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Data‑driven analysis of amino acid 
change dynamics timely reveals 
SARS‑CoV‑2 variant emergence
Anna Bernasconi*, Lorenzo Mari, Renato Casagrandi & Stefano Ceri

Since its emergence in late 2019, the diffusion of SARS‑CoV‑2 is associated with the evolution 
of its viral genome. The co‑occurrence of specific amino acid changes, collectively named ‘virus 
variant’, requires scrutiny (as variants may hugely impact the agent’s transmission, pathogenesis, 
or antigenicity); variant evolution is studied using phylogenetics. Yet, never has this problem been 
tackled by digging into data with ad hoc analysis techniques. Here we show that the emergence of 
variants can in fact be traced through data‑driven methods, further capitalizing on the value of large 
collections of SARS‑CoV‑2 sequences. For all countries with sufficient data, we compute weekly 
counts of amino acid changes, unveil time‑varying clusters of changes with similar—rapidly growing—
dynamics, and then follow their evolution. Our method succeeds in timely associating clusters to 
variants of interest/concern, provided their change composition is well characterized. This allows us 
to detect variants’ emergence, rise, peak, and eventual decline under competitive pressure of another 
variant. Our early warning system, exclusively relying on deposited sequences, shows the power of 
big data in this context, and concurs to calling for the wide spreading of public SARS‑CoV‑2 genome 
sequencing for improved surveillance and control of the COVID‑19 pandemic.

The fast emergence of SARS-CoV-2 mutations and their possibly severe epidemiological implications call for 
continuous and worldwide monitoring of viral genomes. Several organizations offer repositories for deposit-
ing sequences; the largest collection is provided by  GISAID1, which recently hit two million deposited records. 
Genomic surveillance concentrated initially on the monitoring of individual amino acid changes, such as the 
rise to dominance of the D614G Spike mutation  worldwide2 or the spread of the A222V Spike mutation from 
Spain throughout Europe during the 2020  Summer3. As the COVID-19 pandemic progressed, research interests 
shifted towards the study of coordinated mutations. The term ‘variant’ has come into common use, even among 
the general public, to denote a set of such co-occurring amino acid  changes4. Emerging variants have been play-
ing an important role in the course of the pandemic, as they have been associated with increased transmission 
rates and changed antigenicity of the SARS-CoV-2 virus, possibly hampering testing, treatment, and vaccine 
 development5–9.

The definition of variants is produced by phylogenetic  analysis3,10–12. Phylogenetic trees describe the precise 
chain of evolutionary changes that leads from one sequence to the next, resulting in a powerful separation of 
viral sequences into clades or lineages that share common ancestries—henceforth, the same amino acid changes. 
A number of conventions and nomenclatures are in place to name SARS-CoV-2 strains based on phylogenetic 
guidelines (e.g.  Pangolin13,  Nextstrain14,  GISAID1). The World Health Organization (WHO) has recently pro-
posed a rapidly and widely accepted naming scheme for variants, based on the Greek  alphabet15,16, which—as of 
June 3rd, 2021—recognizes four variants of concern  (Alpha17,  Beta18,  Gamma11, and  Delta19) and seven variants 
of interest  (Epsilon20,  Zeta21,  Eta22,  Theta23,  Iota24,  Kappa25, and  Lambda26). Several national and international 
organizations offer surveillance of variants and their  effects16,22,27,28.

A big‑data approach to scout variants
Here, we propose a data-driven method exclusively relying on the analysis of sequences collected in repositories. 
The method aims to trace the emergence of variants in specific regions (e.g. countries) using time-series of amino 
acid change prevalence, defined as the fraction of genome sequences with a specific change. For each country, 
from January 2020 until the beginning of June 2021, we counted how many sequences present given amino acid 
changes weekly. United Kingdom has the biggest dataset, with 3,808 changes collected over 64 weeks, whereas 
South Africa has the smallest (84 changes, 56 weeks). We observed that, on emergence, the prevalence of changes 
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that will eventually characterize a variant typically show an exponential-like temporal  growth29; one meaningful 
example is shown in Supplementary Fig. S1.

We harnessed the peculiarity of these temporal trends to scout emerging variants. To that end, we applied 
standard time-series clustering techniques to group together changes showing similar prevalence behavior over 
a one-month-long period. We regarded as warnings of possible variant emergence those clusters characterized 
by (1) a positive trend in the prevalence time-series of the constituting amino acid changes, and (2) being suf-
ficiently different from clusters that caused previous warnings (to avoid extracting twice a set describing the same 
candidate variant). To assess whether these clusters successfully match known variants (named ‘hit’), we tested 
their similarity against the characterizing changes of the most widespread SARS-CoV-2 lineages, as defined by 
Pangolin, collected in the ‘lineage dictionary’ (see Supplementary Tables S1 and S2). The dictionary contains all 
Pangolin lineages that, at the calculation date, have appeared in at least 5000 sequences in the full dataset, with 
the exception of a few variants of interest highlighted by the news, for which we allowed a lower threshold of 
1000 sequences. We also used community analysis to assess whether and how the emergence of new variants 
can lead to a reorganization in the dynamics of amino acid changes, as observed through their co-occurrence 
within clusters.

Our approach must not be considered an alternative to phylogenetic analysis, which takes into account the 
entire evolutionary history of the viral genome. Indeed, the phylogenetic approach works by accumulating indi-
vidual sequences along the tree of the species, which is built incrementally. When a branch is particularly rich of 
sequences, it becomes a candidate variant to be investigated (see Supplementary Fig. S2). Our approach, instead, 
is purely big data-driven; single sequences are not considered (and are not even known). We study aggregate 
counts of sequences and perform a posteriori analysis (as hinted in Supplementary Fig. S3). Other methods have 
previously complemented phylogenesis, namely by describing typical SARS-CoV-2 mutational profiles across 
different countries and  regions30,31, proposing statistical indicators for location-based mutation  evolution32, and 
observing changes that become recurrently prevalent in different locations, thus suggesting selective  advantages2. 
Time-based analyses have been considered for phenetic clustering of prevalent SARS-CoV-2 mutations over 
 time33,34, trend detection in SARS-CoV-2 short nucleotide  sequences35, and single amino acid  changes36.

Searching variants by mining time‑series
To show our methods in action, Fig. 1 displays the case of Japan, featuring a matrix of 594 amino acid changes 
observed over 63 weeks. We identify 132 clusters, ten of which are included in the early warning system, tracking 
the emergence of possible variants. Four of these clusters revealed to be early hits, i.e. showing strong cluster-
lineage similarity at the time of clustering. These hits occur on Jun-wk4-20, Aug-wk2-20, and March-wk3-21 (two 
instances), respectively associated with variants JP2, JP1, and JP3/Alpha. We use JP1, JP2, and JP3 for lineages 
B.1.1.214, B.1.1.284, and R.1 since, according to Pango lineages  reports37, they originated in Japan. Each hit is 
qualified by the growth of the change prevalences in the identified cluster (left panels a–c) and by the similar-
ity between cluster composition and the lineage dictionaries (central panels a–c). Partial overlaps of identified 
clusters with more than one dictionary are due to overlaps between dictionaries. We find that the emergence of 
a new variant is typically associated with a drastic reorganization of the within-cluster co-occurrence patterns of 
amino acid changes (right panels a–c), which may suggest profound effects of variant emergence. Panels (d–g) 
of Fig. 1 show the temporal dynamics of the changes associated with each identified variant. Strong cluster-
dictionary matches, illustrated by circle size and color, are found for all variants, spanning several months after 
the moments when warnings are issued. By contrasting variant dynamics with recorded cases (shaded bars), we 
observe that JP2, JP1, and Alpha prevalences peaked ahead of the first, second, and third COVID-19 waves in 
Japan. By contrast, JP3 shows a prevalence peak when reported cases were at a minimum. Taken all together, 
Fig. 1 constitutes a syntactic fingerprint of how variants have evolved in Japan. In addition to these four hits, our 
method identified other six candidates that could be rapidly dismissed, because clusters identified in subsequent 
weeks showed low similarity with the original candidate. Four of them were discarded two weeks after the warn-
ing, the other two within five weeks. Supplementary Fig. S4 shows all ten warnings.

Figure 1.  Data-driven identification of variants in Japan. (a–c), left panels: Four hits in Japan (two of which 
occurring in the same week), corresponding to clusters JP_008 (Jun-wk4-20), JP_025 (Aug-wk3-20), JP_093, 
and JP_098 (both observed in Mar-wk1-21). Central panels: Cluster-dictionary similarity ( Jcd ) for the four 
early hits showing, at time of detection, to strongly match ( Jcd = 1 in all cases) the four lineages B.1.1.284 
(JP2), B.1.1.214 (JP1), R.1 (JP3), and B.1.1.7 (Alpha); values Jcd < 0.1 are not shown. Right panels: Community 
detection applied to the within-cluster change co-occurrence matrix evaluated over the period of time 
between the emergence of two subsequent variants. The resulting interaction network is plotted using a force-
directed  layout65, with edge lengths inversely proportional to link weights. Colors indicate nodes belonging to 
communities that strongly match known lineages, other communities are in gray-scale shades. (d–g): Temporal 
dynamics of the four identified variants. In each scatter plot, the left y-axis value represents the average 
prevalence of the changes in the cluster-dictionary intersection, circle size represents the cluster-dictionary 
similarity ( Jcd < 0.1 not shown), while circle color is proportional to the log-ratio between the number of 
changes in the cluster and in the dictionary. Warnings are marked with a labeled arrow. In the background, 
the number of reported COVID-19 infections (thousand cases, right axis) in  Japan66. Plots were created using 
MATLAB R2021a (http:// www. mathw orks. com). All graphics were further processed using Adobe Illustrator 
2021 (http:// www. adobe. com).
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Variant emergence around the world
Figure 2 illustrates how our method reconstructs the emergence of the main WHO-named variants at their 
country of origin. The temporal pattern of the Alpha variant is remarkably neat, exhibiting an initial phase of 
exponential growth, and well correlating with the number of reported COVID-19 cases. After a ten-weeks pla-
teau with prevalence values close to 100%, a five-weeks sharp decline occurred, associated with the concurrent 
growth of the Delta variant (see Supplementary Fig. S5). Note that some variants never reached a high prevalence, 
e.g. Epsilon and Iota. Variant dynamics also differed in terms of peak timing. For instance, variant Zeta well 
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matched the temporal evolution of the second COVID-19 wave in the country, and Gamma shortly anticipated 
the third large wave of infections and became locally dominant. Similarly, variants Kappa, Delta, and Beta, grew 
quite significantly before the second wave of cases in their respective countries of origin. Note that some weaker 
matches are found also before the relevant warnings, essentially because some amino acid changes included in 
the lineage dictionaries did indeed emerge individually well before the diffusion of variants. Also, note that the 
WHO-named variants Eta, Theta, and Lambda do not appear in this figure as their countries of origin did not 
meet our criteria for minimum data availability and were not included in the analysis.

Figure 3 shows the temporal patterns of notable variants as identified by our method in Europe and in the US. 
For all European countries with at least 16k deposited sequences, panel (a) displays the growth curves of changes 
associated with the Alpha variant at the time when the relevant warnings were issued by our method. The spread 
of Alpha outside the UK was delayed by five to seven weeks; warnings concentrate on three consecutive weeks 
in late January (country shading). Interestingly, the growth curves of the change prevalences associated with the 
Alpha variant outside the UK are more noisy than inside the UK, likely due to availability of fewer sequences 
and spatial heterogeneities in sequence deposition.

Panel (b) of Fig. 3 shows instead the dynamics of the most widespread US-born SARS-CoV-2 variants in all 
US states where at least 5k sequences were deposited and their interplay with WHO-named variants. Our clus-
tering and warning methods partitioned these states into three distinct, geographically quite compact, groups. 
A central/eastern group of states (blue) displays a baseline temporal pattern where common US variants first 
rose until Jan-wk1-2021, then started declining under pressure of variant Alpha. In the Western group of states 
(orange), the Californian-born variant Epsilon appeared in-between the US2 variant and Alpha, whereas in the 
north-eastern group (green) the New-York-born Iota appeared after the rise of Alpha, none of them reaching the 
same prevalence as Alpha. Although quite general, the patterns above described in groups may show country-
dependent peculiarities. In Louisiana, for example, the hit for Epsilon followed the one for Alpha, and we did 
not issue warnings for Alpha in New York, nor for US1/US2 in New Jersey and Connecticut.

Discussion
We have presented a novel methodology to scout SARS-CoV-2 variants entirely based on the analysis of data from 
the GISAID sequence repository; specifically, we have shown that emerging lineages can be detected via cluster 
analyses of the prevalence time-series of amino acid changes. Our scouting method is not in competition with 
phylogenetic analysis, which is fundamental for properly defining variants as lineages through monitoring of the 
evolution of viral sequences. Nevertheless, the proposed big-data-driven approach proved to be quite effective. 

Figure 2.  Emergence of variants in their country of origin. Details of the variant dynamics plots shown within 
insets as in panels (d–g) of Fig. 1. The vertical dashed lines indicate the dates of hits using our method. Estimates 
of reported cases are taken from Johns Hopkins/Our World in  Data66, except for the US, for which data comes 
from the Centers for Disease Control and  Prevention67. The map was created using https:// mapch art. net/ on 
4 July 2021 and plots were created using MATLAB R2021a (http:// www. mathw orks. com). All graphics were 
further processed using Adobe Illustrator 2021 (http:// www. adobe. com).

https://mapchart.net/
http://www.mathworks.com
http://www.adobe.com
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First, the major WHO-named variants of SARS-CoV-2 were well and timely captured in their country of origin, 
an indication that the early dynamics of change prevalence is a distinguishing property of emerging variants. 
All hits were fast (requiring no more than five weeks, the length of the time window used for cluster analysis), 
except the hits of Beta (five plus two weeks) and Iota (five plus one week)—see Table 1. Second, our plots reveal 
that the method can effectively trace and visualize the variants’ natural evolution. Variants emerge, reach their 
maximum prevalence, and eventually start a declining phase, typically when a competing variant emerges. Our 
method also issues warnings that are not found to match major lineages down the road. We do not see this 
outcome as an intrinsic limitation of our approach, though. In fact, even when not selected as hits, warnings are 
informative of the dynamics underlying variant emergence and inter-variant competition; in addition, similarity 
analysis can clarify, typically in a matter of a few weeks at most, whether an emerging variant is gaining traction.

We performed our study retrospectively, without the aim of using our method for predicting the variants. 
Relying exclusively on big data for variant scouting is hampered by three problems: (1) consistency of sampling, 
(2) delay of deposition, and (3) biases in sampling. As for (1), the ratio between the number of sequences and 
reported COVID-19 cases widely varies among countries and drops from 77% in Iceland (clearly facilitated 
by small number of cases) to below 0.1% for many countries, also including some large ones like India and 
Brazil. Among the countries with lots of cases, the UK stands with an exceptionally high ratio exceeding 9%. 
Indeed, US and UK have contributed the largest number of sequences worldwide (517 k and 425 k, respectively). 
Supplementary Table S3 shows these statistics for all countries contributing to GISAID with more than 1000 
sequences, whereas Supplementary Table S4 shows statistics for the 50 US states. Regarding (2), as an example, 
in the UK the average delay between collection and deposition amounts to 24 days. This delay tended to reduce 
as the pandemic unfolded, from 38 days in 2020 to just 16 days in 2021. Iceland is again striking the best per-
formance, with 11 days of average delay in 2021. Concerning (3), heterogeneities in surveillance may introduce 

Figure 3.  Temporal dynamics of notable variants in European countries (a) and in the US (b). Color shading 
for European countries indicates the timing of emergence of the Alpha variant (the lighter, the later). Different 
colors code instead the couple/triple of variants (Epsilon, Iota, Alpha, and US1/US2 as aliases of B.1.2 and 
B.1.596—only US2 is shown here) that were detected and tracked in the US using our method. Inset details as 
in panels (d–g) of Fig. 1. The blank maps of Europe and US were retrieved from https:// commo ns. wikim edia. 
org/ wiki/ File: Europe_ polit ical_ chart_ compl ete_ blank. svg and https:// commo ns. wikim edia. org/ wiki/ File: USA_ 
blank. svg on 4 July 2021 and plots were created using MATLAB R2021a (http:// www. mathw orks. com). All 
graphics were further processed using Adobe Illustrator 2021 (https:// www. adobe. com).

https://commons.wikimedia.org/wiki/File:Europe_political_chart_complete_blank.svg
https://commons.wikimedia.org/wiki/File:Europe_political_chart_complete_blank.svg
https://commons.wikimedia.org/wiki/File:USA_blank.svg
https://commons.wikimedia.org/wiki/File:USA_blank.svg
http://www.mathworks.com
https://www.adobe.com
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biases that should be considered, for instance when sampling is concentrated within regions where variants 
have newly appeared, thereby causing possible over-estimation of the observed prevalence of variants within a 
country. Another aspect interfering with a correct estimation of variants’ prevalence is the concurrent rollout 
of COVID-19 vaccines, particularly in case of variants possibly endowed with partial immune escape potential, 
as in the recent case of Delta  variant38.

Being aware of these obstacles, the potential of developing and using big-data-driven approaches to keep track 
of variant emergence may be proved by comparing the timings of warnings issued by our method for the eight 
major WHO-named variants (as of June 3rd, 2021) with the dates of their initial communication in the media 
or in relevant scientific outlets (see again Table 1 and “Methods” section). In five cases (Alpha, Beta, Epsilon, 
Zeta, Kappa), our data-driven warnings anticipated the press notifications, in some cases (Beta, Epsilon, Kappa) 
with a lead time of several weeks. In other two cases (Delta, Iota), the warning would have been issued around 
the same time as the first communications. Only in the case of the Gamma variant our warning was late (by a 
couple of weeks) compared to its first communication. It must be remarked that Brazil, where both Gamma and 
Zeta variants originated, was sequencing a low number of samples at that time.

In conclusion, our warnings were issued at times which favourably compare with most press/research 
announcements, in some cases even anticipating them. The above figures illustrating variant hits and dynam-
ics collectively provide an effective fingerprint of the location-specific temporal evolution of variants, and well 
support comparative displays in time and space. Our exercise thus strongly corroborates the urgent call, raising 
from the entire scientific community, for faster and wider public publishing of viral  sequences39.

Methods
Data collection from the GISAID data source. Since January  5, 2020, when the complete genome 
sequence of SARS-CoV-2 was first released on GenBank (Access number: NC_045512.2), there has been a rapid 
accumulation of viral sequences. Many tools are available for quickly extracting the assignment of sequences to 
lineages or the prevalence of each amino acid change in specific geographical areas, including  ViruSurf40, out-
break.info41,  CoVariants42, and cov-lineages.org lineage  report37. Here, we considered the protein-
level mutations (hereon named ‘amino acid changes’) of 1,819,996 complete SARS-CoV-2 genome sequences 
from infected individuals from all over the world that were downloaded on June 3rd, 2021, using EpiCovTM data 
from the GISAID database (https:// www. gisaid. org/1) on the basis of a specific Data Connectivity Agreement. 
The original data file contains: sequence accession ID, collection date, submission date, Pangolin lineage, collec-
tion location, and the list of amino acid changes. All records belonging to non-human samples or not reporting 
the day (but only year, or year and month) in the collection date field were discarded, resulting in a dataset of 
1,763,923 records (about 97% of the initial size). To denote amino acid changes, we adopt the common notation 
used by GISAID, representing them as the concatenation of the following elements: the protein acronym, the 
reference amino acid residue, the position (using the coordinate system of the single protein), and the alterna-
tive amino acid residue exhibited by the specific mutated sequence (in case of substitutions) or a dash (in case 
of deletions). Proteins include, for example, Spike, Envelope (E), Membrane (M), Nucleocapside (N), as well as 
non-structural proteins forming the ORF1ab polyprotein (NSP1, NSP2, ..., NSP16). Changes can occur at any 
point within a protein; they are evaluated with respect to the reference sequence WIV04 (used by  GISAID43). 
Lists of amino acid changes per sequence are extracted directly from GISAID, calculated by their internal pipe-
lines based on the full consensus sequences received from submitters. GISAID has a rigorous submission process 
and performs checks both directly with submitters and internally, carefully processing their quality-related flags.

Temporal aggregation of sequence mutations. Original collection dates were temporally binned into 
four approximately weekly periods per month, namely days 1–7 (shortcut as wk1), 8–15 (wk2), 16–23 (wk3), 
and 24–end of month (wk4). We verified that the small differences in bin sizes among the four periods do not 
have any impact on the results obtained using our data mining methods, as they rely on change prevalence (rela-
tive count of sequences) rather than change abundance (absolute count). We transformed the GISAID data into 

Table 1.  Capture of the emergence of the major WHO-named SARS-CoV-2 variants. WHO variant name; its 
country of origin; hit date, corresponding to the warning date for early hits, extended by a short delay of two 
weeks for Beta and one week for Iota (late hits, see “Methods” section); first communication date retrieved 
from institutional or research outlets (see “Methods” section); temporal comparison between hit date and 1st 
communication (in weeks).

WHO Country of origin Hit date Early hit 1st communication Comparison (weeks)

Alpha United Kingdom Dec-wk1-20 � Dec-wk3-20 2 Weeks earlier

Beta South Africa Nov-wk1-20 × (2 weeks) Dec-wk3-20 6 Weeks earlier

Gamma Brazil Jan-wk3-21 � Jan-wk1-21 2 Weeks later

Delta India Apr-wk3-21 � Apr-wk3-21 Same time

Epsilon California (USA) Nov-wk4-20 � Jan-wk3-21 7 Weeks earlier

Zeta Brazil Dec-wk2-20 � Dec-wk4-20 2 Weeks earlier

Iota New York (USA) Feb-wk2-21 × (1 week) Feb-wk2-21 Same time

Kappa India Feb-wk4-21 � Mar-wk4-21 4 Weeks earlier

https://www.gisaid.org/
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a table containing tuples of the following kind: amino acid change, country of collection, week of collection, 
absolute count of sequences holding that change, and total collected sequences in the same country-week. As 
locations of interest, we selected all European countries and US states for which at least 16 k and 5 k sequences 
were available, respectively, and a small number of other countries where variants of concern/interest have origi-
nated according to the World Health  Organization16. For each of those countries, we prepared a matrix where: 
each row r represents an amino acid change that has been observed in at least five sequences and for at least 
three weeks, each column c represents an observation week, each cell 〈r, c〉 contains the number of sequences 
exhibiting the amino acid change r observed in week c. The full account of matrix sizes for the selected countries 
is shown in Supplementary Table S5. We also extracted from the GISAID dataset the total number of sequences 
collected at given locations for each of the considered weekly periods. Data extraction and aggregation was per-
formed using PostgreSQL (Version 12.5) and the Pandas library (Version 1.2.1) of Python (Version 3.8.5). The 
steps of data extraction and aggregation are summarized in Supplementary Fig. S3.

Construction of lineage dictionary. We extracted all lineages that are expressed in at least 5k sequences 
worldwide and a small number of lineages that deserved attention by the news and/or other online sources, 
provided they appeared in at least 1k sequences worldwide. The assignment of amino acid changes to lineages 
is not uniquely/uniformly defined by all sources; following the choice made by Mullen et al.41, we computed the 
set of characterizing changes, pragmatically defined as those that appear in at least 75% of the lineage sequences 
in GISAID, for all retained lineages. This rule produces partially overlapping lists of amino acid changes, with 
lengths ranging from five to 24, which we regard as our ‘lineage dictionary’ (Supplementary Table  S2). To 
improve readability, the naming convention starts with the Pangolin  lineage13, followed by the WHO  name16 
(using Greek alphabet) when available. In selected cases, we add a geographical characterization, based on the 
country of origin (https:// cov- linea ges. org/37), resulting into US1/US2 and JP1/JP2/JP3 aliases. Only exception-
ally we merged multiple lineages into one label, namely when lineages share the same set of characterizing amino 
acid changes. Supplementary Table S1 contains a comprehensive list of lineages considered in our study.

Cleaning of too frequent, confounding changes. We found that few changes (globally six, four world-
wide—S_D614G, NSP12_P323L, N_R203K, and N_G204R—and two specific to North-America—NS3_Q57H 
and NSP2_T85I, out of a total of 78,650 recorded changes) are disproportionately frequent in the dataset of each 
continent, being present in more than 60% of GISAID sequences and populating the dictionary of more than 
30% of the most frequent lineages (i.e. those represented by at least 80 sequences). To avoid confounding effects 
in data analysis, we removed these changes from both the aggregated data matrices and the dictionary entries.

Cluster analysis. To assess whether the temporal patterns of changes’ prevalence occur in a coherent man-
ner in the dataset, as expected in the case of changes belonging to closely related variants, we apply a relatively 
simple time-series clustering algorithm. All the following analyses have been performed using MATLAB R2021a. 
At each time t, we retain the n(t) time-series of change prevalence (current ratio between change counts and total 
counts of changes) that are observed continuously over a time interval of four weeks prior to t ( [t − w + 1 · · · t] , 
with w = 5 ) and partition them via k-medoids  clustering44 (PAM algorithm, kmedoids function in MATLAB), 
with pairwise distances between time-series being evaluated via dynamic time  warping45 (dtw in MATLAB). 
The optimal value of k is exhaustively searched over the range [1 . . .min(20, n(t)/4)] and is selected as the one 
that maximizes the average silhouette  score46 evaluated over the entire set of n(t) change prevalence time-series.

Our early‑warning system for variant emergence. To identify clusters of changes characterized by 
an increasing trend in their prevalence time-series, as expected in the case of emerging variants, we use the 
non-parametric Kendall’s τB  statistic47, as implemented in the ktaub MATLAB  package48, namely to evaluate 
the ordinal association between change prevalence and sampling time. More precisely, a cluster of changes is 
considered to deserve further attention as a candidate for variant emergence if its average prevalence time-series 
shows a positive trend ( τB > 0 at significance level α = 0.05 ). Among these candidate clusters, we are particu-
larly interested in those that are sufficiently different from previously observed trending clusters, because they 
could signal the emergence of a new virus variant. Indeed, the partitioning of change time-series is performed 
independently at each time step, thus the clusters identified at a given time are in principle not related to those 
identified at any previous step. However, because of the temporal autocorrelation of change prevalence dynam-
ics, similarities are expected (and found) to exist in the composition of clusters identified at subsequent time 
steps. To quantify similarity for each pair of clusters, we use the classical Jaccard  index49, defined as the ratio Jcc 
between the cardinality of the intersection and the cardinality of the union of the sets of changes constituting the 
two clusters. Among the candidate clusters with a positive trend in their prevalence time-series, only those that 
are sufficiently different from any previous candidates ( Jcc < 0.5 ) are selected to form an early warning system 
for monitoring the possible emergence of new variants.

Cluster‑dictionary comparison. We use the similarity between the composition of early warning clusters 
and the lineage dictionaries to assign a posteriori the observed change time-series to known lineages, thereby 
building a ground truth for assessing the performance of data analysis. Specifically, we use again Jaccard similar-
ity index, this time applied to cluster vs. dictionary change composition ( Jcd ). A threshold Jcd > 0.5 is used to 
identify clusters for which there is a close compositional match to a known lineage. If a match exists, we conclude 
that the method has identified the lineage (thus, the underlying variant) at the same time as when clustering 
occurred (early hit). If not, we keep monitoring the cluster-dictionary similarity Jcd in the following time steps, 
each time using the cluster with the highest compositional similarity Jcc with that of the previous step, pro-

https://cov-lineages.org/
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vided that the inter-step similarity remains sufficiently strong ( Jcc > 0.5 ), until the threshold Jcd = 0.5 is possibly 
exceeded (late hit). If the inter-step similarity test fails without producing a late hit, the candidate cluster causing 
the early warning is discarded. Rapid convergence towards a decision between late hit or candidate discarding 
constitutes a desirable property of our method.

The study of the changes associated with the successfully identified variants can be deepened by analyzing 
their temporal dynamics along with the country-specific epidemiological patterns of the pandemics. Specifically, 
we match the dictionary composition of each identified variant to cluster composition over time and evaluate: 
(1) the average prevalence at the time of clustering of the changes in the intersection between cluster composi-
tion and lineage dictionary; (2) the cluster-dictionary similarity Jcd ; and (3) the log-ratio between cluster and 
dictionary cardinalities. This methodology is applied to the whole dataset, i.e. also prior to the emergence of 
variants or after their possible disappearance; in fact, some changes belonging to a lineage dictionary may be 
individually present in the population before/after the diffusion of the relevant variant.

Assessment of the early warning system. We collected information about the first Institutional Com-
munications (ICs), Research Communications (RCs) captured at their first version, and Published Papers (PPs) 
about the most important WHO-named variants to assess whether the points in time when warnings are issued 
by our method compare well with the points in time when variants actually became known. The following refer-
ences provide the dates indicated in Table 1:

• Alpha: IC on 18-Dec-2022 (Technical Briefing 1 of Public Health England, PHE); RC on 19-Dec-2050 (post 
on Virological.org forum); PP by Volz et al.17.

• Beta: IC on 18-Dec-2051 (Republic of South Africa Health Department); RC on 22-Dec-2052; PP by Tegally 
et al.18.

• Gamma: IC on 06-Jan-2153 (National Institute of Infectious Diseases of Japan); RCs on 11-Jan-2154 and 
12-Jan-2155 (two independent posts on Virological.org forum); PP by Naveca et al.11.

• Delta: IC on 21-Apr-2122 (Technical Briefing 10 of PHE); RC on 28-Jun-2119.
• Epsilon: IC on 17-Jan-2156 (California Department of Public Health); RC on 20-Jan-2157; PP by Zhang et al.20.
• Zeta: IC on 13-Jan-2122 (Technical Briefing 8 of PHE); RC on 26-Dec-2058; PP by Voloch et al.21.
• Iota: IC on 10-Mar-2122 (Technical Briefing 7 of PHE); RCs on 15-Feb-2124 by Caltech group and 25-Feb-2159 

by Columbia University group.
• Kappa: IC on 24-Mar-2160 (Indian Ministry of Health and Family Welfare); RC on 24-Apr-2125; PP by 

 Cherian61.

Community analysis. The points in time when lineage dictionaries are for the first time successfully 
( Jcd > 0.5 ) matched to cluster composition are used to partition temporally the dataset of change prevalence. 
For each resulting time window, we explore the within-cluster co-occurrence dynamics of the different changes 
by building a weighted, undirected graph where the nodes are the different changes and the edges represent 
pairwise interactions between changes; edge labels are evaluated as the number of clusters in which two changes 
occur  together62. To assess whether changes can be grouped into densely connected sets, thereby demonstrating 
robust co-occurrence patterns within the clusters identified over the time window of interest, we apply the Lou-
vain method of community  detection63 using the MATLAB function GCModulMax1 (Community Detection 
 Toolbox64). The change compositions of the resulting communities are compared with the lineage dictionaries 
by using again Jaccard index.

Data availability
All employed data matrices (one for each country or US state), the lineage dictionary, and custom scripts to repro-
duce the results presented in this study, have been deposited in Zenodo at https:// doi. org/ 10. 5281/ zenodo. 50901 
69. Original sequence metadata and amino acid changes are publicly accessible through the GISAID platform.
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