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Abstract. Service robots will operate in unconstrained environments due to the
significant presence of humans. We present a model-driven framework based on
formal methods to develop interactive robotic applications designed to handle
the uncertainty of human behavior. Users formally model the human-robot inter-
action scenario, estimate the most likely outcome, and subsequently deploy the
application. Collected traces constitute the data pool for an active automata learn-
ing algorithm to update the human model based on the accumulated knowledge.
We validate the framework on realistic use cases from the healthcare setting.
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1 Motivations and Goal

Service robots are growingly widespread in everyday settings, ranging from healthcare
to education. In this scenario, robots will operate in highly unconstrained environ-
ments, where the primary source of uncertainty will be the people requesting services
that require interaction. Several recovery strategies are available to tackle unexpected
situations in real-time, such as collision avoidance and task-reallocation technologies.
Nevertheless, this field’s lack of well-established software engineering practices re-
sults in rigid and hardly human-centered applications [7].

This Ph.D. research project proposes a model-driven framework to develop service
robots applications that can adjust to the variability of human behavior. The frame-
work relies on formal modeling and verification techniques to guarantee robustness.
Covered scenarios feature a mobile robot interacting with one (or multiple) humans in
a closed environment, such as a hospital corridor. Given its human-oriented nature, the
framework, although general, is validated on use cases from the healthcare setting.

We present the framework’s structure and expected contributions in Section 2; Sec-
tion 3 briefly reviews related works in literature; finally, Section 4 illustrates the current
status of the research plan and future steps needed to complete it.

2 Contribution: Model-Driven Framework

The main elements of the tool-supported framework are shown in Fig. 1. The framework
consists of three macro-phases: PH1. the design-time analysis phase to formally model
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Fig. 1. Overview of the presented framework with its three macro-phases: design-time analysis
in yellow, application deployment (or simulation) in blue, and human model adjustment in green.

the human-robot interaction scenario and estimate its probability of success; PH2. the
deployment phase to run (or simulate) the application in a real (or virtual) environment;
PH3. the model adjustment phase exploiting the traces collected during deployment
to learn a model of human behavior up-to-date with the collected observations.

As the entry point to the framework, users configure the scenario under analy-
sis specifying its main parameters: the floor layout, how many humans are involved,
their physical characteristics, and what services they are requesting. The formalism of
choice is Stochastic Hybrid Automata (SHA). In SHA, locations are endowed with
differential equations constraining real-valued variables to model systems with com-
plex dynamics [2]. In this specific case, we exploit this feature to model the evolution
of human physical fatigue [9]. Stochastic behavior in SHA can be realized in two ways.
Firstly, edges between two locations can be labeled with a probability weight that deter-
mines their likelihood of firing. Secondly, discrete variables can be realizations of prob-
ability distributions whose value is not entirely predictable a priori [6]. The stochastic
features in our model capture the unpredictability of human behavior (e.g., due to hap-
hazard choices) and the variability of fatigue rates [15]. The agents (the humans and
the robots) and the robot controller (the orchestrator) are modeled as separate SHA and
interact with each other through channels [10], constituting a network.

The stochastic nature of the model makes it eligible for Statistical Model Checking
(SMC) [1]. The goal of SMC experiments is to estimate the probability of delivering
all services successfully (captured by Boolean variable scs). Therefore, the property
to be verified, expressed in Probabilistic Computation Tree Logic (PCTL), is the
probability of scs eventually (�) becoming true within time-bound τ: P≤τ(� scs). Each
SMC experiment yields a probability range [pmin,pmax]. The framework’s user assesses
the result and, if it is insufficient, modifies the scenario and repeats the verification
experiment; otherwise, the application can move forward to deployment.

It is of paramount importance that the design-time results are maintained at run-time.
To this end, for the second phase of the framework, a transformation principle maps
SHA elements to executable code. The result is an executable orchestrator and a fully
configured environment where the agents will operate. The orchestrator and the agents
communicate over a network of ROS publishers and subscriber nodes. Sensors attached
or worn by the agents periodically send data to the orchestrator, which examines it
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and, if necessary, sends commands to the agents (e.g., start or stop walking). This de-
ployment approach is compatible both with physical and virtual environments. In some
cases, such as when the application involves patients in critical physical conditions, it
is advisable to corroborate the design-time results by simulating the scenario with a
realistic physics engine rather than repeatedly deploying it in reality.

At run-time, humans may do actions that their formal model does not cover.1 These
discrepancies impact the outcome of the robotic mission and invalidate the analysis
carried out at design-time. The third and final phase of the framework exploits the traces
collected through deployment to learn an updated model of human behavior. To this
end, we introduce an automata learning algorithm named L∗SHA, which extends the L∗

architecture from Deterministic Finite Automata to SHA learning [3]. The algorithm is
general and not exclusively applicable to human-robot interaction scenarios.

L∗SHA relies on a learner that progressively refines the SHA hypothesis by asking
queries to a teacher. While the L∗ teacher has perfect knowledge about the system un-
der learning, the L∗SHA teacher relies on collected samples requesting new ones when
necessary (as in active automata learning). The learner asks queries to investigate the
system’s state after a sequence of events occurs, that is to say, which differential equa-
tions constrain the evolution of physical variables and which probability distributions
describe their parameters. When the SHA hypothesis is up-to-date with the accumu-
lated knowledge, L∗SHA terminates and returns the new model of human behavior. The
user can then reiterate the design-time analysis to get more accurate results.

3 Related Work

Existing works investigate the application of formal methods to human-robot interac-
tion. In some cases, the primary focus is ensuring that collaborative applications meet
safety standards [19] or comply with social norms [17]. Some works specifically target
the unpredictability of human behavior, for example, by modeling the system as a net-
work of Timed Game Automata [4]. The hereby presented work, instead, adopts proba-
bilistic formalizations of both human behavior and physical fatigue variability. Previous
works present learning algorithms for Hybrid (HA) or Probabilistic Automata. Medhat
et al. present a framework for HA mining based on clustering [16]. Works focusing
on probabilistic systems adopt a frequentist approach [8] or a state merging method [5].
Tappler et al. also propose an extension of L∗ to learn Markov Decision Processes based
on collected samples [18]. The L∗SHA algorithm developed within this research project
is the first one covering both Hybrid and Stochastic features of the formalism.

4 Research Plan Status

Project development began in 2019 and will end in 2022. After an initial state-of-the-art
review, the design-time phase has been developed and tested during the first year and
presented in [13,11,12]. We will extend the first phase to cover multi-robot scenarios

1 We remark that this stands also in case of simulation: virtual human agents act upon instruc-
tions received by real human users through keyboard.
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and a more sophisticated model of human free will by formalizing cognitive models
existing in the literature. The deployment module has been developed, tested in simu-
lation, and presented in [14], and we will finalize it by carrying out experiments with
real robotic devices. Finally, implementation and validation of L∗SHA algorithm and the
model adjustment phase have been completed during the second year. In the future, we
plan on extending L∗SHA to also learn weights of probabilistic transitions.
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