
https://doi.org/10.1007/s40295-021-00286-9

ORIGINAL ARTICLE

Deep-Space Optical Navigation for M-ARGOMission

V. Franzese1 ·F. Topputo1 ·F. Ankersen2 ·R. Walker2

Accepted: 2 September 2021 /
© The Author(s) 2021

Abstract
The Miniaturised Asteroid Remote Geophysical Observer (M-ARGO) mission is
designed to be ESA’s first stand-alone CubeSat to independently travel in deep
space with its own electric propulsion and direct-to-Earth communication systems in
order to rendezvous with a near-Earth asteroid. Deep-space Cubesats are appealing
owing to the scaled mission costs. However, the operational costs are comparable to
those of traditional missions if ground-based orbit determination is employed. Thus,
autonomous navigation methods are required to favour an overall scaling of the mis-
sion cost for deep-space CubeSats. M-ARGO is assumed to perform an autonomous
navigation experiment during the deep-space cruise phase. This paper elaborates on
the deep-space navigation experiment exploiting the line-of-sight directions to vis-
ible beacons in the Solar System. The aim is to assess the experiment feasibility
and to quantify the performances of the method. Results indicate feasibility of the
autonomous navigation for M-ARGO with a 3σ accuracy in the order of 1000 km for
the position components and 1 m/s for the velocity components in good observation
conditions, utilising miniaturized optical sensors.
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Introduction

There is a recent growing interest in miniaturized interplanetary spacecraft [32].
The European Space Agency (ESA) has funded several interplanetary CubeSat mis-
sion studies like M-ARGO [46], LUMIO (Lunar Meteoroid Impacts Observer) [43],
VMMO (Lunar Volatile and Mineralogy Mapping) [22], and CubeSats along the
Hera mission [28]: Milani [12] and Juventas [15]. The National Aeronautics and
Space Administration (NASA) funded 19 SmallSat deep-space mission studies after
Mars Cube One (MarCO) [20, 36], the first interplanetary CubeSat launched along
with InSight (Interior Exploration using Seismic Investigations, Geodesy, and Heat
Transport) mission [2]. Many of them will fly along the Artemis-1 and Artemis-2
opportunities in the next years [23, 24, 26]. The Japan Aerospace Exploration Agency
(JAXA) is planning deep-space CubeSat missions as well [10, 31].

Nanospacecraft following the CubeSat standard form factor (typically of 6 or
12U volume, where 1U is a cube with a 10 cm edge [39]), may lower the abso-
lute entry-level cost of deep-space exploration by an order of magnitude, whilst
still achieving useful science objectives. CubeSats can be built and assembled using
COTS (commercial off-the-shelf) components, properly screened for survivability in
the deep-space environment. Moreover, CubeSats can share the launch with either
a main passenger as a piggyback or other CubeSats in a rideshare configuration
[41]. While the costs to design and build a CubeSat scale with size, those related
to operate it remain unaltered when ground-based radiometric navigation is used.
This solution requires involving ground stations and flight dynamics teams. This is
the major bottleneck in downscaling the deep-space CubeSat mission costs. There-
fore, navigation methods independent from ground contacts would be desirable for
deep-space CubeSats. In this context, the M-ARGO mission is planned to execute
an autonomous navigation experiment while in deep-space cruise phase. Note that
other missions have performed deep-space autonomous optical navigation exercises
[33, 45]. In particular, Deep Space 1 carried out an experiment akin to the one in M-
ARGO [34]. Yet, the latter will have to cope with much fewer beacons owing to the
limited performances of miniaturized components.

Recent studies on autonomous navigation methods involve X-ray pulsar naviga-
tion [1, 38], horizon-based navigation close to nearly spherical objects [3, 6, 9, 13,
30], and deep-space line-of-sight navigation [4, 14, 18, 29].

The X-ray Pulsar navigation exploits the time-of-arrival difference between the
observer location and the Solar System barycenter (SSB) of an X-ray pulsar signal
to estimate the observer range to the SSB [38]. This is promising, yet feasibility for
nanosats is limited by the physics and its operational constraints. The horizon-based
navigation relates the apparent full-disk size of a known nearly-spherical object in
the observer camera field-of-view to the real object dimension to estimate the relative
range. The relative position vector can be estimated by detecting the object position
in the camera field-of-view. The accuracy of the method depends on the pixel accu-
racy in determining the object visible shape [7]. Thus, this method can be employed
when the observer is close to a known object such that the camera field-of-view is
almost filled by the object. The line-of-sight navigation method exploits the line-
of-sight (LOS) measurements of distant objects in the Solar System to triangulate
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the observer position. This method requires the objects ephemeris to be known and
non-stars objects to be detected in the camera or in the star tracker field-of-view.

The X-ray pulsar navigation is still not applicable to CubeSats owing to opera-
tional constraints, while the horizon-based navigation requires proximity to celestial
bodies. On the other hand, the line-of-sight navigation fits the M-ARGO deep-space
scenario, and as such it has been baselined for the autonomous navigation exper-
iment. Nevertheless, it deserves a detailed investigation in terms of quantification
of the performances. M-ARGO will exploit ground-based radiometric tracking for
orbit determination and will use this solution to validate the performances of the
autonomous navigation exploiting the LOS directions to the planets. Thus, the exper-
iment will run in background during the coast arcs of the M-ARGO low-thrust,
deep-space cruise. This paper is a first elaboration of the problem of setting up
the autonomous navigation experiment aboard M-ARGO. The goal is to investigate
the navigation problem geometry, the navigation filter modeling, and to assess the
expected performances. The focus is on tracking the LOS directions to the planets in
the Solar System considering the limitations of a CubeSat platform, such as the lim-
ited performances and numbers of camera on-board. To this aim, one sample transfer
trajectory to asteroid 2000 SG344 has been employed for validation.

The paper is structured as follows. M-ARGO mission is briefly described in
“M-ARGO”. The line-of-sight navigation method and its covariance analysis are
recalled in “Line-of-Sight Navigation”’. Then, an optimal beacon selection criteria
is elaborated in “Optimal Beacons Selection”. The Kalman filter implementation is
shown in “Filter Implementation”, while the settings for the navigation simulation
are presented in “Simulation Settings”. Section “Performances” reports the naviga-
tion performances for the M-ARGO mission case. Concluding remarks are given in
“Conclusions”.

M-ARGO

TheMission

M-ARGO is a 12U deep-space CubeSat that is planned to piggyback on the launch
of another large spacecraft going towards the Sun–Earth Lagrange point L2. After
insertion into a halo parking orbit at L2, M-ARGO will depart from there performing
a deep-space cruise towards a NEA target using low-thrust electric propulsion [46].
The departure from the Sun–Earth L2 point is planned within 1 Jan 2023 and 31 Dec
2024. The maximum transfer time to the asteroid is set to 3 years, and the duration of
close-proximity operations (CPO) are planned to last up to 6 months. The objective of
M-ARGO is to characterise the physical properties of the target NEA for the presence
of in-situ resources. The preliminary spacecraft mass budget amounts to 22.6 kg,
where 2.8 kg are accounted for the propellant. Table 1 presents a summary of the
M-ARGO characteristics.

M-ARGO will advance the state of the art in miniaturized technologies. Indeed,
M-ARGO will carry a miniaturized X-band transponder and reflectarray high gain
antenna for communication with Earth at distances up to 1.5 AU, a miniaturized solar
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Table 1 M-ARGO characteristics and mission time frame

Size Wet mass Prop. Mass Departure (SE L2) Transfer CPO

12U 22.6 kg 2.8 kg 2023 – 2024 ≤ 3 years ≤ 6 months

drive array mechanism for maximising solar power generation from two deploy-
able steerable wings, and miniaturized electric propulsion for high total impulse
manoeuvres [46]. Further details on the M-ARGO mission are present in [44].

The Target Asteroids

Figure 1 shows the estimated size versus the rotational period of the currently known
asteroids. The dashed line at 2.2 h rotational period is the so called spin barrier,
which is thought to be the rotational period limit for the vast majority of the objects
whose diameter is larger than 1 km. Small asteroids can rotate faster than the spin
barrier, and for this reason they are interesting targets for science. The M-ARGO
mission study team has selected different near-Earth asteroids as potential targets by
pre-filtering their orbital elements [27], which are highlighted black in Fig. 1. The
targets short-list has been achieved downstream of a more refined analysis [44]. All
the targets for M-ARGO are smaller than 50 meters in diameter and are thought to
be monolithic in nature [46].

This work considers as study case one of the candidate targets in order to evalu-
ate the performances of the deep-space autonomous navigation. The chosen asteroid
among the final short-listed ones is 2000 SG344, whose characteristics are given in
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Filtered Asteroids
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Fig. 1 Rotational period against diameter for minor planets. Pre-candidate targets in black
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Table 2 Characteristics of the NEA 2000 SG344

a [AU] e [-] i [deg] ω [deg] � [deg] H [-]

0.9775 0.0669 0.1121 275.30 191.96 24.7

Table 2, where a is the semi-major axis, e the eccentricity, ω the pericenter anomaly,
� the right ascension of the ascending node, and H the asteroid absolute magnitude.

The relation between the absolute magnitude and the estimated diameter is [37]

D = 1329√
pv

10−0.2H (1)

where D is the diameter (in km) and pv the asteroid albedo. The albedo of asteroids
ranges between 0.05 and 0.4, and it is assumed to be 0.15 for 2000 SG344 (common
assumption for unknown asteroids). Thus, the estimated diameter of 2000 SG344 is
39 m.

Figure 2 shows M-ARGO and 2000 SG344 trajectories in the Ground Solar Eclip-
tic (GSE) frame, where the Earth is in the origin, the positive x-axis always points
towards the Sun, the z-axis normal to the ecliptic, and the y-axis completes the
right-handed frame. GSE is a non-inertial reference frame.
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Fig. 2 M-ARGO (in black) and 2000 SG344 (in grey) trajectories in the GSE frame
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Line-of-Sight Navigation

The autonomous navigation experiment of M-ARGO consists of determining the
spacecraft state in deep space by tracking the line-of-sight (LOS) directions to a
number of known navigation beacons. The LOS directions are acquired for one bea-
con at a time using available miniaturized optical sensors and are given as input to a
Kalman filter. First, the methodology of a two-beacons synchronous acquisition case
and its covariance are reported. Then, a figure of merit, which describes the optimal
beacons to be tracked, is introduced. Lastly, the navigation case is embedded into
a Kalman filter, where asynchronous LOS acquisitions are implemented. Then, the
performances of the deep-space navigation experiment are simulated and reported
in terms of position and velocity errors and corresponding covariance bounds. More
details on triangulation based methods can be found in [21].

Synchronous Measurements Case

The inertial geometry between a spacecraft and two objects in deep-space is shown
in Fig. 3. The spacecraft position vector at a given epoch is denoted as r , which is
unknown. The objects positions at the same epoch are denoted as r1 and r2. The
relative position vectors of the objects with respect to the observer are denoted as ρ1
and ρ2, respectively. Assuming that r1 and r2 are known, the problem is to estimate
r by acquiring the LOS directions to the bodies, that is, ρ̂1 and ρ̂2.

This optical navigation problem can be solved algebraically. Let ρ = ρρ̂, ρ and ρ̂

being the range and the unitary LOS vector, respectively, for each object. The ranges
ρ1 and ρ2 to the observed objects can be determined as follows. From Fig. 3, the
observer position can be written as:

r = r1 − ρ1 ρ̂1 or r = r2 − ρ2 ρ̂2 (2)

which leads to

r1 − ρ1 ρ̂1 = r2 − ρ2 ρ̂2 (3)

The scalar product of Eq. 3 by ρ̂1 and ρ̂2, respectively, yields

ρ̂
�
1 r1 − ρ1 ρ̂

�
1 ρ̂1 = ρ̂

�
1 r2 − ρ2 ρ̂

�
1 ρ̂2

ρ̂
�
2 r1 − ρ1 ρ̂

�
2 ρ̂1 = ρ̂

�
2 r2 − ρ2 ρ̂

�
2 ρ̂2

(4)

OBJECT 1 OBSERVER

OBJECT 2
SUN

Fig. 3 Line-of-sight navigation exploiting two beacons

1039The Journal of the Astronautical Sciences  (2021) 68:1034–1055

1 3



Keeping in mind that ρ̂
�
1 ρ̂1 = ρ̂

�
2 ρ̂2 = 1, and rearranging Eq. 4, the following

matrix form can be obtained[
1 −ρ̂

�
1 ρ̂2

−ρ̂
�
2 ρ̂1 1

]
︸ ︷︷ ︸

A

[
ρ1
ρ2

]
︸ ︷︷ ︸

x

=
[

ρ̂
�
1 (r1 − r2)

ρ̂
�
2 (r2 − r1)

]
︸ ︷︷ ︸

b

(5)

Equation 5 is in the form Ax = b, where the geometry matrix A and the input
vector b are both known: ρ̂1 and ρ̂2 are measured directly using star trackers and
r1 and r2 are retrieved from ephemeris models. The system can be solved for the
unknown x = [ρ1 ρ2]�; i.e., x = A−1 b. With x known, the spacecraft position r is
known through Eq. 2.

Impact of Observation Geometry

The accuracy in the LOS measurement as well as the geometry of the two beacons
both impact on the quality of the solution. Denoting with γ the angle between the
two observed beacons, then ρ̂

�
1 ρ̂2 = cos γ , and the geometry matrix in Eq. 5 takes

the form

A =
[

1 − cos γ

− cos γ 1

]
(6)

Note that the determinant of A is

detA = 1 − cos2 γ = sin2 γ (7)

Thus, A becomes singular for γ = {0, π}. This occurs when the two observed bea-
cons and the spacecraft lie on the same line, and the navigation solution is singular.
On the contrary, detA = 1 for γ = π/2, and A becomes the identity matrix, so that
x = b.

Note that the best geometry is achieved when the two LOS directions are orthog-
onal, while the solution is undetermined when the two beacons and the observer are
aligned. More details can be found in [14].

Covariance Analysis

Assuming small perturbations of the line-of-sight directions with an angular additive
model, where the azimuth and elevation angles corresponding to a LOS direction
are perturbed by the sum with a white noise of standard deviation σ [5, 25], the
covariance of the solution error P to Eq. 5 can be derived as [14]

P = σ 2A−1B A−1 (8)

where B is the following matrix

B =
[

z�L1 z 0
0 z�L2 z

]
(9)

and z = r2−r1, L1 = I − ρ̂1ρ̂
�
1 , L2 = I − ρ̂2ρ̂

�
2 , and I denotes the identity matrix.

The reader can refer to [14] for a complete derivation of Eq. 8.
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Optimal Beacons Selection

The covariance of the solution error, P in Eq. 8, depends on the standard deviation
of the LOS directions to the beacons (σ ), the γ angle between the beacons as seen
from the observer, the LOS directions to the beacons (ρ̂1 and ρ̂2 inside L), and the
beacons positions (r1 and r2). Thus, assuming N available beacons, it is important
to assess which couple of beacons yields the best accuracy of the navigation solution.
To this aim, the trace of the covariance matrix can be used as a figure of merit for the
solution accuracy as demonstrated in [14]:

Tr[P ] = σ 2 1 + cos2 γ

sin4γ
z�L z (10)

where L = L1 + L2. Equation 10 can be used as a measure of the quality of the
navigation solution, it being a non-negative function of all the quantities and errors
involved in the deep-space optical navigation problem.

Following the considerations in [14], the figure of merit exploiting two beacons
can be defined as

Jkl = σ 2
(
1 + cos2γkl

sin4γkl

)
(r l − rk)

�[Lk + Ll](r l − rk) (11)

where k and l denote the k-th and l-th beacon, respectively, γkl the angle between
them as seen from the observer, rk and r l their position vectors with respect to the
Sun, and Lk = [I − ρ̂kρ̂

�
k ], Ll = [I − ρ̂l ρ̂

�
l ]. Note that Jkl is also function of the

epoch through the beacons position vectors.
Given a set of N visible beacons, the problem is to find i and j such that

{i, j} = arg min
k = 1,··· ,N;
l = 1,··· ,N;

k �= l

Jkl (12)

Note that an alternative figure of merit for the problem at hand can be found in [19].
Also, note that this formulation is valid when two synchronous beacons are acquired.
In the Kalman filter implementation in “Filter Implementation”, the two beacons are
acquired in an asynchronous fashion but close in time. This justifies the use of the
same figure of merit of Eq. 11. In this way, the closest beacon of the couple from
Eq. 12 is acquired, and then the second beacon is acquired after few minutes.

Filter Implementation

So far, we have considered the navigation case where two navigation beacons are
acquired simultaneously. However, due to the limited number of sensors mounted on
a CubeSat, it is realistic to consider that only one line of sight can be tracked at a
time. Thus, in order to cope with asynchronous measurements to estimate the probe
state, an extended Kalman filter formulation has been introduced [16, 17, 40]. The
extended Kalman filter is summarized in Algorithm 1. All the components of the
algorithm are presented in the following.
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The system block comprehends the nonlinear system dynamics and the measure-
ments equations (lines 1 and 2 of Algorithm 1), where f is the system dynamics, x
is the state, u the system input, y the system output, h the measurement model, w̃

the process noise, v the measurement noise, and k the discrete time index. The initial
state estimate and state covariance are denoted as x̂

+
0 and P +

0 , respectively.
Then, the Kalman filter consists of a predictor and a corrector steps. The predicted

quantities are denoted with the superscript “ − ” and are obtained through the inte-
gration of the dynamic equation (line 7 and 8 in Algorithm 1) and its covariance [40],
where F is the Jacobian of f evaluated at x̂−

k . The corrected quantities are indicated
with the superscript “ + ” and are the state and its covariance (line 10 and line 11 in
Algorithm 1). The Kalman gain Kk (line 9) is used to correct the estimates. The H

matrix is the Jacobian of the measurements evaluated at the current predicted state.

State Dynamics

The spacecraft state in the filter formulation is defined as

x = [r v m α β η]� (13)

where r is the spacecraft position, v the spacecraft velocity, m the spacecraft mass,
α and β are the azimuth and elevation angles of the thrust direction, and η is the
vector of Gauss–Markov parameters introduced to model the uncertainty in the sys-
tem. The dynamics comprehend the gravitational attractions of the Sun and the
Earth–Moon barycenter, the solar radiation pressure owing to the large area-to-
mass ratio M-ARGO, and the low-thrust exerted by the propulsion system [11].
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Fourth-body perturbations, like the gravitational attraction of Jupiter, have been
considered negligible. Thus, the acceleration of the system is

a = aS + aE + aSRP + aLT (14)

where aS and aE are the accelerations due to the gravity of the Sun and the Earth,
respectively, aSRP is the acceleration due to the solar radiation pressure, and aLT is
the acceleration due to the low-thrust propulsion. The first two terms are

aS = −μS

r

r3
aE = μE

(
rE − SC

r3E−SC

− rE

r3E

)
(15)

where μS and μE are the gravitational constants of the Sun and the Earth, respec-
tively, rE−SC the Earth position with respect to the spacecraft, and rE the Earth
position with respect the Sun. The acceleration due to the solar radiation pressure has
been modelled using the cannon-ball assumption [11]

aSRP = CR

S0 R2
0

c

AS

m

r

r3
(16)

where CR = 1.3 is the spacecraft reflective coefficient, AS = 0.30m2 is the space-
craft illuminated area, S0 the emitted power flux from the Sun, c is the speed of light,
and R0 is the Sun radius. The low-thrust acceleration has been modeled as

aLT = u Tmax

m
ν̂ (17)

where u ∈ [0, 1] is the throttle factor, Tmax = 1.89mN is the maximum thrust avail-
able, and ν is the thrust pointing direction. The latter is function of two angles, α and
β, whose definition can be seen in Fig. 4. In the Sun-centered J2000 reference frame,
β is the elevation of the thrust direction, while α is the azimuth.

Thus, the pointing direction in inertial coordinates is

ν̂ = [sinα cosβ cosα cosβ sinβ]� (18)

During the deep-space cruise, M-ARGO follows a repetitive duty cycle of 7 days
made of 6 days of thrusting and 1 day of coasting. This profile has been implemented
in the propagation within the filter. The evolution of the thrust angles in the thrust
arcs has been assumed to follow a second-order polynomial in duty cycle time τ , i.e.,

α = a0 + a1 τ + a2

2
τ 2

β = b0 + b1 τ + b2

2
τ 2

(19)

Fig. 4 Definition of α and β

angles with respect to the J2000
frame
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where a0, a1, a2, b0, b1, and b2 are coefficients determined as part of the trajectory
optimization [44]. Note that this evolution is valid during the 6-day thrust arc, and
different coefficients have been determined for different thrust arcs.

The evolution of the spacecraft mass is instead given by

ṁ = −u Tmax

Isp g0
(20)

where Isp = 3022.59 s is the specific impulse of the thruster, and g0 the gravitational
acceleration at Earth’s sea level. Note that the thruster specifics follow a model taken
by the M-ARGO consortium to start with the mission analysis. More information on
the thruster model are available in [44]. The vector of Gauss–Markov (GM) processes
η is

η = [ηR ηSRP ηT ηα ηβ ]� (21)

that includes the Gauss–Markov processes of the residual acceleration (ηR), the solar
radiation pressure (ηSRP ), the low-thrust magnitude (ηT ) and direction (ηα and ηβ ).

The Gauss–Markov processes are described by

η̇ = − 1

T
η + ω = −ξ η + ω (22)

where η is the GM process, T the correlation time, and ω a white noise process as
input (thus, E[ω] = 0 and E[ω2] = σ 2

ω, where σω is the standard deviation of the
white noise process). It can be shown that the GM processes have zero mean and
covariance given by [42]

QGM = σ 2
w

2ξ
(23)

Thus, the dynamics is

ẋ = f (x, u, t)+w̃⇒

⎡
⎢⎢⎢⎢⎢⎢⎣

ṙ

v̇

ṁ

α̇

β̇

η̇

⎤
⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎣

v,

aS +aE+aSRP +aLT

−uTmax/(Ispg0)

a1+a2 τ

b1+b2 τ

−ξ η+ω

⎤
⎥⎥⎥⎥⎥⎥⎦

(24)

where ω is the vector of white noises corresponding to the GM processes η. The
propagation of the covariance is described by

Ṗ = FP + PF� + Q (25)
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where F is the Jacobian of the state dynamics, thus

F =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

03×3 I 3×3 03×1 03×1 03×1 03×3 03×3 03×1 03×1 03×1
F r 03×3 Fm F α F β 03×3 03×3 03×1 03×1 03×1
01×3 01×3 0 0 0 01×3 01×3 0 0 0
01×3 01×3 0 0 0 01×3 01×3 0 0 0
01×3 01×3 0 0 0 01×3 01×3 0 0 0
03×3 03×3 03×1 03×1 03×1 −ξ I 03×3 0 0 0
03×3 03×3 03×1 03×1 03×1 03×3 −ξ I 0 0 0
01×3 01×3 0 0 0 01×3 01×3 −ξ 0 0
01×3 01×3 0 0 0 01×3 01×3 0 −ξ 0
01×3 01×3 0 0 0 01×3 01×3 0 0 −ξ

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(26)

where

F r =
(

−μS +CR

S0 R2
0

c

AS

m

)
I r2 − 3rr�

r5
−μE

I r2E−SC −3 rE−SCr�
E−SC

r5E−SC

(27)

Fm = −CR

S0 R2
0

c

AS

m2

r

r3
− u Tmax

m2
ν̂ (28)

F α = u Tmax

m
[cosα cosβ −sinα cosβ 0]� (29)

F β = u Tmax

m
[− sinα sinβ −cosα sinβ cosβ]� (30)

and Q is the noise covariance matrix:

Q =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

03×3 03×3 03×1 03×1 03×1 03×3 03×3 03×1 03×1 03×1

03×3
I (σ 2

R+σ 2
SRP +σ 2

T )

2ξ 03×1 03×1 03×1 03×3 03×3 03×1 03×1 03×1

01×3 01×3 0 0 0 01×3 01×3 0 0 0

01×3 01×3 0 σ 2
α

2ξ 0 01×3 01×3 0 0 0

01×3 01×3 0 0
σ 2

β

2ξ 01×3 01×3 0 0 0
03×3 03×3 03×1 03×1 03×1 σ 2

R I 03×3 0 0 0
03×3 03×3 03×1 03×1 03×1 03×3 σ 2

SRP I 0 0 0
01×3 01×3 0 0 0 01×3 01×3 σ 2

T 0 0
01×3 01×3 0 0 0 01×3 01×3 0 σ 2

α 0
01×3 01×3 0 0 0 01×3 01×3 0 0 σ 2

β

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(31)

where σR , σSRP , σT , σα and σβ are the standard deviations of the corresponding
processes as per Eqs. 22 and 23.
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Measurements Model

The measurements are the azimuth and elevation of the beacons LOS directions,
which are affected by additive angular noise. Thus, at a given epoch tk , the
measurement model is

yk = h(xk) + vk =
[

θk,i

φk,i

]
+ vk (32)

where i refers to the i-th navigation beacon. Considering the spacecraft position as
r = [x, y, z]T and the object inertial position vector as r i = [xi, yi, zi]T , the object
position vector with respect to the observer is

ρi = r i − r =
⎡
⎣ xi − x

yi − y

zi − z

⎤
⎦ (33)

The line-of-sight direction to the navigation beacon is then

ρ̂i = ρi

||ρi ||
= 1

||ρi ||

⎡
⎣ xi − x

yi − y

zi − z

⎤
⎦ (34)

Thus, the azimuth and elevation angles in the measurements equation are then

θ = atan

(
yi − y

xi − x

)
φ = asin

(
zi − z

||ρ||i
)

(35)

which are evaluated at a given epoch tk and with respect to a given object i.
The measurement noise v is a zero-mean, uncorrelated, with known covariance

(R) random processes. Thus

E[v] = 0 E[vvT ] = R =
[

σ 2
θ 0
0 σ 2

φ

]
(36)

where σθ and σθ are the standard deviations in θ and φ. It is worth to remind that
Q is a 18×18 matrix, while R is a 2×2 matrix. The noise covariance in Eq. 36 is a
valid assumption when the measurements are close to the observer celestial equator
as happens in the M–ARGO scenario, while note that correlated azimuth and ele-
vation modeling is required for acquisitions of beacons with high inclination with
respect to the observer. Also, note that the current formulation considers the angles
generated by LOS measurements to the navigation beacons. These are acquired by
image processing whose modeling is out of scope of this work. Techniques based on
centroiding are usually employed to retrieve such LOS measurements [8, 35].

Simulation Settings

Table 3 reports the settings used for the simulation of the deep-space autonomous
navigation experiment. The goal is to provide a general framework to assess prelimi-
nary results for the navigation experiment. For this reason, and since M-ARGO is still

1046 The Journal of the Astronautical Sciences  (2021) 68:1034–1055

1 3



Table 3 Settings of the
deep-space autonomous
navigation simulations

Initial Dispersion Value

Position 3σ STD 1000 km

Velocity 3σ STD 1 m/s

Mass 3σ STD 0

Thrust magnitude 3σ STD 5%

Thrust angles 3σ STD 1 deg

Process Noise Value

Residual acc. 3σ STD 10−11 km/s2

Low-thrust 3σ STD 5% of thrust

SRP error 3σ STD 10% of SRP

Thrust angle 3σ STD 1 deg

Correlation 1 day

Operations Value

Thrust arc – 6 days

Coast arc – 1 day

Slew (180 deg) – 20 min

Acquisit. window – 2 x 15 min

Meas. (per wind.) – 15

Measurements Value

Nav. beacons Planets –

Magnitude – < 6

Sun angle – > 30 deg

LoS accuracy 3σ STD 15 arcsec

Acquisition freq. – 0.0167 Hz

in the preliminary design phase, many educated assumptions have been made to per-
form the simulations. Note that the simulation of the autonomous navigation has been
performed for all the short-listed candidates for M-ARGO, showing similar results
owing to the Earth-like orbits of the targets. This paper presents one sample target for
brevity sake. Remind that M-ARGO follows a precise duty cycle made up of 6 days
of thrusting arc and 1 day of coasting arc, as shown in Fig. 5. The initial position
and velocity for each Kalman filter run have a 3σ dispersion of 1000 km and 1 m/s,
respectively, about the Sun–Earth L2 point. No error in the initial mass is assumed,
while the initial thrust magnitude and thrust angles are assumed to be known up to
5% of the real thrust and 1 deg. During the propagation phases, the residual acceler-
ation is assumed to be 10−11 km/s2 and the SRP is assumed to be uncertain of 10%
of the computed deterministic value. In the measurement phase, M-ARGO slews and
points to a planet to acquire its LoS direction, then slews to another planet to acquire
its LoS direction. The measurements are taken during the coast arcs only, thus no
measurement campaigns are set during the thrust arcs. The measurement windows
for each planet lasts 15 minutes and the measurement frequency is 0.0167 Hz (1 per
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Day 0 Day 6 Day 7

Thrus�ng arc Coas�ng arc

Fig. 5 M-ARGO follows a duty cycle made up of 6 days of thrusting arc and 1 day of coasting arc. The
optical navigation measurements are acquired during the coasting arc

minute). The LoS accuracy accounted for is 15 arcseconds. This comes as a contri-
bution due to attitude determination, planet centroiding error, and a small margin.
M–ARGO considers a two optical heads star sensor to achieve 9 arcseconds attitude
determination. The LoS directions to the deep-space objects are usually acquired via
centroiding techniques on the image plane that achieve subpixel accuracy in the order
of 0.1 pixels [8, 35]. This translates to 3 arcseconds for the M–ARGO optical sensor.
A margin of 3 arcseconds has been added for unmodeled effects (e.g., thermoelas-
tic deformation of the spacecraft). The slewing time required for a 180 degree angle
is assumed to be 20 minutes. A total of 2 acquisition windows are foreseen for each
navigation campaign. During these windows, M-ARGO points to those planets which
are visible (determined as those planets brighter than magnitude 6 and whose angle
to the Sun is greater than 30 degrees). Note that only planets are considered owing to
the low limit magnitude of commons camera sensors for CubeSats (due to the small
aperture), and the planets’ ephemeris are assumed to be exact. In summary, out of the
1-day coast arc, 50 minutes are dedicated to the LOS acquisition of the two planets
asynchronously. All settings are given in Table 3.

The visible objects have been determined according to their apparent magnitude.
During the deep-space cruise, the asteroids never reach a sufficient brightness to be
seen by the CubeSat optical sensor, which is assumed to have a limit magnitude of 6.
On the other hand, the major bodies like planets in the Solar System can be seen by
M-ARGO. The apparent magnitude model used for major bodies in the Solar System
is [37]:

V = V (1, 0) + 5 log10 (ρ rp) + m (37)

where V is the apparent magnitude of a planet, V (1, 0) is the apparent magnitude
of the planet at 1 AU from the Sun and at 0 phase angle (also called planet abso-
lute magnitude), ρ is the planet distance with respect to the observer, rp is the planet
distance with respect to the Sun, and m the phase law, which is function of the
phase angle α. The absolute magnitude and phase law of the planets are shown in
Table 4 [37].

Performances

The simulations are executed as per the following steps.

(1) First, the algorithm determines which planets are visible as function of the M-
ARGO trajectory. This is obtained by checking the apparent magnitude of the
planets and their angle to the Sun as seen from the estimated position of the
spacecraft. If the apparent magnitude is lower than 6 and the angle to the Sun
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Table 4 Planets absolute
magnitude and phase law (α in
degrees)

Planet V(1,0) m

Mercury − 0.36 0.038α − 2.73 (α/100)2 + 2.00 (α/100)3

Venus − 4.29 0.0009α + 2.39 (α/100)2 − 0.65 (α/100)3

Earth − 3.86 0.016α

Mars − 1.52 0.016α

Jupiter − 9.25 0.005α

Saturn − 8.90 0.044α

is greater than 30 degrees, then the planet is classified as visible. The apparent
magnitude of the planets (V in Eq. 37) during the M-ARGO trajectory to 2000
SG344 is shown in Fig. 6a. Note that when the planet violates the Sun angle
constraint (30 deg) the curve of the apparent magnitude is not defined (see Fig.
6b). This is always the case for Mercury, whose angle to the Sun is always lower
than 30 deg as seen by M-ARGO. The Earth is not visible in the first phase of
the trajectory because M-ARGO departs from Sun–Earth L2. Saturn has been
discarded from this analysis due to the large distance with respect to M-ARGO,
which would determine a big lateral error considering the LOS accuracy. Thus,
this simulation considers always four planets: Venus, Earth, Mars, and Jupiter,
which are visible in determined windows.

(2) The optimal beacons to be tracked are assessed exploiting the methodology in
“Optimal Beacons Selection”. Considering the visible beacons in Fig. 6b, the
geometry in terms of γ angles, inertial positions, and LOS directions are the
input to the cost function J defined in “Optimal Beacons Selection”. The γ

angles between the couples of beacons are shown in Fig. 7a, the figure of merit
J for each couple of beacons is shown in Fig. 7b, and the resulting optimal
couples of beacons to be tracked per each navigation campaign are shown in
Fig. 7c. It is worth reminding that M-ARGO is tracking the optimal beacons
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6
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Limit Mag Mars
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Fig. 6 Planets apparent magnitude as seen by M-ARGO towards 2000 SG344: a without Sun angle
constraint; b with Sun angle constraint. The horizontal dashed black line is the limit mag. of the sensor
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Fig. 7 a Angles γ , b index J , and c optimal beacons for M-ARGO towards 2000 SG344

in an asynchronous fashion. M-ARGO sticks with the same beacons for each
tracking window as a design choice, in order to ease repetitiveness of opera-
tions. Moreover, it is remarkable to see that the couple Mars–Jupiter is never
optimal for the problem at hand according to the figure of merit J , since Mars
and Jupiter are far away with respect to M-ARGO.

(3) The line-of-sight directions to the visible planets can now be acquired. The
accuracy and the settings for the acquisitions are reported in Table 3. Thus,
the spacecraft points to a planet for 15 minutes and acquires the LOS with a
frequency of 0.0167 Hz (1 per minute). Then, the spacecraft slews to another
beacon (slewing time assumed to be 20 minutes) and acquires the LOS to that
planet.

(4) The LOS directions are given as input to the Kalman filter formulation to esti-
mate the spacecraft state. The filter outputs in terms of position (δr) and velocity
(δv) covariance bounds are shown in Fig. 8a and b.
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Fig. 8 Position and velocity estimations accuracy exploiting line-of-sight navigation during the M-ARGO
cruise to 2000 SG344

By inspection of Fig. 8a and b, it is remarkable to note that the accuracy in terms
of position and velocity reaches values of 103 km and 0.1 m/s in good observation
conditions (multiple visible planets approaching 90 deg of γ angles). This is also
confirmed by running a Monte Carlo analysis sampling the initial dispersion of the
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Fig. 9 Position (δx, δy, δz) and velocity (δvx , δvy , δvz) samples errors (in gray) and 3–σ covariance
bounds (in black) for M-ARGO to 2000 SG344. Out of the 1000 filter runs, only 30 have been shown for
simplicity
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covariance matrix and evaluating the samples covariance with respect to the filter
covariance. As it can be seen from Fig. 9, the samples error of each run are always
within the 3σ bounds of the filter for the position and velocity components.

The results in terms of beacons observability, relative geometry, and estimation
performances for M-ARGO to the selected NEA are encouraging in view of an
in-orbit autonomous navigation experiment. Multiple windows to track the optimal
beacons along the whole trajectory have been identified to run the experiment and
the related performances have been quantified, which are function of the considered
performances of a deep-space CubeSat as M-ARGO. All in all, this confirms the
availability of multiple windows to run the autonomous navigation experiment dur-
ing the M-ARGO deep-space cruise and paves the way for further investigation as
the M-ARGO project study progresses.

Conclusions

M-ARGO CubeSat mission plans to conduct a deep-space optical navigation exper-
iment in order to reduce operations costs for future missions. The aim is to estimate
the spacecraft state through the processing of the line-of-sight directions to a number
of visible targets observed by miniaturized onboard optical sensors. The visibility of
these navigation beacons is dictated by the relative geometry between the observer
and the targets in terms of distances, phase angles, and Sun angles as well as the
radiometric performance of the optical sensor used. In this context, an optimal bea-
cons selection criteria has been exploited to assess the optimal couples of beacons
to be tracked. Then, the M-ARGO state in terms of position and velocity covariance
bounds has been estimated through an extended Kalman filter which is fed by the
line-of-sight directions to the navigation beacons.

In good observation conditions, that is when the γ angles between the beacons
approach 90 deg as seen from M-ARGO, the accuracy of the optical navigation
method is in the order of 1000 km (3σ bounds) in deep-space considering the perfor-
mance of miniaturized components onboard the 12U CubeSat M-ARGO. Our method
appears promising when combined with onboard guidance calculations in view of an
autonomous Guidance, Navigation, and Control system. Future steps in developing
the navigation experiment during the M-ARGO project involve hardware-in-the-loop
simulations with online generation and processing of images to feed the navigation
algorithm.
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