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Abstract—Memory devices, such as the phase change memory
(PCM), have recently shown significant breakthroughs in terms
of compactness, 3D stacking capability and speed up for deep
learning neural accelerators. However, PCM is affected by
the conductance drift, which prevents a precise definition of
the synaptic weights in artificial neural networks. Here, we
propose an efficient system-level methodology to develop drift-
resilient multi-layer perceptron (MLP) networks. The procedure
guarantees high testing accuracy under conductance drift of the
devices and enables the use of only positive weights. We vali-
date the methodology using MNIST, rand-MNIST and Fashion-
MNIST datasets, thus offering a roadmap for the implementation
of integrated non-volatile memory-based neural networks. We
finally analyse the proposed architecture in terms of throughput
and energy efficiency. This work highlights the relevance of
robust PCM-based design of neural networks for improving the
computational capability and optimizing the energetic efficiency.

Keywords: Neural networks, integrated neural networks,
analogue circuit, digital circuit, phase-change-memory (PCM),
conductance drift.

I. INTRODUCTION

IN the last few years, artificial intelligence (AI) has shown
rapid progress, demonstrating unprecedented ability in

tasks like pattern recognition, natural language processing and
playing games [1], [2]. Despite the recent advances at software
level, hardware implementations of AI still show significant
limits. In particular, CMOS-based circuits store most of the
weights in dynamic random-access memory (DRAM) while
data are processed in the central processing unit (CPU), thus
forcing a major data transfer between DRAM and CPU [3],
[4]. Such data transfer causes significant latency and power
consumption, which highlights the memory bottleneck of Von
Neumann architectures [3]. On the other hand, memory de-
vices, such as resistive-random-access memory (RRAM) and
the phase change memory (PCM), have recently demonstrated
significant progress for AI acceleration [5]–[8]. Along with
the reduced area consumption, memory arrays are the best
candidates for efficient matrix-vector multiplication (MVM)
via Ohm’s and Kirchhoff’s laws [9].

However, memories present some key non-idealities which
currently hinder the realization of a full in-memory computing
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Fig. 1. Standard multilayer perceptron network (MLP) with crossbar
memory arrays in order to take advantage of the matrix-vector multiplication
(MVM) procedure. The weights can be implemented with analogue or digital
programming of the PCM devices.

Fig. 2. Typical (a) set and (b) reset signals for programming the LRS and the
HRS of the PCM devices. The multilevel states of the PCMs can be obtained
by applying rectangular pulsed signals after a full set. (c) HRS and (d) LRS
drift for a pure reset/set programming condition (from a time t0 to a time
106t0 after the experiment). (e-h) Drift in time for PCM multilevel states at
increasing IPULSE .

hardware. In particular, PCM suffers from conductance drift,
which causes a time variation of the synaptic weights in
neural computation, thus affecting the recognition accuracy
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Fig. 3. (a) Block scheme of the proposed architecture for a drift-resilient neural network. The input corresponds to the dataset to classify during inference.
The PCM arrays are used to map the synaptic weights and for compensating the drift (“dummy array”). The result of the MVM is collected by transimpedance
amplifiers, converted using the ADCs and then elaborated into the DSP. Note that the evolution of the LRS is monitored in time by reading a further “LRS
column”, in order to maintain the same voltage dynamics of the initial programmed distribution and to reduce the drift effect of the weights. (b) Evolution
in time of the MVM voltages of the first layer. Note that the distributions get smaller and narrower as a consequence of the drift of the PCMs. As observed,
both distributions (dummy array and synaptic weights array) maintain the same relative distance, which is a key point to perform a correct 2’s complement
computation. Since the distributions become also narrower, in order to correctly apply the sigmoid function with the proper voltage dynamics, the digital
voltage must be corrected by applying a digital amplification proportional to the evolution in time of the average LRS, which is actively measured from a
column of the array.

[10], [11]. Several approaches have been introduced to limit
this error, such as: (I) the use of multi-cells in order to
reduce the variation of the devices [12]; (II) the recovery of
the PCM state by means of partial set pulses [13]; (III) the
analytical analysis of the drift evolution [14]–[16]; (IV) the
design of specific neural networks robust against the drift of
the weights [17]–[20]. However, these results are not enough
when accurate inference is required in parallel with low area
and power consumption [21], [22].

This work proposes a drift-resilient implementation of hard-
ware neural networks with PCM arrays implementing the
MVM procedure. Fig. 1 shows a multi-layer-perceptron (MLP)
network trained with backpropagation that is here analysed
as a case-study by both analytical and experimental stand-
points. Simulations in Cadence Virtuoso with embedded PCM
devices have been also performed in order to provide useful
insights for the integrated design of PCM-based MLPs. In
particular, the drift of the PCM devices can be compensated by
a self-referential hardware, where the conductance decrease is
monitored by dummy arrays. This approach enables the use of
strictly positive synaptic weights and of only positive rails [23]
without accuracy loss for MNIST, rand-MNIST and fashion-
MNIST datasets. The results are proposed by experimental
validation of neural networks whose weights are programmed
in multilevel-mode [24] or in binary-mode [5], [25]. We finally
discuss the performance metrics in terms of throughput and
energy efficiency. This work highlights the benefits of non-
volatile memory-based design for neural networks.

II. PCM DEVICES

Embedded PCMs were reported in 90 nm [26] and 28 nm
nodes [27], thus enabling the design of in-memory computing
hardware integrated in the usual CMOS platform. Fig. 2 shows
that the PCM can be programmed between the low resistive

state (LRS) and the high resistive state (HRS) by (a) set (with
current ISET ) and (b) reset transitions, respectively [10]. The
set transition relies on a gradual decaying current slope signal
in order to induce the crystallization of the phase change
material, while the reset transition shows a fast quenching to
induce the high-resistive amorphous state. However, the PCM
resistance suffers from drift at increasing time, which causes a
progressive decrease of the initially programmed conductance.
The drift affects both HRS, Fig. 2(c), and LRS, Fig. 2(d),
distributions. Note that the initial LRS distribution can be
modulated by a proper choice of IPULSE , Fig. 2(e-h). Starting
from a full set state, for instance, incremental resetting pulses
can be applied in order to provide a distribution of incremental
resistive states. Note that the conductance drift induces a final
resistive value that is dependent on the initially programmed
resistive state. This is a key limitation for the implementation
of neural accelerators, since deep neural networks rely on a
clear definition of the multilevel synaptic weights [28], [29].

III. DRIFT-RESILIENT NEURAL NETWORK

Since the drift of the resistive values is detrimental for
AI applications, a hardware realization immune to such non-
ideality would be significant for the PCM-based design of
neural networks. Fig. 3(a) shows a drift-resilient approach
to multi-layer perceptron (MLP) to overcome the limitations
due to the PCM drift. The proposed MLP consists of two
synaptic layers with NIN input neurons, H1 hidden neurons
and 10 output neurons for classification. We chose NIN = 784
neuron (accordingly to the size of MNIST, Rand-MNIST and
Fashion-MNIST datasets) and H1 = 120 neurons. Since the
hidden layer is fed by the results of the MVM computation
of the first layer, we implemented a unary coding of 6 bits
of the sigmoidal activation function, thus needing a total of
720 wordlines (WLs). The MVM is executed in parallel in
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Fig. 4. Accuracy of the MNIST dataset as a function of the resolution
of the ADC (number of bits) for an MLP neural network formed by one
synaptic layer (a) and two synaptic layers (b), respectively (1000 Monte Carlo
simulations with ISET = 450 µA have been performed). The latter case shows
the dependence of the accuracy on the number of conversion bits for both the
synaptic layers. Note that the best result is achieved for 8 bits for the 1-
synaptic-layer MLP and for 6 bits for the 2-synaptic-layer MLP.

the PCM arrays to speed-up the computation. The output of
the MVM is then converted by analogue-to-digital circuits
(ADCs). The use of ADCs enables further data processing
by a digital signal processor (DSP), which is co-integrated
with the PCM arrays. The DSP implements the non-linear
activation (sigmoidal) function σ mapped within the internal
registers by look-up-tables (LUTs) and it enables the recovery
of the narrowing effect of the MVM distributions reported in
Fig. 3(b). Other non-linear functions can be also implemented,
such as the rectifying linear unit (ReLU) or the clipped-ReLU
[30], [31].

Note that the number of bits for the conversion of the ADC
is related to the type and to the depth of the neural network.
For instance, as shown in Fig. 4, a simple 1-synaptic-layer
MLP (a) is more sensitive with respect to the ADC precision
(8 bits are needed for the best computation) with respect to a 2-
synaptic-layer MLP (b), where 6 bits are enough for providing
the best result. This suggests that, given a neural network
configuration (such as MLPs), deeper architectures require less
effort for the analogue to digital conversion in order to achieve
the best results.

The network can be designed with positive analogue weights
or digital weights. In the first case, each synaptic device of the
MLP is programmed until a specific synaptic value is achieved
[7]. Digital weights 0 and 1 are instead written as HRS and
LRS, respectively, thus resulting in larger memory area. In
this latter case, N-bit MVM is then conducted by a shift-and-
add approach [32]. The final idea is to create a differential
configuration of the MVM, and not only at the synaptic level
[33], in order to improve the immunity against drift and to
increase the area and power efficiency.

A. Neural network with only positive weights
In this section, the drift-resilience at the system-level is

going to be analytically demonstrated. From now on, we take
into consideration as case study an MLP network with NIN

= 784 and H1 = 120 neurons. The bias contribution will be
neglected for simplicity.

The ideal output of each layer is given by:

OutIDEAL = σ(OutL−1 ∗WL),WL ≶ 0, (1)

Fig. 5. Digital and analogue implementation of the matrix of the weights
using PCM devices. In the digital approach, the synaptic weights are mapped
by using combinations of binary PCM conductances, while in the analogue
case the weights are mapped by exploiting the multilevel capability of the
PCM devices. Note that for both the cases the weights are only positive since
a rigid shift is applied to the distributions.

Fig. 6. (a) Simulated accuracy of the network as a function of the ideal
drift of the analogue weights implemented with the PCM devices (from 2 to
64 levels). Note that the accuracy of the MNIST dataset remains constant in
time, since the recovering algorithm perfectly retrieves the initial combination
of the weights. (b) Monte Carlo simulations for the accuracy of the MNIST
considering the best programming of the analogue weights (from 2 to 64
levels). The algorithm is initially able to recover the relative separation
between the weights. After a certain time, however, the accuracy suffers from
a significant drop.

Fig. 7. Measured accuracies at time t0 of MNIST (a), rand-MNIST (b),
fashion-MNIST (c) datasets for different LRS programming conditions as a
function of the number of bits (NBIT ) per single synaptic weight. Note that,
for all the datasets, the accuracy remains more or less constant after 4 bits.

where OutL−1 is the vector of the outputs of the previous
layer while WL is the matrix of synaptic weights. As schemat-
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Fig. 8. Average evolution of the accuracy with time considering (a) just the use of dummy arrays as compensation method for the recovering the drift or
(b) considering also the monitoring of the average value of the LRS. (c) Measured accuracy in time considering the drift of the PCMs for the MNIST (c),
rand-MNIST(d), fashion-MNIST (e) at different programming conditions.

ically shown in Fig. 5, the weight distributions are then shifted
by the absolute value of the lowest negative value |Wmin| >
0, thus leading to a new weight W ∗

L =WL+ |Wmin| > 0 and
to a different output:

OutPCMARRAY
= σ(OutL−1 ∗W ∗

L),W
∗
L > 0. (2)

Eq. (1) can be recovered from Eq. (2) within the DSP by
using the 2’s complement mathematical definition to imple-
ment the negative values, Fig. 3. Note that more synapses are
needed with respect the full analogue implementation, Fig.
5 [33]. The operation carried out by the DSP consists of the
application of the sigmoidal function to the difference between
(i) the MVM of the input with the positive weights and (ii)
the MVM of the input with |Wmin|. The output of the DSP
is thus easily obtained as:

OutDSP = σ(OutL−1 ∗W ∗
L −OutL−1 ∗ |WL,min|), (3)

OutDSP = σ(OutL−1 ∗ (W ∗
L − |WL,min|)) = OutIDEAL,

(4)
The |WL,min| can be physically implemented by just a

limited number of PCM bitlines, since |WL,min| maps the
same digital value for all the neurons, as highlighted in green
in Fig. 3. Note that |WL,min| is usually close to half of the
dynamic range of the positive weights, as shown in Fig. 5.

B. Drift compensation

While allowing to map positive and negative weights as
positive conductance values, Eq. (4) intrinsically introduces a
drift-recovery procedure. In fact, since both W∗

L and |WL,min|
drift in the same direction, the difference of the two MVM
outcomes is approximately constant. Actually, the drift of the
PCM devices makes the distributions of the MVM results
narrower, Fig. 3(b). Thus, a continuous re-normalization in
time of the MVM is needed to recover the full-scale range
dynamics and accuracy of the initial programmed states. The

digital implementation of the weights enables an efficient
hardware procedure to recover the ideal distributions, since
the PCM synaptic weights only contain LRS and HRS values,
with the latter two orders of magnitude more resistive. The
drift of the HRS is good, since the drift in time makes
more negligible its contribution as ’0’ digital value. Ideally,
each PCM-based digital synaptic weight should give the same
voltage contribution to MVM as if it were digital, namely:

VFSR

2

N−1∑
n=0

bn
1

2n
= K

VReadRFeed

2

N−1∑
n=0

Gn
1

2n
, (5)

Where VFSR is the ideal full scale range of the activation
function, VRead is the read voltage applied to the bitline for
MVM (see Fig. 3), bn is the digital word of the synaptic
weight, RFeed is the feedback resistance of the TIA collecting
the MVM currents, and GN is the digital word written as a
function of the combination of LRS and HRS of the memory
devices. Neglecting the HRS contribution in the MVM, Eq.
(5) can be rewritten as:

VFSR

2

N−1∑
n=0

bn
1

2n
= K

VReadRFeed

2
< GLRS >

N−1∑
n=0

bn
1

2n
,

(6)
Where < GLRS > is the nominal conductance of the LRS

value. Thus, from Eq. (6) we obtain the final factor K to be
sampled in time for then carrying out a correct computation
in the DSP:

K =
VFSR

VReadRFEED
< RLRS > . (7)

As a result, a full dynamic compensation is achieved just
by sensing and compensating the LRS drift in time, obtained
by an additional array of LRS weights highlighted in green
in Fig. 3(a). Such compensation is read by the ADC and
then processed within the DSP. Thus, this approach enables
power saving since the hardware is self-referential and does
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not require cyclic refresh of the synaptic weights to track the
drift of the PCM devices [13].

IV. RESULTS

To test the drift-compensation algorithm of the MLP, we
studied the testing accuracy of the network with NIN = 784
and H1 = 120 neurons using MNIST, rand-MNIST (random-
ness of 10%) and fashion-MNIST datasets.

A. Drift resilience of hardware neural networks

Assuming an ideal multilevel implementation of the weights
and the same drifting coefficient for each programmed state,
the compensation algorithm can fully recover the best accu-
racy, as shown in Fig. 6(a). However, the real PCM devices
show different evolutions for each programmed synaptic value
depending on the initial resistive state [10], which leads to a
significant accuracy loss at increasing time, since the initial
weights mix up, Fig. 6(b).

On the other hand, considering the discretization of the
synaptic weights without errors, it is possible to get the best
results using 4 bits per weight for all the datasets, Fig. 7.
Thus,taking into consideration the digital programming of
the PCMs implementing the synaptic words, Fig. 5, it is
possible to overcome the drift limitation accordingly to the
drift-recovery algorithm described in Section III. Fig. 8 shows
the accuracy of the MNIST dataset considering only the differ-
ential MVMs expressed in Eqs. 1-4 (a) and with the recovery
of the distribution narrowing described in Eqs. 5-7 (b). Fig. 8
also shows the accuracy as a function of time for MNIST (c),
rand-MNIST (d) and fashion-MNIST (e), considering different
programming conditions of the PCMs. The accuracy remains
constant for a correct digital programming of the devices,
while it drops if the LRS is modulated by IPULSE .

B. Hardware performance

Although the hardware implementation with digital weights
allows for a better drift recovery, additional area and energy
consumption are required. Considering that the goal is to test
the MNIST in less than 0.5 s, the ops/s (expressed in giga
operations per second, GOPS) are calculated by computing
the bit-level calculation that the hardware is able to provide
during the inference of 10000 testing images. Considering (I)
the read procedure of the synaptic and dummy arrays, (II) the
tracking of the average LRS drift in time, (III) the number
of implemented arrays, (IV) the master clock of 10 MHz, a
total of 30 GOPS is obtained in the case of a 4-bits synaptic
array, Fig. 9(a). Fig. 9(a) shows that the accuracy, as well as
the GOPS, are functions of the number of bits used per each
weight (from 1-bit to 6-bits are reported).

Note that, since the additional area of the dummy arrays
is negligible with respect to the peripheral electronics [6],
the specific throughput (TOPS/mm2) increases at increasing
number of bits, Fig. 9(b). On the other hand, Fig. 9(c)
shows that the energy efficiency (TOPS/W) decreases with the
increasing number of bits, since further computation is needed
at increasing PCM array size. The limiting factor in terms

Fig. 9. (a) Accuracy of the MLP as a function of the ops/s for testing
the MNIST in < 0.5s for different number of bits (from 1 bits to 6-bits per
synaptic weight). (b) Accuracy of the MLP as a function of the ops/s/mm2.
(c) Accuracy of the MLP as a function of the ops/s/W for three values of
ISET .

TABLE I
SUMMARY OF THE RESULTS

of efficiency is the peripheral circuitry for the MVM signal
management. All these results are in line with previous works
for analogue based MLPs [6], [34] and have been computed
in relation to hardware estimations using Cadence Virtuoso.

Table I shows a comparison for the MNIST dataset between
the pure software and the digital hardware approach. Note
that the drift-resilient algorithm with digital weights has an
accuracy near to the theoretical value, thus offering software-
like results in terms of robustness.

V. CONCLUSIONS

This work introduced a methodology for the integrated hard-
ware design of PCM-based neural networks immune to drift.
The methodology relies on strictly positive synaptic weights,
where drift is monitored and properly subtracted by using
reference PCM arrays. The accuracy of the network is studied
using a digital implementation of the weights, demonstrating
high accuracies for MNIST, rand-MNIST and Fashion-MNIST
datasets. Furthermore, the throughput and the energy efficiency
are analysed, thus providing a useful guideline for designing
fast and efficient neural accelerators based on PCM devices.
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