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As space debris has become a cause of concern for space operations around Earth, active

debris removal and satellite servicing missions have gained increasing attention. Within

this framework, in specific scenarios, the chaser might be asked to operate autonomously in

the vicinity of a non-cooperative, unknown target. This paper presents a sampling-based

receding-horizon motion planning algorithm that selects inspection maneuvers while taking

many complex constraints into account. The proposed guidance solution is compared with

classical approaches and it is shown to take advantage of the characteristics of the natural

dynamics of the relative motion to outperform them. In addition, the impact of different input

sampling exploration strategies is explored to propose a simple and more robust approach based

on subset simulation.

I. Introduction

Over the past few decades, space debris has become a threat for space operations in Low Earth Orbit (LEO). The

average rate of four to five break-ups per year occurring in orbit is a hint at the fact that the number of debris

is steadily increasing, as well as the probability of in-orbit collisions ‡. Consequently, among the relevant mitigation

actions, active debris removal missions have gained increasing attention. Besides, unmanned on-orbit servicing missions

are currently being investigated for their commercial attractiveness: expensive satellites in Geostationary Earth Orbit

(GEO) and constellations may benefit from the presence of autonomous on-orbit servicing and inspecting. This interest

has been largely demonstrated by commercial servicing programs proposed by both private companies like Infinite

Orbits or Astroscale with the ELSA-D mission [1], as well as by public agencies (e.g. NASA’s Restore-L mission [2]),
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with the success of MEV-1 mission§. In order to perform such feats, inspecting the target resident space object (RSO) is

a fundamental, prior step required to proceed with any proximity operation. Moreover, performing the inspection task

autonomously has been identified by NASA as a key enabling technology for next generation space missions [3]. In fact,

autonomy would grant savings in operational costs for long missions, as well as the reduction of the detrimental impacts

of human errors and communication delays. The capability of performing proximity operations enabled missions such

as the Apollo program, the servicing flights of the Space Shuttle, and the assembly and supply of the space stations [4].

However, in these missions, the procedures have been mainly performed by the crew, and involved cooperation with the

target spacecraft. The first autonomous experiments started with NASDA’s ETS-VII mission [5], which represented

the first unmanned satellite to perform independently docking maneuvers. Then, the Air Force Research Laboratory

developed a sequence of small satellites (i.e. XSS-10, XSS-11, and MiTEx), which demonstrated the possibility to

perform autonomous proximity operations using optical navigation as well as to inspect a failed satellite (i.e. DSP-23).

However little is disclosed to the public about these missions. Almost at the same time of these demonstrators, NASA’s

DART [6] was launched with the aim of performing autonomous rendezvous with and a series of maneuvers in close

proximity to a communications satellite no longer in use. Despite the mission being a partial failure, the lessons learned

helped in the success of the Orbital Express [7] program, which was launched and deployed in 2007 to validate the

technical feasibility of robotic, autonomous on-orbit refueling and reconfiguration of satellites. In 2010, the Swedish

Space Corporation’s mission PRISMA [8] also addressed the possibility of performing approach, rendezvous, and

formation flight with a known object (Tango) via autonomous GNC algorithms. Meanwhile, the Canadian Space

Agency (CSA) and NASA demonstrated the TriDAR [9] system for performing relative navigation to an uncooperative

but known target (i.e. the ISS). More recently, NASA performed single spacecraft remote inspection of the Cygnus

spacecraft during the Seeker-1 [10] technology demonstration in September 2019. In addition, another NASA mission

named CPOD [11] is scheduled to launch in 2021, and will demonstrate rendezvous, proximity operations and docking

using two CubeSats.

Despite the variety of tasks and platforms, all the above mentioned examples relied on some sort of cooperativeness

and/or knowledge of the target which is leveraged to simplify proximity operations planning (e.g. fiducial markers or

accurate geometrical models). In this context we will define a cooperative target as an object capable of providing sensor

data to the chaser spacecraft (actively-cooperative) or presenting markers on its surface (passively-cooperative) which

help the chaser to estimate its relative state. Several different techniques were developed for use on GNC problems for

proximity operations with known and cooperative targets, with increasing level of generalization. The most simple task

involves a target which is fully cooperative, at least partially stabilized, and provides information regarding its state (e.g.

formation flight, docking, etc.) [12–14]. Additionally, several studies focused on the determination of the trajectory
§https://news.northropgrumman.com/news/releases/intelsat-901-satellite-returns-to-service-using-northrop-grummans-mission-extension-
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in close proximity to an RSO which is cooperative and providing information on its state, despite being uncontrolled

[15–18]. In [19], the target is assumed to be uncontrolled and uncooperative (at least actively), therefore its state is

estimated through the knowledge of some fiducial markers on the docking interface. Moreover, some approaches went

beyond their method and assumed complete lack of cooperation and tumbling target, while retaining the capability of

estimating the relative state given the knowledge of the target model [20].

The idea of removing cooperation and stabilization of the target to replace it with the knowledge of its model has

also been exploited for proximity operations to asteroids [21]. However, these approaches fall short in case the model of

the RSO under investigation is not known a priori. This can happen for several reasons, for example due to a change in

configuration of the solar panels after the mission was over (e.g. Envisat), due to damages caused by collision with other

debris and/or explosion of internal tanks, and due to change of optical properties due to prolonged exposure to the space

environment. This leads to the need of developing spacecraft guidance algorithms that can take into account stringent

safety and observation constraints, which renders classical trajectory design approaches ineffective. The deployment of

the experiment SPHERES-VERTIGO [22] by NASA and its research partners in 2013 was the first example of inspection

of an unknown and uncooperative target. In this experiment, a set of free-flying satellites aboard the ISS demonstrated

the capability of performing simultaneous localization and mapping of an unknown and uncooperative target. Despite

focusing on navigation and shape reconstruction without any trajectory planning strategy, this experiment provided a

huge inspiration for this work. Indeed, the aim of this paper is to provide a guidance algorithm for the autonomous

selection of inspection maneuvers in the neighborhood of an unknown and uncooperative RSO.

Classical guidance approaches for inspection historically exploit linearized dynamics [23] and natural motion

trajectories obtained via impulsive maneuvers to plan relative navigation trajectories with various approaches and

techniques including manual design [24, 25], waypoint-following strategies [26], and graph searches with constraints

[27]. These standard techniques rely on minimizing maneuver cost and guaranteeing passive safety regardless of an

inspection metric, as they assume that no information is available on the target’s shape and motion. Moreover, they

do not embed autonomy and require extensive human intervention for the design of an optimized strategy, which

inevitably lead to sub-optimal performances [28]. To improve these strategies, some recent studies propose Motion

Planning algorithms [29] as a way to autonomously select optimized maneuvers [30, 31]. These guidance techniques

were developed in the field of autonomous driving and they represent robotics’ industry standard thanks to their low

computational demand, which makes them suitable for implementation on limited-resource systems. They have been

investigated in the framework of satellite inspection in recent years by Capolupo et al. [32, 33]. However, these studies

relied on the assumption that the target satellite is known, and that its attitude motion can be estimated and predicted

with high accuracy thanks to an accurate relative navigation step. The aim of this work is to remove these assumptions,

providing a more flexible and general purpose algorithm that embeds the definition of an inspection metric for unknown

non-cooperative RSO. A sampling-based receding-horizon algorithm is developed to plan inspection maneuvers while
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taking many complex constraints into account. The proposed algorithm represents the most general case of satellite

motion planning for inspection under relative state uncertainties, as it removes any assumption on the RSO’s shape

and tumbling motion. Moreover, the resulting guidance strategy can be suited to both on-board autonomous maneuver

selection and offline trajectory design. To tackle the problem, the algorithm relies on Sampling Based Model Predictive

Control [34] (SBMPC) as it can easily include black box constraints, and it is robust to uncertainties thanks to the

periodic re-planning of maneuvers. The guidance strategy is eventually applied to two particular case studies: the first

one in the neighborhood of a controlled nadir-pointing target satellite, whereas the second to investigate a tumbling

RSO. In both cases, the performance is compared with classical approaches exploiting natural motion trajectories. The

results show that the proposed guidance algorithm takes advantage of the characteristics of the natural dynamics of the

relative motion to outperform the classical techniques. Additionally, a sampling refinement strategy based on Subset

Simulation (SS) [35] is presented, and its performance is compared with the heuristic approach used in [32, 33].

II. Inspection Mission Concept
The envisioned mission scenario requires to inspect a tumbling resident space object located on a circular low

Earth orbit. To do so, the chaser should maximize the time spent in favourable position for acquisition of images and

other operations. Therefore, better inspection trajectories should try to move closer to the target and to obtain better

illumination conditions, while satisfying mission constraints. The trajectory of the complete inspection mission is

subdivided into a sequence of optimized trajectory arcs, each consisting of several phases as depicted in Figure 1. Each

arc starts with an initial phase during which the on-board computer of the chaser computes the optimal maneuver in

terms of impulsive Δ𝑣 and arc duration. Once the optimal maneuver has been selected, the attitude of the chaser is

changed to the required thrust direction. Subsequently, a third phase during which the maneuver is executed with finite

control thrust is foreseen. After the maneuver is completed, the attitude of the chaser is changed again such that its

observation axis is aimed at the RSO. Finally, the last phase is dedicated to the inspection procedures. This sequence of

operations continues autonomously until the allocated time window for inspection runs out. Notice that each maneuver

is computed to optimize one single arc over a finite time window, and the guidance module is periodically called to

compute a new optimal trajectory until the mission is completed. For planning purposes, it is assumed that an updated

estimate of the relative state and attitude together with their covariances is available to the chaser at the beginning of

the first phase. This allows the chaser to plan the trajectory with uncertainty up to a maximum time, after which the

prediction will be considered unreliable.

A. Planning Phase

The Planning Phase is the first one to take place during the inspection and it is indicated in Figure 1 as Computation.

The proposed inspection guidance relies on a Sampling Based Model Predictive Optimization (SBMPO) algorithm,
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Fig. 1 Breakdown of a typical optimization arc into its five basic phases.

inspired by the work of Dunlap et al. [34] and Surovik et al.[36] . During the first phase, the algorithm is applied to

compute the optimal maneuver to be executed during the current arc. The idea behind this approach is to build a map

that associates a score 𝑐 to each point of the 4D sampled command space S. The latter is defined as the set of points

𝑠 = [𝚫v, 𝑡𝑎𝑟𝑐] ∈ S of 3D impulsive maneuvers and arc duration times for which:

S ⊂ R4 :
{
| |𝚫v| | ∈ [Δ𝑣𝑚𝑖𝑛,Δ𝑣𝑚𝑎𝑥] ∪ {0}, 𝑡𝑎𝑟𝑐 ∈

[
𝑡𝑎𝑟𝑐𝑚𝑖𝑛, 𝑡

𝑎𝑟𝑐
𝑚𝑎𝑥

]}
(1)

The maximum and minimum Δ𝑣 have been selected according to [32] with a value of 90 mm/s and 3 mm/s respectively.

Whereas the maximum and minimum time for the arc are selected to be 1 h and 3 h respectively. The score 𝑐 associated

with each command will depend on the propellant used for the maneuver, the exploration made throughout the resulting

trajectory Γ(𝑡), and the geometry of the trajectory as explained in the following subsection.

For each inspection arc, the algorithm starts its iterations by sampling 𝑛0 commands uniformly from S. The

commands are then propagated using the Hill-Clohessy-Wiltshire (HCW) [23] equations in order to evaluate the

trajectory in a timely manner, and the resulting trajectories are scored. Then, additional 𝑛𝑠 commands are sampled,

refining the sampling in the most promising regions of the 4D map. This work proposes a comparison between two

different refinement strategies in order to find and explore the most interesting regions of the command space. The first

one employs a heuristic described in depth in [32, 33], which uses the observation score, the observation score gradient,

and the current level of exploration of S to bias the sampling. On the other hand, the second approach relies on Subset

Simulation (SS) [35], which is a statistical approach to explore a space given its assumed statistical properties. This

second approach is presented thoroughly in subsection II.E. In total 𝑛mesh refining steps are taken for each inspection leg.

Then, the command associated with the highest score 𝑐𝑜𝑝𝑡 is selected. Notice that the chaser only employs simplified

CW equations of motion in order to speed up the evaluation of the samples. However, in order to assess the robustness

of the trajectory selection to variations with respect to the ideal planning, the maneuver is executed in a higher accuracy

simulator. Therefore, this simulated environment exploits Nonlinear Equations of Relative Motion [37]. In addition, the

assumption of ideal impulsive maneuvers is removed in the simulated environment, hence it is mandatory to adopt a

technique to convert the impulsive maneuver to continuous control. The aim of this conversion technique should be

to achieve the same relative trajectory that would be provided by the impulsive maneuver at the end of the maneuver
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execution phase. This mapping is performed using an analytical approach which exploits polynomial control laws [38].

This particular conversion guarantees also that, by selecting an appropriate maneuver execution time, the maximum

thrust available is never violated. Moreover, this approach relies on completely analytical and iteration free techniques,

which constitute an appealing solution for usage on limited resources systems. The conversion from impulsive maneuver

to continuous thrust becomes then necessary to execute the maneuver in a simulator using. The process of maneuver

optimization and execution is repeated until the inspection mission time window is over. An overview of the overall

maneuver planning algorithm is given in Algorithm 1.

Algorithm 1 Optimal Maneuver Planning
1: 𝑆 ← ∅
2: 𝐶 ← ∅
3: for 𝑖 = 1 : 𝑛mesh do
4: if 𝐶 ≠ ∅; then
5: 𝑆𝑖 ← Draw 𝑛0 initial samples from S;
6: else
7: 𝑆𝑖 ← Refine the sampling with 𝑛𝑠 samples from S using a sampling refinement strategy;
8: end if
9: 𝐶𝑖 ← ∅;
10: for 𝑘 = 1 : |𝑆𝑖 | do
11: 𝑠𝑘 ← 𝑆𝑖 (𝑘);
12: Γ𝑘 ← Propagate trajectory from initial conditions using 𝑠𝑘 ;
13: if 𝑠𝑘 or Γ𝑘 violate the constraints then
14: 𝑐𝑘 ← 0;
15: else
16: 𝑐𝑘 ← Score trajectory based on Γ𝑘 and 𝑠𝑘 ;
17: end if
18: 𝐶𝑖 (𝑘) ← 𝑐𝑘
19: end for
20: 𝐶 ← 𝐶 ∪ 𝐶𝑖;
21: 𝑆 ← 𝑆 ∪ 𝑆𝑖;
22: end for
23: 𝑐𝑜𝑝𝑡 ← max𝐶;
24: 𝑠𝑜𝑝𝑡 ← retrieve value of 𝑠 corresponding to 𝑐𝑜𝑝𝑡 ;

B. Score Function

One of the major advantages of SBMPO is that it can handle any kind of scoring function that a specific planning

problem may request. The only requirement that must be fulfilled by the scoring function is to return a score equal to

zero for non-acceptable trajectories (i.e., trajectories that violate any user-specified constraint or condition). For the

inspection problem considered in this work, the score is composed of three terms. The first two terms are directly taken

from [33] and they are related to the cost and geometry of the trajectory as specified in Equation 2 and 3 respectively.

𝐶Δ𝑣 =
𝜔𝑣

𝜔𝑣 + Δ𝑣
(2)
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𝐶𝛾 = 𝜔𝛾

∫ 𝑡𝑎𝑟𝑐

𝑡0

𝑓 (𝑡) 𝜋 − 𝛾(𝑡)
𝜋

𝑑𝑡 (3)

In particular, 𝜔𝛾 and 𝜔𝑣 are weighting coefficients, and 𝛾(𝑡) is the angle between the chaser and the Sun direction.

In addition, 𝑓 (𝑡) is a weighting function which encourages trajectories closer to the RSO and it is defined as

𝑓 (𝑡) =



𝑟/𝑟𝑚𝑖𝑛 if 𝑟 < 𝑟𝑚𝑖𝑛

1 if 𝑟𝑚𝑖𝑛 ≤ 𝑟 ≤ 𝑟𝑚𝑎𝑥

(𝑟𝑚𝑎𝑥/𝑟)3 if 𝑟 > 𝑟𝑚𝑎𝑥

(4)

Here, 𝑟 is the norm of the vector r, relative distance between chaser and target expressed in the LVLH reference frame.

In this particular application, the minimum and maximum radius for this function have been selected to be 50m and

300 m respectively.

The following paragraph introduces some useful quantities and definitions which serve the purpose of better

identifying the terms necessary for the description of the third component of the score. At the beginning of the planning

phase, it is assumed that a navigation update is available which provides an estimate of the relative state and the relative

covariances. Future works on the topic should be aimed at investigating the effect of varying state uncertainties retrieved

from the navigation module. Indeed, at the moment, the case of relative navigation at unknown and uncooperative RSOs

has never been investigated, therefore there is no clear indication on the accuracy that may be retrieved. Moreover, it is

assumed that a measurement of 3D landmark positions will be available thanks to the equipped stereo camera which is

aligned with −𝑥 axis of the target body frame. These landmarks represent visual features of interest which may be

extracted from image acquisition either via classical image processing, or through purposely trained Convolutional

Neural Networks [39]. In particular, these features are independent from the ones that may be used for navigation

purposes, and only influence the selection of the best actions that the chaser should take. The stereo camera will provide

a measurement vector y𝑖 composed of horizontal and vertical pixel coordinates (i.e. 𝑢𝑖 and 𝑣𝑖) and disparity 𝑑𝑖 obtained

from stereo-matching. Thanks to the invertible nature of such measurement, the measure of the 𝑖𝑡ℎ landmark can be

inverted and expressed in the target fixed reference frame as in Equation 5, which is a function of the measure y𝑖 and an

augmented state defined as x = [r, qTI, qCI, k]. Here, qTI and qCI are the quaternions expressing the orientation of the

target and chaser fixed body frames with respect to the inertial frame respectively, whereas k = [𝑘1, 𝑘2] is the vector that

parametrizes the inertia matrix of the target as in [40] . By expressing a vector with a left superscript for its reference

frame and with a left subscript representing the origin of the frame, it is possible to express the inverse measurement as

h(x, y𝑖) = 𝑇
𝑇L𝑖 = (qTI × q−1

CI) ⊗
𝐶
𝐶L𝑖 (y𝑖) + (qTI × qIL) ⊗ 𝐿

𝑇r (5)
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Here, ⊗ is the operator that rotates a vector by a quaternion, × is quaternion multiplication. 𝐶
𝐶

L𝑖 can be obtained from

Equation 6 by making use of a baseline 𝑏, focal 𝑓 𝑜𝑐 and horizontal and vertical pixel densities 𝑝𝑥 and 𝑝𝑦 respectively,

which are among the geometrical parameters of the camera.

𝐶
𝐶L𝑖 (y𝑖) =

[
𝑓 𝑜𝑐 𝑝𝑥

𝑏
𝑑𝑖
, 𝑏

𝑝𝑥

𝑝𝑦

𝑣𝑖
𝑑𝑖
, 𝑏

𝑢𝑖
𝑑𝑖

]𝑇
(6)

Together with the landmarks estimated position, it is also possible to project their position covariance as:

P𝐿,𝑖 = H𝑖PH𝑇
𝑖 +G𝑖RG𝑇

𝑖 (7)

where P is the covariance of the augmented state x, R is the covariance of the measurement noise, whereas the matrices

H and G can be computed as the jacobians of the inverse measurement equations with respect to the augmented state

and the measurement as in Equation 8 and Equation 9 respectively.

H𝑖 =
𝜕h(x, y𝑖)
𝜕x

(8)

G𝑖 =
𝜕h(x, y𝑖)
𝜕y𝑖

(9)

Finally, the third component of the score (which is scaled by a coefficient 𝜔𝑒𝑥𝑝 similarly to the first two terms

of the score) can then be defined by Equation 10 which takes advantage of the described inverse measurements and

covariances to plan exploratory maneuvers under uncertainties by exploiting the statistical information provided. The

meaning of the terms which appear in Equation 10 are clarified later in this section.

𝐶𝑒𝑥𝑝 = 𝜔𝑒𝑥𝑝

𝑛𝑣𝑖𝑠𝑖𝑏𝑙𝑒∑︁
𝑗=0

−1
Tr(P 𝑗 )

log
[
𝑔

(
𝐾𝑂𝑍

r 𝑗

𝑟 𝑗

)]
(10)

The score of exploration is computed as the sum over all the 𝑛𝑣𝑖𝑠𝑖𝑏𝑙𝑒 time instants of a trajectory Γ(𝑡) where the target is

sufficiently close (i.e. < 300 m) and not in eclipse. The function 𝑔(x) represents a 3D probability density function (PDF),

which is updated at the beginning of each planning phase. In fact, once each measured landmark and corresponding

covariance are obtained as in Equation 5 and 7, they are added to a memorized set of initialized landmarks. Then, these

𝑁 landmarks are used in a Gaussian mixture to obtain the density function 𝑔(p) as in Equation 11

𝑔(p) = 1
𝑁

𝑁∑︁
𝑖=1

exp
(
(p − L𝑖)𝑇P−1

𝐿,𝑖
(p − L𝑖)

)
√︁
(2𝜋)3 detP𝐿,𝑖

(11)

The interesting property about the covariance in Equation 7 is that, being the points fixed in the target body frame, this
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matrix will stay constant throughout the planning arc. Therefore, also the function 𝑔 will only need to be computed once

per every maneuver, allowing for a fast evaluation of all the trajectories. Moreover, 𝑔 is defined so that it is always

smaller than 1, hence taking − log(𝑔(p)) as in Equation 10 will give a higher value when further from higher density

regions, encouraging trajectories exploring regions with lower landmark density. Since the distance from the target is

already scored in Equation 3, the function 𝑔 is evaluated on the maximum estimated target size, which coincides with a

spherical Keep Out Zone 𝐾𝑂𝑍 = 15 m, along the line of sight with the chaser at time instant 𝑡 𝑗 of the trajectory r 𝑗/𝑟 𝑗 .

The PDF is also weighted by the trace of the matrix P 𝑗 , which represents the covariance of the extended state (already

presented in Equation 7) at time 𝑡 𝑗 . The effect of using 1/Tr(P) in Equation 10 is that trajectories featuring higher

uncertainties will be given a lower weight. Hence, the exploration score 𝐶𝑒𝑥𝑝 will be higher for those trajectories that

explore more and are less uncertain.

C. Constraints

The algorithm takes into account several constraints. First of all, the score of every trajectory Γ(𝑡) going further

than a distance 𝑅𝑚𝑎𝑥 = 1200 m is set to zero to avoid orbiting too far from the target. Secondly, the maximum slew rate

of the chaser is constrained during phases 2-5 in Figure 1. It is assumed that the chaser is always capable of tracking the

desired thrusting direction and observation direction (i.e. during phases 3 and 5), whereas during the slewing maneuvers

(i.e. phases 2 and 4) a rest-to-rest slewing maneuver is assumed to be executed between initial and target attitudes.

There are many other possible ways of performing these slewing maneuvers. However the rest-to-rest approach has been

selected in this work. The choice of this particular family of maneuvers is intended to provide the maximum slew rate in

a timely manner, which is paramount to having a fast evaluation of this constraint for a large set of sampled trajectories.

Finally, the safety of the trajectory is considered as in [32, 33]. In particular, for an arbitrarily long time 𝑡𝑠𝑎 𝑓 𝑒 = 8h,

which is much larger than 𝑡𝑎𝑟𝑐𝑚𝑎𝑥 in order to accommodate enough time to respond to failures or anomalies, it is checked

that the distance distance 𝑑 between the 3𝜎 relative position uncertainty ellipsoid and the target is never lower than the

𝐾𝑂𝑍 radius (i.e. 𝑑 (𝑡) ≥ 𝐾𝑂𝑍). Unfortunately, the analytical expression for 𝑑 is not available, hence it is substituted by

its minimum bound 𝑑𝑚𝑖𝑛 (𝑡) = min[𝑑𝑐𝑦𝑙 (𝑡), 𝑑𝑠𝑝ℎ (𝑡)].

𝑑𝑐𝑦𝑙 (𝑡) =
1
𝑎(𝑡) | |r ∧ a| | − 3𝑏(𝑡) (12)

𝑑𝑠𝑝ℎ (𝑡) = 𝑟 (𝑡) − 3𝑎(𝑡) (13)

Here, 𝑎(𝑡) and 𝑏(𝑡) are the major and median eigenvalues of the relative position covariance. Equation 12 computes

the minimum bound as the distance from the infinite cylinder of radius 3 times the median eigenvalue of the position

covariance matrix. Said cylinder is aligned with the maximum eigenvector of the position covariance matrix a, whereas

Equation 13 computes the bound as the distance from the sphere with radius 3 times the maximum eigenvalue of the
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position covariance matrix. A graphical illustration of such constraint is reported in Figure 2.

Fig. 2 The 3𝜎 relative position uncertainty ellipsoid is encompassed either by an infinitely long cylinder (left) or
by a sphere (right).

For improved efficiency, the covariance is propagated from time 𝑡1 to time 𝑡2 using the HCW state transition matrix

𝚽(𝑡) as in Equation 14 [23] .

P𝑥 (𝑡2) = 𝚽(𝑡2 − 𝑡1)P𝑥 (𝑡1)𝚽(𝑡2 − 𝑡1)𝑇 (14)

The covariance is also corrected to account for impulsive maneuvers with the Gates model [41]. The values of 𝜎𝑝

covariance of pointing error and 𝜎𝑣 covariance of maneuver amplitude error are taken from [32, 33] .

P𝑥 (𝑡+𝑚) = P𝑥 (𝑡−𝑚) +


03𝑥3 03𝑥3

03𝑥3 𝜎2𝑣𝚫v𝚫v𝑇 + 𝜎2𝑝 [𝚫v×][𝚫v×]

 (15)

Here, 𝑡+𝑚 and 𝑡−𝑚 represent the time instants immediately before and after the impulsive maneuver is applied. Additionally,

the symbol [𝚫v×] is the matrix outcome of the application of the Levi-Civita operator to the vector 𝚫v.

D. Propagation of the Augmented State Covariance

As noted in the first part of this work, computing score and constraints requires the propagation of the covariance for

the relative state, target attitude and chaser attitude. In particular, being the dynamics uncoupled, it is possible to obtain

a single covariance matrix by stacking three different contributes in a block diagonal matrix. The first contribution is

given by the relative position and velocity P𝑥 . Such matrix is propagated with the HCW state transition matrix as in the

previous subsection. This grants a fast analytical propagation of the covariance.

Secondly, the chaser attitude is assumed to be controlled in order to guarantee constraint and pointing requirements,

10



hence the covariance matrix is held constant at PCI. Therefore, the only covariance to be propagated is the one related

to the target attitude motion PTI. Given an initial estimate of the state and covariance of the target tumbling in the

extended state sTI = [𝝎TI, qTI, k], the dynamics governing the evolution of the extended state is described by the system

of ordinary differential equations in Equation 16 [37]:

sTI =



¤𝝎TI

¤qTI

¤k

=



J(k)−1 (𝝎TI ∧ J(k)𝝎TI)

1
2B(𝝎TI)qTI

02×1

= l(sTI) (16)

Notice that the free tumbling motion is assumed for the target. Furthermore, the expression for the matrix J(k) is given

in [40] as Equation 17

J(k) =



exp (𝑘1) 0 0

0 1 0

0 0 exp (−𝑘2)


(17)

whereas B(𝝎TI) is formulated as:

B(𝝎TI) =



0 −𝝎TI (1) −𝝎TI (2) −𝝎TI (3)

𝝎TI (1) 0 𝝎TI (3) −𝝎TI (2)

𝝎TI (2) −𝝎TI (3) 0 𝝎TI (1)

𝝎TI (3) 𝝎TI (2) −𝝎TI (1) 0


(18)

Since the Jacobian of l is defined as F =
𝜕l(sTI)
𝜕sTI

, the covariance can be propagated as:

¤PTI = FPTI + PTIF𝑇 +QTI (19)

The state and covariance for the target attitude can therefore be propagated from the initial time instant only once per

each arc until 𝑡𝑎𝑟𝑐𝑚𝑎𝑥 , and afterwards their values at any 𝑡 of the inspection arc can be obtained via interpolation.

E. Input Space Exploration using Subset Simulation

Once the score function has been obtained as described in the previous subsections, each sample command can

be assigned a score using the sum of the three score components. To explore the command space, an heuristic has

been implemented in [32, 33]. However, this work introduces a novel approach for input sampling refinement which

relies on Subset Simulation [35]. This technique is an adaptive stochastic simulation method traditionally used to
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efficiently compute small failure probabilities, but it was also used in different research areas in reliability [42]. The idea

at the basis of the method is to compute the probability as a product of larger conditional probabilities which describe

a sequence of intermediate regions. The standard method is initialized using a standard Monte Carlo simulation to

generate a first set of samples at the first conditional probability level. Once the first failure region is determined and the

first conditional probability is computed, a Monte Carlo Markov Chain (MCMC) algorithm [43] is used to generate

samples conditional to this first region. The process continues iteratively until a stopping criterion is met, by using the

latest level of samples to locate the successive region, from which other samples are generated with MCMC. This paper

exploits the idea that SS application can be used to solve optimization problems by considering a maximization event as

a rare event. In [44], the author suggests the possibility of converting a global optimization problem into a rare event

simulation problem, where the feasible potentially optimal solutions are analogously the rare event samples close to

failure in the reliability problem. To view an optimization problem in the context of a reliability problem, consider

the input variables 𝑠 as random variables so that the objective function 𝐶 given by the sum of the three components

Equation 2,10 and 3 is now random and has its own PDF, and cumulative distribution function (CDF). From probability

theory, every CDF is monotone, non-decreasing and right continuous. Let 𝐶𝑜𝑝𝑡 be the global maximum of 𝐶: by

definition the CDF value at this optimum is unity. Consider the reliability problem of finding the “failure probability”

defined as:

𝑃𝐹 = 𝑃(𝐹) = 𝑃(𝐶 (𝑠) ≥ 𝐶𝑜𝑝𝑡 ) (20)

where the failure event is 𝐹 = {𝐶 (𝑠) ≤ 𝐶𝑜𝑝𝑡 }. Clearly, this is zero because 𝐶𝑜𝑝𝑡 is the global maximum. In the context

of an optimization problem, the failure probability is of little concern, instead the focus is placed on the point or region

where the objective function attains the largest value(s). The rare failure region in the reliability problem corresponds to

the region where the objective function attains its global maximum. Along the same spirit of SS for reliability analysis,

𝑃(𝐶 (𝑠) ≥ 𝐶𝑜𝑝𝑡 ) can be expressed as a product of a sequence of conditional probabilities. During SS, a series of

intermediate threshold values {𝐶𝑖 : 𝑖 = 1, 2...} are generated that correspond to boundaries consistent with the specified

conditional probabilities {𝑝𝑖 : 𝑖 = 1, 2...}.

𝑝𝑖 = 𝑃(𝐶 (𝑠) ≥ 𝐶𝑖) = 𝑃(𝐹𝑖) (21)

𝑝𝑖 = 𝑃(𝐶 (𝑠) ≥ 𝐶𝑖 |𝐶 (𝑠) ≥ 𝐶𝑖−1) = 𝑃(𝐹𝑖 |𝐹𝑖−1) (22)

where 𝐹𝑖 is the intermediate event determined by the objective function value 𝐶𝑖 . By the definition of conditional

probability, we have:

𝑃(𝐹) =
∏
𝑖

𝑝𝑖 (23)
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We can generate samples using the modified Metropolis-Hasting algorithm [35] that progressively towards the

maximum, while the rare event region is gradually explored. For an optimization problem with at least one global

point, one can expect that 𝐶𝑖 → 𝐶𝑜𝑝𝑡 as 𝑃(𝐹) → 0. In this particular formulation, the level probability 𝑝𝑘 becomes a

parameter that regulates the convergence of the optimization process. If a small value is used, the algorithm would

have a low probability of reaching a global optimum. The level probabilities must be high enough to permit the locally

developed Markov Chain samples to move out of a local optimum in favor of finding a global optimum, especially in

early simulation levels. However, high level probabilities would increase the number of simulation levels. Here, we

adopted a decreasing strategy as described in [44] to handle this difficulty. The advantage of using SS instead of the

heuristic algorithm is that SS requires far less tuning and still provides exploration of the input space to a good extent.

In addition, it has been validated in a number of different fields [45, 46] and provides a plug-and-play approach. A

pseudo-code reporting the crucial passages of the sample refinement code exploiting SS in this work is reported in 2

and a numerical comparison of the two sampling techniques is reported in subsection III.D. The introduction of an

iterative procedure, such as the proposed SS based input space exploration algorithm, on a system which should work

in real time may encounter run time issues. Indeed, should the algorithm struggle to reach convergence, or should

it take more iterations than expected, the entire operations would be delayed. However, as it will become clear later

in subsection III.D, it is possible to overcome these limitations while using SS by formulating it so that the number

of function evaluations is limited. This in turn could cause convergence to suboptimal solutions. Nonetheless, by

sacrificing optimality, one can retrieve a command in a timely manner. This procedure requires a careful trade off, which

is the subject of the preliminary analysis of the input sampling strategy.

III. Numerical Simulations
The algorithm is tested in two scenarios. For both study cases the selected target altitude is of 700km, whereas the

initial condition of the chaser is that of an inclined football orbit (IFO) provided in the LVLH reference frame, with the

𝑥 axis aligned along the radial of the target location, the 𝑧 axis aligned with the orbital momentum vector and the 𝑦 axis

completing the right handed reference:

r0 = [100; 0; 0] m v0 = [0;−0.107; 0.0431] m/s (24)

In the first scenario, the target has a nadir pointing fixed attitude, whereas in the second one the target is tumbling with a

random initial angular velocity of 0.1 deg/s. Moreover, it is assumed that the chaser only has a single low-thrust engine

providing a throttable control thrust of maximum 0.05N. To enforce the maximum slew rate of the chaser, we selected

a value of 5.7 deg/s, which allowed to obtain many feasible input samples without being too penalizing. Finally, the

chaser is be equipped with a parallel baseline stereo-vision camera with a focal lenght of 50 mm, a baseline of 1 m and
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Algorithm 2 Sampling Refinement using Subset Simulation
1: Select the probability distribution 𝑓𝑖 (𝑠𝑖) for each component of the state 𝑠𝑖 . In this study these probabilities are
modeled as truncated Gaussians with mean `𝑖 on the mean value of their interval and 3𝜎𝑖 equal to the half-interval
amplitude as reported in Equation 1.

2: 𝑡 ← 𝑚𝑎𝑥(𝜎𝑖)/(𝑢𝑏𝑖 − 𝑙𝑏𝑖): stopping criterion is based on the maximum standard deviation of the PDF for each
variable divided by the interval amplitude given by upper bound (𝑢𝑏𝑖) minus lower bound (𝑙𝑏𝑖), which allows to
eliminate the effects of different scaling of input variables.

3: Generate 𝑁 samples by direct Monte Carlo according to the initial 𝑓𝑖 .
4: Compute the score function 𝐶 (𝑠) for each sample of the 𝑘 = 0 level and sort them.
5: 𝑘 ← 0, Initialization of probability level 0.
6: while 𝑡 >threshold do
7: Select the 𝐶𝑘 threshold as the 𝑁𝑝𝑘 th element of the sorted array of scores. Due to this choice, there are 𝑁𝑝𝑘

samples whose score is larger than 𝐶𝑘 and hence corresponding samples belong to the event 𝐹𝑘 .
8: These samples provide the “seeds” samples for next simulation level. The modified Metropolis-Hasting algorithm

[35] is employed for generating conditional samples. In the 𝑘 + 1th simulation level, starting from each of samples
in 𝐹𝑘 a Markov chain of length 1/𝑝𝑘 can be generated with the same conditioning.

9: Compute the score function 𝐶 (𝑠) for each sample of the new level and sort them.
10: Update the artificial pdf of each variable according to the mean and standard deviation of the samples at level

𝑘 + 1.
11: Update 𝑡.
12: Update 𝑝𝑘 + 1.
13: 𝑘 ← 𝑘 + 1
14: end while

a standard 35 mm sensor size. The total inspection allocated time is 48h during which the chaser periodically calls

the GNC module to compute the best trajectory. The strategy is compared with a stationary IFO [24]. For the sake of

a fair comparison with the proposed strategy, it is assumed that in the IFO approach, the chaser uses a computation

time window to perform station keeping operations of the same amplitude as the one used for the SBMPO algorithm.

Additionally, the chaser will have to perform some slewing maneuvers to reach the correct attitude for target pointing.

The RSO is modeled with a generic spacecraft 3D model as reported in Figure 3, and the measured landmarks are

considered to be the vertices of the triangulation.

A. Nadir Pointing Target

The first test case analyzes the behavior of the chaser in the neighborhood of a nadir pointing target. Figure 4

shows the stationary IFO, whereas the trajectory obtained with the proposed guidance strategy for 48h is reported in

Figure 5. From the elliptical trajectories followed by the SBMPO algorithm it is evident that the proposed guidance takes

advantage of the characteristics of the natural dynamics to outperform the classic approach. Indeed, every periodical

orbit will not drift away from the target and hence will spend more time close to a useful region for inspection. However,

the SBMPO algorithm switches between multiple periodic and quasi-periodic orbits, hence allowing it to gain more

different points of view, which increase the information gain. Furthermore, in Figure 6 the exploration score is reported.

Said score is normalized per each maneuver on its maximum value found over the first sampling of 𝑛0 inputs. Therefore,

seeing a score which is equal to or greater than 1 means that the exploration is enhanced by the trajectory selection. In
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Fig. 3 Model used as a reference target, the vertices of the 3D model represent the landmarks used by the
algorithm.

Figure 6, the SBMPO algorithm concludes the inspection with 20 maneuvers, always selecting an exploratory one (i.e.

score ≥ 1). On the other hand, the chaser on the IFO cannot decide to follow more promising trajectories, therefore the

exploratory score shows greater degradation. To conclude, Figure 7 shows the final reconstructed landmark density

function evaluated on a sphere with 𝐾𝑂𝑍 radius. In particular, this representation is not scaled by the trace of the

covariance as in Equation 10, therefore a region in the plot with higher value is less explored and hence more appealing.

By observing this density, it can be noticed how the landmarks are reconstructed according to a better coverage thanks to

the varying inspection strategy with respect to the stationary IFO, achieving a more uniform distribution of landmarks

on the surface of the target and, as a consequence, a lower and uniform value. On the contrary, the points collected

during IFO execution are always concentrated in the same regions, therefore the score function remain high in those that

are not explored.

B. Tumbling target

Once the trivial case of a nadir pointing target is analyzed, the analysis is extended to a randomly tumbling target.

The exploration score obtained by each maneuver is reported for each strategy in Figure 8. Once again, the SBMPO

algorithm proposed consistently recovers exploratory maneuvers, whereas the IFO sees its performance further reduced

due to the random tumbling motion of the target. To conclude, the representation of the reconstructed 3D PDF associated
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Fig. 4 Whole mission trajectory of the stationary football orbit.

Fig. 5 Whole mission trajectory following the proposed guidance strategy.

with target surface features is reported in Figure 9. As it can be observed, the distribution of surface features in the

case of the proposed strategy is much more uniform with respect to the standard football orbit. Moreover, the tumbling

motion of the target actually helped spreading the landmarks distribution also in the IFO case, improving the previous

results.
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Fig. 6 Exploration score 𝐶𝑒𝑥𝑝 obtained for each maneuver by the two strategies in the first study case.

Fig. 7 Reconstructed score density function for the nadir pointing target by the IFO (left) and by the proposed
guidance (right).

C. Exploration Efficiency

This section is devoted to analyze the performance of the test cases in terms of capability to exploit an observation

time window. First of all some useful quantities for this analysis are defined, which use data from the tumbling satellite

test cases, but whose results extend also to the nadir pointing study case. In particular, three parameters are defined to

assess the performance of the proposed guidance strategy. First, the Operations Time, which is defined as the time

dedicated to maneuver computation and attitude acquisition in the case of the proposed guidance strategy. Similarly to

the previous subsection, for the sake of a fair comparison with the IFO case, we allocated an equal amount of time as

Operations time, during which the IFO to performs station keeping operations. This assumption may seem punitive
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Fig. 8 Exploration score 𝐶𝑒𝑥𝑝 obtained for each maneuver by the two strategies in the second study case.

Fig. 9 Reconstructed score density function for the tumbling target by the IFO (left) and by the proposed
guidance (right).

for the IFO, but it is indeed justifiable thanks to the fact that a very small deviation from the ideal initial state of this

trajectory causes drifts from the nominal path. Hence, this strategy requires more effort to preserve the desired orbital

shape and more frequent checks on the relative state. Secondly, a Proximity Operations Time is introduced, which is the

time allocated to inspection in addition to the time spent during operations that could still be considered of scientific

interest (i.e. the execution of relative maneuvers). Additionally, the pure Inspection Time is defined as the time spent

during inspection for each maneuver arc. To conclude, the Total Used Time index is introduced, which sums Proximity

Operations Time and Operations Time hence constituting the entire time of an inspection leg. These time measures

accumulate during an inspection mission, thus their cumulative value gives information on how well the allocated time
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window has been exploited. The results of this analysis are reported in Table 1.

Table 1 Comparison of efficiency of exploration for both IFO ans SBMPO given as % of the time window

IFO Performance Proposed Guidance Performance
[% of time window] [% of time window]

Total Used Time 97.8 100.0
Proximity Operations Time 85.7 91.6
Inspection Time 85.7 87.9

The results show that the proposed guidance algorithm is much more effective in exploiting the allocated time. In

fact, it spends more than 91% of the time window performing proximity operations. Even when comparing just the

inspection time, the proposed guidance still retains a margin of more than 2% of the time window. Furthemore, it can

be observed that the capability of adapting inspection phases duration for the proposed algorithm allowed to exploit

completely the inspection time window, whereas the IFO falls short of approximately 2% of the available time. Notice

that this discrepancy could, in principle, still be smoothed by using a time window which is an exact multiple of the

orbital period of the target. However, this preliminary analysis shows that in fact the IFO lacks such flexibility, and still

requires human in the loop for improvement.

D. Sampling Refinement Tradeoff

In this work, we also proposed an alternative approach to the heuristic input sampling approach implemented in

[33]. The proposed method, described in subsection II.E, relies on a SS simulation paradigm to explore the input

space and retrieve the best maneuver. In order to assess the impact of the sampling strategy, a comparison between the

two implemented strategies is hereby provided. To determine the SS algorithm operational parameters and to have an

adequate comparison with the heuristic sampling refinement, a subsequent approach of 4 test cases has been applied,

where each test builds on the results of the previous. First of all, the two test cases necessary for the determination of the

SS parameters are reported. Subsequently, a third test case is addressed to compare the repeatability of the two strategies.

Finally, in the fourth test case, the strategies are compared in terms of obtained score during a simulated trajectory.

1. Test Case 1

As illustrated in subsection II.E, the SS algorithm employs a varying number of iterations to reach convergence, also

influencing the number of total samples drawn. Therefore, in this preliminary analysis we estimated how many levels

would be needed on average to reach convergence. To do so, 10 different initial conditions for the chaser are selected

from a set of states tracked during a simulation of the full guidance algorithm. For each of these initial conditions, the

initial sample size has been varied in a given range:

𝑛0 = {50, 100, 200, 300, 400, 500, 1000, 1500, 2000} (25)
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Afterwards, the SS sampling refinement has been run to convergence in each of the combinations. The outcome

of this simulation provided an indication of the average number of iterations required to converge for a given 𝑛0 in

Equation 25. In particular the results showed that 10 iterations of the SS algorithm would lead to a good trade off

between convergence and computational cost.

2. Test Case 2

The second analysis is aimed at determining the best number of samples for the SS algorithm. In particular, one

initial state for the chaser is selected, whereas the size of the initial sample is varied as in Equation 25. The number of

levels is fixed at 10 as per the previous test case results. To obtain a fair comparison, the heuristic refinement algorithm

is run from the same initial condition with the same initial sampling but with as many 𝑛𝑚𝑒𝑠ℎ steps as necessary to obtain

the same number of function evaluations as given by the SS algorithm. This analysis allowed to formulate a comparison

with the heuristic algorithm both in terms of score and computational time as illustrated in Figure 10.

Fig. 10 Determination of the best number of score function evaluation for the SS algorithm.

As evidenced by Figure 10, the computational time of the heuristic algorithm is always higher than the SS, mainly

due to the simplicity of implementation of the SS algorithm. Secondly, it can be observed that the score obtained by the

two algorithms is always comparable. Due to the selection of a computation time window of approximately 120𝑠, the

only accessible region of this graph is the one highlighted in green. In this region, the best trade-off between number of

function evaluations and achieved final score is given when the initial sample size is set to 200.
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3. Test Case 3

In this third test, the repeatability of the two algorithms is compared by sampling 10 different initial states of the

chaser from the trajectory tracked during a trial run of the guidance algorithm. By keeping the parameters of the SS as

set from the results of the two previous test cases, both algorithms are run 100 times for each initial condition, and an

average performance is retrieved.

Fig. 11 Maneuver score distributions across the 10 different initial conditions given by SS and heuristic
approach.

The mean and standard deviation of the scores retrieved from both algorithms for a given initial condition are

summarized in Figure 11. As it can be observed, their values are always comparable and the SS often retrieves better

scores as observed from the mean of the score distribution, which is reported on the second row of the figure. It is

interesting to notice that for the initial condition #9 the SS focuses on a very narrow region of the maneuver space,

which is indeed providing always the best values in all trial runs. In this particular case in fact, the best maneuver is the

null maneuver, which is correctly identified each time by the SS. On the contrary the heuristic sampling still draws

"useless" samples, spreading the distribution.

4. Test Case 4

To conclude, this last test case analyzes the performance difference obtained by the two different sampling strategies

during a run of the entire guidance algorithm lasting 100 maneuvers. For each maneuver computation, the SS algorithm

always achieves a higher level of average score as illustrated in Figure 12. Furthermore, in 63% of the initial conditions

the best maneuver is obtained by the SS algorithm. In addition, the test showed that the first level sampling of the SS

simulation included the best maneuver only 11% of times. This means that further sampling refinement is effective in

producing a score increase in 89% of the cases, producing an average score improvement of 0.2281. On the contrary,
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Fig. 12 Average score obtained by the samples of SS and heuristic algorithm for each maneuver computation
case.

the heuristic approach found the best sample in the first level 66% of the times; consequently, in 34% of the maneuver

computations, all samples drawn in subsequent levels are useless. Indeed, the average score improvement for this

approach is only 0.0776.

The outcomes of the test cases 3 and 4 suggest that a further tuning of the sampling heuristic refinement would be

required, and that there is in fact still a margin for improvement. This goes to prove that even if the outcome of this

approach is acceptable, it requires more in depth knowledge of the problem and tuning with respect to a simple yet

robust algorithm such as SS, which can be used as plug-and-play after a trivial preliminary analysis.

E. Conclusion

In this work we proposed an autonomous guidance algorithm which relies on state-of-the-art Sampling Based Motion

Planning techniques. This guidance approach allows to optimize information gain while inspecting an unknown and

non-cooperative RSO while abiding to many constraints. The proposed approach relies on an heuristic input sampling

strategy, for which we proposed an easier, more robust alternative based on Subset Simulation. In this work, we also

provided an example application of this guidance technique for the inspection of an unknown and non-cooperative RSO

in two different configurations (i.e. nadir-pointing and tumbling). The results obtained by the newly proposed guidance

strategy are also compared to a classical natural relative motion trajectory. The results show that the proposed guidance

algorithm outperforms the standard inspection baseline in terms of effectiveness of the inspection, allowing for a flexible

exploitation of the inspection time window. Overall, the strategy shows greater performance stability across the two

case studies analyzed. In fact, the part of the score related to the exploration shows less dips and oscillations with

respect to the one obtained by the fixed inspection strategy. It can also be noticed that the effect of the tumbling motion

degrades the exploration score of the stationary football orbit, whereas the proposed algorithm is capable of rejecting

this disturbance. In addition, a noticeable difference can be observed in the reconstructed landmark density function
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used to compute the score. Indeed, the surface landmark density is always more homogeneous for the proposed guidance

algorithm, even in the case of a tumbling target, where the tumbling motion improves the performance of the standard

strategy. This work also proposes a more robust and simple approach for sample refinement based on SS which allowed

to rival the state-of-the-art heuristic approach. Indeed, the proposed SS approach outperforms the heuristic sampling

thanks to its easiness of use, which allowed to retrieve comparable performance with little to no parameter tuning.
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