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Abstract—Edge computing has been recently introduced to bring computational capabilities closer to end-users of modern
network-based services, supporting existing and future delay-sensitive applications by effectively addressing the high propagation
delay issue that affects cloud computing. However, the problem of efficiently and fairly managing the system resources presents
particular challenges due to the limited capacity of both edge nodes and wireless access networks and the heterogeneity of resources
and services’ requirements. To this end, we propose a techno-economic market where service providers act as buyers, securing both
radio and computing resources to execute their associated end-users’ jobs while being constrained by a budget limit. We design an
allocation mechanism that employs convex programming to find the unique market equilibrium point that maximizes fairness while
ensuring that all buyers receive their preferred resource bundle. Additionally, we derive theoretical properties that confirm how the
market equilibrium approach strikes a balance between fairness and efficiency. We also propose alternative allocation mechanisms
and give a comparison with the market-based mechanism. Finally, we conduct simulations to numerically analyze and compare the
performance of the mechanisms and confirm the market model’s theoretical properties.

Index Terms—Network Slicing, Mobile Edge Computing, Resource Allocation, Market Model, Game Theory

1 INTRODUCTION

HE recent emergence and affirmation of Cloud Com-
Tputing (CC) has determined the centralization of com-
pute power into large data centres. As this trend is ex-
pected to continue in the future, CC will play an increas-
ingly prominent role in web-based services by providing
supercomputing-like capabilities. However, the often long
distances between data centres and end users render CC
unsuitable for supporting new time-sensitive use cases, such
as those enabled by the fifth generation of mobile radio
networks (5G) [1].

Recently introduced Mobile Edge Computing (MEC)
promises to surpass this intrinsic limit of CC by shifting
the computational power toward the edge of the network,
in the proximity of the Radio Access Network (RAN). This
way, the resulting reduction in propagation delays promotes
a wide range of time-sensitive applications, such as tactile
internet, augmented reality and IoT. [2]. Additionally, MEC
can alleviate the burden that future data-intensive applica-
tions, such as autonomous driving and massive IoT, might
have on the networking infrastructure, as local computa-
tions avoid sending large data volumes to the cloud [3].

MEC is currently undergoing a developing phase, and,
among the different open challenges it poses to the re-
search community, resource allocation and management
represent a particularly interesting one. Unlike what is
usual in resource management studies for CC, assuming
infinite network capacity between the computing nodes and
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the offloading source may be questionable. Indeed, Edge
Nodes (EN) are deployed close to wireless access points
with limited capacity. Furthermore, given the relatively high
density of these deployments, ENs offer limited computing
capabilities to keep costs down and retain the economic
scalability of MEC. Therefore, we argue that an effective
management framework cannot refrain from jointly consid-
ering both radio and computational resources.

The emergent concept of network slicing is well suited
to offer the required bundles of heterogeneous virtualized
resources. However, slice capabilities need to be customized
according to the service that the slice owner intends. Dif-
ferent slices might indeed need varying amounts of com-
putational and communication resources. Additionally, the
underlying shared infrastructure presents a high degree
of heterogeneity. Not only the availability and utility of
resources are dramatically different between the MEC and
the RAN domain, but also edge nodes might present dif-
ferent installed capacities within the single MEC cluster.
This substantial diversity calls for joint optimization of
both domain’s resources, as uncoupling the two might lead
to situations in which resources in one domain are over-
provisioned with respect to the capacity of the other. For
instance, if a slice was to receive a large radio capacity
without enough computation resources, most of the jobs
uploaded through the RAN would encounter an unaccept-
able processing delay. At the same time, the overprovisioned
radio resources could be utilized more efficiently by other
slices with less stringent processing requirements.

The scenario previously described requires smart re-
source allocation solutions. Static resource partitioning ap-
proaches, such as the one considered by 3GPP [4], might
lead to poor results. Indeed, the intrinsic spatial and tempo-
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ral heterogeneity of both demands and resource availability
suggests that elastic allocations might yield higher efficiency
and better performance. Furthermore, network slices offer
customized network services to tenants representing busi-
ness entities, whose economic performance indicators are
likely to couple with the experienced service performance.
The consequence is that tenants should be allowed to
directly participate to the allocation decision process and
autonomously manage their resources to better match their
desired techno-economic performance. Indeed, third-party
allocation decisions that penalize some tenants to favor the
overall welfare would result in a weak and likely unaccept-
able solution from an economic point of view.

In light of what mentioned above, the following question
arises: given an MEC/RAN deployment consisting of a set of
heterogeneous network cells and ENs, how to efficiently allocate
computing and network resources to competing network slices
with different requirements while guaranteeing fairness, service
prioritization, and economic convenience?

Our proposed answer consists of a resource management
model based on a market of resources, where each service
provider is allowed to buy allocations constrained to a
budget. The properties of the solution are analyzed through
Game Theory and General Equilibrium Theory.

The considered market is based on an instance of Fisher
Market [5]. This well-known model has been extensively
used in the literature for either RAN resource allocation in
slicing contexts or MEC resource management, individually
considered. However, to the best of the authors” knowledge,
it has never be introduced when the two domains are
combined, as we do in this article. Indeed, it is a non-trivial
extension toward a joint resource management that needs
careful consideration of how each type of resource’s demand
and availability impacts the overall system performance.
That is exactly the task we complete in this work.

In our proposed market model, domains’ resources are
dynamically priced according to their availability and in-
stantaneous demand values. At the same time, each buyer
obtains the particular bundle that maximizes its private
utility function, coinciding with the number of successfully
executed jobs at the market equilibrium. Finally, service
prioritization is enforced through budget differentiation,
whose values can represent real money or, more generally,
power relationships among service providers.

The remainder of this article is structured as follows.
Section 2 presents some relevant related works and point
out the novel contribution of this work with respect to the
others in the literature. Section 3 presents the system model
formulation, while Section 4 presents the proposed market-
based resource allocation approaches, whose properties are
theoretically analyzed in Section 5. Finally, simulation re-
sults are shown in Section 6. The article concludes with
Section 7 that includes final remarks.

2 RELATED WORKS

The main results of this work are based on Game The-
ory, which has been extensively utilized in network re-
source management [6]. In the context of game theory-
based network resources management for slicing, authors
in [7] propose a single-cell budget-free market with prices
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computed according to some function of the cell load and
in [8] an auction model for the resource allocation problem
is proposed. Authors of [9] propose a budget-constrained
market model (extended to admission control in [10]) that,
only from the radio resource management point of view,
faces the problem following a rationale similar to the one of
our proposal.

In the multi-server computing resources management
literature, the multi-resource allocation problem has been
first addressed in [11], where the well known Dominant
Resource Fairness concept [12] has been extended to mul-
tiple heterogeneous servers scenarios. An external resource,
generically identified as bandwidth, was later introduced
in [13] as an extension to the previous approach. More
refined approaches can be found in [14], where the problem
of the joint resource optimization to provide the desired
QoS to all mobile users and traffic types is formulated as
a mixed-integer nonlinear program. In [15] the optimization
of radio resources and computing power is aimed at min-
imizing users” energy consumption while meeting latency
constraints. Authors of [16] propose a model for optimizing
both the server placement and the task offloading of a
MEC system comprising multiple access points. A channel
and queue aware cross-layer scheduler is proposed in [17],
where radio and computing resources of a single access
point are jointly optimized.

Both [18] and [19] approach the computing resource al-
location problem employing game-theoretical tools, propos-
ing a Fisher Market-based model for the management of
MEC resources. However, the former work studies the sys-
tem only from a high-level perspective at the EC platform
(i.e. not considering the radio access segment). The latter
avoids managing radio resources, claiming transmission de-
lay to be constant and negligible. We believe this assumption
is highly questionable in the next years, as future services
will challenge the radio access segment of the network,
either by large job payloads (i.e. video transcoding, image
processing), large numbers of simultaneous requests (i.e.
massive-IoT) or a combination of both (i.e. autonomous
driving and connected cars). Thus, network resource man-
agement becomes relevant [20].

Authors of [21] have proposed a market mechanism
where the MEC infrastructure provider sets the prices of the
CPU cycles of a single MEC server to maximize its revenue.
After prices are set, users select which jobs to offload to
minimize a combination of cost and latency. The model
considers a single base station, and its radio resources are
not optimized, but the available spectrum is equally divided
among the users instead. In [22], a game where MEC users
compete for the radio resources and CPU cycles of a single
access point is proposed. In particular, users can choose
either to locally process their tasks or offload them to the
AP. Authors of [23] have proposed a mechanism for the
management of CPU and radio resources of a single access
point with the aim of minimizing the long term energy
consumption of both the server and the mobile terminals.
A detailed sharing business model is presented in [24]. Here
users of a MEC server cluster can rent unutilized CPU-share
quotas in exchange for additional income. The infrastructure
providers are part of the model and sell subscription plans
to end-users. Scenarios where the platform aims at maximiz-
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ing either its profit or the social welfare are analyzed and
compared. Liu et al. [25] propose a microeconomic model
where end users can buy radio resource blocks from access
points and processing power from edge nodes to maximize
task performances while containing the costs. Both an op-
timal budget allocation algorithm and an equilibrium price
finding algorithm are proposed.

2.1 Motivation and contributions

In the previous analysis, three main areas of study can be
identified: radio resources allocation for either a single ac-
cess point or a RAN, single or multiple computing resource
allocation and market equilibrium-based allocation, as pic-
tured in Figure 1. While the related works we presented in
this section cover up to two of the areas above, we were
not able to find any work that satisfyingly covers all three
areas. Even those works that propose a market model for
both radio and computing resources consider only a single
access point, a single edge node or only CPU resources.
Furthermore, none of them allocates resources to network
slices, but considers the single end-user instead. Thus, we
claim this paper to be the first to cover the problem of multi-
resource, slice-aware allocation for multiple MEC servers and
multiple wireless access points through a techno-economic market
of resources.

The main contribution of this work can be further sum-
marized as follows:

o We formulate a system model for the environment
above that comprises multiple servers in a MEC clus-
ter and multiple radio cells of a RAN. MEC service
providers are modelled as network slices.

e We propose a novel market-based allocation mecha-
nism and resource pricing leveraging resource bottle-
necks in the heterogeneous environment above. Addi-
tionally, we provide a convex program formulation to
find an optimal market equilibrium.

o We formally analyze the theoretical properties of the
proposed mechanisms, focusing on the efficiency and
fairness of the ME approach.

o We give an extensive numerical evaluation of the pro-
posed mechanism through simulations.

3 SYSTEM MODEL

Consider a MEC scenario where several ENs (i.e., servers)
constitute a MEC cluster. Let M be the set of such nodes in
the MEC cluster and R the set resource types offered by the

MEC Cluster

EC Domain

RAN Domain

() ()

D DCCEI

(@)

Cell 2

Op

n0p

Fig. 2: High level system architecture.

nodes, i.e., CPU, RAM and storage. By D,,I‘/f}”:rC we express the
available capacity of resource type r € R in node m € M.
Since we consider a heterogeneous MEC cluster, capacities
DMEC can in principle be different for each resource and
node in order to model real-life scenarios in which ENs have
different installed capacity.

Consider a Radio Access Network that users of the MEC
system can employ to offload their jobs to the ENs. Let C
be the set of C' cells that can be used to access the MEC
cluster. We then define the available capacity' of each cell
c € C as DN, For the sake of simplicity, we consider
resources to be expressed in terms of cell spectrum portions.
We suppose the presence of a slicing-aware MAC scheduler
capable of dynamically enforcing these constraints, such as
the one proposed in [26].

While the RAN access capacity is limited, we do not
impose any limitation on the backhaul network capacity
that connects each cell with any server in the MEC cluster.
Furthermore, once the job payload enters the cluster, it can
be freely scheduled for execution in any node of the cluster.

An example of the system architecture that we have
just described can be found in Figure 2. Here, we have
highlighted the boundary between the two domains we are
considering: the EC Domain, which contains the edge nodes
and their resources and the RAN domain, containing the
cells composing the access network.

3.1 Demand-based Service Characterization

We consider Service Providers (SPs) to own virtualized
bundles of both computing and radio resources in the form
of network slices. Network slice and service provider have
interchangeable definitions in this text. SPs employ these
resources to provide end-users with specific MEC services.
For instance, a specific SP might offer neural network
training offloading services. In this case, end-users would
need to upload training data to the edge nodes, which
would in turn train a neural network - we call this com-
bination of upload and processing a job. Alternatively, some
services like voice recognition or video processing might
require a constant stream of data to be sent by end-users to

1. This generic definition of network capacity can be adapted to a
series of different radio access technologies. For instance, DR*N can be
expressed in terms of available physical resource blocks for 4G and 5G
networks, time slots for TDM systems and available spectrum for FDM
systems.
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ENs for processing. However, such streams are often com-
posed of individual packets and uploading and processing
each one might be considered a job.

Independently of its scope, a specific service can be gen-
erally characterized in terms of computing and networking
resources needed to complete associated jobs. Consequently,
jobs originating from end-users subscribed to the same SP
are likely to present similar resource requirements. Hence,
we define a set of demand requirements characterizing each
service provider, calling it a demand profile. It is worth
noting that, given the wide variety of MEC applications,
services can present diverse demand profiles: there might be
a CPU-intensive service whose CPU demand could be rel-
atively higher than its memory requirement, or a network-
intensive type of service whose job’s payload is larger than
others” payloads, thus requiring higher bandwidth alloca-
tion.

Let S be the set of service providers. We define dMEC
as the minimum amount of MEC resource of type r € R
needed to complete one job of service provider s € S in
a timely fashion. Similarly, d®2N indicates the minimum
amount of network resources needed to successfully upload
one job of service provider s € S through cell ¢ € C. While
d)'EC does not depend on the specific EN where the job is
executed, dSﬁN must depend on the cell where the payload
is uploaded. This is because different channel quality might
require higher or lower bandwidth requirements for the
same payload size.

In particular, several factors that might positively or
negatively influence the channel quality can be accounted
for by properly tuning di4N. For instance, dit" could be
increased in a specific cell to counteract the reduced spectral
efficiency due to localized inter-cell interference or harsh
end-user propagation conditions. Furthermore, if end-users
of a given service provider s experience great differences in
channel quality within a single cell ¢, it is always possible
to divide end-users subscribed to a single service into ng
groups of end-users with a quasi-homogeneous channel
quality. Each group subscribes to a fictitious sub-service s;
(with ¢ = 1, .., ng) that differs from the original only in the
network resource requirements, d p.

Finally, all the factors concurring into dg’."~ are taken as
time-averaged, such that the market allocation mechanisms
can operate on a stable and reliable representation of the
RAN. If network conditions were to change or a new market
trade were to happen, d¥s" could be updated, and the final
allocation recomputed.

We consider all jobs processed by the system to show
a certain delay-sensitiveness since delay-sensitive services
are often considered as the main application of MEC [27].
Service providers can express the delay requirements of
their end-user jobs by a proper selection of dy. and di4N.
Indeed, the completion time of a computing task is strictly
related to the quantity of reserved resources. For instance,
a higher CPU-time share leads to a faster computation, as
well as a more significant RAM allocation leads to fewer
disk accesses and thus an execution speed up. In this work,
we consider dg/ffc as given, supplied by service providers.
We suppose that, if dy';- or more resources are allocated
for each resource type, then one job can be considered
as successfully executed in the due time. Moreover, we

RAN
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allow for numerous jobs to be executed simultaneously if
multiples of this quantity are allocated.

This is consistent with realistic scenarios in which SP-
dedicated virtual machines (VMs) with different reserved
resources are deployed in edge nodes. In this case, a VM
with reserved capacity dMEC would be powerful enough
to execute only one job of SP s in a timely fashion. Simi-
lar considerations can be done in the RAN domain when
defining the amount of required network resources d4N.
Specifically, both the transmission time (i.e., payload upload
time for any given allocation) and the technological delay
(i.e., as low as 1ms for 5G [28]) can be taken into account
when defining the smallest amount of network resources
needed for a successful job payload transmission in due
time. Same as before, we consider d?AN as given, and we
allow the number of timely uploaded payloads to scale
with larger allocations. This model is again consistent with
realistic scenarios where spectrum portions of each cell in a
RAN are reserved to specific network slices.

3.2 Service Utility Function

In multi-resource allocation scenarios, one of the aspects
that must not be overlooked is the presence of resource
bottlenecks and the emergence of a dominant resource [12].
In our case, a specific service provider can experience a
resource bottleneck in a particular edge node of the cluster
when its associated demand profile is such that there exists
a resource type demand that exhausts the availability in the
said node. We call this resource dominant and when the node
capacity for such resource is depleted, then no more jobs can
be scheduled, even if other resource types are available in
the EN. On the other hand, there is no risk of experiencing
RAN domain bottlenecks since the allocable resource is of
one type only. However, given the time-sensitivity of jobs,
we do not allow for queuing at the domains interface,
implying that the least performing domain limits the total
system throughput. This can be considered as a bottleneck
as well, since no additional jobs can be accommodated in
the system once the capacity of one domain reaches its
saturation point. In our proposed model, we mathematically
capture the presence of these resource bottlenecks in the
system by a proper definition of the service provider utility
function.

In realistic virtualization scenarios, network and cloud
operators rent pure capacity to service providers in terms
of job processing resources and are agnostic about how they
will use such a capacity to serve their end-users. Conversely,
the system performance must be evaluated exclusively with
the knowledge of the parameters made available by network
and cloud operators. For this reason, we have defined a
service utility function that is transparent to the queuing
policy and admission control techniques employed by the
SP.

We achieve this by noting that, independently of the
choices above, only a limited number of jobs can be con-
currently accommodated by the system at any point in time
if the delay requirements are to be met. We argue that this
number is a valid overall performance indicator. It gives
the SP an unequivocal measure of how many end-users can
be concurrently served by the system for a given resource
bundle. We mathematically express this limit as follows.
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TABLE 1: Notations

SETS AND PARAMETERS

Notation Meaning

S, S SP set and set cardinality

M, M EN set and cardinality

R,R Computing resource type set and cardinality

C,C Cell set and cardinality

DMFC Resource r capacity in EN m

DRAN Network resource capacity in cell ¢

d¥TC Resource r needed for SP s job completion

dRAN Resource needed in cell ¢ for SP s payload upload
X Computing resource allocation matrix for SP s

Y, Network resource allocation vector for SP s

JMEC (X ;) Concurrent jobs in MEC domain given allocation X
JRAN (Y ) Simultaneously uploaded jobs given allocation Y s
us (Xs,Ys) | Service provider utility

Bs Budget of SP s

DECISION VARIABLES AND PRICES

Notation Meaning

Ts,m,r Resource r allocated to SP s in EN m

Ys,c Network resource allocated to SP s in cell ¢

Js,m Concurrent jobs of SP s executed in EN m

Us Linearized value of SP s utility acc. to Eq. (3)
p%]fg Price of computing resource  in EN m

pRAN Price of network resources in cell ¢

Let x5,y » be the amount of type-r computing resource
reserved to service provider s in node m. Then for any
resource r, ””;ﬂ;gg' represents the maximum number of con-
current jobs of s that such an allocation allows to be exe-
cuted in EN m. However, the actual number of concurrently
executed jobs is limited by the dominant resource. Thus,
we must consider the minimum of these quantities over
all the computing resource types. By summing over the
nodes in the system, we get the maximum number of jobs
that can be simultaneously executed with acceptable per-job
performance in the MEC domain for service provider s:

. Ts,m,r
w5l o
meM 8.7

c RZ\/]XR

J;\/[EC (XS) =

where X5 = (Zsm.r)
allocation matrix.
Similarly, by letting v, . be the network resources allocated
in cell ¢ for service provider s, the ratio between y; . and
dR2N can be identified as the largest number of job payloads
of service s that can be simultaneously sent to the MEC
cluster through cell ¢. Summing over all the cells in the
system, we get the number of payloads of service provider
s that can traverse the RAN domain for a given network
resources allocation vector Yy = {ys 1, ..., Ys,c }:

Ys,c
TN (YS) =) aw )

ceC 5

is the computing resources

Finally, being the number of concurrently executed jobs
limited by the least performing domain, we can express the
service provider utility as follows.

us (Xs,Y,) = min {JSMEC (X,), JRAN (YS)} )

4 ALLOCATION APPROACHES

In this section, we present different approaches to the
allocation problem in the settings described in Section 3,
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whose notation is summarized in Table 1. In particular, we
propose a techno-economic market model where service
providers individually buy bundles of resources in each
edge node and cell. These resources will be then dedicated
to the execution of jobs originating from their end-users.
This coincides with the main contribution of this work. We
also present two other possible allocation approaches based
on system performance optimization without economic con-
siderations. A fourth scheme based on proportional sharing
is also proposed.

The first three approaches are based on mathematical
programming, and the resulting resource allocation deci-
sions are obtained by solving an optimization problem. We
now describe the variables, parameters and constraints that
will be shared by these formulation.

Quantities x p, » and y, . defined in Section 3 represent
the resources allocated to a particular SP, and these will be
the output of any allocation mechanism. It follows that these
coincide with the decision variables of our formulations. We
define j, ., as the variable associated with the number of
concurrent jobs of SP s € § executed in EN m € M. Finally,
let us be the decision variable representing the utility of SP
s € S. The constraints of the optimization models employed
by the approaches mentioned above are as follows:

Jom < R ¥seS,meMreR (da)

Us S Z js,ma Vse S (4b)
meM

ug < 3 See VseS (4o)
cec s,C

> Tome < DMEC, Vm e M,r e R (4d)

seS

Z ys,c S DIC{ANy VC S C (46)

seS

Vse S, me M,reR,ceC.

These represent a mathematical expression of the system
model detailed in Section 3. In particular, constraints (4a)
to (4c) linearize the utility function defined in Eq. (3).
Constraint (4a) expresses the min operator in Eq. (1), while
constraint (4b) forces the utility not to be larger than the
number of jobs that can be concurrently executed in the
MEC domain. Similarly, constraint (4c) limits the utility u,
to the maximum number of payloads that can be simultane-
ously processed by the RAN domain, as defined in Eq. (2).
Constraint (4d) is such that the total allocation for each re-
source in each EN does not exceed the node capacity, which
is required for a feasible allocation. Likewise, constraint (4d)
limits the allocated network resource in each cell to the
available capacity.

These constraints show how the heterogeneity of re-
sources and diversity of attributes are considered by the
allocation mechanisms we propose. For instance, heteroge-
neous resources are considered in the MEC domain by (4a),
as it iterates over the set of available computing resource
types R. Different attributes can also be considered by ad-
equately choosing the parameters. For instance, parameters
DMES, each representing the available capacity of resource
type r in EN m, can effectively model different server con-
figurations in the MEC cluster. We now detail the allocation

Ts,m,ry Ys,cy js,m > Oa (4f)
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approaches that will make use of the constraints above in
their optimization models.

4.1 Market Equilibrium Approach

We propose a techno-economic market of resources model
I" based on a Fisher Market [5] model. In I', buyers are
represented by the individual service providers in set S.
Each resource type in the system represents the goods in the
market. Therefore we identify M x R+ C different divisible
goods.

The market capacity of each good is given by the avail-
ability of each resource, namely D%ETC and DRAN. Each
resource has an associated unitary price pl\,flE,C (for MEC
domain resources) and pR*N (for RAN domain resources)
that SPs must pay if they intend to acquire it. Resources
bought by providers in the market constitute their allocation
vectors X, and Y, yielding performances that each SP s
can privately evaluate by means of the utility function wu,,
as defined in Eq.(3) and expressed by constraints (4a) to (4c).

In this framework, we expect service providers to act as
rational agents, all having the goal of pursuing their interest
by buying resource bundles that maximize their utility (i.e.,
maximizing the number of simultaneously executable jobs)
constrained by their budget B;. The value of each provider’s
budget has the additional function of enforcing service
prioritization. Suppose, for instance, that two SPs have the
same demand profile but a different budget. In this case, the
SP with the higher budget would be favored by the market
model since it could afford to buy larger resource bundles.
It follows that, even if the demand profiles are the same,
the jobs of the heavier-budgeted SP would be prioritzed as
these would have access to more resources.

As it will be shown later, resource pricing in the pro-
posed approach follows the natural law of demand and
supply by assigning comparatively higher prices to those
resources that are more desired and less available. Accord-
ingly, prices are expected to have a load balancing effect
on the allocations, as SPs are incentivized to buy resources
where congestion is limited.

Since both network and computing resources are allo-
cated according to the rational decisions of providers and
their interactions, the analysis of the resulting allocation
mechanism is carried out utilizing tools from Game The-
ory [29] and general Equilibrium Theory [30], focusing on
the characterization of the market equilibrium (ME) out-
come for this market model.

Resource bundles (Xy,...,Xgs,Y1,...,Y¥) and corre-
sponding prices (phi, pRAN) are said to induce a Market
Equilibrium if the following conditions are true [31]:

(i) Optimal Goods: Every service provider buys only
those goods that yield the maximum utility per unit
of money, also known as maximum bang-per-buck;

(ii) Market Clearing: Either resources are fully allocated,
or the corresponding price is zero. Furthermore, each
service provider exhausts its budget.

The first condition is intended as a satisfaction of the ratio-

nality and selfishness of the buyers, whose unique interest

is to maximize the return of their market investment in the
manner prescribed by their utility functions. Intuitively, no

equilibrium could be otherwise established. Condition (ii)

6

states that the offer of each resource can either meet the
demand and thus be priced, or be in a surplus condition and
given away for free. Additionally, stability can be reached
only when each buyer spends its entire budget, entailing
that any unused fraction can be indeed spent to increase the
utility.

SPs are allowed to buy any bundle of resources, pro-
vided that its price does not exceed the budget. However, it
is clear now that equilibrium bundles are those who favor
SPs the most. For this reason, we have developed a convex
optimization program to find a Market Equilibrium for the
aforementioned market model. In particular, the formula-
tion is based on the variables and the constraints (4a-4f) with
an addition of the following objective function:

max Z By log(us). )
sES

This objective maximizes the sum of the SP utility loga-
rithms, weighted by the budget of each provider. In Sec-
tion 5, we will show how this objective is sufficient to prove
that the solution of the resulting convex program represents
an equilibrium point for the market model.

Our proposed mechanism works according to the fol-
lowing steps:

1) The system model parameters are gathered, and the
formulation is built,

2) The model is optimized to obtain equilibrium alloca-
tions X* = (X7,...,X%), Y* = (Y},...,Y%) and
optimal SP utilities u* = (uf,...,u%)

3) Resources are allocated throughout the system accord-
ingly

Optimal prices p;MEC and pi**N do not directly appear
in the solution but, as strong duality holds, they can be
extracted as dual variables [32] associated with capacity
constraints (4d) and (4e). Consequently, these represent the
rate of change of the objective function associated with
any change in the capacity constraint. In other words,
those resources whose increment or decrement of capacity
would impact the objective the most will have the highest
prices, suggesting a direct proportionality between prices
and resource demand. Additionally, prices are such that the
optimal resource bundle of each provider does not present
costs higher than the provider’s budget, as it will be proven
in Section 5.

4.2 Social Optimum Approach

We propose an approach based on linear optimization that
aims to allocate resources such that the overall number of
jobs that can be simultaneously executed without provoking
performance degradation is maximized. In this case, the re-
sulting allocation cannot be guaranteed to represent a mar-
ket equilibrium of any kind. Consequently, this mechanism
does not consider service providers as entities capable of
making decisions, but simply manages the system resources
to maximize the overall performance according to some
objective functions. On this matter, we propose two different
objective functions to maximize the system performance: a
pure maximization of the sum of utilities (i.e. total executed
jobs) and a sum of utilities weighted by each provider’s
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budget. These objectives, together with variables and con-
straints (4a-4f) defined before, constitute the optimization
models at the core of the proposed approaches.

The first objective function, also known as Social Opti-
mum (SO), is defined as follows:

> s, ©6)

seS

This objective leads to a maximization of the system perfor-

mance regardless of the budget difference among services.

That is to say, it maximizes the number of served users.
The second objective function is instead defined as:

> Bgu,. 7)

seS

It includes a certain degree of fairness in the solution by
giving more weight to service providers with larger bud-
gets, replicating the advantage that such providers have in
the market model I'. Consequently, of the two mechanisms
above, only the latter allows for service prioritization by
means of the budget values. This type of solution is also
known as Weighted Social Optimum (WSO).

The two resulting allocation mechanisms (namely SO
and WSO) follow the 3-steps approach of the market model.
In other words, the optimization models are solved with the
parameters of the underlying system, and then the resources
are allocated accordingly.

4.3 Proportional Sharing Scheme

This resource sharing scheme was proposed as a static
mean of allocating resources in network slices [33] and has
been used as a baseline allocation scheme both in resource
management for network slicing [9] and mobile edge com-
puting [19]. This scheme is based on a closed form solution
and does not employ any optimization techniques.

Proportional sharing (PS) allocation mechanism is such
that each service provider receives an amount of the capac-
ity of each resource in the system that is proportional to its
budget. Therefore, it can be seen as an extension of the well
known generalized processor sharing [34] algorithm to a multi-
resource scenario.
Formally, let &7 ,,, and s be respectively the computing
and network resources allocations of service provider s
resulting from proportional sharing, then:

By
Fomr = S B, DYES, Vse€S,meM,reR, (8
s'es Ps’
~ Bs RAN
DN VseS,ceC. (9)

Ys,c =
ZS’ES By

Once these quantities are computed, proportional sharing
utilities 45 can be computed through Eq. (3).

This allocation scheme does not consider the single
provider’s demands nor the load conditions of ENs and
cells. Indeed, it simply allocates all the available resources
such that service providers with larger budgets get compar-
atively larger shares. Thus, it is considered a static allocation
scheme, as it does not reflect any change in the system
conditions. However, following the same rationale of the
market-based model, this mechanism prioritizes those SPs
with larger budgets.

5 MARKET MODEL PROPERTIES

This section presents a theoretical analysis of the previously
defined market model I" and the other proposed mecha-
nisms. We first discuss the existence of a Market Equilib-
rium. In particular, we prove that the solution of (5, 4a-4f)
is always a ME for I'. Afterwards, we turn our focus on
the analysis of efficiency and fairness of the mechanisms
proposed in Section 4.

5.1 Market Equilibrium

The existence of a Market Equilibrium (ME) for the Fisher
Market model is guaranteed in the most generalized settings
under the mild condition that at least one buyer desires each
resource and each buyer desires at least one resource [35].
In the remainder of this work, we consider this condition to
always hold without loss of generality since we assume that
jobs require a non-zero amount of all types of resources in
the system to be successfully executed?.

Having established the existence of a ME for I', we turn
our focus to its computation. Sperner’s coloring [36] can find
an equilibrium point, although with a high computational
inefficiency. A more efficient and well-known alternative
is to employ a convex optimization formulation called the
Eisenberg-Gale (EG) program. EG was first proposed to find
an equilibrium in the case of linear utilities [37] and then
extended to more general functions [38]. Program (5, 4a-
4f) is indeed a variant of the EG formulation applied to
the proposed market model, where constraints (4a), (4b)
and (4c) are added to the usual EG formulation. They
express the particular bottleneck-defined service provider
utility function that we employ in the proposed model, as
defined in Eq. (3).

With the following theorem we prove that the solution
of such formulation is in the set of market equilibria of I':

Theorem 1. Optimal variables X* = (X§,...,X%) and Y* =
(Y7,..., YY) and corresponding optimal prices of program (5,
4a-4f) represent a market equilibrium of T'.

Proof: See appendix.

This theorem allows (5, 4a-4f) to be effectively used as a tool
for computing a ME for I'. In particular, (5, 4a-4f) can be
applied to any instance of I' and system resources can be
allocated according to the optimal variables X* and Y*.
Resource prices can be extracted from the solution as
dual variables of capacity constraints in MEC and RAN
domains. The system performance can be readily evaluated
using optimal utilities. The exact contribution of prices to
the equilibrium conditions is complex, and we have not
included it in this section for ease of exposition. Instead,
we refer to Theorem 1 for the mathematical details.
Program (5, 4a-4f) is in the class of convex optimization
problems, which modern numerical methods, such as the
interior-point method [39], can efficiently solve.
The objective function is strictly concave. Thus, the problem
has at most one optimal point [40], meaning that the set of
market equilibria utilities of I' obtained through (5, 4a-4f)

2. If this was not the case, then the non-desired resource could
be excluded from the market model without affecting the allocation
solution.
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contains a single element, as summarized by the following
remark.

Remark 1. The market equilibrium utilities obtained through
program (5, 4a-4f) is unique.

This result is not trivial since there is no guarantee
that the equilibrium of a Fisher Market is unique. Indeed,
different algorithms might converge to different equilibria
depending on the initialization, as is it typical for best
response dynamics [41] or Sperner’s coloring.

5.2 Efficiency Properties

Generally speaking, the efficiency of an allocation mech-
anism quantifies the loss in overall system performances
against the maximum allowed by the system capacity. There
is no guarantee that a market equilibrium-based approach
efficiently utilizes system resources. In general, the effi-
ciency of such a solution depends on the parameters of
the specific allocation instance. For this reason, this section
presents some general efficiency results based on bounds,
while a numerical evaluation of this metric is given in
Section 6.

We define the efficiency of an allocation mechanism as
the ratio between its resulting total number of concurrently
executed jobs and the maximum number of jobs that the
capacity of the system allows for simultaneous execution.
For any instance 7 of T, let SW,e(7), SWso(Y), SWps(7)
be the social welfare (i.e. the sum of service provider util-
ities) of the solutions given by market equilibrium, social
optimum, and proportional sharing allocation mechanisms,
respectively. These values are unique® for any instance of T".

The efficiency of an allocation mechanism can be eval-
uated by comparison with SW,(7), since it represents the
maximum value for the given instance. In details, we define
the following efficiency expressions:

- SWine(7)
Nme (V) = W) (10)
SWs
Nps(7) = SVVISJOS; (17)

We claim that the market-equilibrium approach has an
efficiency at least as high as proportional sharing, namely
NMme(Y) > Mps(7y), for any market instance «. This result
comes from the following theorem:

Theorem 2. For a given market instance, let (uf,...,u¥) be
the market-equilibrium utilities and (41, ..., Us) be the utilities
given by the proportional sharing mechanism. Then u} > 4 for
each service provider s € S.

Proof. See appendix.

Interestingly enough, this theorem goes beyond com-
paring the efficiency of the two allocation approaches.
Indeed, it shows how each service provider cannot lose
utility by taking part in the market mechanism with respect
to the utility obtained through a proportional division of

3. This is true for market equilibrium, as stated by Remark 1, but also
for social optimum since it is the optimal value of the objective of a
linear program, and for proportional sharing by definition.
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resources. This property is also known as sharing incentive,
and it is widely considered as a desirable goal for multi-
resource allocation mechanism applied to data centers [42].
It confirms that the players can be better off by entering into
the market mechanism than recurring to externally imposed
proportional allocations.

Next, we compare the market-equilibrium efficiency

against the maximum efficiency given by the social opti-
mum solution. In particular, in [43] it is proven that the
proportional sharing mechanism has an efficiency asymp-
totically lower bounded by 1/+/S under mild conditions
for the utility functions, which hold true for I' as well.
Furthermore, this bound is tight.
By Theorem 2, proportional sharing cannot yield efficiency
higher than at Market Equilibrium, thus the bound also
holds for 7, and the result is summarized in the following
remark:

Remark 2. 1),,.(7) is asymptotically lower bounded by 1/+/S
for any «y instance of I.

Additionally, the remark above can be employed to
characterize the price of anarchy (PoA) of the market-
equilibrium approach, a well-known measure of efficiency
in Equilibrium Theory [44]. PoA is defined as the ratio
between the worst-case social welfare of the equilibrium
solution and the optimal social welfare obtained through
optimization. PoA can be expressed as a function of the
previously defined ME efficiency:

1
Miny e Pme ('7)

that is, the inverse of the worst case ME efficiency.
Given this definition, an upper bound for PoA,,. is
derived in the following remark:

POAme = ) (12)

Remark 3. PoA,,. is asymptotically upper bounded by \/S.

The last efficiency-related trait of the proposed allocation
mechanism analyzed in this section is the well known Pareto
Efficiency (PE) [30]. A feasible utility vector (uq,...,us)
obtained through any allocation mechanism is said to be
Pareto optimal if there is no other feasible utility vector
(uf,...,uf) such that u} > u, forall s € S and u} > u, for
at least one s. Any allocation mechanism whose utilities are
Pareto optimal is said to be PE, and this property is often
considered a minimal notion of efficiency.

It is easily verifiable that both social optimum and
proportional fairness solutions are PE, while the same is
not generally valid for equilibrium points. However, under
some mild conditions also holding for I', the First Fun-
damental Theorem of Welfare Economics [30] states that any
equilibrium of a competitive market is PE.

5.3 Fairness Properties

Fairness is a largely adopted concept when designing re-
source allocation mechanisms, and it is unanimously con-
sidered fundamental in guaranteeing a certain level of QoE
among heterogeneous services. However, differently from
efficiency, there is no univocal definition of fairness. In this
work, fairness is analyzed through a popular fairness index.
Additionally, we show how the Market Equilibrium satisfies
some commonly desired fairness properties.
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To numerically quantify the fairness of an allocation, we
employ the Nash Social Welfare (NSW), a well known and
regarded fairness index considered to naturally achieve a
compromise between fairness and efficiency [45] that has
been employed in similar works [7], [9]. Here follows the
definition of NSW adapted to the proposed system model:

S Us) = H ubs.

seS

One can note that NSW coincides with the geometric mean
of utilities weighted by provider budgets, suggesting a
trade-off between overall system performances and individ-
ual fairness.

It is known that EG-based formulations such as (5, 4a-4f)
maximize NSW. This results comes from observing that the
objective function (5) is equivalent to the definition of NSW,
formally:

arg max {Z B, log(us)} = arg max { H uBe } . (19

seS seS

Consequently, the Market Equilibrium obtained through (5,
4a-4f) yields the highest fairness among any feasible al-
location, including solutions obtained through propor-
tional sharing and social optimum. Additionally, Remark 1
states the uniqueness of the equilibrium utilities obtained
through (5, 4a-4f). This means that the proposed mechanism
is capable of selecting the unique equilibrium point with
the highest fairness according to NSW. This result has been
summarized in the following remark:

Remark 4. The utilities obtained through program (5, 4a-4f) are
the unique NSW maximizer.

After having characterized the NSW of the market-
equilibrium approach from an absolute standpoint, it is
natural to question how it compares to the solution which
maximizes the efficiency, i.e. the social optimum approach.
On this matter, we declare the following proposition, whose
proof is reported in Appendix.

Proposition 1. The loss of NSW fairness incurred when em-
ploying the social optimum approach with respect to the market
equilibrium approach is unbounded.

According to this result, it is evident how the social
optimum solution presents no fairness guarantee, despite
offering the best efficiency. Indeed, Section 6 shows how
social-optimal solutions almost always result in at least one
service provider getting zero resources, which is arguably
unacceptable from a quality of service standpoint.

In addition to a quantitative fairness analysis through
NSW, we consider two well-known fairness properties that
characterize the qualitative fairness of the market equilib-
rium approach, namely Proportional Fairness (PF) and Envy-
Freeness (EF). PF, long considered a desirable fairness prop-
erty of allocation mechanism, was first introduced in the
context of bandwidth sharing among network flows [46]
and has been proven to be relevant for data-centre resource
sharing in [47]. A feasible utility vector (ui,...,ug) is
said to be proportional fair if, for any other feasible utility
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vector (u1,...,uUs), the aggregate of proportional changes
is negative [48], formally:

Ug — Ug
ZBS¥ <0.
seS Us

(15)

We characterize the market’s proportional fairness prop-
erty in the following proposition, whose proof is reported in
the Appendix.

Proposition 2. The market equilibrium obtained through pro-
gram (5, 4a-4f) is proportional fair.

The final fairness property analyzed in this section is
EF, which states that each agent in the market prefers its
assigned bundle of resources over the bundle of any other
agent [49]. This well-known property owes its desirability
to the stability that it implies, as agents have no reason
to complain about their allocation. However, in the context
of a fixed budget market model such as I', the discussion
about EF is meaningful only when service providers all have
the same budget. Under this assumption, resource bundles
(X4,...,Xg)and (Yq,...,Yg) are considered envy-free if
us(Xs, Ys) > us(Xe, Yy) for any s, ¢t € S.

The proposition that follows claims the envy-freeness
property of the market equilibrium.

Proposition 3. The ME obtained through (5, 4a-4f) when service
providers all have an equal budget is envy-free.

The proof is straightforward once one notes that equi-
librium allocations are mutually affordable, given that all
providers experience the same resource prices and have
equal budgets. Hence, each provider can afford to buy any
opponent’s resource bundle but still prefers its own since it
is the one that maximizes its utility.

6 NUMERICAL RESULTS

In this section, we numerically evaluate the performance
and fairness of the allocation approaches proposed in sec-
tion 4 applied to different instances of the system model.
Such instances are characterized by parameters that vary ac-
cording to the specific result or property we intend to high-
light. However, some assumptions will be valid throughout
the entire section unless otherwise stated.

Every market model is motivated by the heterogeneity
of resource demands among different buyers. Those cases
where buyers show the same or similar demand profiles
are less attractive, as an optimal solution would not be
much different from an equal resource partitioning. Con-
sequently, the main aspect in our numerical analysis is
the ratio between resource demands among different ser-
vice providers and with respect to the MEC capacity, not
their absolute values. This allows us to consider generic
compute-equivalent and memory-equivalent units, CPU-U
and MEM-U respectively.

Consequently, capacities D%ETC measure the maximum
available units of each resource in a particular edge node.
Similarly, service requirements d)'t< in the MEC domain
define the computing resource units required by a single job
of SP s. Network resources are considered as portions of the
total bandwidth available in a specific cell. Thus, parameters
d3%N and DEAN are numerically represented in Hertz (Hz).
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TABLE 2: Service Templates

Name dI;/I,E%U-U dYMEMU dEﬁN Bs
CPU-Intensive 4CPU-U | 8 MEM-U | 3MHz 1
RAM-Intensive | 1 CPU-U | 32MEM-U | 3MHz 1
BW-Intensive 1CPU-U | 8 MEM-U | 10MHz | 1.5
Balanced 5CPU-U | 40MEM-U | 5MHz 2

TABLE 3: Nodes and cells configuration

Name CPU-U MEM-U BW
CPU Node 32 CPU-U | 128 MEM-U | /

MEM Node | 16 CPU-U | 256 MEM-U | /

Small Cell / / 40 MHz
Large Cell / / 20 MHz

Simulation instances have been generated in MATLAB,
and the proportional sharing allocation mechanism was
implemented in the same environment. Market Equilibrium,
Social Optimum and Weighted Social Optimum mecha-
nisms have been solved through IPOPT [50] and CPLEX,
respectively.

6.1 System Performance and Fairness

To capture the heterogeneity of resource requirements of
different services, we define four service templates that
represent possible demands configurations in a cloud com-
puting scenario. In details, we define three templates rep-
resenting CPU-intensive, MEM-intensive and bandwidth-
intensive services and an additional, more balanced service
with overall high resource requirements. These particular
templates have been chosen such that a heterogeneous
mix of demands are analyzed. Numerical values of service
templates are detailed in Table 2.

We consider a localized MEC/RAN system comprising

heterogeneous network cells and computation nodes.
In the RAN domain, we identify 2 large cells with 40MHz
of capacity and 5 smaller cells with 20MHz of capacity.
In the MEC domain, we identify 2 types of EN, whose
computation resources are either 32 CPU-U and 128 MEM-
U, for what we call a CPU node, or 16 CPU-U cores and
256 MEM-U, for what we call MEM node. These values are
presented in Table 3.

Our simulated system includes 5 CPU nodes and 5 MEM
nodes. In each simulation run, one among the templates
above is given randomly to each of the 15 service providers
competing for system resources. Furthermore, Gaussian
noise is added to each resource requirements with mean 0
and variance equal to 25% of the original numerical value.
This has been done to account for requirements oscillations
given by unpredictable variations in payload size and com-
putational effort, as well as network conditions.

Figure 3 shows the cumulative distribution functions of
some performance indicators extracted from 100 simulated
instances. In particular, Figure 3a allows us to immediately
appreciate the impact of different allocation approaches on
the number of concurrent jobs of each service provider,
i.e. its utility. Social optimum-based solutions present zero
executed jobs (i.e. zero allocated resources) for at least 60%
of the cases, while the rest of the providers obtain relatively
high performance. This behavior appears in this type of
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approach as the solution favors those providers who can
simultaneously execute the most jobs with fewer resources.

On the other hand, ME and PS approaches always guar-
antee that each SP can execute some jobs, even if this means
a lower maximum per-provider performance. Furthermore,
this particular figure shows how providers always get better
performance with the ME approach in respect of PS, con-
firming the sharing incentive property implied by Theorem 2.

Figure 3b shows the cumulative distribution functions
of the sum of per-provider concurrently executable jobs,
namely the system performance, for each of the studied
allocation approaches. The result is that SO outperforms
the other approaches, and ME consistently delivers better
performance than PS, shown to be the least performing.
This is also evident in Figure 3c, where the distribution
of efficiencies nyrg and npg are plotted. Here it is shown
how the ME approach is about 30% more efficient than
PS on average, a result that again confirms the efficiency
remarks of Section 5. Furthermore, ME presents a worst-case
efficiency of 52%, higher than the theoretical lower bound
of 26% given by Remark 2.

Figure 4 shows the cumulative distribution function of
the NSW for both ME and PS approaches. Plots corre-
sponding to social optimum-based approaches are missing
because such solutions almost always present at least one
service provider with 0 concurrently executed jobs, yield-
ing NSW values that are mainly 0. Moreover, the figure’s
horizontal axis employs a logarithmic scale due to both
a significant difference between worst-case and best-case
values and the gap between the two distributions. This
behavior is due to the fact that the considered fairness
index exponentially increases with both budgets and the
number of service providers. Additionally, Figure 4 confirms
Remark 4 by showing how NSW of market equilibrium
approach is much larger than the proportional sharing case
in all simulated instances.

6.2 Sensitivity Analysis

We start by analyzing the different sensitivity of allocation
mechanisms to variations in budget values from the per-
provider performance standpoint and with respect to over-
all system performance. In this analysis, we consider the
previously detailed system deployment and three providers
associated with different services: 2 CPU-intensive services
and one Balanced service, which will be called S1, S2, and
S3 respectively.

Figures 5a and 5b show the variations in performance
when the budget of 51 is allowed to increase from its default
value of 1 up to 5. In particular, Figure 5a demonstrates
how single SP utilities adapt to the budget variations in the
ME mechanism. When S1 and S2 have equal budgets, they
obtain the same utility since their requirements are symmet-
rical and the mechanism cannot prefer either of the two. As
51 budget increases, the allocation mechanism grants her
increasingly more resources, confirming the service prioriti-
zation effect of the budget values. When S1 and S3 budgets
are the same, i.e. 2, the mechanism demonstrates efficiency
by granting more resources to S1, which can execute more
jobs under the same allocation conditions because it requires
less per-job resources.
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Figure 5b shows the impact of SI budget variations on
the cumulative provider utility when employing different
allocation mechanisms. SO remains unaffected, while the
other mechanisms show an increment in overall perfor-
mance due to a more efficient resource utilization when
increasingly larger allocations are granted to S1.

Finally, we present an analysis of the service provider
utilities obtained through ME when the number of nodes
and cells in the system varies. In this case, consider a system
comprising 5 small cells and 5 large cells and the same MEC
deployment as the previous analyses. In this scenario, one
Balanced service and one BW-intensive service populate the
system, offered by service providers S4 and S5 respectively.
Leaving the RAN domain unchanged, we allow for M to
decrease from 10 to 2 by iteratively excluding one CPU node
and one RAM node at the same time.

Figure 5c shows the impact on the utility of the two
considered service providers. As the computational capacity
of the system starts decreasing, S4 undergoes a decrease in
the executed jobs, which in turns frees some radio access
capacity that can be utilized by bandwidth-hungry S5,
providing a performance boost. This behavior continues
until the computational capacity is so low that it forms a
bottleneck for both providers. This shows in practice the
presence of the domain bottleneck phenomenon that has
been introduced in Section 3.
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Fig. 5: Sensitivity Analysis

Considering again the original deployment, we analyze
the impact of RAN capacity variations by decreasing the
number of small cells from 5 to 1, while leaving the rest
untouched. Figure 5d illustrates a behavior similar to the
previous analysis, even if less accentuated. Indeed, as the
radio resources decrease, S5 hits a resource bottleneck and
her performance decrease. This causes more computational
resources to be available to S4, allowing for a slight but
noticeable performance increase. As seen before, the domain
bottleneck is eventually hit, and both service providers start
experiencing a lower performance.

7 CONCLUSION

In this work, we have analyzed the problem of efficient
and fair joint management of radio and computing resource
in a MEC/RAN deployment. We have proposed a techno-
economic market model where service providers sharing
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the same physical infrastructure can purchase resources
while being constrained to a budget limit. Also, we have
formulated a convex program that computes the market
equilibrium for any instance of the market model. We have
given an extensive analysis of the properties of such a
solution in terms of efficiency and fairness. In particular, we
have shown how how the properties of Pareto Optimality,
Nash Social Welfare maximization, Proportional Fairness, Shar-
ing Incentive and Envy-Freeness apply. As it is usual for game
theory-based works, we have also characterzed the price
of anarchy of the solution. Additionally, we have proposed
alternative multi-resource allocation mechanisms which are
not based on any market concept, and we have compared
them with the market equilibrium approach.

Finally, we have presented numerous results coming
from a simulation of the proposed allocation mechanisms. In
particular, we have numerically analyzed and compared the
performance of the mechanisms, confirmed the theoretical
properties of the market model and gave an insight into the
sensitivity of the solution to parameters variations.
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