been used in
published research Bordas et al. [2012], Bini and Jones [2008], Kuenne et al. [2012],
Enjalbert et al. [2012], Duwig [2011], Rhea et al. [2009], Olbricht et al. [2012], Pettit
et al. [2011], Fru et al. [2011], Stein et al. [2011], Piscaglia et al. [2013], e.g. for inves-
tigating turbulent combustion processes. In the present work the turbulent statistics
i.e. energy spectra and velocity correlations as well as derived quantities such as
turbulent kinetic energy and subgrid scale viscosity are investigated in more detail
in a comparative fashion for the generated turbulent velocity fields. As a simple
test case, the decay of turbulence in a cubical box, is considered here to provide
information on the initially generated turbulence as well as its temporal evolution.
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The results are analyzed in detail and are compared to experimental data. Tur-
bulence fluctuations generated by Filtered noise and Diffused noise lead to similar
results. The resulting energy spectra and velocity correlations agree generally well
with experimental data despite some discrepancies at very early times after initial-
ization. The Inverse Fourier approach yielded good agreement at all times, but at
increased computational cost. In addition, the implementation of Filtered noise and
Diffused noise might be easier for most cases of practical interest. In particular, the
Diffused noise approach can be used for the generation of inhomogeneous turbulence
on arbitrary grids.

Key words: Inlet boundary, Turbulence Generation, LES, Turbulent boundary
condition

Nomenclature

Cs Smagorinsky constant

CFD Computational Fluid Dynamics

Co Courant number

D diffusion coefficient

DN Diffused Noise

D dissipation of turbulent kinetic energy

E specific kinetic energy

f longitudinal velocity correlation

FN Filtered noise

FT Fourier transform

g transverse velocity correlation

HIT homogeneous isotropic turbulence

IF Inverse Fourier approach

k turbulent kinetic energy
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Lint longitudinal integral length scale

M size of active grid

Mi number of elements of simulation domain

NRC numerical reference case

P production of turbulent kinetic energy

r separation distance between correlated points

R auto-correlation function

R random number

RANS Reynolds averaged Navier-Stokes

Si,j strain rate

t time

T rate of transfer of turbulent kinetic energy

ui velocity

urms root-mean-square velocity

δi,j Kronecker delta

∆ filter width

ε dissipation rate

φ phase of Fourier mode

κj wave number vector

κe wave number of most energetic scales

κkol wave number of most dissipative scales

ν kinematic viscosity

σi direction of Fourier mode
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τ integral time scale

τi,j stress tensor

η Kolmogorov length scale

〈〉 time average

1. Introduction

Turbulent fluid motion plays a central role in most flow configurations of technical
interest and it introduces special requirements for their simulation. One possibility
to capture turbulent fluctuations is the use of Large Eddy Simulation (LES) provid-
ing a partially space and time resolved solution at moderate computational effort.
Depending on the grid and time resolution, a significant portion of the turbulent
spectrum is resolved and this (also considering the coupling of turbulence with other
processes such as combustion) usually leads to more predictive simulations when
compared to RANS approaches.

A crucial element of any numerical simulation is the definition of proper bound-
ary conditions. The suitability of the prescribed physical quantities at the domain
boundaries is essential for getting accurate results. Since in LES turbulent structures
are resolved both in space and time, the velocity field at the inlet has to contain space
and time dependent fluctuations superimposed on the mean velocity. These fluctu-
ations have to be physically meaningful making the definition of inflow boundary
conditions a challenging task. The spectral content of the velocity signal and the
spatial and temporal correlation of the eddies are two characteristic properties, which
have to be satisfied. Different techniques for generating turbulent data at the inflow
plane of the simulation domain were developed to fulfill the requirements of turbulent
inflow conditions Klein et al. [2003], Kempf et al. [2005], Davidson [2007a], Huang
et al. [2010], Jarrin et al. [2006], Montomoli and Eastwood [2011], Baba-Ahmadi and
Tabor [2009]. Performing an auxiliary simulation is one possible way of defining
suitable inflow turbulence. The simulation domain is extended upstream from the
inlet to allow the turbulence to develop naturally. The additional computational ef-
fort, which increases the cost and time of the whole simulation is the main drawback
of this procedure Kempf et al. [2005]. Another possibility is to artificially gener-
ate turbulent fluctuations. In this context one way is to apply an inverse Fourier
transform on a predefined energy spectrum function Lee et al. [1992], Sohm [2007].
The velocity can then be determined from the calculated Fourier coefficients. This
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algorithm is used for validating the numerical setup in Sec. 4.1. The method gen-
erates velocity fields which satisfy a desired energy spectrum and continuity, but
the algorithm is difficult to implement, particularly for anisotropic turbulence Klein
et al. [2003] or arbitrary grids. A comparative study of different inflow boundary
conditions including recycling and rescaling as well as precursor-like approaches was
presented by Pronk and Hulshoff Pronk and Hulshoff [2012]. The algorithms were
applied and evaluated for a boundary layer flow on a flat plate. A detailed review
on different techniques for the generation of turbulence at inlet boundaries was pre-
sented by Tabor and Baba-Ahmadi Tabor and Baba-Ahmadi [2010].

For the present work three different methods for generating artificial turbulence
- proposed by Klein et al. Klein et al. [2003], Kempf et al. Kempf et al. [2005] as
well as Billson Billson et al. [2003] and Davidson Davidson [2007a] - are investi-
gated in more detail. The approach of Klein et al. Klein et al. [2003] is based on
digital filtering of random data and is referred to as Filtered noise (FN). Kempf et
al. Kempf et al. [2005] diffuse random noise to obtain correlated turbulent structures.
Hence the algorithm is denoted Diffused noise (DN) in the following. The turbulence
generation method proposed by Billson and Davidson is based on random Fourier
modes of a prescribed energy spectrum. The algorithm is designated Inverse Fourier
approach (IF) in the remainder of this text. These algorithms were developed for
generating turbulent inflow data and have widely been used in research on different
issues ranging from flame modeling in gas turbines to turbulent jet flows. Several
examples of their application are found in Bordas et al. [2012], Bini and Jones [2008],
Kuenne et al. [2012], Enjalbert et al. [2012], Duwig [2011], Rhea et al. [2009], Ol-
bricht et al. [2012], Pettit et al. [2011], Fru et al. [2011], Stein et al. [2011], Piscaglia
et al. [2013]. However the characteristics of the generated turbulence has not been
investigated in detail yet. Knowing the properties of the turbulent inflow data, such
as spectral content, can improve the understanding of problems, which might occur
in the simulation. E.g. the dissipation of turbulent kinetic energy strongly depends
on the velocity gradients of the smallest resolved length scales. If an artificially gen-
erated turbulence field does not contain eddies at these scales the dissipation will be
underpredicted considerably. Thus the aim of the present work is to investigate the
quality of the three algorithms with respect to the following issues:

• Does the generated velocity field fully represent the characteristic energy spec-
trum for homogeneous isotropic turbulence (HIT)?

• Does the generated velocity field reproduce physically correct longitudinal and
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transverse velocity correlations?

• How do the turbulent properties develop in time during the decay of turbulence
in a box?

• Which characteristics of the different algorithms have to be considered for their
application?

2. Fundamentals

2.1. Simulation theory

For the present analysis it suffices to consider constant property flows at low
Mach numbers. Then, the conservation equations for mass and momentum reduce
to Versteeg and Malalasekera [2007]

∂ui
∂xi

= 0 (1)

and

∂uj
∂t

+
∂uiuj
∂xi

= −1

ρ

∂p

∂xj
+

∂

∂xj

(
ν
∂ui
∂xj

)
(2)

where u, p, ρ and ν are velocity, pressure, density and kinematic viscosity, respec-
tively. For the present investigation LES are performed where these equations are
spatially filtered in order to separate larger and smaller length scales. Those smaller
length scales, which are not resolved directly have to be considered by subgrid scale
closure. In this context the standard Smagorinsky model is one of the most frequently
used approaches. It is based on Boussinesq’s hypothesis of the eddy viscosity, which
describes a proportionality between Reynolds stresses and the strain rate of the re-
solved velocity field Versteeg and Malalasekera [2007]. In principle the idea of this
model is to artificially increase the laminar viscosity ν by the turbulent (subgrid
scale) viscosity νsgs to an effective viscosity νeff, which increases the friction on the
resolved scales. For modeling the subgrid scale viscosity the approach of Prandtl’s
mixing length model is used leading to the formulation Fröhlich [2006]:

νsgs = (Cs∆)2|S| = (Cs∆)2

√
2Si,jSi,j. (3)
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where Si,j indicates the filtered, resolved part of the shear rate which reads for
incompressible flow

Si,j =
1

2

(
∂ui
∂xj

+
∂uj
∂xi

)
. (4)

Cs denotes the Smagorinsky model constant. It has to be defined individually
for the considered problem with respect to the physical and numerical setup of the
simulation in order to induce the correct amount of additional dissipation. It is
important to note that since we consider incompressible flow, a solenoidal velocity
field is enforced and no compressible fluctuations are accounted for, which is a valid
assumption for the case considered below.

2.2. Inflow Generation

2.2.1. Filtered noise - FN

As discussed in the introduction resolving turbulent eddy structures spatially and
temporally requires inflow boundary conditions, which fulfill turbulent characteris-
tics. The first algorithm considered for the generation of turbulent velocity fields
was introduced by Klein et al. Klein et al. [2003] and is based on digital filtering of
random noise. This is expressed as

um =
N∑

n=−N

bnRm+n (5)

where the filter coefficients bn depend on a prescribed autocorrelation function. um is
the signal obtained from filtering the random numbers Rm+n. The filter coefficients
can be derived from

〈umum+k〉
〈umum〉

=

(
N∑

j=−N+k

bjbj−k

/
N∑

j=−n

b2
j

)
= R. (6)

The autocorrelation function R used for defining the filter coefficients is estimated
as Batchelor [1953]

R = exp

(
− πr2

4L2
int

)
. (7)
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where r and Lint are the distance between correlated points and the integral length
scale, respectively. This procedure can easily be extended to three-dimensional space
by combining three one-dimensional filters as bi,j,k = bi · bj · bk. The such obtained
signal is finally scaled according to Lund et al. Lund et al. [1998] to obtain velocity
fluctuations matching a pre-defined Reynolds stress tensor. For generating three-
dimensional turbulence fields the following steps have to be performed:

• Initialize one random field per velocity component. In each direction they have
to contain Mi + 2Ni elements where Mi and Ni are the number of elements
of the computational mesh and the filter width in each coordinate direction,
respectively. It is recommended to choose the filter width such that we cap-
ture twice the desired integral length scale. This ensures sufficient filtering at
moderate computational cost.

• After determining the filter coefficients bn each random field has to be filtered
according to Kempf et al. [2012]

Rfil(i,j,k) =
nx∑

i′=−nx

bx(i
′,j′,k′)

ny∑
j′=−ny

by(i
′,j′,k′)

nz∑
k′=−nz

bz(i
′,j′,k′)R(i+ i′,j + j′,k + k′). (8)

• Normalize the filtered signal such that the resultant field has zero mean and a
variance of 1.

• Apply Lund’s transformation, which reads:

ui = ūi + ai,jRfil
j , (9)

with

ai,j =

 〈u′1u′1〉1/2 0 0
〈u′2u′1〉/a11 (〈u′2u′2〉 − a2

21)1/2 0
〈u′3u′1〉/a11 (〈u′3u′2〉 − a21a31)/a22 (〈u′3u′3〉 − a2

31 − a32)1/2

 . (10)

• The scaled fluctuations can finally be copied to the simulation domain.
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Since the actual scope of FN is to produce inflow data, Klein et al. Klein et al. [2003]
presented a modified algorithm creating two-dimensional slices of velocity fields at
each time step which were also temporally correlated.

2.2.2. Diffused noise - DN

In a similar way the algorithm proposed by Kempf et al. Kempf et al. [2005]
creates fluctuations at a prescribed length scale and rms-level. Here, the filtering
procedure is simply replaced by a diffusion process according to

∂Ri

∂t
= D

∂2Ri

∂x2
j

(11)

which yields growing integral length scales, similarly as obtained from a filtering op-
eration. The diffusion time tdif can be derived from

Lint ≈
√

2πDtdif (12)

depending on the desired integral length scale with the diffusion coefficient D. Kempf
et al. Kempf et al. [2005] found that the velocity correlations created by diffusion
of random noise satisfy the model correlation in Eq. (7). Again Lund’s transforma-
tion Lund et al. [1998] is finally applied in order to capture the desired Reynolds
stress tensor. In contrast to FN this algorithm is not limited to equidistant meshes
and can be applied to arbitrary geometries. Hence the diffusion process can directly
be performed on any computational mesh.

2.2.3. Inverse Fourier approach - IF

Billson Billson et al. [2003] and Davidson Davidson [2007a] presented another
algorithm for generating turbulent velocity fields, which is principally based on the
work of Kraichnan Kraichnan [1970]. Here, the velocity signal is obtained from a
specified number N of random Fourier modes (typically 150 to 600) and can be cal-
culated as

u′i(xj) = 2
N∑
n=1

ûncos(κnj xj + ψn)σni , (13)

where ûn, ψn and σni are the amplitude, phase and direction of the n-th Fourier
mode, respectively. The wave number vector κnj describes the size of an eddy in
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wave number space. The steps necessary for the definition of accurate fluctuations
are summarized as follows:

• The random angles ϕn, θn, αn and ψn have to be defined for each Fourier mode
n.

• The highest wave number has to be determined according to the mesh reso-
lution as κmax = π/∆x. The lowest wave number depends on the wave num-
ber of the most energetic length scales κe as κmin = κe/p with p > 1 and
κe = 9πA/(55Lint) where A = 1.4256 is a constant. The wave number space
ranging from κmin to κmax can then be divided into N − 1 modes of the same
size ∆κ.

• For each mode n the wave number vector κnj has to be defined according to
Fig. 1. The magnitude |κnj | is determined by |κnj | = κmin + (n − 1) · ∆κ. In
order to ensure continuity the unit vector σi has to be orthogonal to κj.

• Now the amplitudes û can be determined for each Fourier mode as

ûn =
√
E(|κnj |) ·∆κ, (14)

according to a modified von-Kármán spectrum that is given by

E(|κj|) =
A · u2

rms

κe

(
|κj |
κe

)4

[
1 +

(
|κj |
κe

)2
]17/6

· e
−2

(
|κj |
κkol

)2

. (15)

The wave numbers κe for most energetic and κkol for most dissipative eddies as
well as the root-mean-square velocity urms have to be prescribed according to
the desired turbulent statistics. Evaluating Eq. (15) with κnj for each Fourier
mode gives the corresponding spectral energy E.

• For every face of the inlet patch ûn, κnj , ψn and σni can finally be inserted into
Eq. (13) leading to the velocity fluctuation u′i(xj).

The Fourier series in Eq. (13) has to be applied at each time step where temporal
correlation is created applying a Billson filter on two subsequent time steps Davidson
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[2007a]. Moreover damping functions for free stream turbulence and near wall treat-
ment are proposed by Davidson Davidson [2007b]. Since for the present investigation
only turbulence generation in a cubical box is considered both the Billson filter and
the damping functions do not apply here. Instead the procedure is applied for every
mesh cell to generate a three dimensional velocity field.

2.2.4. Comparison of the proposed inflow generation methods

The three presented inflow generation methods differ in their basic idea of creating
turbulent structures. Hence the parameters to be prescribed and the limitations of
the algorithms differ as well. Some comments on the properties of the different
methods should be given at this point. Each algorithm requires the turbulent length
scale Lint (in IF in terms of the corresponding wave number) and the intensity of
the fluctuations. For FN and DN these values can be chosen for each coordinate
direction independently allowing for the generation of anisotropic turbulence. For
IF the Kolmogorov length scale has to be prescribed in addition. It is determined
from the viscosity of the fluid and the dissipation rate ε. The latter can easily be
estimated as ε ≈ u3

rms/Lint Pope [2000], so that actually no additional information is
required. Damping of the turbulent fluctuations in the vicinity of solid boundaries
or in the far field of a free stream with appropriate blending functions is proposed by
Davidson Davidson [2007b]. This procedure can easily be applied to the FN and DN
algorithm, too. When using FN or IF the fluctuations can be generated at each time
step on the fly. For the diffusion of the random noise, as it is presented in Kempf
et al. [2005], at first a three-dimensional fluctuation field has to be generated. By
applying Taylor’s hypothesis single slices of this field can then be copied to the inflow
plane enabling an on-the-fly simulation as well.

3. Numerical setup

The test case of decaying homogeneous isotropic turbulence is a popular choice
for investigating the quality of newly developed turbulence models or simulation
techniques, used e.g. in Moin et al. [1991], Fureby et al. [1997], Nicoud and Ducros
[1999], Hasse et al. [2009], Nicoud et al. [2011]. Here, the temporal evolution of
HIT at Reλ = 71.6 is studied, where Reλ = urms·λ

ν
is the Taylor Reynolds number

based on the Taylor micro scale λ Pope [2000]. The simple geometry and the low
Reynolds number make it possible to resolve even the smallest scales at moderate
computational cost Sohm [2007]. Here, we use this test case for investigating tur-
bulent characteristics, which are obtained using the different turbulence generators.
We evaluate the numerical results from the three different generators by compar-
ing them to the experimental data of Comte-Bellot and Corrsin Comte-Bellot and
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Corrsin [1971]. They measured turbulent statistics at three different downstream
positions in a wind tunnel. The initial conditions for the numerical simulations were
set according to the first downstream position in the experiments. Hence, by ap-
plying Taylor’s hypothesis the three locations correspond to dimensionless times of
t̃ = 0, t̃ = 56 and t̃ = 129 where t̃ = U0·t

M
with U0 = 10 m/s and M = 0.0508 m,

where M is the size of the active grid, which was used for generating a well de-
fined turbulence field in the experiments. In Tab. 1 the initial data for generating
the three-dimensional turbulence fields are listed. The setup using homogeneous
isotropic turbulence shall be understood as a first step towards our understanding of
the effect of the turbulence generation methods on the further evolution of the flow
field. Additional test cases (e.g. shear flows and arbitrary grids) should complement
the present study in the future and should provide a corroboration or guidelines for
desired modifications of the findings presented in Section 4.

The cubical simulation domain, which is initialized with turbulent fluctuations
with a zero mean velocity has an edge length of L = 10 · M = 0.508 m. Three
different equidistant computational meshes were created containing 643, 1283 and
2563 cells, respectively. These meshes will be referred to as grid I, grid II and grid
III in the following. Cyclic boundary conditions were applied at each boundary
plane of the cube. Subgrid scale closure is achieved using a standard Smagorinsky
model. According to Sohm [2007] the CFL-criterion for determining the time step
size is Co ≤ 0.1. The grid and time spacing for the different computational meshes
is shown in Tab. 2. The three considered inflow generators (FN, DN, IF) are used
for initializing three-dimensional HIT fields. A validation of the overall numerical
setup is accomplished by using a full, inverse Fourier transform of a von-Kármán-Pao
model spectrum to initialize the velocity fields. It is denoted as numerical reference
case (NRC) in the following. This procedure is similar to the IF approach presented
in Sec. 2.2.3. The main difference is found in the representation of the Fourier series,
which reads:

u′i(xj) = 2
∑
κj

û(κj)σi(κj)e
iκj ·xj . (16)

By using IF a certain number N of wave number vectors with random spatial orien-
tation in wave number space is defined. For the numerical reference case one wave
number vector for each cell of the computational mesh is defined in order to contain
all possible wave number vectors existing for the grid. The computational effort of
the latter method increases strongly with mesh resolution due to performing a sum-
mation for each cell over the total number of cells. Applying a Fast Fourier transform
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distinctly speeds up the calculation limiting the procedure to meshes containing 2n

cells. This makes the algorithm difficult to apply for arbitrary boundary patches.
The suitability of the proposed algorithm to create velocity fields accurately repre-
senting a specific energy spectrum is pointed out in Sec. 4.1. The IF approach is
a simplification of this algorithm, which can be applied to boundary patches more
easily.

Air at standard conditions is considered in the present case. A test of different
discretization schemes revealed no significant differences between first and second
order time discretization for the present setup as can be seen in Fig. 2. Here, we
used a first order Euler scheme and a second order Crank-Nicolson (CN) scheme
that yielded very similar results in terms of the decay of the energy spectrum even
for the highest wave numbers. Since the computational effort is considerably lower
for the Euler scheme when compared to the CN scheme and since the additional
numerical dissipation of the Euler scheme does not seem to affect the small scales
in our computations, a first order Euler implicit scheme is used for time integration
whereas a second order central differencing scheme is used in space.

The OpenFOAM® toolbox version 2.1 was used for performing the different sim-
ulations. The inflow generators were integrated into the OpenFOAM® framework by
the research groups from Freiberg (FN), Stuttgart (DN) and Milan (IF). The Navier-
Stokes equations are solved using pisoFoam, which is suitable for the simulation of
transient, incompressible flow and provides incorporation of turbulence modeling.

4. Results

4.1. Numerical reference case - NRC

Figure 3 depicts the energy spectra obtained from the flow field initialized by an
inverse Fourier transform. Observing the graphs at t̃ = 0 it is seen that the model
spectrum of the initialized velocity field matches the experimental data well. On
every computational mesh simulations using different Smagorinsky constants were
performed. Best agreement comparing numerical and experimental data is obtained
choosing Cs = 0.17 on grid I and Cs = 0.14 on grid II and grid III and these values
were used for all subsequent calculations. It has to be noted that this procedure
to determine Cs is meant to ensure the correct decay, which is governed both by
physical and numerical dissipation. However, the obtained Smagorinsky constants
are well within the usually applied range.
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The decay of the turbulent kinetic energy k is illustrated in Fig. 4. The resolved
kinetic energy kres and the total kinetic energy ktot summed up from kres and subgrid
scale energy ksgs are plotted against time. The resolved part can simply be evaluated
by integrating the energy spectra over all wave numbers at every time step. The
subgrid scale kinetic energy is estimated by

ksgs =
2ck
ce

∆2|Si,j|2. (17)

from within the Smagorinsky model in OpenFOAM® with ck = 0.094 on grid I and
ck = 0.0727 on grid II and grid III as well as ce = 1.0 for all meshes. The mesh
depending values of ck are directly correlated to the Smagorinsky constant Cs which
was adapted as discussed before. The diagram on the left hand side depicts an ob-
vious lack in kinetic energy on the resolved scales for the first time step compared
to experiments. The reason is found in the wide range of length scales, which are
not resolved on grid I. The Smagorinsky model does not provide a sufficient amount
of additional subgrid scale energy leading to an underestimation of the total kinetic
energy. For grid II and grid III the resolved energy increases and the subgrid scale
kinetic energy decreases compared to grid I, as can be seen from the two simulation
lines increasingly approaching each other with increasing grid resolution. The exper-
imental data at t̃ = 0 are matched more closely with increased grid resolution. For all
computational meshes considered the kinetic energy converges to the experimental
data for later times. It is pointed out that the dissipation rate is underestimated since
the kinetic energy was underpredicted at the beginning. Especially in the first part of
the simulation the kinetic energy decreases too slowly. Even setting Cs = 0.25 does
not significantly increase the dissipation of k whereas the specific energy at small
length scales is strongly underpredicted at this Cs value. It has to be kept in mind
that it is difficult to accurately predict the correct decay rate with the employed
rather simple standard Smagorinsky model used here.

Figure 5 shows the longitudinal correlation functions for each computational
mesh. They are plotted at the same instants in time as the energy spectra. For
small r/M the correlation functions are overestimated at t̃ = 0. On grid I the
characteristic behavior of growing velocity correlations is well captured although not
matching the experimental data perfectly. It has to be considered that the integral
length scales are not sufficiently resolved on grid I. Hence the results are only taken
for estimating the grid dependency. For grid II and grid III it is obvious, that the lon-
gitudinal correlation does not grow at the same level as observed in the experiments.
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These results are similar to those presented in Sohm [2007]. Comparing numerical
and experimental results reveals underpredicted growth rates but basically physical
behavior can be observed. Similar results are obtained for transverse correlations
(not shown). Overall, the employed LES solver gives good results for the reference
case using a von-Kármán-Pao model spectrum as initial condition and this is the ba-
sis for the following comparisons of the different turbulence generation mechanisms.

4.2. Filtered noise and Diffused noise

For initializing the velocity field by means of FN and DN the only input parame-
ters to be defined are the integral length scale Lint and the Reynolds stresses 〈u′iu′j〉.
The normal stresses are defined as 〈u′2i 〉 = u2

rms ≈ 0.05 m2/s2. The anisotropic part
of the correlation tensor is set to zero. The integral length scale for each direction is
defined as Lint = 0.024 m.

In Fig. 6 the energy spectra are plotted for both inflow generators and for each
grid. The energy spectra of the initialized HIT fields (at t̃ = 0) match well with
the experiments for the largest scales. In the range of the integral length scales and
in the low wave-number range of the inertial subrange too much kinetic energy is
induced by both inflow generation methods. In the high wave-number range of the
inertial subrange as well as in the dissipation range (if it is resolved) the experimental
spectrum is strongly underpredicted. In addition, oscillations can be observed in the
high wave number range for the initial conditions generated by the FN approach.
They arise from (1) a rather coarse resolution of the filter kernel and (2) the arbitrary
boundary conditions used, i.e. periodic boundary conditions are not enforced. In
particular the latter favours the occurence of the artificial oscillations. Alleviating
both deficiencies would significantly increase the computational cost and complexity.
Moreover, it has to be considered that periodicity does not apply for most applica-
tions of practical interest, e.g. chambers with walls. In addition, Fig. 6 demonstrates
that the oscillations at the high wavenumber end do not unduly influence the subse-
quent evolution of the turbulent spectrum, and the procedure suggested here provides
a good compromise between an accurate representation of the initial conditions, a
more universal applicability and the computational cost. It is noted that FN and
DN do only provide turbulence with an energy overprediction at the integral length
scales whereas almost no small scale eddies are generated. This discrepancy vanishes
during the decay of turbulence. A transition from artificially generated turbulence to
physical turbulence in the context of HIT can be detected investigating the spectral
content of the flow field at later simulation times. For all cases considered in Fig. 6

15



the shape of the energy spectra becomes closer to physically reasonable profiles at
the dimensionless times t̃ = 56 and t̃ = 129. The limitation to only create large scale
turbulence becomes more significant with increasing mesh resolution because smaller
scales could actually be resolved on finer meshes. Comparing the dimensionless times
t̃ = 0 and t̃ = 56 it is seen that the kinetic energy increases at the smallest scales
for increasing time. This can be explained by means of the balance equation for the
specific turbulent kinetic energy Pope [2000]:

∂E(κ, t)

∂t
= P(κ, t)− ∂T (κ,t)

∂κ
−D(κ, t). (18)

P(κ, t), T (κ,t) and D(κ, t) indicate production, transport and dissipation rate of the
kinetic energy, respectively. Due to the energy overprediction at the large scales the
amount of energy transported from the larger scales is greater than the amount of
energy transported to the smaller scales. Hence the gradient of the transport term
becomes negative in the range of the smaller resolved length scales. Considering the
inertial subrange, where the dissipation term can be neglected, the right hand side of
Eq. (18) becomes positive then. During the process of eddy decay the velocity field
reaches a physical state containing eddies from the largest to the smallest resolvable
scales. Since no additional kinetic energy is produced the excess at the large scales
is removed and the small scale eddies transport energy to even smaller scales, which
makes the right hand side of Eq. (18) negative in the inertial subrange. Hence the
specific energy decreases as can be seen comparing times t̃ = 56 and t̃ = 129 in
Fig. 6. As similar observation can be made on grid III where the dissipation range is
partially resolved. It is argued that the transport term exceeds the dissipation term
even in the dissipation range of the energy spectrum until reaching the equilibrium
state.

In Fig. 7 the temporal evolution of the turbulent viscosity is depicted. It is seen
that it strongly depends on the grid resolution. As discussed before the initialized
velocity fields contain eddies up to the integral length scales whereas an obvious lack
of kinetic energy can be found at the finest resolved scales (Fig. 6). This effect be-
comes more significant for increasing mesh resolution. Since there are no small scale
eddies for FN and DN the velocity gradients are smaller than for the reference case
(see also Fig. 10). Considering Eq. (3) this results in a smaller turbulent viscosity.
Through decay of large scale eddies smaller ones are generated resulting in increasing
shear rates and hence in an increasing turbulent viscosity peaking at dimensionless
times t̃ = 50 and t̃ = 60 on grids II and III, respectively. After reaching the max-
imum the subgrid scale viscosity decreases approximately at the same level as seen
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for the reference case. The time needed for converging to the reference case increases
with increasing grid resolution since the characteristic energy cascade has to develop
further down to smaller scales. It is concluded that the time needed for achieving a
physically correct velocity field in terms of fully resolved energy spectrum increases
with increasing grid resolution.

The subgrid scale viscosity affects the rate of dissipation of the turbulent kinetic
energy. The evolution of k in time for the three computational meshes is shown in
Fig. 8. The results for the two inflow generators are compared to the experimental
data and to the results of the numerical reference case. The initialized kinetic energy
is overpredicted compared to the experimental data and to results from NRC for grid
I. With increasing mesh resolution the overprediction vanishes. For grid II and grid
III the kinetic energy of the initialized velocity fields lies in the range of the experi-
mental data and the data from the reference case. It is shown that the kinetic energy
is mostly induced at the large scales for FN and DN (Fig. 6). Thus the resolved part
of k is nearly constant on grid I, grid II and grid III. The additional subgrid scale
kinetic energy, which rises with increasing mesh spacing leads to an overprediction of
ktot on grid I (Fig. 8). For the NRC the resolved part of k decreases with increasing
mesh spacing. The algorithm provides the distribution of the total kinetic energy on
all length scales of the prescribed energy spectrum. The kinetic energy of the smaller
length scales, which cannot be resolved on the computational mesh directly (ksgs) is
then missing in the initialized HIT field. The gap has to be closed by the LES model.
For all three meshes it is observed that there is a significant loss in kinetic energy at
the first time steps, which leads to an underprediction of the kinetic energy. Since
the initialized velocity fields are not divergence free, continuity is enforced by the
pressure correction of the numerical solver in the first time steps, which yields the
loss in kinetic energy. For the present case this loss is in the range of 35% of the
total kinetic energy at t̃ = 0 and is independent of grid resolution. This appears
high but it is pointed out that ktot converges to the level of the reference case for
grids I, II and III. The initially low turbulent viscosity leads to a low dissipation of
ktot particularly on finer meshes. Because of that, the strong energy loss at the first
time steps can be compensated and the turbulent kinetic energy is in the range of
the reference case after reaching the equilibrium state.

The longitudinal and transverse correlations of the initialized HIT fields are plot-
ted in Fig. 9. It can be seen that the results are similar for the longitudinal and
transverse correlation for both FN and DN. The longitudinal correlations are strongly
overpredicted for short distances (approximately up to r/M = Lint/M) and under-
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predicted for longer distances. Observing the energy spectra it was confirmed that
both approaches do only provide large scale turbulence. In the three-dimensional
flow fields, like shown in Fig. 10, these large structures can be identified as uni-
formly colored regions. In this figure one of the three velocity components of the
initialized flow fields is shown for DN (left), FN (middle) and the NRC (right). It
is seen that each structure does have an almost uniform velocity for FN and DN.
Hence, the correlation is strong in the range up to the integral length scale. In the
HIT field investigated experimentally also small structures are contained in the flow
field. These structures might dampen out the correlation in the near field. Since
they are equally distributed in the domain, the correlation in the far field is stronger
for the experimental data than for FN and DN. Since the neighboring structures
differ relatively strongly for FN and DN their velocity correlation is underpredicted
for r/M > Lint/M . The transverse correlations only match the experiments at large
r/M , but they are overpredicted in the near field. This can be explained similarly
to the longitudinal correlation. The dashed lines in Fig. 9 indicate the model cor-
relation, which is used by the FN and DN generators. It is pointed out that the
implemented algorithms for FN and DN provide velocity fields at the desired cor-
relation, which however does not match the expected correlation for homogeneous
isotropic turbulence. In Fig. 11 the temporal evolution of the different correlations is
seen for the different grids. Compared to the NRC slight differences in the temporal
behavior of the correlation can be revealed. A uniform growth across the considered
range would be expected, as illustrated by the experimental data points. However
for FN and DN it is observed that the correlation reduces for short distances at the
first time interval, which results in a better fit with experimental data. The small
growth rates comparing t̃ = 56 and t̃ = 129 were also observed for the reference case
and seem to be no result of turbulence generation per se but of the overall numerical
model.

4.3. Inverse Fourier approach

In this section, the results of the IF algorithm will be presented. Since the basic
theory is the same, the temporal evolution of the energy spectra for IF is compara-
ble to those of the NRC. The experimental data are matched well at all instants of
time (Fig. 12). Only slight fluctuations occur for the smallest scales in the initial
spectrum, which however disappear during decay.

The temporal evolution of the total kinetic energy fits the data of the NRC well.
Only for grid III a slight underprediction is observed (Fig. 13). Similar observa-
tions are made for the subgrid scale viscosity. Indeed the experimental data are not
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matched exactly but the time decay in the simulation confirms the expected results
in principle. Comparing the energy spectra and the total kinetic energy for FN and
DN as well as the Fourier based approaches it can be argued that the differences
become negligible during decay. It is found out that k differs by no more than 20
percent comparing the inflow generators to the NRC. This seems to be relatively
high but considering e.g. a turbulence intensity of ten percent for a nozzle outlet, an
overprediction of 20 percent in the fluctuations would lead to an overprediction of
about two percent in the turbulence intensity. Since the turbulence intensity is only
an estimation, there is a small uncertainty in determining the exact boundary condi-
tions, which can only be overcome with measurements that provide exact values for
the fluctuations at the nozzle exit. The energy spectra for the inflow generators and
the NRC at t̃ ≈ 190 are depicted in Fig. 14. It is obvious that the final velocity fields
have approximately the same spectral content. The underprediction in the low wave
number range and the overprediction in the high wave number range for FN and
DN probably occur due to loss in kinetic energy and lower subgrid scale dissipation
during the first time steps respectively.

In Fig. 15 the longitudinal velocity correlations are shown. In general the same
observations are made as for the NRC. The correlations of the initialized HIT fields
do not match the experimental data exactly but especially for the finer grid res-
olutions the general temporal evolution is well captured and again similar to the
reference case. Similar conclusions can be drawn for the transverse correlation func-
tions, which are not depicted here.

4.4. Discussion

The characteristics of the generated velocity fields were investigated and two
different types were found. The first type contains turbulent structures at a given
length scale where only the integral scales are included (FN, DN). Contrary to that
the Fourier based approaches (NRC, IF) are able to generate fluctuations for all
length scales of a specific energy spectrum. Despite the initial deficiencies for FN and
DN, it could be shown that the spectral content of the flow fields becomes physical
during the decay of turbulent structures, see Figs. 6 and 14. In the authors’ opinion
the time needed for converging to an equilibrium state cannot simply be transferred
from the investigated HIT case to other test cases because it might be sensitive to the
general flow characteristics. The turbulent kinetic energy of the initialized flow fields
is not stringently the same for the different turbulence generators as discussed in
Sec. 4.2. Thereby the following issues have to be considered when using the different
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generators:

• Using FN or DN always includes the prescribed amount of kinetic energy in
the resolved flow field independently of the grid resolution. Additionally con-
sidering the subgrid scale kinetic energy provided by the LES model leads to
an overprediction of ktot on coarse grids.

• Enforcing continuity by the pressure correction of the numerical solver removes
the energy excess. However this may lead to an underprediction of the kinetic
energy. Applying a precursor pressure correction in the generation procedure
(after Lund’s transformation) can ensure continuity for the generated veloc-
ity field. However rescaling the pressure corrected field by applying Lund’s
transformation for a second time was found to reintroduce divergence in the
field.

• For IF only that amount of the prescribed kinetic energy is initialized, which
corresponds to the resolved part of the energy spectrum. Since the algorithm
ensures a solenoidal velocity field, no loss in the kinetic energy is induced by
the pressure correction.

Some other aspects need to be considered for the evaluation of the turbulence gener-
ators. The FN algorithm is very easy to implement at a low computational cost due
to the simplicity of the mathematical representation of the filter operation [Klein
et al., 2003]. Similar assertions can be drawn for the DN approach which can be
applied on arbitrary grids. Since diffusion is provided in almost any CFD code the
implementation is straightforward. Moreover, the scaling of the length scale in the
vicinity of solid walls can be reproduced [Kempf et al., 2005]. For the present case IF
produces the most suitable energy spectra. However, it has to be considered that the
energy spectrum is only a statistical interpretation of the discretized velocity field
and that this is not necessarily an evidence for realistic turbulent structures. Vector
plots of turbulent fields created by the three different inflow generators are shown in
Fig. 16. It is seen that there is a wider range of differently sized structures for the
IF approach when compared to FN and DN which confirms the findings from the
energy spectra. Since all the synthetically generated turbulence fields contain large
uniform structures, the fluctuations are not dissipated instantly and realistic vortex
tubes can develop from the synthetic structures. Moreover plots of the λ2-criterion
are depicted in Fig. 16. The λ2-criterion indicates the presence of vortices if λ2 < 0
is satisfied and it is defined as the intermediate eigenvalue of the sum of the squared
strain-rate and vorticity tensors Haller [2005]. It is seen in these plots that for the
IF approach small coherent vortex structures are contained in the flow field, which
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again confirms the previous findings. For FN and DN we here observe mainly large
structures which qualitatively corresponds to the spectral analyses conducted.

5. Conclusion and outlook

The aim of the present work was to evaluate different methods for generating
turbulent inflow data for the Large Eddy Simulation of turbulent flows. Three dif-
ferent techniques were investigated. Digital filtering (FN) of random data is used in
the first approach. In this way large scale structures are generated from the random
data. The application of a diffusion operation affects white noise in a similar way and
is used as second inflow generation method (DN). Both FN and DN create spatial
correlations in initially fully randomized data fields. The third algorithm makes use
of a prescribed energy spectrum function (IF). The fluctuation field is obtained from
a Fourier series.

In the considered test case velocity fields are created in a cubical domain with
each turbulence generation method. The decay of the fluctuations in time was in-
vestigated by comparing the results to experimental data. The results revealed two
different categories of inflow generators. FN and DN are of the first kind providing
mainly large scale structures. The energy spectrum is not fully represented due to the
missing small scale turbulence. However, it is shown that the energy overprediction
at the large scales is reduced by generating small scale turbulence during the decay
leading to a physically correct energy spectrum. Similar observations are made for
the velocity correlations, which are not perfectly predicted for the initialized fields
but which reach a more physical state during the decay. IF is of the second type,
generating eddies at all resolved length scales and representing the energy spectrum
even for the initialized field. The decay is well predicted compared to the experi-
mental data. In general it can be concluded that each generator is able to create
fluctuations at a desired integral length scale and root-mean-square velocity. Com-
ing back to the questions raised in section 1, the following conclusions can be drawn
from the present investigation:

• The characteristic energy spectrum for homogeneous isotropic turbulence is
fully represented for IF. FN and DN do only provide large scale turbulence.

• The velocity correlations are well reproduced for IF. The model correlation
prescribed for FN and DN does not compare well to the experimental values
initially.
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• The turbulent statistics are well predicted for IF comparing numerical and
experimental data. The discrepancies observed in the initialized velocity fields
for FN and DN vanish during the decay of turbulence. Both the energy spectra
and the velocity correlations become physically meaningful and compare well
to experimental data despite the initial differences.

• A desired length scale and turbulence intensity can be reproduced by the dif-
ferent algorithms. The present configuration provides information on turbulent
characteristics and related properties for different turbulence generation meth-
ods.

The HIT case is the most generic test case for the investigation of turbulence and
here, it gives us a deeper insight in the characteristics of the generated velocity fields
and thereby in the potentials of the different inflow generators considered. However
it has to be kept in mind that this test case is not the usual application concerning
the actual scope of the inflow generators. Hence, in future investigations, the results
and methods from the present work will be applied in a comparative fashion for
realistic test cases such as anisotropic jet flows.
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Tables

Table 1: Parameters for the flow field initialization according to the experimental data of Comte-
Bellot and Corrsin Comte-Bellot and Corrsin [1971] at t̃ = 42

quantity value unit

urms 0.222 m/s
ε 0.474 m2/s3

Lint 0.024 m
η 0.00029 m

Table 2: Grid spacing and time step width

Grid Number of ∆x ∆t
grid elements [m] [s]

I 643 0.0079375 0.0005
II 1283 0.00396875 0.0002
III 2563 0.001984375 0.0001

Figures

26



κ

κ

κ

κ
j

n

1

2

3

φ

θ

κ'3

κ'1

κ'1κ'3

κ'2

σ

n

n

n

i

Figure 1: Geometric convention for definition of wave number vector κnj and unit vector σn
i .

27



10
-8

10
-7

10
-6

10
-5

10
-4

10
-3

10
1

10
2

10
3

E
 [
m

3
/s

2
]

κ [1/m]

Energy spectrum

Euler at 0
CN at 0

Exp. Data at 0
Euler at 56

CN at 56
Exp. Data at 56

Euler at 129
CN at 129

Exp. Data at 129

Figure 2: Energy spectra during decay of turbulence in a box for NRC with using first order Euler
scheme and second order Crank-Nicolson scheme (CN) for time discretization.
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Figure 3: Energy spectra during decay of turbulence in a box for NRC. Left: Grid I (643 cells,
Cs = 0.17); Middle: Grid II (1283 cells, Cs = 0.14); Right: Grid III (2563 cells, Cs = 0.14).
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Figure 6: Energy spectra from FN (top) and DN (bottom) during decay for different meshes; Left:
Grid I (643 cells, Cs = 0.17); Middle: Grid II (1283 cells, Cs = 0.14); Right: Grid III (2563 cells,
Cs = 0.14).
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Figure 7: Subgrid scale viscosity during decay of turbulence on different meshes; Left: Grid I (643

cells, Cs = 0.17); Middle: Grid II (1283 cells, Cs = 0.14); Right: Grid III (2563 cells, Cs = 0.14).
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Figure 8: Temporal evolution of total kinetic energy for inverse Fourier transformation, FN, DN,
and experiments; Left: Grid I (643 cells, Cs = 0.17); Middle: Grid II (1283 cells, Cs = 0.14); Right:
Grid III (2563 cells, Cs = 0.14).
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Figure 9: Longitudinal (left) and transverse (right) velocity correlations of initialized turbulence
fields for FN (top) and DN (bottom).
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Figure 10: x-component of initial cubical velocity fields for FN (left), DN (middle) and NRC (right)
on grid II
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Figure 11: Temporal evolution of longitudinal velocity correlation for FN (top) and DN (bottom);
Left: Grid I (643 cells, Cs = 0.17); Middle: Grid II (1283 cells, Cs = 0.14); Right: Grid III (2563

cells, Cs = 0.14).
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Figure 12: Energy spectra from IF during decay for different meshes; Left: Grid I (643 cells,
Cs = 0.17); Middle: Grid II (1283 cells, Cs = 0.14); Right: Grid III (2563 cells, Cs = 0.14).
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Figure 13: Temporal evolution of total kinetic energy for NRC, FN, DN, IF and experiments; Left:
Grid I (643 cells, Cs = 0.17); Middle: Grid II (1283 cells, Cs = 0.14); Right: Grid III (2563 cells,
Cs = 0.14).
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Figure 14: Energy spectra at the last instant of time (t = 0.75 s) for grid III (2563 cells).
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Figure 15: Temporal evolution of longitudinal velocity correlation for IF; Left: Grid I (643 cells,
Cs = 0.17); Middle: Grid II (1283 cells, Cs = 0.14); Right: Grid III (2563 cells, Cs = 0.14).
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Filtered noise Di used noise Inverse Fourier approach

Figure 16: Velocity vectors (top) and λ2-criterion (bottom) of the initialized turbulent fields for
FN (left), DN (middle) and IF (right). Black areas in λ2-plot indicate λ2 < 0.

35


	FronteRivista
	caf_dd13_v2_org

