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Abstract: Deterministic load flow analyses of power grids do not include the uncertain factors
that affect the network elements; hence, their predictions can be very unreliable for distribution
system operators and for the decision makers who deal with the expansion planning of the power
network. Adding uncertain probability parameters in the deterministic load flow is vital to capture
the wide variability of the currents and voltages. This is achieved by probabilistic load flow studies.
Photovoltaic systems represent a remarkable source of uncertainty in the distribution network. In
this study, we used a Gaussian copula to model the uncertainty in correlated photovoltaic generators.
Correlations among photovoltaic generators were also included by exploiting the Gaussian copula
technique. The large sets of samples generated with a statistical method (Gaussian copula) were
used as the inputs for Monte Carlo simulations. The proposed methodologies were tested on two
different networks, i.e., the 13 node IEEE test feeder and the non-synthetic European low voltage
test network. Node voltage uncertainty and network health, measured by the percentage voltage
unbalance factor, were investigated. The importance of including correlations among photovoltaic
generators is discussed.

Keywords: correlated PV; Gaussian copula; Monte Carlo simulation; photovoltaic systems; proba-
bilistic load flow; stochastic dependence; uncertainty quantification

1. Introduction

The rise of photovoltaic (PV) systems in distribution networks has increased the
stochastic generation uncertainties that must be analyzed for power system operation and
planning. The PV systems are spatially distributed, and they are mostly correlated with
respect to the meteorological uncertainty. This implicates PV systems’ active power as
correlated random variables exhibiting different distributions, and proper methodology is
required to manage these correlated uncertainties.

The power flow analysis of a network with particular operating conditions is called
deterministic load flow (DLF) analysis. The different uncertainties present in the network
due to generators, load variations and changes in network configuration are not considered
in DLF analysis [1]. The injection of power into the network by photovoltaic (PV) generators
distributed along the feeders represents a relevant source of uncertainty. To consider the
above uncertainties, Probabilistic Load Flow (PLF) analysis is useful [2,3]; it is mix of
DLF and mathematical methods to define uncertain sources, e.g., through their probability
density functions (PDF). In this work, the PLF analysis was conducted by considering the
correlations among the active power variables of the PV generators.

There are three types of PLF computational methods available. The Monte Carlo (MC)
simulation belongs to the first type called numerical methods [2,4]. The other two methods
are analytical and approximation methods [5]. Analytical and approximation techniques
can accelerate PLF analysis compared to the MC method.
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The PLF techniques are very diversified and every methodology among them has its
own benefits. Classifications of these methodologies with pros and cons are reported in the
following review papers [4,5]. However, among the many techniques, the MC simulation
remains the reference method, since it delivers the most reliable results and can handle
parameters with nonstandard distributions [6]. For those reasons, the MC simulation is the
method adopted in this article. A MC simulation requires a large input sample, and it is
obtained using the PDF of the element of interest [7]. In our case it is the active power of
the PV generators.

In some cases, while modeling the uncertainties associated with the PV system, the
active power PDF of the PV system is approximated by standard statistical distributions.
In [8] the PV power output was fitted to a bi-modal normal distribution; in [9] PV power
production was modeled by taking the clear sky index model and the data were fit to a
beta distribution.

Many other modeling techniques are reported in [5,10–12]; these are solar irradiation
and weather approximation-based modeling techniques. They definitely include the
meteorological uncertainty, but other factors such as power delivery interruption due to
device failure, change in network topology and load unavailability are ignored. To consider
these factors in the uncertainty quantification of a PV system, a data-driven approach was
used in this work [13]. When the measurement data of a PV system are analyzed, the
PDF of the active power delivered by the PV system shows a complex shape, and it does
not fit any standard statistical distribution. In this case, a large set of PV samples for MC
simulations were generated by determining the empirical cumulative distribution function
(CDF) of measurement and using an inverse sampling method that matched the original
distribution [14].

In the case of multiple PV generators, there exists a correlation among the measure-
ment variables. If the dependence among these variables is ignored and the inverse
sampling method is used, the output results can be quite inaccurate. Hence, considering
this correlation while generating the samples for an MC simulation is crucial. Known
techniques for handling correlations are copulas [15] and the Gaussian mixture model [16].
In this article, the investigation is performed by considering a Gaussian copula.

The main contribution of this paper is a PV statistical modeling strategy that combines
the information available from historical measurement data with the application of a
Gaussian copula to generate samples for further MC simulations. This methodology, which
is able to include a PV correlation in a realistic way, was applied to two different test
networks, having different loading and balance conditions. Important critical features in
the network’s behavior, such as overvoltage and voltage imbalances, were simulated by
considering the correct correlation among PV generators, and then making a comparison
with the case wherein said correlation is neglected. The organization of this article is as
follows: The PLF analysis and three phase unbalanced power flow equations are given in
Section 2. Section 3 describes the modeling of the PV generation uncertainties using the
inverse CDF method and a Gaussian copula. Section 4 details the test networks employed
in this work. Section 5 explains the simulation framework and comments on the results.
Conclusions are given in Section 6.

2. Probabilistic Load Flow and Voltage Unbalance

PLF analysis consists of including stochastic uncertainties in deterministic load flow
simulations followed by a probabilistic interpretation of the resulting network variables [6].
In DLF problems, the known parameters are the real and reactive power of the loads, and
the real power and voltage magnitude of the generators. The analysis is to determine
current injections at the buses with their complex voltages. Referring to an electrical
network with N buses linked using l lines, the current and voltage relationship is described
by Equation (1) [17]; the three-phase unbalanced system complex power equations are also
referred to in [18].
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For any bus i and phase p, the current Ip
i of the bus is given by the Equation (5).

Ip
i =

N

∑
k=1

∑
q=a,b,c

Ypq
ik Vq

k (5)

The complex power of a unbalanced three phase system is given in Equation (6). Since
the complex power term at the left-hand-side is present, the solution results in the voltage
of the selected bus under investigation.

Sp
i = Vp

i

N

∑
k=1

∑
q=a,b,c

(Ypq
ik )∗(Vq

k )
∗ (6)

where
Sp

i Complex power injected;
(Ypq

ik )∗ Admittance conjugate;
(Vq

k )
∗ Voltage conjugate.

The statistical uncertainty present in the power network can be described mathemati-
cally by a set of stochastic parameters ~ξ = {ξ1, ξ2, ....ξl} where each ξl represents a random
variable with PDF f (ξl). In general, such stochastic parameters might be voltage, currents
or power injections; more specifically, in this work we focus on the case where the uncertain
sources include the active power injected by PV generators normalized to the installed
capacity, as is described in Section 3.

The actual power delivered by a PV generator at different times tk of the day (e.g.,
at different hours) changes and it changes its statistical distribution. This uncertainty in
active power delivery can be modeled with stochastic parameters ξl whose PDFs depend
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on time, i.e., f [tk, ξl ], and evaluated numerically starting from measurement data grouped
for each time tk of the day.

Thus, with the dependence on the time tk and the vector of uncertainty ~ξ, the voltage
of the nth node’s pth phase Vp

n is represented as Vp
n

[
tk,~ξ

]
. For each time tk, an MC

simulation is conducted by generating a large set of uncertainty vector realizations ~ξm,
where m = 1, . . . , M. For every vector element ~ξm, load flow is conducted to determine
Vp

n

[
t,~ξm

]
.

In a three-phase unbalanced system, the network voltage quality is measured by the
inequality in its phases; it is called voltage unbalance and is expressed in a percentage
as the voltage unbalance factor (VUF)%. It is defined as the ratio of the negative voltage
sequence to the positive voltage sequence component as given in Equation (7).

VUF =
|Vn|∣∣Vp
∣∣ ∗ 100 (7)

Vn =
VAB + α2 ·VBC + α ·VCA

3
(8)

Vp =
VAB + α ·VBC + α2 ·VCA

3
(9)

where
Vn Negative voltage sequence component;
Vp Positive voltage sequence component;
VAB, VBC, VCA Line voltages;
α exp(j120◦);
α2 exp(j240◦).

3. Modeling Photovoltaic Generation Uncertainties

Power generation using PV modules is highly uncertain because of variable atmo-
spheric conditions. Probabilistic techniques for modeling uncertainties arising from irra-
diation availability and meteorological effects [5] do not consider uncertainty caused by
partial shading, power network and topology uncertainties due to elemental failure in the
device present in the PV system.

To overcome such limitations, in this paper, a data-driven modeling approach based on
historical measurement data is considered that can include system-dependent uncertainties.

The proposed methodology is general; however, for illustration purposes we used
the real measured and recorded dataset [19] of active power delivered by some domestic
photovoltaic systems in the Sydney power distribution grid.

As an example, the active power levels delivered in a day by three spatially separated
PV generators are given in Figure 1. The PV power delivery data were samples recorded
every 30 min and observed for one calendar year. Significant variation in power was
observed in mid-day hours.

For such reasons, PV power data have been grouped for different hours of the day
representing the sample times tk. The hourly PDF of the active power variable extracted in
the measurement data shows complex shapes and cannot be fit into any standard statistical
distributions.

Figure 2 shows the PDFs of the normalized active power for 12:00 p.m. and 3:00 p.m.
hourly time windows.
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Figure 1. Active power per unit produced in a day by three different PV generators that are geo-
graphically separated.
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Figure 2. The normalized active power PDF of a one hour time window. A change in the shape of
distribution is clear when comparing 12:00 p.m. and 3:00 p.m. Such changes can also be observed for
other hourly time instants considered from 10:00 a.m. to 5:00 p.m.

In order to generate a large set of samples distributed according to such a nonstan-
dard distribution as required by Monte Carlo simulations, we followed two different
modeling approaches.

The first one was very immediate and assumed that the power levels delivered by two
or more PV generation systems were independent random variables. In this case, the well
known inversion method for generating samples using the cumulative distribution (CDF)
could be directly applied. As a matter of fact, depending on the installation locations, the
power levels produced by PV generators are not independent, so it is necessary to consider
their correlation while generating samples. In the second and more realistic modeling
approach, the Gaussian copula method was utilized to produce correlated samples for
MC simulations.
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3.1. Inverse CDF Method

It is a method in which the correlation among the random variables, i.e., the correla-
tion among the generators’ active power levels, is not considered. The samples for MC
simulations were generated independently; hence, from now on, this method is called the
independent method. The PV power generation analysis is done on an hourly basis. The
normalized active power delivered by a single PV power generator is considered, and it is
represented by a random variable “X” obtained as given by Equation (10).

X =
Ps

Ks
(10)

where
X Normalized active power;
Ps Measured active power from the dataset;
Ks Installed capacity of the PV generator.

The random variable X represents one of the statistical parameters, e.g., ξ1 = X. For
each time sample tk, the distribution of X derived from data is nonelementary and its
PDF is given by f [tk, x]. The related CDF FX(tk) can be deduced numerically from f [tk, x].
The inverse method consists of drawing random numbers from a uniformly distributed
variable u ∈ [0, 1] that are given in input to the inverse CDF F−1

X (·). This will provide the
sample values x of the random variable X as given in Equation (11).

x = F−1
X (u)⇔ u = FX(x) (11)

For each realization X = x, the related active power Pn

[
tk,~ξ

]
= Ks · x is then com-

puted. The same process is repeated, independently, for a second statistical variable ξ2 = Y,
which is supposed to scale a second PV generator, and so on for any other further ones.
Finally, the calculated PV power levels are employed as an input to the DLF simulation to
get the associated Vp

n

[
tk,~ξ

]
.

3.2. Gaussian Copula

In the second approach, the correlation among different PV generators is extracted
from the data using Gaussian copula. The copula is the entity or the function that con-
tains dependence information about the random variables; it joins or couples the uni-
dimensional marginal distributions. Copulas are used to model the dependence between
two or more random variables, where the marginal distributions of random variables are
combined to arrive at a joined distribution. The dependence relations among the marginals
are investigated in a common domain, and once the joined distribution is obtained, the ran-
dom variables are further traced back to their original forms using CDFs without any loss
of the information associated. With this, the number of samples required for MC simulation
is obtained.

Consider two random variables X and Y, with marginal PDFs f (x) and f (y); the related
CDF are denoted as FX and FY respectively. The aim is to find the joint cumulative distribution
FXY. Using Sklar’s theorem, the copula function with the dependence can be applied to the
joint CDF of these random variables. To arrive at the joint CDF, Equation (12) is used.

FXY(x, y) = C(FX(x), FY(y)) (12)

where
FXY Joint CDF of variables X and Y;
C Copula function with dependence;
FX(x) CDF of variable X;
FY(y) CDF of variable Y.

The correlation between the random variables X and Y can be measured by their
correlation coefficient ρ that is estimated from data samples as given in Equation (13).
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ρ(X, Y) =
1

N − 1

N

∑
i=1

(
Xi − µX

σX

)(
Yi − µY

σY

)
(13)

where
ρ Correlation coefficient;
X, Y Random variables;
N Number of scalar observations;
σ Standard deviation;
µ Mean.

The value of ρ lies between −1 and 1; if ρ is 1 then the correlation among the variables
is maximum with positive dependence; i.e., the PV generating stations deliver identical
power output. If ρ is −1 then the correlation among the variables is maximum with
negative dependence; 0 results in no correlation—the PV generating stations result in
power output randomly without any dependence.

In order to get desired samples x and y with the specified correlation and marginal
distributions, a bi-variate normal (Gaussian) distribution [20] with the correlation ρ is
considered. Samples g1 and g2 drawn according to such a bi-variate Normal distribution
are fed to the uni-variate Gaussian cumulative distribution φ which gives uniformly
distributed values u = φ(g1) and v = φ(g2). Using u and v we can trace back the samples
of x and y by evaluating the inverse cumulative distribution function, i.e., x = F−1

X (u) and
y = F−1

Y (v).
The data-driven computational flow of the Gaussian copula is summarized in Figure 3.

Figure 3. Schematic representation of the Gaussian copula usage to generate the correlated PV generator samples for the MC simulation.

As a result, the Gaussian copula allows generating a large set of data samples with
prescribed statistical distributions and dependency information as extracted by measure-
ment data. It is important to focus on the fact that using the copula method is more
accurate for reconstructing the joint distribution than considering its generation using two
independent distributions. For example, Figure 4 reports the scatter plots of the datasets
(for one hour, i.e., 12:00 p.m. to 01:00 p.m.) of two PV generators, along with the samples
generated using the Gaussian copula and the independent method, respectively. Even
though the marginal PDFs employed in the two techniques were exactly the same (e.g., the
marginal PDF shown in Figure 2), the resulting joint distributions are different, since the
Gaussian copula accounts for the correct correlation among the measurement data but the
independent method does not. In fact, due to the correlation, the data tend to concentrate
along the diagonal line in the Ps1, Ps2 plane, and this behavior is correctly reproduced by
the samples generated by the Gaussian copula.
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Figure 4. The scatter plots of normalized power levels for two different PV generators obtained using the independent
method and the Gaussian copula.

4. Test Networks

The proposed methodologies were implemented in two different test networks having
different characteristics for the validation of results [21,22]. In both cases, we considered the
network’s original configuration and added some uncertain PV generators and statistical
user loads. The PV-related uncertainties are represented with two stochastic parameters
ξ1 and ξ2, which were correlated using the copula method. The nonstandard statistical
distributions (e.g., those reported in Figure 2) of PV-related parameters were extracted
from measurement data as described in Section 3. Besides, four stochastic parameters
ξ3, . . . , ξ6 were used to scale the maximum active power absorbed by four loads in the nets
following the method previously presented in [23]. Such load-related stochastic parameters
are independent and beta distributed (with parameters a = 1.1 and b = 22). On the whole,
the uncertainty vector ~ξ consists of six statistical parameters.

The test networks used in this work were the following:

• The IEEE 13 node test feeder.
• The non-synthetic European low voltage test network.

The positions of the PV generators and additional loads were assigned by considering
a criteria of PV penetration, which is defined as the ratio of the PV capacity to the total
installed load capacity of the test network [24]. In the following, we describe the main
characteristics of the considered network.

4.1. IEEE 13 Bus Test Feeder

The 13 bus test feeder provided by IEEE [21] is of radial type that operates at 4.16
kV. Its phases operate at different voltages, and hence it is an unbalanced network that
attracts many researchers. It is heavily loaded for 4.16 kV feeder; the transmission lines
come with overhead and underground line types. The loads are classified as spot loads and
distributed loads. More details on the network and its elements can be found in [14,21].
The network is modified by adding two single-phase PV generators to phase B of bus 3 and
bus 4, and four single-phase loads connected to buses 3, 4, 9 and 11, as shown in Figure 5.
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Figure 5. The IEEE 13 node test feeder with correlated PV generators connected to 3rd and 4th buses.

4.2. Non-Synthetic European Low Voltage Test Network

It is a test network modeled using real measurement data, representing a real European
town [22]. The rated voltage is 416 V phase with a 50 Hz phase. It has a 4-wire system
design that is isolated, neutral on customer grounds. It consists of 10,290 buses, to which
8087 loads are connected with 30 distribution transformers representing a European-
style distribution network. The loads are modeled with load shapes captured using real
measurement data. Two PV generators are connected to phase C of bus—1279 and 1284
loads each, as shown in Figure 6. The loads are connected to phase a and phase C of nodes
1279 and 1283.

Figure 6. The modified non-synthetic European low voltage test system network with correlated
PV generators.

5. Simulation Framework and Results

The two test networks described in the previous Section 4 were modeled in openDSS,
and MC simulations were used to evaluate the impacts of the six uncertainty parameters
collected in a vector ~ξ. In particular, PV uncertainty was reproduced in simulations that
started from measurement data and used both the inverse method, i.e., assuming PV
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generators were statistically independent, and the Gaussian copula method. This later
allowed accounting for PV generators’ correlation as described in Section 3. Simultaneously,
the load uncertainty was reproduced by a beta distribution (a = 1.1, b = 22). A large set of
samples of statistical parameter vectors ~ξm, with m = 1, . . . , M were generated according
to the joint distribution of parameters in ~ξ and related uncertain power samples Pn

[
tk,~ξ

]
,

and the networks were evaluated in some node to calculate the voltage distributions and
voltage unbalance factor.

5.1. The IEEE 13 Node Test Feeder Network Response

In this case, the correlated PV generators were connected to node 3 and node 4 in
phase B, having maximum power delivery ratings of 200 and 250 kW respectively. The
subset of uncertainty vector due to the PV (ξ1 and ξ2) was obtained hourly from 10:00 a.m.
to 05:00 p.m., with 1 h intervals. The distributions were scaled respectively by 200 and
250 kW power delivery at peaks; then the active power stochastic variable P3[tk, ξ1 ] and
P4[tk, ξ2 ] were realized. The uncorrelated statistical loads were connected to nodes 3, 4, 9
and 11; and each of them was modeled using a beta distribution (a = 1.1, b = 22) each of
them scaled for a base of 500 kW. The PV data were highly correlated with the correlation
coefficient ρ = 0.9575.

In Figure 7, we show the PDF of voltage at node 3 simulated with MC method starting
from the PV data over one hour time intervals (i.e., from 01:00 p.m. to 02:00 p.m.) using
the Gaussian copula and the independent method. It can be observed how the Gaussian
method, which accounts for the actual correlation among PV generators, resulted in a wider
variability of node voltage (i.e., standard deviation of ≈23 V) compared to the independent
method (i.e., standard deviation of ≈17 V). In other words, conducting simulations using
data that exhibit a correlation without using a method to handle correlation, such as the
one proposed in this article, runs the risk of arriving at incorrect solutions.
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Gaussian 

Copula

Figure 7. The voltage distribution of node 3 of the IEEE 13 node test network for the one hour
time window of 01:00–02:00 p.m.; the active power stochastic variable was modeled considering
dependence among the variable using Gaussian copula and the independent method.

In Figure 8, we report the hourly voltage distribution, from 10:00 a.m. to 05:00 p.m.,
of voltage at node 3 phase B simulated with the MC method and Gaussian copula. The
voltage distribution has 2.38 kV as the minimum and 2.52 kV as the maximum point in the
distribution; the large variation of the distribution is seen during the midday hours.



Energies 2021, 14, 2349 11 of 16

Figure 8. Voltage distribution of node 3 of the IEEE 13 node test network for time window of
10:00 a.m.–05:00 p.m.; the active power stochastic variable was modeled considering the dependence
among the variable using the Gaussian copula.

The %VUF of node 3 due to the power injection of highly correlated PV generators is
shown in Figure 9; the percentage voltage unbalance varies from 2.2% to 3.6%.

Figure 9. %VUF of node 3 of the IEEE 13 node test network for the time window of 10:00 a.m.–05:00 p.m.
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Finally, in Figure 10 we report the comparison among mean values and the standard
deviations of the voltage and VUF at the node 3 phase B calculated using the independent
method and Gaussian copula. It can be noted that the distribution of voltage and %VUF
contains similar mean values, but the standard deviation of the distributions is higher
when we model the PV uncertainty with Gaussian copula. It is because the inclusion of the
correlation will cause a wide range of distribution; hence we can see more variability in the
dispersion of voltage values.
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Figure 10. Comparison between mean value and standard deviation of voltage at the node 3 (phase B)
and the %VUF in the case of the independent method and the Gaussian copula.

5.2. The Non-Synthetic European Low Voltage Test Network Response

In this test network, we wanted to analyze what happens to a large network when
considering correlated PV sources. The PV generators were connected to phase C of nodes
1279 and 1284, with maximum power delivery ratings of 53 and 60 kW respectively. The
uncertainty elements related to the PV (ξ1 and ξ2) were obtained for every hour from
10:00 a.m. to 05:00 p.m. and were scaled for 53 and 60 kW power delivery at peaks; then
the active power stochastic variables P1279[tk, ξ1 ] and P1284[tk, ξ2 ] were realized. The non-
correlated loads were modeled using the beta distribution (a = 1.1, b = 22) and connected
to phase A and phase C of nodes 1279 and 1283. The scaling factor of the loads was 30 kW
for node 1279 and 20 kW for node 1289. In Figure 11 we report as an example the voltage
distribution in phase C of node 1279, for a one-hour interval from 01:00 p.m. to 02:00 p.m.
The voltage varied within the range of 225 to 253 V. Additionally, in this case the generation
of a joint distribution can overestimate the peak and underestimate the standard deviation.
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Figure 11. Voltage distribution in phase C of node 1279 (PV generator 1) of the non-synthetic
European low voltage test network, analyzed using data for a one hour time window, i.e., from
01:00 p.m. to 02:00 p.m., using independent and Gaussian copula methods.

For each hour from 10:00 a.m. to 05:00 p.m., the voltage distribution of phase C of
node 1279 is given in Figure 12. The %VUF of node 1279 due to the power injection of
highly correlated PV generators and beta distributed loads connected is shown in Figure 13;
the percentage of voltage unbalance varies from 0.9% to 5.9%.

Figure 12. Voltage distribution in phase C of node 1279 (PV generator 1) of the non-synthetic
European low voltage test network, analyzed using highly correlated data for all time periods from
10:00 a.m. to 05:00 p.m. using the Gaussian copula.
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Figure 13. %VUF distribution in phase C of node 1279 (PV generator 1) of the non-synthetic European
low voltage test network, analyzed using highly correlated data for all time periods from 10:00 a.m.
to 05:00 p.m. using the Gaussian copula.

In Figure 14 we compare the mean values and standard deviations of the voltage and
VUF at node 1279.

10AM 11AM 12PM 1PM 2PM 3PM 4PM 5PM

230

235

240

M
e

a
n

 V
o
lt
a
g
e
 

[V
]

Gaussian copula

Independent

10AM 11AM 12PM 1PM 2PM 3PM 4PM 5PM

4

5

6

S
td

. 
d
e
v
ia

ti
o
n

[V
]

10AM 11AM 12PM 1PM 2PM 3PM 4PM 5PM

2

3

4

M
e
a
n
 

%
V

U
F

10AM 11AM 12PM 1PM 2PM 3PM 4PM 5PM

Time [Hours]

0.5

1

S
td

. 
d
e
v
ia

ti
o
n

 %
V

U
F

Figure 14. Mean and standard deviation of the voltage distribution of node 1279 phase C and
the %VUF distribution of the same node in the non-synthetic European low voltage test network,
analyzed using the independent method and the Gaussian copula.
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6. Conclusions

A data-driven approach for the statistical modeling of PV generation uncertainties was
provided in this work; the main aim was to include the dependence information among
the measurement data while generating the samples for the MC simulation. To achieve that
goal, the Gaussian copula was used to generate a large set of samples that could be used for
MC simulations while including the correct dependence information among the samples
generated. We demonstrate that the proposed method reconstructs the joint distribution
in a better way than using the independent method. By applying the method to the test
cases, we proved that the incorrect modeling of correlated data could generate incorrect
solutions. This approach was compared to the case where the MC simulation was done
while neglecting the correlation among PV generators. Two power networks with different
sizes, configuration and complexities were employed to test the hypothesis.

The results clearly show that considering the correct dependence among PV genera-
tors data significantly varies the numerically predicted statistical distributions of network
voltages and of important figures of merit, such as the voltage unbalance factor. More
specifically, MC simulations with correlated PV generators result in a much wider vari-
ability of node voltages compared to MC simulations, when the correlation among PV
generators is not included. The proposed methodology was applied to PV sources in this
article, but in general, it can be applied to other sources, such as correlated wind generators
and correlated loads in the PLF studies.
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