
Profiled Attacks against the
Elliptic Curve Scalar Point Multiplication

using Neural Networks

Alessandro Barenghi[0000−0003−0840−6358]1, Diego Carrera[0000−1111−2222−3333]2,
Silvia Mella[0000−0002−4664−3541]2,3, Andrea Pace2,

Gerardo Pelosi[0000−0002−3812−5429]1, and Ruggero Susella[0000−1111−2222−3333]2

1 Politecnico di Milano, Milano, Italy, name.surname@polimi.it
2 STMicroelectronics, Agrate Brianza, Italy, name.surname@st.com

3 RadBoud University, Nijmegen, The Netherlands

Abstract. In recent years, machine learning techniques have been suc-
cessfully applied to improve side-channel attacks against different crypto-
graphic algorithms. In this work, we deal with the use of neural networks
to attack elliptic curve-based cryptosystems. In particular, we propose a
deep learning based strategy to retrieve the scalar from a double-and-add
scalar-point multiplication. As a proof of concept, we conduct an effective
attack against the scalar-point multiplication on NIST standard curve
P-256 implemented in BearSSL, a timing side-channel hardened public
library. The experimental results show that our attack strategy allows
to recover the secret scalar value with a single trace from the attacked
device and an exhaustive search over a set containing a few hundreds of
the sought secret.

Keywords: Computer security · Applied cryptography · Profiled side
channel attacks · Neural Networks · Elliptic curve cryptography

1 Introduction

Side channel attacks (SCAs) aim at deriving the data being processed during
a computation, by modeling the data-dependent behavior of the computing de-
vice itself. So called passive side channel attacks exploit the physical behaviors
that can be measured without disrupting the computation, such as computa-
tion time [6,19], power consumption [24,20], or radiated electromagnetic emis-
sions [1,13,29]. The time series obtained by the measurement of such quantities
are also known as traces. To retrieve a secret value used during a computation,
an attacker tries to map the collected traces onto multiple instances of a key-
dependent model of the behavior of the device under attack. By observing which
key-dependent model is most fitting, the actual value of the secret is inferred.

A powerful class of SCA is the class of profiled side channel attacks. In this
scenario, the attacker has full control of a copy of the device under attack (e.g.,
a sample of a microcontroller similar to the target one). She first builds a good



2 A. Barenghi, D. Carrera, S. Mella, A. Pace, G. Pelosi, R. Susella

leakage model of the duplicate and then uses this leakage model to exploit the
actual leakage of the target device and retrieve the secret information. One of the
most used approach in profiled SCA is the one of template attacks [9], where a set
of multivariate Gaussian models are built to describe the measurements recorded
under fixed value of (a portion of) the secret data. The attacker may derive which
value is used during the target computation, by applying a maximum likelihood
estimation approach on the built models. In the best case, a single trace from
the device under attack can be sufficient to mount the attack. Other approaches,
that received significant attention in recent years, are those based on machine
learning techniques [22,25,37]. In particular, attacks based on neural networks
proved to be effective against both symmetric and asymmetric cryptosystems,
also in defeating some side-channel countermeasures [7,8,16,23,26,33,34,36].

Given the nature of the cryptographic algorithm under attack, the amount
of secret-dependent data points contained in a measurement may be small with
respect to the total amount of collected information. For this reason, it is com-
mon practice to process the traces to extract the time instants where most of
the secret key-related information is expected to be present. Such instants are
known as Points-of-Interest (PoI). Effective PoI selection algorithms include
the selection of trace samples exhibiting maximum variance, or the selection
of trace samples corresponding to time instants when the processing of data is
highly correlated with the hypothetical model for the sensitive operation (e.g.,
the Hamming weight of an operation result or the Hamming distance between a
result and an operand) [24].

Contributions. In this work, we present a profiled attack against the double-
and-add-always algorithm employed in Elliptic Curve Cryptography (ECC). We
use machine learning techniques to model the power consumption behavior of
the device under attack. Specifically, we aim at identifying when some arithmetic
operations underlying the double-and-add-always algorithm share a common
operand. We then use such information to distinguish the portion of the secret
scalar value related to such operations. To this end, we build and train a set of
Multilayer Perceptrons (MLPs) to extract information on the processed operands
(specifically on the Hamming weight (HW) of their words), and propose a simple
metric to decide on the equality of the operands themselves based on such infor-
mation. This approach is similar to the one presented in [8], where information on
specific bits of some operands is extracted to infer the secret exponent used in a
RSA implementation. As our testbed, we attack a 2-bit windowing-based double-
and-add-always implementation of the elliptic curve scalar-point multiplication.
The implementation is one of those contained in the open-source BearSSL soft-
ware library, which is hardened against timing side channel attacks [27]. On this
experimental testbed, we are able to correctly guess all-but-two bits of the secret
scalar on average, with a single trace from the attacked device.

Paper organization. In Section 2, we summarize related works and the dif-
ference with our study. In Section 3, we first provide background information
on profiled SCA using neural networks and then detail the BearSSL windowing-
based implementation of the elliptic curve scalar-point multiplication algorithm



Profiled Attacks against Scalar Point Multiplication using Neural Networks 3

optimized for the NIST curve P-256. In Section 4 we describe our attack method-
ology, while in Section 5 we report the results of our experimental validation.
Finally, Section 6 reports our concluding remarks.

2 Related Work

Attacks based on collision technique rely on the capability of distinguishing
whether two distinct operations share a common input operand or not. They
were applied to extract secret key values from a single execution trace of RSA [35]
and ECC [17,31] algorithms, as well as from their implementations exhibiting
some SCA countermeasures [4,10]. In these works, the authors employ either
Euclidean distance or statistical correlation as quantitative metrics to detect
whether two operations share a common input or not.

In [8] the authors describe a profiled strategy based on neural network clas-
sifiers to detect such property in an RSA implementation. They take advantage
of a peculiar architectural property of the device under attack. In particular,
they exploit the fact that the target chip leaks significant information on the
value of the twelfth bit of each limb of a multiple-precision arithmetic operation.
They use such information to understand whether two operands in subsequent
iterations of the main loop of the algorithm have the same value. From this
information they can then distinguish the secret exponent bits used in such it-
erations.

In this work, we use a similar approach and extract information on the HW
of each limb, instead of a specific bit, and exploit it to attack ECC implemen-
tations. Moving to the HW leakage model is justified by the fact that the HW
model carries more information about the whole operand than single bits. More-
over, the HW leakage model, together with the Hamming distance model, has
been proven to be the most effective in different SCA scenarios. To manage this
new leakage model, we employ neural networks as regressors, instead of (binary)
classifiers as in [8].

In [34], the authors present a successful attack on a windowing-based imple-
mentation of the Edwards-curve Digital Signature Algorithm (EdDSA) in the
WolfSSL software library [2]. They exploit the presence of table-lookup opera-
tions in the windowing based implementation and profile their power consump-
tion. They then use the built models to infer which ones of the precomputed
values are used during the target execution. In our work, we also try to under-
stand the precomputed values used during the computation, but we profile the
multiple-precision multiplication operation instead of table-lookup operations.
The reason behind this choice is that our attack may in principle be applied also
to non windowing-based implementations, which do not rely on table-lookup but
only on multiple-precision arithmetic operations.

Other interesting applications of machine learning applied to profiled at-
tacks against ECC implementations exploit different attack paths. In [36], the
authors target an ECDSA implementation where the first four bits of the scalar
are recovered via profiled SCA and employed to derive the private key via a



4 A. Barenghi, D. Carrera, S. Mella, A. Pace, G. Pelosi, R. Susella

computational lattice based attack, improving the effectiveness of the horizon-
tal attack introduced in [28]. In [33] the authors attack two implementations
of EdDSA with Curve25519. The first is the implementation provided by the
WolfSSL library [2], where the full scalar is profiled by nibbles in a horizontal
fashion. The second one is the protected implementation provided by the Lib-
sodium library [11], based on the Montgomery Ladder scalar multiplication. The
authors exploit the presence of an arithmetic-based conditional swap to profile
each iteration of the main loop. In this work, the authors do not consider only
neural network-based attacks, but compare the effectiveness of other profiling
techniques, such as Template Attacks, Random Forests, and Support Vector
Machines. In [26], the authors propose a deep learning-based method to incre-
mentally correct secret keys recovered via horizontal attack. This is especially
helpful in the presence of randomized scalars or exponents.

3 Background

In this section we first provide an overview on profiled attacks and neural net-
works. We then describe the double-and-add algorithm which will be the target
of our attacks, detailing the implementation of the open source library BearSSL
that we will use in our experimental validation.

3.1 Profiling Techniques

Profiled side channel attacks are performed in two stages. The first stage is
known as profiling stage and consists in building a statistical model of the side
channel behavior of a copy of the device under attack, for each possible value of
a chosen portion of the secret key to be recovered. To build an accurate model,
an appropriate leakage model for the device must be chosen. Common choices
are the Hamming weight (HW) and the Hamming distance (HD) of a sensitive
intermediate value that is computed by the algorithm and depends on the target
secret key portion.

The second stage is known as key-extraction stage. In this phase, the attacker
aims at classifying one (or a few) measurement(s) obtained from the target device
by computing the probability that it matches (they match) each of the models
built in the profiling phase. Since each model is associated with a guess on the
sensitive variable value, the highest probability indicates the most likely one.

Deep Learning Attacks. A class of machine learning algorithms frequently
used in profiled SCA is deep learning. In this scenario, the profiling stage maps
onto the learning phase, where one or more neural networks are trained, while the
key-extraction stage is mapped onto the prediction phase, where the networks
are used to guess the target data. A neural network can be represented through
a graph, where the nodes represent the neurons (i.e. the elementary processing
elements), and the arcs represent the dataflow across the neurons. The neurons
are organized in layers, where each layer groups together all the neurons acting
in parallel on the same set of inputs. The neurons acting on the input values



Profiled Attacks against Scalar Point Multiplication using Neural Networks 5

provided to the network compose the input layer of the network, while neurons
acting on the outputs of other neurons compose the hidden layers. The neurons
computing the outputs of the neural network belong to the output layer.

In this work, we employ a neural network architecture known as Multilayer
Perceptron (MLP). In an MLP, also known as feed-forward neural network [5],
each layer is fully connected to the next layer. Each node of an MLP computes
a weighted sum of its inputs (x0, . . . , xm−1) and applies to the result a nonlinear

activation function φ(·), yielding as output a value z = φ
(∑m−1

i=0 wi xi

)
. The

choice of the activation function depends on the features of the multivariate
function to be approximated (learned) by the MLP. Common choices for the
activation function include the sigmoid or a softmax function, when a real valued
output in the [0, 1] range is desired (e.g., to model a probability); the hyperbolic
tangent, a Rectified Linear Unit (ReLU), or a LeakyReLU function, otherwise.
The weights of the inputs, w0, . . . , wm−1 are specific to each neuron and they are
computed during the learning phase of the MLP, starting from an initial random
choice.

The learning phase of an MLP is split in three sub-phases: training, validation
and test. During the training phase, a set of inputs for which the desired output
is known, is fed to the network. The weights of the neurons are updated in order
to steer the results of the network towards the desired outputs. This is done
by minimizing the difference between the outputs of the neural network and
the expected results, according to a chosen error function (e.g., least squares),
which is known as loss function [12,18]. Since the learning process of the MLP
requires the values for the desired outputs, this is known as supervised learning,
as opposed to unsupervised learning that does not require the desired output
values. In the validation phase, a first assessment of the quality of the prediction
capability of the neural network is measured. This is done by feeding to the
network a fresh set of inputs, known as validation inputs, for which also the
desired output is known. The difference between the expected and actual output
of the network is known as validation error. Training and validation sub-phases
are combined in what is known as epoch.

While in principle the learning phase may include an unbounded number of
epochs, training over a very large amount of epochs may cause a phenomenon
known as overfitting. In this case, the neural network is remarkably accurate in
producing the desired results on the sets of inputs employed during the training,
but poorly tolerates small variations on the said input sets which results in
bad performance on unseen data [30]. To preserve the desirable generalization
property of the network (i.e. tolerance to input changes), the learning phase
should be stopped whenever the prediction error on the validation inputs (which
are different from the training inputs) has a minimum. In fact, the validation
error exhibits a concave trend, with a steep descent in the initial phase, followed
by a slow increase due to the start of the overfitting phenomenon. The number
of epochs to be computed is thus chosen minimizing the validation error of the
network. To mitigate the overfitting phenomenon, a special neuron layer, known
as dropout layer, can be used. In such layer, each neuron takes as input the



6 A. Barenghi, D. Carrera, S. Mella, A. Pace, G. Pelosi, R. Susella

output of exactly one neuron from the previous layer, not shared with anyone
else, and it outputs either the input received or zero with a chosen probability.
Such probability is known as dropout rate [32]. Finally, the final sub-phase of
the network learning, i.e., the testing sub-phase, is performed. During the testing
sub-phase, a further independent set of inputs is fed to the network to assess
the performance of the fully trained network. The role of the testing phase is
to assess whether the minimum in the validation error that was achieved in
the training and validation sub-phases is indeed a satisfactory result for the
application scenario at hand.
Feature selection When neural networks are employed in a machine learning
based SCA, the inputs to the network are the data point composing the side
channel trace. Since the operations involving sensitive data are typically few
and far apart in a trace, providing all the trace samples acquired as inputs to
the network may provide more noise than actual information to the network
itself. Consequentially, it is commonplace to adopt a feature selection procedure
to improve the efficiency and effectiveness of the network learning phase as well as
the effectiveness of the network as a classifier/regressor. This procedure allows
either to select a subset of the trace samples based on their sensitive leakage
information content or to filter out redundant and uncorrelated information, by
combining the trace samples to obtain a smaller set of features. Different methods
may be applied for feature selection. Some effective techniques are Difference Of
Means (DOM) [9], Sum Of Squared Differences (SOSD) [15], , Sum Of Squared
pairwise T-differences (SOST) [15], Signal-to-Noise Ratios (SNR) [24], Mutual
Information Analysis (MIA) [14], and Principal Component Analysis [3].

3.2 Elliptic Curve Scalar-Point Multiplication in BearSSL

We now describe a generic double-and-add-always algorithm and provide details
of the version which will be used as our case study, i.e., the optimized imple-
mentation for P-256 provided in the BearSSL software library [27]. BearSSL is
commonly used to implement TLS connectivity on inexpensive embedded sys-
tems. One of the main goals of BearSSL is the immunity to timing attacks,
achieved through constant-time implementation of cryptographic primitives.

In the following, we denote the binary representation of a value in Fp stored in
a variable v as (vn−1, . . . , v0)2, while we highlight the physical storage of the same
value as a sequence of W -bit architectural words/limbs as (vm−1, . . . ,v0)2W . We
denote the j-th bit 0 ≤ j < W of the i-th word as vi,j , whist v(t) denotes the
value of the variable v during the t-th iteration of the main loop of a double-
and-add(-always) algorithm. We denote with capital letters, e.g., P, the points
of an elliptic curve with coordinates over the finite field Fp.

Algorithm 1 reports the general structure of a double-and-add-always al-
gorithm to perform scalar point multiplication. A naive double-and-add (non-
always) algorithm scans the natural binary representation of the scalar (e.g.,
from left to right), performing a doubling at each scanned bit and an addition
at each set bit of the scalar. While this approach produces a correct result, it is
also vulnerable to timing attacks and simple power analysis, as it performs an



Profiled Attacks against Scalar Point Multiplication using Neural Networks 7

Algorithm 1: Left-to-right
double-and-add-always

Input: P ∈ E(Fp): generator of a
large subgroup of E,
k = (kt−1kt−2 . . . k0)2:
scalar value

Output: Q = [k]P: scalar-point
multiplication result

1 Q← O, D← O
2 for i← t− 1 to 0 do
3 Q← [2]Q
4 if ki = 1 then
5 Q← P + Q

6 else
7 D← P + Q

8 return Q

Algorithm 2: Schoolbook
multi-precision multiplication

Input: x = (xm−1xm−2 . . .x0)2W
y = (yn−1yn−2 . . .y0)2W

Output: z = x · y
Data: c = (c1c0)2W : double

precision temporary value

1 z ← 0
2 for i← 0 to m− 1 do
3 for j ← 0 to n− 1 do
4 (c1c0)← zi+j +xi ·yj +c1

5 zi+j ← c0

6 zi+n+1 ← c1

7 return z

operation (the addition) only if a condition on the secret scalar is met. To avoid
this information leakage, the double-and-add-always variant employs a dummy
accumulator variable (curve point D, line 7), which stores the result of a dummy
addition operation that is performed when the scalar bit being scanned is not
set. The double-and-add-always algorithm thus always computes both a dou-
bling and an addition for each scalar bit, however the additions performed when
the scalar bit is not set do not contribute to the final result.

In the BearSSL optimized implementation for the NIST standard curve P-
256, the field operations are realized computing integer addition or multiplication
followed by a modulo reduction. We note that for other curves, an alternative
approach relying on the Montgomery multiplication is applied in the library,
although it does not hinder the nature of our attack. In the multiply and reduce
approach applied in BearSSL, multiple precision multiplications and squarings
are executed applying the schoolbook approach reported in Algorithm 2, as it is
the optimal one given the size of the operands and the fact that the modulo op-
eration can be performed quite efficiently making use of the special binary form
of the field characteristic recommended for the NIST standard curve P-256.

A notable detail in the word-by-word processing described in Algorithm 2 is
the use of a single-word multiplier (line 4) that is able to compute the multipli-
cation of two W -bit words yielding the corresponding 2W -bit result. Finally, a
notable implementation choice for curve P-256 in the BearSSL library, concerns
the encoding of multi-precision integer values as a sequence of W=30 bit words
(each one fit into the least significant positions of a 32-bit architecture word)
to manage the propagation of carries during additions and multiplications more
efficiently.



8 A. Barenghi, D. Carrera, S. Mella, A. Pace, G. Pelosi, R. Susella

Algorithm 3: BearSSL Scalar-point Multiplication for E(Fp) NIST
Standard Elliptic Curves

Input: P ∈ E(Fp): generator of a large subgroup of E(Fp),
k = (kt−1kt−2 . . . k0)2: scalar value

Output: Q = [k]P: scalar-point multiplication result
Data: CMove(BooleanExpression, SecondParam, ThirdParam): a conditional

move copies the value of the third parameter into the second one, when
the Boolean condition specified as the first parameter is true

1 Q← O
2 P2 ← 2P
3 P3 ← P2 + P

4 for i← t− 1 to 1 by −2 do
5 w ← (kiki−1)2 // extract a 2-bit window from the scalar

6 Q← [2]Q
7 Q← [2]Q
8 T← P, U← Q

9 CMove(w = (10)2, T, P2)
10 CMove(w = (11)2, T, P3)
11 U← U + T

12 CMove(w 6= (00)2 ∧ Q = O, Q, T)
13 CMove(w 6= (00)2 ∧ Q 6= O, Q, U)

14 return Q

Algorithm 3 describes the actual scalar-point multiplication algorithm adopted
in the BearSSL cryptographic implementation of ECC based on the NIST stan-
dard elliptic curves with prime characteristic, E(Fp), in Jacobian coordinates. It
shows a left-to-right double-and-add-always approach with the left-to-right scan-
ning of the binary representation of the secret scalar that considers two bits for
each iteration of the main loop of the algorithm. The algorithm starts by setting
the accumulator variable Q to the point at infinity (line 1), and precomputes the
values of the double and triple of the base point P (lines 2–3). The main loop of
the Algorithm (lines 4–13) scans the scalar k from left to right, considering two
bits of the scalar, (kiki−1)2 per iteration (line 5), and computes the quadruple
of the accumulator Q via two doubling operations (lines 6–7). The remainder of
the loop body performs a sequence of conditional assignments with the purpose
of adding to Q one out of: nothing, P, [2]P, or [3]P, depending on whether the
values of (kiki−1)2 are (00)2, (01)2, (10)2, or (11)2, respectively. This is accom-
plished saving the quadruple of Q in a temporary variable, U, and performing
a sequence of conditional assignments employing a constant time conditional
move function (Cmove), which overwrites its destination operand (fed into the
second parameter) with the source one (fed into the third parameter) only if the
Boolean condition provided as the first parameter of the Cmove function is true.
The first two conditional assignments, (lines 9 and 10) change the value of the
point to be added, T, from the P value taken in the assignment in line 8 to [2]P
or [3]P, depending on whether the pair of scalar bits is equal to (10)2 or (11)2.



Profiled Attacks against Scalar Point Multiplication using Neural Networks 9

Table 1: Summary of the pairs of variables, employed as operands in the point
doubling and addition operations, of which the value collision are exploited,
together with the corresponding value of the two scalar bits being revealed

First Line in Second Line in Values Inferred (ki, ki−1)
value Alg. 3 value Alg. 3 are with i from t−1 downto 1

P(0) 2 T(i) 11 =
(0, 0)

Q(i) 11 Q(i−2) 6 =

P(0) 2 T(i) 11 =
(0, 1)

Q(i) 11 Q(i−2) 6 6=

P
(0)
2 2 T(i) 11 = (1, 0)

P
(0)
3 2 T(i) 11 = (1, 1)

The value T is then added to the copy of the quadrupled point value Q (line 11).
Finally, the last two conditional assignments (line 12 and line 13) take care of
replacing the value of the quadrupled point Q with its sum with one out of P,
[2]P or [3]P, which is stored in T. This action needs to be performed only if the
two scalar bits are not null (as this in turn implies that an addition is needed in
this iteration). The reason for having two conditional assignments is to handle
the fact that the accumulator curve point Q is set to the point at infinity at the
beginning of the algorithm. This in turn would cause the point addition at line
11 to mis-compute the result of the sum of the accumulator with a multiple of
the base point. As a consequence, a simple copy of the base point multiple is
made if Q = O.

4 Proposed Attack Workflow

In the following, we describe our attack strategy against Algorithm 3. We start
by describing which algorithmic feature is exploited in our attack, and how we
determine a criterion to deduce the value of the scalar bits from the information
leaked by the side channel measurements. Subsequently, we detail what is the
workflow of the power trace processing in the learning and prediction phase of a
neural network based classifier which will allow us to detect the value collisions
in the algorithm.

4.1 Inferring the Secret Scalar Value via Collisions

Our attack exploits the fact that, in each iteration of the main loop of Algo-
rithm 3, the conditional assignments driven by the values of the scalar bits will
change the value of the accumulator Q only if the scalar bits are not equal to
(0, 0), and will select different values to be added to the temporary curve point
U. Exploiting the side channel leakage of the device to detect whenever operands



10 A. Barenghi, D. Carrera, S. Mella, A. Pace, G. Pelosi, R. Susella

of the base field arithmetic operations match among the operations will allow us
to deduce the value of the scalar bit pair.

A summary of the values for which we test the equality via side channel
attack, and the corresponding inferred values for the scalar bits are reported in
Table 1. The two bottom rows in Table 1 describe the two straightforward cases
when the derivation of (ki, ki−1) = (1, 0) or (ki, ki−1) = (1, 1), is performed by
testing whether the value of the addend T in the point addition at line 11, during
the current i-th iteration, equals two or three times the base point, respectively.

The values of the double and triple of the base point, P
(0)
2 and P

(0)
3 , are computed

outside the loop body (conventionally, at the zero-th iteration), and are denoted
at lines 2–3 of Algorithm 3 as P2 and P3. The remaining cases when the value of
the operand T of the point addition at line 11 matches the base point itself needs
additional information to infer whether (ki, ki−1) = (0, 1) or (ki, ki−1) = (0, 0),
i.e., if the point addition result is being actually used or not in this iteration.
We derive this additional information from the fact that, if (ki, ki−1) = (0, 0)
nothing should be added to the accumulator value Q during the iteration where
the loop index equals i. Indeed, in case (ki, ki−1) = (0, 0) the conditional move
operations at lines 12–13 do not change the value of the accumulator point Q(i).
As a consequence, we will have that, on the next loop body iteration (i.e., the
one with loop index equal to i−2), the value of Q(i−2) employed as operand to
the point doubling at line 6 of Algorithm 3 will match the value of Q(i) (i.e., the
value at the previous iteration) as first operand in the point addition operation
at line 11.

Through the collision analysis of the values in Table 1 we are thus able to
distinguish the value of the two bits of the scalar for each loop iteration in
all the cases but the single corner case of them being either (0, 0) or (0, 1) in
the last iteration of the double-and-add algorithm. Indeed, since we would need
information from a subsequent loop iteration to tell these case apart, and there
is no further iteration, the last bit of the scalar must be guessed in this case.

Our approach to distinguishing whether the values taken by two curve point
variables are the same or different relies on a leakage of the Hamming weight
of the multiple precision arithmetic operands, i.e., the curve point coordinates,
which we experimentally verified to be present. Under the assumption of this
leakage being present, we analyzed the point doubling and point addition formu-
las, reported in Algorithm 4 and Algorithm 5 in the Appendix. Both algorithms
report the formulas considering the points as expressed in Jacobian coordinates,
as per the BearSSL implementation. We highlighted in blue all the multiple pre-
cision arithmetic operations involving as operands the coordinates of any of the
operand points (the addends for the addition, the point to be doubled for the
doubling). We note that, save for two instructions in the point doubling (lines
2 and 3, Algorithm 5), all the sensitive multiple precision operations are either
multiplications or squares.



Profiled Attacks against Scalar Point Multiplication using Neural Networks 11

4.2 Testing for equality via side channel data extraction

We now describe how we employed a neural-network based regressor to de-
tect whenever two curve point variables have the same values. In particular, we
describe our preprocessing of the traces, aimed at reducing their number of sam-
ples, keeping only the ones which are expected to contain relevant information.
Subsequently, we describe how we trained our neural network based regressors,
and how their results are combined to yield the value match estimation.

For the sake of clarity, we will consider the power trace of the entire double-
and-add algorithm as split into a sequence of slices of contiguous samples, cor-
responding to an iteration of the loop body in Algorithm 3, and denote them
single-iteration sub-traces. Each single-iteration sub-trace contains two sequences
of samples which correspond to the execution of the point doubling at line 6 of
Algorithm 3 and to the execution of the the point addition at line 11. These two
sequences are the ones containing the samples of interest for our attack, and will
be denoted as addition sub-trace and doubling sub-trace.

Since the addition and doubling sub-traces are composed by a number of
samples in the tens of thousands, we decided to perform a selection of the points
of interest, i.e., derive a set of time instants corresponding to the samples most
relevant for our analysis. To this end, we collected a set of traces where all the
operands were known, and computed the sample Pearson correlation coefficient
between the Hamming weight of each operand word and the power consumption
itself. We determined a first set of points of interest, S1

PoI considering all the
time intervals where the correlation with the Hamming weight of any of the
operand words exceeded a given threshold h, and adding a sample preceding
and a sample following each time interval. A second set of points of interest S2

PoI

was determined as the sequence of time instants between the first and last time
instants in which the Pearson correlation coefficient exceeds the threshold h. The
threshold is selected to be above the value of the non significant correlation for
a given number of traces ntraces, i.e., 4√

ntraces
[24].

Once the sets of points of interest were determined, only the projection of
the traces on the time instants contained in the said sets were employed as
input to our regressor learning, validation and testing phases. We employed
as a regressor, an MLP neural network, which was trained with the projected
traces labelled with the sequence of Hamming weights of the multiple precision
arithmetic operand, therefore learning to regress the sequence of the Hamming
weights of the operand words. The PoI selection and learning (training) proce-
dure was repeated for each multiple precision operand which is involved in curve
point variable comparison, obtaining a dedicated MLP for each one of them, i.e.,
for each coordinate of the points reported in Table 1. Our choice employing a
set of MLP neural networks for each multiple precision operand (i.e., each coor-
dinate of a curve point) is motivated by the manipulations of the said operands
taking place in different time instants during the addition and doubling steps.

In order to exploit the results of our trained classifiers on a power trace
sampled from a device with an unknown scalar value, we partition the power



12 A. Barenghi, D. Carrera, S. Mella, A. Pace, G. Pelosi, R. Susella

trace at hand in the two addition and doubling sub-traces, apply the projection
on the PoIs and feed the resulting decimated sub-traces onto the 9 regressors (one
for each Jacobian coordinate X, Y , Z of the three elliptic curve point variable
Q, T, U). Since a regressor outputs a sequence of values corresponding to its best
estimate of the Hamming weights of the operand at hand, we need to compare
two sequence of values to infer if the operands match or not. We note that, in
the case of the comparison between the three precomputed window points, i.e.,

P = P(0), P2 = [2]P(0), P
(0)
3 = [3]P(0) and the runtime value taken by T, only the

Hamming weights of T are unknown, while the others are fixed and known. This,
in turn, allows us to compare the regressed estimate of the Hamming weight of
the words of the coordinates of T with the known values of the Hamming weight
of the words of the coordinates of P, P2, P3.

The comparison between two curve points is performed taking the three
vectors of 9 estimates of the Hamming weights for each coordinate of the points
(e.g., Q, T) on the curve P-256, concatenating the vectors to obtain a 27 element
vector for each point, and computing the Manhattan distance between the two
27 elements vectors. We recall that the Manhattan distance is defined as the sum
of the absolute values of the coordinate-wise differences of two vectors, which are
in our case the two sequences of Hamming weights. We deem two curve points
equal if the Manhattan distance is below a given threshold. We employed traces
from the learning (training) set to determine the threshold on the Manhattan
distance allowing the best success rate in comparisons.

5 Experimental Evaluation

The device under test was a 32-bit ARM R© Cortex R©-M4 microcontroller with
256 kiB of Flash memory, 40 KiB of SRAM, supporting a maximum frequency
of 72 MHz, while the recording of the power consumption traces was performed
via a ChipWhisperer 1200 Pro digital sampling kit. The sampling is performed
synchronously with the target microcontroller clock signal, providing one sample
per clock cycle. This clock-locking approach removes artifacts coming from even-
tual clock jitter, and was possible with the Chipwhisperer Pro acquisition board
locking the microcontroller clock to an external crystal oscillating at 7.37 MHz.
To focus our analysis on the learning aspects of the profiled phase of attack, we
employed triggers signals to single out point addition and doubling subtraces
out of the entire execution of the elliptic curve scalar-point multiplication.

Our experiments were done running the BearSSL ver. 0.6 library [27], com-
piled with gcc ver. 9.2.1, and compilation options -Os. We recall that BearSSL
encodes the multiple precision integer operands employing 30-bit limbs, which
are embedded in the least significant bits of 32-bit architectural words. As a
consequence, the binary values of curve point coordinates are represented em-
ploying a number of 32-bit machine words which is not a power of two; e.g.,
point coordinates of the NIST standard curve P-256 are defined over a prime
finite field, where each element is encoded as a sequence of 256 bits which in
turn corresponds to 9, 32-bit machine words.



Profiled Attacks against Scalar Point Multiplication using Neural Networks 13

0 0.2 0.4 0.6 0.8 1

·104

0

0.2

0.4

0.6

0.8

Clock cycle

P
ea

rs
o
n

C
o
rr

el
at

io
n

C
o
effi

ci
en

t

7,800 8,000 8,200 8,400 8,600 8,800 9,000 9,200

0

0.2

0.4

0.6

0.8

Clock cycle

P
ea

rs
o
n

C
o
rr

el
at

io
n

C
o
effi

ci
en

t

Fig. 1: Pearson correlation coefficient between the values of the Hamming weight
of each one of the nine words of the x-coordinate of Q (the point being doubled
in a point doubling operation) and the power consumption measurements from
the device, as a function of time. Each one of the nine colours represents the
correlation of a given coordinate word. (Left) Time interval corresponding to
the leading part of a point doubling sub-trace – no significant correlation is
observed outside the shown samples; (Right) zoom on the second set of peaks
reported also in the left sub-figure, highlighting the different time instants where
the coordinate words are being processed

The MLPs were generated and tested using TensorFlow v1.12.0 and Keras
v2.1.6-tf. Experimental tests have been run on an Intel(R) Xeon(R) Gold 6254
processor running at 3.1 GHz. Training all the required MLPs (i.e., nine neural
networks, three for each curve point), requires a total time of seven hours. Ex-
tracting the key values once the models are available takes a couple of seconds.

As a first step, we tested if the assumption of Hamming weight leakage on the
curve operands was practically verified. To this end, we collected 3, 000 traces of
the curve point doubling and addition with known random input and computed
the Pearson correlation coefficient among the sampled values and the Hamming
weight of the words composing the coordinates of the operands.

Figure 1 reports the result of the computation of the Pearson correlation
coefficient between the Hamming weight of each one of the nine words of the
x-coordinate of Q during a point doubling operation and the power consumption
trace (line 6 or line 7 in Algorithm 3). Each correlation with a given word out
of nine is represented with a different colour. As it can be seen, there are time
instants where a non-negligible correlation is present for each one of the nine
coordinate words. Similar results are obtained with the words of the remaining
coordinates, and with the words of the curve addition operands, and are omit-
ted for space reasons. Given the obtained results, we set our threshold h for the
Pearson correlation coefficient to build the sets of PoIs to 0.3, as there is at least
one time instant where a significant correlation is present for each word of each
one of the curve coordinates.



14 A. Barenghi, D. Carrera, S. Mella, A. Pace, G. Pelosi, R. Susella

MLP architecture

Layer Type Neurons Function

Input Dense 371 Identity
1 Dense 80 LeakyReLU α = 0.3
2 Dropout 80 Dropout, rate 0.2
3 Dense 60 LeakyReLU α = 0.3
4 Dense 50 LeakyReLU α = 0.3
5 Dense 30 LeakyReLU α = 0.3
6 Dense 20 LeakyReLU α = 0.3

Output Dense 9 ReLU

0 500 1,000 1,500

1

1.5

2

2.5

3

Epoch

M
ea
n
ab

so
lu
te

er
ro
r

Validation

Training

Fig. 2: (Left) Architecture of the MLP employed to regress the value of the Ham-
ming weights of the multiple precision coordinates of curve points. (Right) Train-
ing and validation accuracy of the MLP for the prediction of the x-coordinate
of the point Q. Each epoch employs 24k traces

We built nine regressors, one for each coordinate of the three points Q, U, and
T, using the same MLP model. To choose our MLP regressor, we tested different
neural network architectures and compared their performance with respect to
their topology and hyper-parameters, using the accuracy and loss metrics. The
number of layers and the number of neurons per layers were determined by sub-
sequent refinement passes which reduced them until the accuracy results started
worsening. We tested different number of epochs and batch sizes. As optimizer
algorithms, we tested the ADAM optimizer and the RmsProp optimizer, with
different learning rates.

We eventually designed our MLP regressor as an 8-layer MLP; a description
of the complete architecture is reported in the left part of Fig. 2. We employed 7
dense neuron layers, and 1 random dropout layer (the third) with dropout rate
0.2 to prevent overfitting. We chose to employ the Leaky Rectified Linear Unit
(LeakyReLU) [21] activation function, which is defined as

f(x) =

{
αx, if x ≤ 0

x, if x > 0

employing a leaking parameter α = 0.3, for all the dense layers of the MLP save
for the last. The choice of the LeakyReLU activation function was empirically
substantiated by the fact that the LeakyReLU performed better than the orig-
inal ReLU counterpart (i.e., LeakyReLU with α = 0). We employed the mean
squared error loss function and employed the Root Mean Square propagation
(RMSprop) learning algorithm, with a batch size of 32.

For the learning phase of our attack, we collected a set of 75k sub-traces
with known inputs. We used 30k of such sub-traces for the training/validation
phase, with an 80/20 split between training and validation sets. Each epoch thus



Profiled Attacks against Scalar Point Multiplication using Neural Networks 15

employed 24k sub-traces for the training and 6k for the validation. The remain-
ing 45k sub-traces were used for the testing phase. The label associated to the
dataset is the sequence of 9 Hamming weights of the operand words.

Figure 2, on the right, reports the Mean Absolute Error (MAE) trends in
both the training and validation phase, for the regressor that tries to infer the
x-coordinate of the curve point Q. The MLPs for the other points and coordi-
nates gave similar results. We saved the model when no improvement could be
observed in the MAE. The test set confirmed a MAE under 1.

The training for each model required 45 minutes on the aforementioned CPU,
resulting in about 7 hours for all models. The testing phase took less than a sec-
ond for each of the nine models. Figure 2, on the right, reports the results of
the training performed employing the time instants contained in the S1

PoI sets
of PoIs, determined with the criterion described in Section 4.2. No performance
improvement have been observed using S2

PoI in our setup, in turn showing that
enlarging the set of PoIs (we recall that S2

PoI ⊇ S1
PoI) introduces no advantage.

Moving to the prediction phase, we employed the aforementioned nine models
to extract information from a fresh set of 15k sub-traces to perform an attack.
We were able to correctly match the value of T against the possible matching
values, i.e., P, [2]P, and [3]P with perfect accuracy. We were therefore able to
classify correctly all the occurrence of the scalar bit pairs where w = (10)2 (i.e.,
T = [2]P) or w = (11)2 (i.e., T = [2]P). Distinguishing the case where w = (00)2
from w = (01)2, i.e., distinguishing when the accumulator point Q has the same
value was not possible with perfect accuracy.

To maximize the accuracy of the comparison of the values of the doubled
point Q, we optimized the threshold above which the Manhattan distance be-
tween the two vectors of Hamming weight estimates are deemed to represent
the Hamming weights of two different values. Figure 3 reports the number of
misclassified bits of the secret scalar (256-bit wide), averaged over 50 scalar
multiplications, as a function of the Manhattan distance threshold employed to
decide if a pair of regressed Hamming weight sets correspond to the same value.
We note that, for a rather large interval of possible thresholds, our approach
misclassifies less than a single bit out of the entire scalar, on average. Finally,
we note that, in case the least significant bit pair in the scalar is either (0, 1) or
(0, 0), we are not able to recover the value of the least significant bit. Indeed,
telling the aforementioned cases apart requires to extract the information on the
doubled point Q, which should retain its value between the last iteration and
the (non-existing) following one of the scalar-point multiplication. We therefore
need to guess its value in the aforementioned case,which can be detected as the
next-to-least significant bit is extracted to be 0.

Summing up, we are able to retrieve the entire value of the scalar of a scalar-
point multiplication on the P-256 curve with a single power trace and an exhaus-
tive search over at most 128 possible values for the scalar, since we misclassify
on average less than a single bit, which can appear only in 64 out of the 256
possible positions, and we may need to guess the value of the least significant
bit of the scalar 1 out of 2 times on average.



16 A. Barenghi, D. Carrera, S. Mella, A. Pace, G. Pelosi, R. Susella

20 25 30 35 40 45 50
0

1

2

3

4

5

6

7

8

9

10

11

12

Chosen threshold on Manhattan distance

A
ve

ra
ge

m
is

cl
as

si
fi
ed

b
it

s
p

er
w

h
ol

e
sc

al
ar

Fig. 3: Average number of mis-classified bits for an entire scalar, as a function
of the chosen threshold on the Manhattan distance between the two sequences
of regressed Hamming weights (all mis-classifications are caused by the point
doubling operand matching)

6 Concluding Remarks

We presented a profiled side channel attack based on neural network against the
elliptic curve scalar-point multiplication. We validated our attack technique on
the elliptic curve scalar-point multiplication implemented in BearSSL, running
on a Cortex-M4 microcontroller. Our attack strategy achieves a perfect success
rate with an extremely small exhaustive search (128 possible scalar values for
the P-256 curve), employing a single power trace from the attacked device, and a
learning phase with 75k traces. The attack requires seven hours to perform the
neural network training on an Intel(R) Xeon(R) Gold 6254 processor running at
3.1 GHz, while the actual key extraction and exhaustive search phase takes a
couple of seconds.

We note that our attack can in principle be applied to non-windowing-based
implementations, too. For instance, by looking at Algorithm 1 we can observe
that ki = 0 implies that the addition (line 7) at iteration i and the double (line
3) at iteration i + 1 share the same operand Q, similarly to what is exploited
to attack Algorithm 3. We also note that the scalar blinding countermeasure
becomes ineffective in a scenario where the attacker has full control of another
instance of the device under attack, and she can perform the profiling phase
disabling the countermeasures. In fact, our attack path relies on the knowledge
of the precomputed values and the presence of internal collisions through sub-
sequent iterations, which are not removed by scalar blinding. The well known



Profiled Attacks against Scalar Point Multiplication using Neural Networks 17

countermeasures of coordinates randomization and re-randomization, would re-
move such requirements and thus block our attack. However, if the attacker has
no access to a clone device without countermeasures, then she would not be able
to mount the attack neither in the presence of scalar blinding, as she would not
know the information needed to label the dataset for the profiling phase.

References

1. Agrawal, D., Archambeault, B., Rao, J.R., Rohatgi, P.: The EM side-channel(s).
In: Jr., B.S.K., Koç, Ç.K., Paar, C. (eds.) Cryptographic Hardware and Embedded
Systems - CHES 2002, 4th International Workshop, Redwood Shores, CA, USA,
August 13-15, 2002, Revised Papers. Lecture Notes in Computer Science, vol. 2523,
pp. 29–45. Springer (2002). https://doi.org/10.1007/3-540-36400-5 4

2. Barthelmeh, J.: WolfSSL (formerly cyassl) library: a small, fast, portable imple-
mentation of TLS/SSL for embedded devices. https://github.com/wolfSSL/wolfssl
(2016)

3. Batina, L., Hogenboom, J., van Woudenberg, J.G.J.: Getting More from PCA: First
Results of Using Principal Component Analysis for Extensive Power Analysis. In:
Dunkelman, O. (ed.) Topics in Cryptology - CT-RSA 2012 - The Cryptographers’
Track at the RSA Conference 2012, San Francisco, CA, USA, February 27 - March
2, 2012. Proceedings. Lecture Notes in Computer Science, vol. 7178, pp. 383–397.
Springer (2012). https://doi.org/10.1007/978-3-642-27954-6 24

4. Bauer, A., Jaulmes, É., Prouff, E., Wild, J.: Horizontal Collision Correlation Attack
on Elliptic Curves. In: Lange, T., Lauter, K.E., Lisonek, P. (eds.) Selected Areas in
Cryptography - SAC 2013 - 20th International Conference, Burnaby, BC, Canada,
August 14-16, 2013, Revised Selected Papers. Lecture Notes in Computer Science,
vol. 8282, pp. 553–570. Springer (2013). https://doi.org/10.1007/978-3-662-43414-
7 28

5. Bishop, C.: Pattern Recognition and Machine Learning. Information Science and
Statistics, Springer-Verlag New York (2006)

6. Brumley, D., Boneh, D.: Remote Timing Attacks Are Practical. In: Proceedings
of the 12th USENIX Security Symposium, Washington, D.C., USA, August 4-8,
2003. pp. 1–13. USENIX Association (2003), https://www.usenix.org/conference/
12th-usenix-security-symposium/remote-timing-attacks-are-practical

7. Cagli, E., Dumas, C., Prouff, E.: Convolutional Neural Networks with Data Aug-
mentation Against Jitter-Based Countermeasures - Profiling Attacks Without Pre-
processing. In: Fischer, W., Homma, N. (eds.) Cryptographic Hardware and Em-
bedded Systems - CHES 2017 - 19th International Conference, Taipei, Taiwan,
September 25-28, 2017, Proceedings. Lecture Notes in Computer Science, vol.
10529, pp. 45–68. Springer (2017). https://doi.org/10.1007/978-3-319-66787-4 3

8. Carbone, M., Conin, V., Cornelie, M., Dassance, F., Dufresne, G., Dumas, C.,
Prouff, E., Venelli, A.: Deep Learning to Evaluate Secure RSA Implementa-
tions. IACR Trans. Cryptogr. Hardw. Embed. Syst. 2019(2), 132–161 (2019).
https://doi.org/10.13154/tches.v2019.i2.132-161

9. Chari, S., Rao, J.R., Rohatgi, P.: Template Attacks. In: Jr., B.S.K., Koç, Ç.K.,
Paar, C. (eds.) Cryptographic Hardware and Embedded Systems - CHES 2002, 4th
International Workshop, Redwood Shores, CA, USA, August 13-15, 2002, Revised
Papers. Lecture Notes in Computer Science, vol. 2523, pp. 13–28. Springer (2002).
https://doi.org/10.1007/3-540-36400-5 3

https://doi.org/10.1007/3-540-36400-5_4
https://github.com/wolfSSL/wolfssl
https://doi.org/10.1007/978-3-642-27954-6_24
https://doi.org/10.1007/978-3-662-43414-7_28
https://doi.org/10.1007/978-3-662-43414-7_28
https://www.usenix.org/conference/12th-usenix-security-symposium/remote-timing-attacks-are-practical
https://www.usenix.org/conference/12th-usenix-security-symposium/remote-timing-attacks-are-practical
https://doi.org/10.1007/978-3-319-66787-4_3
https://doi.org/10.13154/tches.v2019.i2.132-161
https://doi.org/10.1007/3-540-36400-5_3


18 A. Barenghi, D. Carrera, S. Mella, A. Pace, G. Pelosi, R. Susella

10. Danger, J., Guilley, S., Hoogvorst, P., Murdica, C., Naccache, D.: Improving the
Big Mac Attack on Elliptic Curve Cryptography. In: Ryan, P.Y.A., Naccache, D.,
Quisquater, J. (eds.) The New Codebreakers - Essays Dedicated to David Kahn on
the Occasion of His 85th Birthday. Lecture Notes in Computer Science, vol. 9100,
pp. 374–386. Springer (2016). https://doi.org/10.1007/978-3-662-49301-4 23

11. Denis, F.: The Sodium cryptography library. Libsodium, https://doc.libsodium.
org/ (2013)

12. Duchi, J.C., Hazan, E., Singer, Y.: Adaptive Subgradient Methods for Online
Learning and Stochastic Optimization. In: Kalai, A.T., Mohri, M. (eds.) COLT
2010 - The 23rd Conference on Learning Theory, Haifa, Israel, June 27-29,
2010. pp. 257–269. Omnipress (2010), http://colt2010.haifa.il.ibm.com/papers/
COLT2010proceedings.pdf#page=265

13. Gandolfi, K., Mourtel, C., Olivier, F.: Electromagnetic Analysis: Concrete Re-
sults. In: Koç, Ç.K., Naccache, D., Paar, C. (eds.) Cryptographic Hardware and
Embedded Systems - CHES 2001, Third International Workshop, Paris, France,
May 14-16, 2001, Proceedings. Lecture Notes in Computer Science, vol. 2162, pp.
251–261. Springer (2001). https://doi.org/10.1007/3-540-44709-1 21

14. Gierlichs, B., Batina, L., Tuyls, P., Preneel, B.: Mutual Information Analysis. In:
Oswald, E., Rohatgi, P. (eds.) Cryptographic Hardware and Embedded Systems -
CHES 2008, 10th International Workshop, Washington, D.C., USA, August 10-13,
2008. Proceedings. Lecture Notes in Computer Science, vol. 5154, pp. 426–442.
Springer (2008). https://doi.org/10.1007/978-3-540-85053-3 27

15. Gierlichs, B., Lemke-Rust, K., Paar, C.: Templates vs. Stochastic Methods. In:
Goubin, L., Matsui, M. (eds.) Cryptographic Hardware and Embedded Systems -
CHES 2006, 8th International Workshop, Yokohama, Japan, October 10-13, 2006,
Proceedings. Lecture Notes in Computer Science, vol. 4249, pp. 15–29. Springer
(2006). https://doi.org/10.1007/11894063 2

16. Gilmore, R., Hanley, N., O’Neill, M.: Neural network based attack on a masked
implementation of AES. In: IEEE International Symposium on Hardware Oriented
Security and Trust, HOST 2015, Washington, DC, USA, 5-7 May, 2015. pp. 106–
111. IEEE Computer Society (2015). https://doi.org/10.1109/HST.2015.7140247

17. Hanley, N., Kim, H., Tunstall, M.: Exploiting Collisions in Addition Chain-
Based Exponentiation Algorithms Using a Single Trace. In: Nyberg, K. (ed.)
Topics in Cryptology - CT-RSA 2015, The Cryptographer’s Track at the RSA
Conference 2015, San Francisco, CA, USA, April 20-24, 2015. Proceedings.
Lecture Notes in Computer Science, vol. 9048, pp. 431–448. Springer (2015).
https://doi.org/10.1007/978-3-319-16715-2 23

18. Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. In: Bengio,
Y., LeCun, Y. (eds.) 3rd International Conference on Learning Representations,
ICLR 2015, San Diego, CA, USA, May 7-9, 2015, Conference Track Proceedings
(2015), http://arxiv.org/abs/1412.6980

19. Kocher, P.C.: Timing Attacks on Implementations of Diffie-Hellman, RSA, DSS,
and Other Systems. In: Proceedings of the 16th Annual International Cryptology
Conference on Advances in Cryptology. p. 104–113. CRYPTO ’96, Springer-Verlag,
Berlin, Heidelberg (1996)

20. Kocher, P.C., Jaffe, J., Jun, B.: Differential Power Analysis. In: Proceedings of the
19th Annual International Cryptology Conference on Advances in Cryptology. p.
388–397. CRYPTO ’99, Springer-Verlag, Berlin, Heidelberg (1999)

21. Maas, A.L., Hannun, A.Y., Ng, A.Y.: Rectifier nonlinearities improve neural net-
work acoustic models. In: ICML Workshop on Deep Learning for Audio, Speech
and Language Processing (2013)

https://doi.org/10.1007/978-3-662-49301-4_23
https://doc.libsodium.org/
https://doc.libsodium.org/
http://colt2010.haifa.il.ibm.com/papers/COLT2010proceedings.pdf#page=265
http://colt2010.haifa.il.ibm.com/papers/COLT2010proceedings.pdf#page=265
https://doi.org/10.1007/3-540-44709-1_21
https://doi.org/10.1007/978-3-540-85053-3_27
https://doi.org/10.1007/11894063_2
https://doi.org/10.1109/HST.2015.7140247
https://doi.org/10.1007/978-3-319-16715-2_23
http://arxiv.org/abs/1412.6980


Profiled Attacks against Scalar Point Multiplication using Neural Networks 19

22. Maghrebi, H.: Assessment of Common Side Channel Countermeasures With Re-
spect To Deep Learning Based Profiled Attacks. In: 31st International Conference
on Microelectronics, ICM 2019, Cairo, Egypt, December 15-18, 2019. pp. 126–129.
IEEE (2019). https://doi.org/10.1109/ICM48031.2019.9021728

23. Maghrebi, H., Portigliatti, T., Prouff, E.: Breaking Cryptographic Implementa-
tions Using Deep Learning Techniques. In: Carlet, C., Hasan, M.A., Saraswat,
V. (eds.) Security, Privacy, and Applied Cryptography Engineering - 6th Inter-
national Conference, SPACE 2016, Hyderabad, India, December 14-18, 2016, Pro-
ceedings. Lecture Notes in Computer Science, vol. 10076, pp. 3–26. Springer (2016).
https://doi.org/10.1007/978-3-319-49445-6 1

24. Mangard, S., Oswald, E., Popp, T.: Power analysis attacks - revealing the secrets
of smart cards. Springer (2007)

25. Masure, L., Dumas, C., Prouff, E.: A Comprehensive Study of Deep Learning
for Side-Channel Analysis. IACR Cryptol. ePrint Arch. 2019, 439 (2019), https:
//eprint.iacr.org/2019/439

26. Perin, G., Chmielewski, L., Batina, L., Picek, S.: Keep it Unsupervised: Horizon-
tal Attacks Meet Deep Learning. IACR Trans. Cryptogr. Hardw. Embed. Syst.
2021(1), 343–372 (2021). https://doi.org/10.46586/tches.v2021.i1.343-372

27. Pornin, T.: BearSSL, a smaller SSL/TLS library. https://bearssl.org/index.html
(2016)

28. Poussier, R., Zhou, Y., Standaert, F.: A Systematic Approach to the Side-Channel
Analysis of ECC Implementations with Worst-Case Horizontal Attacks. In: Fis-
cher, W., Homma, N. (eds.) Cryptographic Hardware and Embedded Systems -
CHES 2017 - 19th International Conference, Taipei, Taiwan, September 25-28,
2017, Proceedings. Lecture Notes in Computer Science, vol. 10529, pp. 534–554.
Springer (2017). https://doi.org/10.1007/978-3-319-66787-4 26

29. Quisquater, J.J., Samyde, D.: Eddy current for Magnetic Analysis with Active
Sensor. In: Proceedings of Esmart 2002, Nice, France. pp. 185–194 (9 2002)

30. Reed, R.D., Marks, R.J.: Neural Smithing: Supervised Learning in Feedforward
Artificial Neural Networks. MIT Press, Cambridge, MA, USA (1998)

31. Roelofs, N., Samwel, N., Batina, L., Daemen, J.: Online Template Attack on
ECDSA: - Extracting Keys via the Other Side. In: Nitaj, A., Youssef, A.M.
(eds.) Progress in Cryptology - AFRICACRYPT 2020 - 12th International Con-
ference on Cryptology in Africa, Cairo, Egypt, July 20-22, 2020, Proceedings.
Lecture Notes in Computer Science, vol. 12174, pp. 323–336. Springer (2020).
https://doi.org/10.1007/978-3-030-51938-4 16

32. Srivastava, N., Hinton, G.E., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.:
Dropout: a simple way to prevent neural networks from overfitting. J. Mach. Learn.
Res. 15(1), 1929–1958 (2014)

33. Weissbart, L., Chmielewski, L., Picek, S., Batina, L.: Systematic Side-Channel
Analysis of Curve25519 with Machine Learning. J. Hardw. Syst. Secur. 4(4), 314–
328 (2020). https://doi.org/10.1007/s41635-020-00106-w

34. Weissbart, L., Picek, S., Batina, L.: One Trace Is All It Takes: Machine Learning-
Based Side-Channel Attack on EdDSA. In: Bhasin, S., Mendelson, A., Nandi, M.
(eds.) Security, Privacy, and Applied Cryptography Engineering - 9th Interna-
tional Conference, SPACE 2019, Gandhinagar, India, December 3-7, 2019, Pro-
ceedings. Lecture Notes in Computer Science, vol. 11947, pp. 86–105. Springer
(2019). https://doi.org/10.1007/978-3-030-35869-3 8

35. Witteman, M.F., van Woudenberg, J.G.J., Menarini, F.: Defeating RSA Multiply-
Always and Message Blinding Countermeasures. In: Kiayias, A. (ed.) Topics

https://doi.org/10.1109/ICM48031.2019.9021728
https://doi.org/10.1007/978-3-319-49445-6_1
https://eprint.iacr.org/2019/439
https://eprint.iacr.org/2019/439
https://doi.org/10.46586/tches.v2021.i1.343-372
https://bearssl.org/index.html
https://doi.org/10.1007/978-3-319-66787-4_26
https://doi.org/10.1007/978-3-030-51938-4_16
https://doi.org/10.1007/s41635-020-00106-w
https://doi.org/10.1007/978-3-030-35869-3_8


20 A. Barenghi, D. Carrera, S. Mella, A. Pace, G. Pelosi, R. Susella

in Cryptology - CT-RSA 2011 - The Cryptographers’ Track at the RSA Con-
ference 2011, San Francisco, CA, USA, February 14-18, 2011. Proceedings.
Lecture Notes in Computer Science, vol. 6558, pp. 77–88. Springer (2011).
https://doi.org/10.1007/978-3-642-19074-2 6

36. Zhou, Y., Standaert, F.X.: Simplified Single-Trace Side-Channel Attacks on Elliptic
Curve Scalar Multiplication using Fully Convolutional Networks. In: 40th WIC
Symposium on Information Theory in the Benelux (2019), https://dial.uclouvain.
be/pr/boreal/object/boreal:226275

37. Zotkin, Y., Olivier, F., Bourbao, E.: Deep learning vs template attacks in front of
fundamental targets: experimental study. IACR Cryptol. ePrint Arch. 2018, 1213
(2018), https://eprint.iacr.org/2018/1213

A Details of Double-and-Add algorithm

Algorithm 4: Elliptic Curve Point Addition in the BearSSL library [27]

Input: U = (x1, y1, z1) ∈ E(Fp); T = (x2, y2, z2) ∈ E(Fp)
Output: (x1, y1, z1) = U + T

1 t3 = z22
2 t1 = x1 · t3
3 t4 = z2 · t3
4 t3 = y1 · t4
5 t4 = z21
6 t2 = x2 · t4
7 t5 = z1 · t4

8 t4 = y2 · t5
9 t2 = t2 − t1

10 t4 = t4 − t3
11 t4 = t4 mod p
12 t7 = t22
13 t6 = t1 · t7
14 t5 = t7 · t2

15 x1 = t44
16 x1 = x1 − t5
17 x1 = x1 − t6
18 x1 = x1 − t6
19 t6 = t6 − x1

20 y1 = t4 · t6
21 t1 = t5 · t3

22 y1 = y1 − t1
23 t1 = z1 · z2
24 z1 = t1 · t2
25 return (x1, y1, z1)

Algorithm 5: Elliptic Curve Point Doubling in the BearSSL library [27]

Input: Q = (x1, y1, z1) ∈ E(Fp)
Output: (x1, y1, z1) = [2]Q

1 t1 = z2

2 t2 = x1 + t1
3 t1 = x1 − t1
4 t3 = t1 · t2
5 t1 = t3 + t3
6 t1 = t3 + t1

7 t3 = y2
1

8 t3 = t3 + t3
9 t2 = x1 · t3

10 t2 = t2 + t2
11 x1 = t21
12 x1 = x1 − t2

13 x1 = x1 − t2
14 t4 = y1 · z1
15 z1 = t4 + t4
16 t2 = t2 − x1

17 y1 = t1 · t2
18 t4 = t23

19 t4 = t4 + t4
20 y1 = y1 − t4
21 return (x1, y1, z1)

https://doi.org/10.1007/978-3-642-19074-2_6
https://dial.uclouvain.be/pr/boreal/object/boreal:226275
https://dial.uclouvain.be/pr/boreal/object/boreal:226275
https://eprint.iacr.org/2018/1213

	Profiled Attacks against the Elliptic Curve Scalar Point Multiplication using Neural Networks

