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Abstract: The work presents a simulation-based Multi-Objective Optimization (MOO) framework
for efficient production planning in Energy Supply Chains (ESCs). An Agent-based Model (ABM)
that is more comprehensive than others adopted in the literature is developed to simulate the agent’s
uncertain behaviors and the transaction processes stochastically occurring in dynamically changing
ESC structures. These are important realistic characteristics that are rarely considered. The simulation
is embedded into a Non-dominated Sorting Genetic Algorithm (NSGA-II)-based optimization scheme
to identify the Pareto solutions for which the ESC total profit is maximized and the disequilibrium
among its agent’s profits is minimized, while uncertainty is accounted for by Monte Carlo (MC)
sampling. An oil and gas ESC model with five layers is considered to show the proposed framework
and its capability of enabling efficient management of the ESC sustained production while considering
the agent’s uncertain interactions and the dynamically changing structure.

Keywords: energy supply chain; oil and gas supply chain; multi-objective optimization; agent-
based modeling; uncertainty; structure dynamics; Monte Carlo simulation; non-dominated sorting
genetic algorithm

1. Introduction

An Energy Supply Chain (ESC) is a complex system made up of a number of
components/agents interacting with each other, the environment, its hazards and
threats [1,2]. The components/agents are heterogeneously structured in a hierarchical
system, within which they operate and cooperate in a balanced transaction environment
to realize the maximization of the benefits under various environmental and safety
constraints [3,4]. ESCs significantly contribute to the sustainment of many industrial
areas, such as biomass [5], food [6], oil and gas [7,8], chemistry [9], and sustainable and
renewable energy [10–12]. For this, ESCs must offer enhanced flexibility, innovative
connectivity and communication to guarantee an orderly and healthy supply management
environment to improve the way the energy industrial world copes with changes and
adapts to risks [8,9,13–18].

Energy companies have to make decisions in the planning to satisfy customer (un-
certain) demands and maximize their own profits [19,20]. However, planning and man-
agement are challenging because of the multiple sources of uncertainty existing in ESC.
Uncertainty exists in supply and demand, propagates in the interactions throughout the
whole ESC and influences the agent’s profits and the ESC operations [21]. The published
research has addressed the planning of ESC whilst treating uncertainty. Ribas, Hamacher
and Street [22] proposed a strategic planning model for an integrated oil industry supply
chain taking three sources of uncertainty into account, that is, uncertainties in production
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of crude oil, demand for refined products and market prices. Ren et al. [23] developed a bi-
objective interval mix integer programming model to design a biofuel supply chain under
uncertainties, which considers the CO2 emission and the life cycle energy consumption.
You, Wassick and Grossmann [24] optimized the risk-based mid-term planning of a global
multi-product chemical supply chain, considering demand and freight rate uncertainties.

In addition to uncertainties, the other important aspect is that the ESC structure
may change dynamically due to the changing interactions among agents. In ESC, every
individual may make decisions independently at any time, and these anonymous decisions
cause the whole structure to change, which results in an adaptive and dynamic ESC.
Therefore, the ESC structure dynamics must be considered when modeling ESC. In this
modeling, every agent makes decisions by itself, based on the production amount of the
supply and the demand. The supply and the demand are uncertain, so the agent’s decisions
may be different in each transaction process, and thus, the structure changes from time
to time.

The methodological framework proposed in the study supports a simulation-based op-
timization, as done in many studies [25–28]. A hybrid simulation–optimization framework
to assess the risk in pipelines has been proposed [29]. In general, the simulation-based opti-
mization framework is processed in two phases: simulation phase and optimization phase.
In the application to ESC, the simulation model considers multiple variables, describes their
influences in the behavior of the agents and provides the objective optimization values for a
given simulation run configuration as the outcome. Then, the Multi-Objective Optimization
(MOO) problem is solved by a Genetic Algorithm (GA). GA is a very popular meta-heuristic
algorithm that has been successfully applied for simulation-based optimization.

In this research, Agent-based Modeling (ABM) and Non-dominated Sorting Genetic
Algorithm (NSGA-II) are used. The overall framework is shown in Figure 1. ABM [30–34]
is used to model and simulate the agent behavior and the ESC transaction processes; this is
embedded into an optimization scheme solved by NSGA-II [35] to obtain the Pareto front
of solutions with respect to the maximization of the ESC total profit and the minimization
of the disequilibrium among the agent’s own profits.

ABM-ESC Simulation MOO

Simulation 

Result N Pareto fronts

Monte Carlo Simulation

Confidence Intervals of

Total Profit

DisequilibriumD
is

e
q

u
il

ib
ri

u
m

Pareto Front

Total Profit

Figure 1. Overall framework.

The demand and supply uncertainties are mainly considered and modeled by a set of
discrete scenarios with known probabilities [21]. The uncertain scenarios are generated by
Monte Carlo (MC) simulation and propagated in the dynamically changing ABM-based
ESC structure, dependent on the agent decisions and other autonomous decisions. Agent’s
demand and supply fluctuate at each transaction time and, then, affect the ESC structure
and the transaction processes.

In the situation of uncertainty and dynamic ESC structure, the agents of the ESC have
to undergo production planning, with the purpose of profit maximization and disequi-
librium reduction, which can be measured by the ESC total profit and the disequilibrium
among the agent’s own profits, respectively.

Without loss of generality and for demonstration, the Non-dominated Sorting Genetic
Algorithm II (NSGA-II) approach [35] is used here to solve the MOO problem to find the
Pareto front of solutions. The NSGA-II algorithm has been widely used for solving MOO
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problems [35,36]. It is selected as an optimization algorithm in this research because the
uncertainty in supply and demand can be conveniently addressed [37].

Based on the min–max method [38,39], the single best compromised solution is iden-
tified among the Pareto solutions, guiding the explicit decision in the agent’s plans. MC
simulations are used in the proposed ABM-MOO framework, in presence of the uncertainty
influencing the agent’s behaviors [40–42].

The originality of this research is threefold:

1. ABM is adopted to model and simulate an ESC with multiple behavioral and interac-
tive agents: the ABM enables describing the ESC structure dynamics and accounting
for the supply and demand uncertainties in the ESC transaction process.

2. MOO is originally embedded within the ABM model for the planning of the ESC
production with objectives of the ESC total profit maximization and the disequilibrium
of the agent’s own profit minimization.

3. MC is used in the proposed ABM-MOO framework in a way to properly handle and
control the uncertainty originating from multiple sources.

For demonstration, an application is carried out on a specific ESC for the oil industry,
including five layers with crude oil producers, storages, refineries, terminal storages
and retailers. The results show that the framework proposed is capable of handling the
uncertainty and complexity of the problem and achieving a desired ESC maximal profit
and equilibrium.

The rest of the paper is organized as follows. In Section 2, a literature review on
the state-of-the-art ESC modeling is presented. Section 3 introduces the agent-based ESC
model. Section 4 presents the ABM-MOO framework used to solve the production planning
problem. In Section 5, the analysis of a case study is given to prove the effectiveness of the
ABM-MOO framework. Conclusions are given in Section 6.

2. State-of-the-Art Literature Review on Energy Supply Chain Models

A variety of models have been used to model and describe the characteristics of an
ESC, and they can be identified into four categories based on model types, as shown in
Figure 2.

Figure 2. Energy supply chain models.
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Mathematical programming has been widely used to solve the problem of the optimal
design of ESC networks. A variety of techniques have been applied in this context, such as
Linear Programming (LP), Mixed-Integer LP (MILP), Nonlinear Programming (NLP) and
MINLP. For example, a multi-objective multi-period fuzzy linear programming model is
proposed to evaluate and optimize the natural gas supply chain [43]. Guo et al. [44] develop
a MILP model that enables biobased supply chain optimization with the integrated biomass
logistical center (IBLC) concept. Robertson et al. [45] have used the NLP model to solve
refinery production scheduling and unit operation optimization problems. A two-stage
stochastic programming model is proposed to describe and optimize the shale gas supply
chain network under uncertain conditions [46]. Although applicable to the treatment of
problems involving blending, continuous flow processing, production and distribution,
strategic/tactical planning, etc., mathematical programming models are not flexible in
dealing with the stochasticity, uncertainty and complexity of structure and interaction
typically encountered in supply chains [47,48].

Analytical models built on mathematical expressions and numerical models char-
acterize the ESC behavior and find solutions to ESC management problems by use of,
for example, Game theory and Multi-Criteria Decision Making (MCDM) (including Data
Envelopment Analysis (DEA), Analytic Hierarchy Process (AHP)) [49–51]. In Reference [52],
the authors proposed a novel Game-theory-based stochastic model for optimizing decen-
tralized supply chains under uncertainty. The optimization of renewable power sources has
been tackled with a fuzzy MCDM technique based on the cumulative prospect theory [53].
A DEA model has been used to reduce the complexity of solving the proposed model [54].
AHP combined with a fuzzy set theory enhances the reliability of the sustainable results
along different stages of petroleum refinery industry projects [55]. Analytical modeling can
be used to evaluate and improve the performance of an ESC but has strong a limitation in
the description of realistically complex supply processes, including stochastic and dynamic
structures, uncertainty and partial information sharing [56].

Simulation models [57], for example, Discrete Event Simulation (DES) and Dynamic
Simulation (DS), have been developed to explore the behavior of agents in ESC, with the
further goals of evaluation [58], analysis and optimization [59], risk management [60],
and so on. For example, Windisch et al. [59] have applied DES to simulate the raw material
planning in an energy wood supply chain. Becerra-Fernandez et al. [61] have proposed a
DS model for assessing alternative security of supply policy along the natural gas value
chain. The modeling benefits and the large computational capacities make simulation
models increasingly attractive for the modeling of realistic ESC realistic problems.

ABM provides another way to model and simulate ESC that is also applicable to
continuous processes [30,31] and can be applied to various types of supply chains. For ex-
ample, Raghu et al. [62] relied on ABM and Geographical Information System (GIS) to
assess the environmental impact on the forest biomass supply chain. Moncada et al. [63]
developed a spatially explicit agent-based model to analyze the impact of different blend
mandates and taxes levied on investments in processing capacity and on production and
consumption of ethanol in the biofuel supply chain.

These studies confirm that ABM can be effectively used for modeling, simulating,
assessing and analyzing ESCs, but rarely has it been used in optimizing ESCs operations.
To the author’s knowledge, no study has attempted to solve ESC planning problems by
using ABM within an optimization framework, as well as considering demand and supply
uncertainties and structure dynamics at the same time. This is done here, thanks to the
capability of ABM in handling complex production processes and service problems under
uncertainty, which are difficult to deal with by mathematical programming and analytical
models. The main features of our ABM compared with the existing literature are shown in
Table 1.
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Table 1. The main features of our ABM compared with the existing literature.

Model Attribute [64] Mathematical Programming Model Analytical Model Simulation Model

References [43] [44] [45] [46] [52] [53] [54] [55] [59] [61] [62] [63] F

Stochastic Feature

Demand * * * * * *

Production supply * * * * * *

Price * * *

Cost *

Dynamic Feature

Multi-period model * * * * * * * * * * *

Structure/topology *

Constraints

Working capacity * * * * * * * * *

Inventory capacity * * * * * * * * *

Customer Service

Production availability * * * * * * * * * * * * *

Processing time * * * *

Transit time * * * * * * *

Monetary Value

Cost/Price/Income * * * * * * * * * * *

Investment/Profit * * * * * * * * *

Others

Communication * * *

Synchronization/Parallel * * * * *

Risk elements * * * * * * * *

Decision making * * * * * * * * * * * * *

F: The model proposed in the paper. *: The feature existing.
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3. The Agent-Based Energy Supply Chain Modeling

Energy Supply Chain (ESC) can be effectively described by ABM. ABM can pro-
vide logical rules to describe the agent behavior and interactions and allows simulating
the ESC transaction processes in an uncertain, dynamic and time-dependent environ-
ment [30,32,33,65–67]. Thus, in this research, ABM is applied to the modeling, analysis
and optimization of ESCs, taking into account both the demand and supply uncertainties
and the structure dynamics.

3.1. Modeling of Agent Uncertain Behavior

An ESC is considered with L layers, and each l-th layer consists of Vl agents,
al,1, al,2, . . . , al,v, . . . , al,Vl

(Figure 3). In the ESC, the orders are sent from the Layer 1 flow
layer-by-layer to the end layer L, of which the VL agents are suppliers that send supply
decisions back to the demanders.

Figure 3. The ABM-ESC model.

An agent al,v, v = 1, 2, . . . , Vl in the l-th layer is assigned with behaviors, which allow
the agent to adaptively interact with the others. The details of the model are described in
the following.

3.1.1. Sending Orders

The process of sending orders of an agent al,v in the l-th layer (Figure 4) is as follows:

(a) al,v chooses the supplier(s) al+1,v′ in the upper layer l + 1.
(b) al,v sends orders to al+1,v′ .
(c) al,v updates the list of alternative suppliers.

(a) Choose the 

supplier(s)

(b) Send the order

to the chosen 

suppliers       

(c) Update the list 

of alternative 

suppliers

1, 'l v
a

+

BEGIN

END

Figure 4. The process of sending orders.
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3.1.2. Receiving Orders and Choosing Demanders

The process of an agent al,v receiving orders and choosing demander(s) is shown in
Figure 5 and described as follows:

(a) al,v receives the order from al−1,v′′ in the lower layer l − 1.
(b) al,v checks whether the received order is empty:

• If yes, al,v does not choose demanders.
• Otherwise, (c) al,v checks whether it has available productions that satisfy the

received orders.

– If yes, (d) al,v checks whether the received orders exceed the existing pro-
duction limitation Ul,v(t) defined as:

Ul,v(t) = Sl,v(t)− S∗l,v(t) (1)

where Sl,v is the storage of al,v and S∗l,v is the back-up safety storage of al,v.

* If yes, (e) al,v refuses the order from al−1,v′′ demanded with the lowest
bid price, and returns to (d).

* Otherwise, (f) the agent al,v accepts the order and makes a contract with
al−1,v′′ .
Then, the existing oil production limitation of the agent al,v (Equation (2))
updates for the next time t + 1:

Ul,v(t + 1) = Ul,v(t)− ∑
v′′ ,v′′∈{va}

xl−1,v′′
l,v (t) (2)

where, xl−1,v′′
l,v (t) is the number of orders accepted by the agent al,v,

which are sent by the agent al−1,v′′

– Otherwise, (g) al,v sends a response back to the demander al−1,v′′ .

(a)Receive the 

order

(b) Check whether

the received order

is empty

(c) Check whether

it has available 

productions

(d) Check whether the 

received orders exceed

the existing production

limitation

(f) Accept order, make a

contract with           and 

update the production 

limitation

(g) Send back the response to 

the demander

Yes

Yes

Yes

No

No

No

(e)      refuses the 

order from      

demanded with the 

lowest bid price

,l va

1, ''l v
a
-1, ''l v

a
-

1,

, , ,

, { }

( 1) ( ) ( )
a

l v

l v l v l v

v v v

U t U t x t
¢¢-

¢¢ ¢¢Î

+ = - å

BEGIN

END

Figure 5. The process of receiving orders and choosing demander(s).
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3.1.3. Response

One demander al,v may negotiate with its supplier al+1,v′ , in case of receiving a
response from al+1,v′ . This process is shown in Figure 6 and described as follows:

(a) The agent al,v receives a response from the supplier al+1,v′ .
(b) Check whether the order plan is satisfied:

• If yes, al,v stops sending the order plan.
• Otherwise, (c) al,v checks whether all the alternative suppliers have been consid-

ered:

– If yes, the agent al,v stops sending the order plan.
– Otherwise, (d) the agent al,v updates its demands,

yl+1,v′
l,v (t + 1) = yl+1,v′

l,v (t)− ∑
v′ ,v′∈{va}

xl,v
l+1,v′(t) (3)

where, yl+1,v′
l,v (t) is the number of orders sent by the agent al,v, which are

received by the agent al+1,v′ at time t, xl,v
l+1,v′(t) is the number of orders

accepted by the agent al+1,v′ , which are sent by the agent al,v at time t.
Then, (e) send orders (as discussed in Section 3.1.1) again.

(a) Receive a

response from the 

supplier

(b) Check 

whether the 

order plan is 

satisfied

(c) Check 

whether all the 

suppliers have 

been 

considered?

(d) Update  demands

(e) Another cycle 

of Sending Order

Yes

Yes

No

No

1, 1, ,

, , 1,

, { }

( 1) ( ) ( )
a

l v l v l v

l v l v l v

v v v

y t y t x t
¢ ¢+ +

¢+

¢ ¢Î

+ = - å

Stop sending order

BEGIN

END

Figure 6. The process of the response.
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3.1.4. Selling Production

An agent al,v should sell productions after accepting an order plan. This process is
shown in Figure 7 and defined as follows:

(a) al,v checks whether it stores enough productions satisfying the accepted order plan:

• If yes, (b) sells the productions to the demander al−1,v′′ and updates the set of
accepted orders and the storage for the next time t + 1 (Equation (4)):

Sl,v(t + 1) = Sl,v(t)− ∑
v′′ ,v′′∈{va}

zl−1,v′′
l,v (t) (4)

where Sl,v is the production storage of al,v, and zl−1,v′′
l,v (t) is the amount of the

production sold by al,v to al−1,v′′ .
• Otherwise, (c) al,v sells the productions to the demander who makes their income

highest and then updates the set of accepted orders and the storage Sl,v(t + 1).
(d) Check whether the storage or the set of accepted orders is empty.

– If not, repeat (c).
– Otherwise, end.

(c) Sell productions to the 

demanders who makes its income 

highest and update the set of 

accepted orders and the storage

(b) Sell productions to the 

demanders            and 

update the set of accepted 

orders and the storage 

(d)Check 

whether the 

storage or the 

accepted orders 

is empty

No Yes

(a) Check whether it 

stores enough

productions

YesNo

1, ''l v
a
-

BEGIN

END

Figure 7. The process of selling production.

3.1.5. Receiving Production

An agent al,v receives the oil production from the upstream agents al+1,v′ and updates
its storage Sl,v(t + 1) for the next time t + 1:

Sl,v(t + 1) = Sl,v(t) + wl+1,v′
l,v (t) · kl,v (5)

where wl+1,v′
l,v (t) is the amount of the oil production sent by the agent al,v, which is received

by the agent al+1,v′ at time t, and kl,v is the production capacity of al,v.
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3.2. The Planning Problem of the Energy Supply Chain

In the aforementioned ESC, each agent al,v needs to make decisions on the planning
to satisfy its customer’s uncertain demands and to maximize their own profits. This
is challenging due to the fact that the uncertainty originating from the production and
purchase quantities (e.g., cost, price, demand, supply) influences the agent’s decisions
associated with the interaction structure, which, in turn, affects the agent’s profits. The un-
certainty propagates throughout the dynamic transaction process in the whole ESC, making
it difficult to deal with production schedules and purchase orders.

To deal with this, an MOO problem is formulated in terms of the ESC total profit
(which is expected to be maximized) and the agent’s own profits (for which the disequilib-
riums are supposed to be minimized).

Equation (6) defines the ESC total profit P:

P =
T

∑
t=1

L

∑
l=1

Vl

∑
v=1

(A− B− C)− D (6)

where A is related to the income from selling the oil production to the customer, expressed
in Equation (7).

A =

V
′′
l−1

∑
v′′=1

pl−1,v′′
l,v zl−1,v′′

l,v (t) (7)

where pl−1,v′′
l,v is the unit price of the agent al,v when selling the oil production to the agent

al−1,v′′ , and zl−1,v′′
l,v (t) is the production sent by the agent al,v, which is received by the agent

al−1,v′′ at time t.
B is the purchase cost, which includes the procurement cost plus the other costs for

example, the transportation cost, the labor cost and so forth.

B =
V′

∑
v′=1

(pl,v
l+1,v′ + ol+1,v′

l,v )wl+1,v′
l,v (t) (8)

where pl,v
l+1,v′ is the unit price of the agent al+1,v′ for selling the oil production to agent al,v,

ol+1,v′
l,v is the unit price for the other cost, wl+1,v′

l,v,t is the amount of the oil production sent by
the agent al+1,v′ , which is received by the agent al,v.

Item C calculates the storage cost.

C = cS
l,vSl,v(t) (9)

where cS
l,v is the agent al,v storage unit cost, Sl,v,t is the production storage of the agent al,v

at time t.
Here, D is a penalty from the loss [68],

D =
T

∑
t=1

r(t)εP (10)

where r(t) is equal to 1 when the agent suffers a loss after the oil production transaction at
time t; otherwise, 0. εP is an arbitrary large number for the total profit.

On the other hand, the profits of the agents are expected to be different in a healthy
ESC. It is of importance to measure and control the disequilibriums among the agent’s
own profits, E, which is defined as the sum of the dispersion quantifying the deviation
of the agent’s real profits from the expected values (F) and the penalty of loss in all the
transaction cycles (G):

E = F + G (11)
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F =
L

∑
l=1

σ2
l
|µl |

(12)

G =
T

∑
t=1

r(t)εE (13)

where σl is the standard deviation of the profits of the agents in the layer l, µl is the mean
of the agent’s profits in the layer l, r(t) is equal to 1 if the agent suffers a loss after the
oil production transaction at time t; otherwise, 0. εE is an arbitrary, large number for
the disequilibrium.

Hence, the MOO problem can be formulated:

max P(ȳ1,1, . . . , ȳl,v, . . . , ȳL−1,VL , p1,1
2,1, . . . , pl−1,v′′

l,v , . . . , pL−1,VL−1
L,VL

) (14)

min E(ȳ1,1, . . . , ȳl,v, . . . , ȳL−1,VL , p1,1
2,1, . . . , pl−1,v′′

l,v , . . . , pL−1,VL−1
L,VL

) (15)

s.t.
ȳmin

l ≤ ȳl,v ≤ ȳmax
l (16)

pmin
l ≤ pl−1,v′′

l,v ≤ pmax
l (17)

The problem will be solved by maximizing the ESC total profit (14) and minimizing
the disequilibrium (15), simultaneously. Equations (16) and (17) are constraints defining
the feasible regions for the average orders and the prices.

4. The Agent-Based Modeling Multi-Objective Optimization Framework

An ABM-MOO framework is originally proposed to obtain the non-dominant solu-
tions of the Pareto fronts, which can maximize the total ESC profit P and minimize the
disequilibrium among the agent’s profits E. To account for demand and supply uncer-
tainties, MC simulations are used, as sketched in Figure 8. NSGA-II as a type of GA is
flexible and easy to apply to the optimization problem in our ESC. The general advantages
of NSGA-II are listed as follows [69]: 1. The non-dominated sorting technique is used to get
close to the optimal solution. 2. The crowding distance technique is used to maintain the
diversity of the solutions. 3. The elitist technique is used to preserve the best solution for
the next generation. Especially in our case, the number of decision variables is 39, and the
ABM-ESC environment is uncertain and dynamic, which causes problems for traditional
derivative-based methods but can be easily encoded and then optimized by NSGA-II.

The algorithm is summarized as follows:
Initialization

• Initialize the MC simulations.
• Set a total of MGmax runs of the MC loop.

Initialization of the ABM-MOO in each n-th MC run

• Set the transaction time t = 0, 1, 2, . . . , NTmax, the GA population size NP, the maxi-
mum number of GA generations NGmax, the crossover coefficient Cc and the mutation
coefficient Mc.

• Generate QL,VL(t) ∼ N(µQ, σ2
Q), where QL,VL(t) is the amount of productions that are

produced by the agent aL,VL in the last layer at time t, and µQ is the average value, σ2
Q

is the variance.
• Set the NSGA-II generation index k = 1.
• Randomly generate the order and price decision matrices POPn

i (k)= {[ȳ1,1,. . . ,

ȳl,v, . . . , ȳL−1,VL , p1,1
2,1, . . . , pl−1,v′′

l,v , . . . , pL−1,VL−1
L,VL

]n1 , . . . , [ȳ1,1, . . . , ȳl,v, . . . ,

ȳL−1,VL , p1,1
2,1, . . . , pl−1,v′′

l,v , . . . , pL−1,VL−1
L,VL

]nNP} within the feasible space. They are coded
into the chromosomes of the GA.
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• Generate yl+1,v′
l,v (t) ∼ N(ȳl,v, σ2

y ), where yl+1,v′
l,v (t) is the amount of orders sent by

agent al,v that are received by agent al+1,v′ at time t, and ȳl,v is the average value and
σ2

y the variance.

Begin the NSGA-II loop

• Input all the generated values into the ABM ESC model to simulate the transactions.
• Calculate the values of P and E according to Equations (6) and (11), respectively.
• Rank the chromosomes POPn

i (k) by running the fast non-dominated sorting algo-
rithm.

• Rank the chromosome POPn
i (k) based on the crowding distance, aimed at finding

the Euclidean distance between chromosomes in the front that maximizes P and
minimizes E. It is worth pointing out that the chromosomes in the boundary are
selected all the time since they are assigned with infinite distance.

• Select the chromosome POPn
i′ (k) by using a binary tournament selection with the

crowded-comparison-operator (≺λ), where λ is a predefined tournament size.
• Apply the polynomial mutation [70,71] and the simulated binary crossover opera-

tor [70,72] to generate the offspring chromosomes POPn
i (k + 1).

• Set k = k + 1 and check that the NSGA-II stopping criterion (k > NGmax) is reached:

– If yes, return the ranked Pareto fronts {Fn
1 , Fn

2 , . . . , Fn
nd} where Fn

1 is the best front
and Fn

nd is the worst front, set n = n + 1.
– Otherwise, begin a new NSGA-II cycle.

• Check whether the MC simulation stopping criterion reaches (n > MGmax).

– If yes, end ABM-MOO and get all the Pareto fronts.
– Otherwise, begin a new MC simulation cycle.

Notice that a set of Pareto fronts can be identified from each MC run of the ABM-MOO
framework, and the best compromised solution can be identified among them by the
min–max method [38,39]. The min–max finds the highest value that one objective can be
sure to get without knowing the strategy that would satisfy the other objective. Given
Pareto front H ≡ (P, E), the relative deviations of P and E are defined, respectively:

zP =
|P− Pmin|

Pmax − Pmin (18)

where Pmin and Pmax are the minimum and maximum of the fitness values P, respectively.

zE =
|E− Emin|

Emax − Emin (19)

where Emin and Emax are the minimum and maximum of the fitness values E, respectively.
The best compromised solution is determined as

zH = min[max{zP, zE}] (20)
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Figure 8. The flowchart of the Agent-based Modeling Multi-Objective Optimization (ABM-MOO)
framework.

5. Case Study

For illustration, an oil ESC is considered, which is structured in five layers (Figure 9),
including retailers (Layer 1), terminal storage (Layer 2), refinery (Layer 3), storage (Layer 4)
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and crude oil producers (Layer 5). Three cooperative agents are modeled in Layer 1
(i.e., a1,1, a1,2, a1,3), Layer 2 (i.e., a2,1, a2,2, a2,3) and Layer 3 (i.e., a3,1, a3,2, a3,3), respectively.
Two cooperative agents are modeled in Layer 4 (i.e., a4,1, a4,2) and Layer 5 (i.e., a5,1, a5,2),
respectively.

Figure 9. The main layers in the Energy Supply Chain (ESC).

Customer agents try to get enough production from suppliers, and at the same time,
supplier agents have to choose the demander(s) that can bring them the highest profits.
Motivated by this, agents pursue relative behaviors to realize their expectations. These
behaviors have been illustrated in Section 3 and define the rules and decision processes of
the agents interacting with other agents in an uncertain environment.

The ABM-MOO framework is applied to the ABM of the aforementioned oil ESC,
for a total of MGmax = 100 MC simulation runs, in a period of 1000 transaction days.
Table 2 summarizes the main parameters set for the ABM-MOO algorithm. Table 3 lists the
constraints, as discussed in Equations (16) and (17), and Table 4 lists the unit prices ol+1,v′

l,v
for the other cost from al+1,v′ to al,v. We assume the total transaction days are 1000 days,
and every 30 days the agents make a deal. The variables (the supply and the demand) are
sampled from Gaussian distributions when the agents make a deal, and the beginning time
is different for each agent; so, the sampling size is about 30.

The modeling is implemented in the software ANYLOGIC, which is exported as a
jar file and then imported in ECLIPSE. The packages of the NSGA-II are implemented
in MATLAB [73]. The NSGA-II algorithm is also exported as a jar file and imported in
ECLIPSE to run with the modeling jar file.

Table 2. The setting of the parameters for the Agent-based Modeling Multi-Objective Optimization
(ABM-MOO).

Symbol Description Value

NTmax The total transaction time 1000 (days)
MGmax The number of Monte Carlo simulation 100

NP GA population size 200
NGmax Maximum number of GA generations 100

Cc Crossover coefficient 0.8
Mc Mutation coefficient 0.8
µQ The average value of QL,VL (t) 362.5 (ton)
σQ The standard deviation value of QL,VL (t) 2 (ton)
σy The standard deviation value of yl+1,v′

l,v (t) 2 (ton)
εP An arbitrary large number for the total profit 100,000
εE An arbitrary large number for the uncertainty 1000
kl,v The production capacity of agent al,v 1 (if l = 3, 0.8)

Table 3. The values of the orders and price limitations.

l = 1 l = 2 l = 3 l = 4

ȳmin
l (ton) 100 100 100 100

ȳmax
l (ton) 400 450 300 600

pmin
l (¤/ton) 40 25 15 10

pmax
l (¤/ton) 55 40 25 15
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Table 4. The values of the unit prices ol+1,v′
l,v (¤/ton) for the other costs from al+1,v′ to al,v.

Agent Unit Price Agent Unit Price Agent Unit Price

o2,1
1,1 3 o3,1

2,1 9 o4,1
3,1 2

o2,2
1,1 3 o3,2

2,1 2 o4,2
3,1 4

o2,3
1,1 5 o3,3

2,1 6 o4,1
3,2 4

o2,1
1,2 22 o3,1

2,2 5 o4,2
3,2 3

o2,2
1,2 15 o3,2

2,2 4 o4,1
3,3 3

o2,3
1,2 2 o3,3

2,2 5 o4,2
3,3 4

o2,1
1,3 5 o3,1

2,3 11 o5,1
4,1 2

o2,2
1,3 5 o3,2

2,3 10 o5,2
4,1 3

o2,3
1,3 4 o3,3

2,3 5 o5,1
4,2 4

o5,2
4,2 3

5.1. Sensitivity Analysis

Based on References [28,67], we have an unformed sensitive analysis by using Sobol
indices. In the Sobol indices, the higher the Sobol indices values, the more influential the
respective model parameters are. The result is shown in Figure 10.

Figure 10. Sensitivity for the profit and the disequilibrium.

Regarding the objective total profit, the order amounts of the agents are more impor-
tant than the prices of the agents. Based on Equations (6)–(9) in the paper, the total profit
can be written as:

P = P1 + P2 + P3 + P4 + P5

≈
T
∑

t=1

V
∑

v=1
p0

1,vz0
1,v(t)−

T
∑

t=1

L−1
∑

l=1

V
∑

v=1

V′

∑
v′=1

ol+1,v′
l,v wl+1,v′

l,v (t)−
T
∑

t=1

V
∑

v=1
p5,v

6 w6
5,v(t)

−
T
∑

t=1

L
∑

l=1

V
∑

v=1
cS

l,vSl,v(t)

(21)

where p0
1,v is the unit price of the agent a1,v by selling the oil production to the customers,

z0
1,v(t) is the amount of the oil production sent by the agent a1,v, which is received by the

customers at time t, ol+1,v′
l,v is the unit price for the other cost, wl+1,v′

l,v (t) is the amount of the
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oil production sent by the the agent a1+1,v′ , which is received by the agent a1,v at time t,
p5,v

6 is the unit price of the crude oil production, w6
5,v(t) is the amount of the oil production

received by the agent a5,v at time t, cS
l,v is the agent al,v storage unit cost and Sl,v(t) is the

storage of the agent al,v at time t.
Equation (21) shows that the total profit is related to the order amount but has weak

sensitivity on the price, because the price of one agent is the buying cost of others. The price
influence is neutralized when calculating the total profit.

Figure 11 shows the sensitivity on the order amount for the total profit. The agents in
the higher layer (up-stream) have higher sensitivity for the total profit, which makes sense
because the oil supply chain model is a make-to-stock model. The down-stream agent’s
profit strongly relies on the up-stream agent’s production amount in their hand. The agents
in the higher layer have greater control of the total profit.

Figure 11. Sensitivity of the order amounts for the profit.

Every layer has at least one important variable sensitive to it regarding the objective
of disequilibrium, ȳ1,2 in Layer 1, ȳ2,1 in Layer 2, p3,1

4,2 in Layer 3, ȳ4,2 in Layer 4 are
most sensitive to the objective disequilibrium. In each layer, the influence of the order
amount and the price on the disequilibrium is complicated and different from layer to layer.
For example, ȳ1,2 in Layer 1 is sensitive because its cost is large if it buys the production
from agent a2,1 and agent a2,2 in Layer 2, which influences the equilibrium of the profit in
Layer 1.

5.2. Results of the Pareto front

As shown in Figure 12, the Pareto front is not continuous and broken into three
pieces, mainly because the feasible area of the profit is discontinuous due to the switch in
the decisions of agents and also the constraint, which causes the jumps in the objective
function values.

The Pareto front shows that the ESC total profit increases when the disequilibrium
among the agent’s profits tends to be large, which makes sense because some agents have
price and cost advantages when they look for oil productions. Some agents can get more
profit than others, which increases the total profit but also the disequilibrium among the
agent’s profits.

According to Equation (20) discussed in Section 4, the best compromised solution is
identified by the min–max method when substituting H1, with P equal to ¤518440.3 and E
equal to ¤1569.5.
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Figure 12. The Pareto front.

Figure 12 shows that no single solution exists that simultaneously optimizes each
objective: all solutions on the Pareto front are equally good but give different strategies to
the ESC ABM and get different results for the total profit and the total disequilibrium. Some
solutions (like H3 in Figure 12) can obtain a large total profit but at the expense of a large
disequilibrium. Some solutions (like H2 in Figure 12) can achieve small disequilibrium but
also small profit.

In order to show the agent’s own profits with the disequilibrium of each layer, three
typical Pareto solutions (H1, H2 and H3) are chosen to input into the original ESC ABM
simulation again, where H1 is the best compromised solution identified, H2 is the solution
with the smallest values of both the ESC total profit and the disequilibrium, and H3 is
the solution with the highest values of both the ESC total profit and the disequilibrium.
The values of decision variables getting H1, H2 and H3 are shown in Figures 13 and 14.

Figure 13. The values of the orders (ton) sent by the agent al,v for getting Pareto solutions H1, H2

and H3.
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Figure 14. The values of prices (¤/ton) for getting H1, H2 and H3.

5.2.1. Agent’s Own Profits Obtained While Re-Inputting H1 into the Energy Supply
Chain Modeling

Figure 15 shows the simulation results when the best compromised solution H1 is
substituted into the ESC ABM again. Figure 15a–e shows the profits of the agents of
different layers during the transaction processes. The results show that every agent in ESC
gets a profit rather than a loss, due to the fact that the penalty Equations (10) and (13) keep
each agent from a profit loss.

In detail, in Layer 1 (Figure 15a), Retailer 1 can get more profit, with an average of
¤3830, than Retailers 2 and 3 in the transaction processes after the initial phase, thanks
to the relatively lower total cost allowing greater opportunities to be accepted by the
suppliers in Layer 2. This phenomenon is obvious in the intermediate Layer 2. As shown
in Figure 15b, Terminal Storage 1 beats Terminal Storage 2 and 3, profiting most in Layer
2. The difference among agent’s own profits weakens in Layer 3 and 4, as shown in
Figure 15c,d, respectively, due to the fact that the agents in the same layer are bidding with
similar price levels and, thus, have equal chances to order productions from the agents
in the upper layer and to sell productions to the agents in the lower layer. It should be
noted that despite slight differences in the profits of the two crude oil producers in Layer 5
(Figure 15e), both profits fluctuate severely during the transactions, because the supplier
profits are mainly determined by the propagation of the demand and supply uncertainties
in the supply chain network.

Figure 15f shows the disequilibrium for each layer. The results show that Layer 3
reaches the smallest value of the disequilibrium, equal to ¤90.8, followed by Layer 4 with
a value equal to ¤130.3. This makes sense because the agents in Layers 3 and 4 profit with
slight difference, which makes their deviations from the expected profits small, equivalent
to the results of Figure 15c,d, respectively. In contrast, Layers 1 and 2 result in relatively
large values of disequilibriums, equal to ¤643.7 and ¤478.4, respectively, mainly due to the
imbalance of profits among agents in the layers. A value of ¤226.3 in Layer 5 proves that
the propagation of uncertainty in the supply chain network can also result in a relatively
high probability of the imbalanced profits among agents.
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Figure 15. The profit and the disequilibrium of the profit for each layer considering variables of H1.

5.2.2. Comparison of Results Obtained from the Re-Inputs of H1, H2 and H3

The Pareto solutions H2 and H3 are re-inputed into the ESC ABM to implement
the simulations of the transaction processes again. The agent’s profits of different layers
obtained from the re-inputs of H2 and H3, respectively, show the same trends as the re-input
of H1. The simulation results are attached in Appendix A.

Figure 16 compares the ESC total profits when H1, H2 and H3 operationalize the ESC
ABM. The re-input of the best compromise solution H1 results in the ESC total profit P
equal to ¤518,440.2, which is larger than P = ¤490,755.1 obtained from the re-input of H2
(with the smallest expected ESC total profit), but smaller than P = ¤526,831.4 obtained
from the re-input of H3 (with the largest expected ESC total profit).

Furthermore, the disequilibrium of each layer is compared by re-inserting Pareto
solutions into the ESC ABM, as shown in Figure 17. Despite the highest ESC total profit
(¤526,831.4), the re-input of H3 leads to the largest disequilibriums for all the layers,
especially an extreme value equal to ¤2056.3 in the first layer, which can make the retailers
own profits uncertain and less-foreseeable. In spite of the relatively large values of the
disequilibriums of Layers 1 and 2, the re-input of the best compromise solution H1 can
achieve relatively small disequilibriums, equal to ¤90.8 for Layer 3, ¤130.3 for Layer 4,
and ¤226.3 for Layer 5, which are very close to those obtained from the re-input of H2
(which gives the smallest expected disequilibriums), equal to ¤36.1, ¤123.2 and ¤204.4,
respectively. These results demonstrate that the re-input of the best compromise solution
H1 can be of use in solving the ESC planning problem while leveraging the ESC total profit
with the disequilibrium of the ESC layers.

The results of Figures 16 and 17 show that agents in the same layer can get close profits
to decrease their disequilibrium, but this includes sacrificing the maximization of their
own profits at the same time. This is because the weak agents in the layer are constrained
by the cost and the production amount, so the strong agents have to sacrifice their own
profits in order to get similar profits to the weak agents and, eventually, to minimize
their disequilibrium.
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Figure 16. The ESC total profits obtained from the re-inputs of H1, H2 and H3.

Figure 17. The disequilibrium for each layer considering variables of H1, H2 and H3.

5.3. Results from the Total Monte Carlo Runs

MC simulations are used in the proposed ABM-MOO framework in the presence of
supply and demand uncertainties influencing the agent’s behaviors. Figure 18 shows the
results of the Pareto fronts for different scenarios from a total of 100 MC runs. In each
run, a population size of 100 is generated and obtains 100 Pareto fronts (i.e., 10,000 Pareto
solutions). According to the equation:

√
n =

λαs
φ

(22)

in the literature [74], given a confidence level α, the sample size n is determined by the
level of precision φ and the sample standard deviation s. Assuming s is fixed, an order
of magnitude increasing in the level of precision φ requires an increase of two orders of
magnitude in the sample size n. Therefore, simply increasing n is not a valid and practical
solution in our study due to the huge expense of the running time. In fact, 100 Pareto
fronts containing 10,000 Pareto solutions are obtained here, which is enough for our study
because we estimate that the sample standard deviation s in the profit is equal to 12,072.
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If the confidence level α = 0.1 is set, the level of precision φ = 197.98, which is acceptable
regarding the order of magnitudes 105 in the profit.

The Pareto solutions are distributed roughly in three regions in Figure 18. This is
meaningful because, as mentioned before, the ESC ABM considers a number of continuous
and discrete design variables and various other design constraints, which consequently
make the design space of the ESC ABM system discontinuous and generate inherent non-
linearities in the ESC ABM, of which the concave section is dominated to produce the
discontinuous Pareto front.

The mean values and the double-sided 95% confidence intervals of the ESC total
profit and the ESC disequilibrium are calculated. The results show that the mean value
of the expected ESC total profit (equal to ¤517,084.5) and of the ESC disequilibrium
(equal to ¤1835.4) are close to those of H1 (equal to ¤518,440.2 and ¤1569.5, respectively),
demonstrating the effectiveness of selecting and re-inputting the best compromise solutions
into the ESC ABM simulations.

Notice that the MC simulations are considered to control the demand and supply
uncertainties and the dynamic structure in the proposed ABM-MOO framework. The esti-
mates of the double-sided 95% confidence intervals can identify the range of the ESC total
profit and the disequilibrium that their true values lie in. The ESC total profit is bounded
within ¤493,435.2 and ¤532,110.5 with a 95% level of confidence, which provides a range
of values (¤493,435.2, ¤532,110.5) that the expected ESC profit lies in; whereas, the dise-
quilibrium is bounded between ¤516.5 and ¤3756.8, which suggests the ESC may operate
in an uncertain way if the agents transact in an unbalanced and competitive environment.

Figure 18. Pareto fronts in Monte Carlo simulations.

6. Conclusions

In this research, an Agent-based Modeling Multi-Objective Optimization (ABM-MOO)
framework is proposed for production planning in an Energy Supply Chain (ESC), where
the agent’s interactive behaviors are uncertain and the ESC structure dynamically changes.
ABM is originally used to model and simulate the transaction processes by multiple be-
havioral and interactive agents, occurring in an ESC with an ESC dynamic structure,
and supply and demand uncertainties. An MOO problem is defined to drive the opti-
mization of the production planning towards maximizing the ESC total profit, and at the
same time, minimizing the disequilibrium among the agent’s profits. A Monte Carlo (MC)
sampling approach is deployed to operationalize the proposed ABM-MOO framework
with proper handling and to control the uncertainty originating from multiple sources that
can reduce the confidence in decision making for the production planning.
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As a limitation of this study, because the simulation module and the optimization
module are combined, one iteration of the GA and optimization requires one run of the
simulation, which is burdensome with regards to total time. Moreover, because of the
limitation of the GA, we cannot conclude that we found the best solution for the production
planning problem in the ESC, but our methodology produces an efficient Pareto set that
allows the decision maker to compromise between the total profit and the disequilibrium.

The framework is illustrated by considering an oil ESC with five layers. The results
of the case study show that the ABM-MOO framework is effective in addressing the ESC
planning problem in an uncertain environment and with a dynamic structure.

Future research will account for the following:
In the ESC modeling, the uncertainty can be simulated by generating random samples

from a given distribution and simulating the risk by setting production flows. The agent-
based ESC modeling could easily implement all the uncertainties and risks in a real setting.
As we mentioned, because of other modelings limitations, the optimization with demand
uncertainty and supply disruption is rarely considered in the ESC assessment. On the
contrary, the optimization approach needs to account for this in ESC operation.

In the ESC, there are many agents (e.g., retailer, refinery, storage) of which variables
and objectives are independent, so Many-objective Optimization Problems (MaOPs) arise
in ESC, which are difficult to solve by traditional Evolutionary Algorithms (EAs). To deal
with this, the cooperative co-evolutionary algorithm has been considered.

Resilience to high-impact low-probability events affecting the ESC can also be consid-
ered for optimization.
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Nomenclature
al,v The v-th agent in the layer l.
cS

l,v The agent al,v storage unit cost.
Cc Crossover coefficient.
kl,v The production capacity of agent al,v.
L The maximal amount of layers in the ESC.
Mc Mutation coefficient.
MGmax The number of Monte Carlo simulation.
n The sample size of Monte Carlo simulation.
NGmax Maximum number of GA generations.
NP GA population size.
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NTmax The total transaction time.
ol+1,v′

l,v The unit price for the other cost.

pl−1,v′′
l,v

The unit price of the agent al,v by selling the oil production to the agent
al−1,v′′ .

pmin
l The minimum for the unit price.

pmax
l The maximum for the unit price.

QL,VL(t)
The amount of productions which are produced by the agents in the last
layer at time t.

r(t) The number of agents who get a loss after the oil production transaction.
s The sample standard deviation of Monte Carlo simulation.
Sl,v(t) The storage of the agent al,v at time t.
S∗

l,v(t)
The back up safety storage in the agent al,v at time t.

Ul,v(t) The residual oil production limitation of the agent al,v at time t.
{va} The sets of the agent indexes whose orders are accepted.
Vl The maximal amount of agents in the l-th layer.

wl+1,v′
l,v (t)

The amount of the oil production sent by the the agent al+1,v′ , which is
received by the agent al,v at time t.

xl−1,v′′
l,v (t)

The number of orders accepted by the agent al,v, which is sent by the
agent al−1,v′′ at time t.

yl+1,v′
l,v (t)

The number of orders sent by the agent al,v, which is received by the
agent al+1,v′ at time t.

ȳmin
l The minimum for the average orders.

ȳmax
l The maximum for the average orders.

ȳl,v The amount of average orders sent by the agent al,v at time t.

zl−1,v′′
l,v (t)

The amount of the oil production sent by the agent al,v, which is
received by the agent al−1,v′′ at time t.

σl The standard deviation of agent’s profits in the layer l.
σQ The standard deviation of agent’s production amount QL,VL(t).
σy The standard deviation of agent’s orders yl+1,v′

l,v (t).
εE An arbitrary large value for uncertainty.
εP An arbitrary large value for total profit.
λα The z-statistic under the confidence level α.
µl The mean of agent’s profits in the layer l.
µQ The mean of agent’s production amount QL,VL(t).
φ The level of precision of Monte Carlo simulation.
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Appendix A

Figure A1. The profit and the disequilibrium of the profit for each layer considering variables of H2.

Figure A2. The profit and the disequilibrium of the profit for each layer considering variables of H3.
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