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The diffusion of Battery Electric Vehicles (BEVs) is projected to influence the electricity

grid operation, potentially offering opportunities for load-shifting policies aimed at

higher integration of renewable energy technologies in the electricity system. Moreover,

the examined literature emphasizes electricity as a relevant driver of BEVs Life

Cycle Assessment (LCA) results. To evaluate LCA impacts associated to future

BEVs diffusion scenarios in Italy, we adopt the Consequential Life Cycle Assessment

(CLCA) methodology. LCA conventionally assumes a proportional relation between

environmental impact indicators and the functional unit. However, such relation may

not be representative if the electricity system is significantly affected by the large-scale

diffusion of BEVs. Our study couples the conventional CLCA methodology with the

EnergyPLAN model through three different approaches, which progressively include

BEV-specific dynamics, to capture correlations between additional BEVs fleets and the

electricity grid operation, that affectthe mix of electricity consumed in the use phase

by BEVs, in Italy in 2030. Here we show that if renewables capacity is not additionally

installed in response to additional BEVs electricity demand, the marginal Climate change

total indicator of BEVs may increase up to ∼40%, with respect to a business-as-usual

scenario. Moreover, we quantitatively support the literature indications on how to properly

estimate BEVs LCA impacts. Indeed, we weight electricity LCA impacts on hourly

BEV charge profiles, finding that this approach best captures BEVs interdependence

with the electricity system. At low BEVs diffusion, this approach clearly shows the

potential BEVs capability to increase exploitation of renewable energy, whereas at high

BEVs diffusion, it fully highlights potential responses of fossil fuel power plants to

additional electricity demand. Due to these dynamics, we find that linearly scaling the

business-as-usual scenario results would lead to an underestimation of 12.45 Mton

CO2-eq of the total impacts of an additional BEVs fleet, under a 100% BEV diffusion

scenario. Our methodology could be replicated with different energy system models, or
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at various geographical scales. Our framework could be coupled with comprehensive

assessments of transport systems, to further provide robustness to policymakers by

including non-linearities in the mix of electricity consumed during the use phase of BEVs.

Keywords: charging profile, Italian electricity system, marginal electricity mix, non-linearities, Battery Electric

Vehicles (BEV), Life Cycle Assessment (LCA)

INTRODUCTION

The computational structure of matrix-based Life Cycle
Assessment (LCA) is built on unit processes, which are in
turn modeled as linear technologies, meaning that no effect
of scale in production or consumption is conceived (Heijungs
and Suh, 2002). However, this does not imply that computing
the scaling vector components will result in linear equations
(Heijungs, 2020). Moreover, non-linearities can be spotted in the
impact assessment phase, too. Indeed, characterization factors
represent partial derivatives obtained from models which are
generally far from linear, such as the IPCC models for climate
change (IPCC, 2013). Non-linear impact models may also
be derived ex-post (Heijungs, 2020). In addition, non-linear
dynamics in the Life Cycle Inventory (LCI) are always present,
due to the inherent flows loops within the economy, but they
become more relevant when such loops are contained in the
foreground system. This is common in case studies on waste
management and circular economy (Mclaren et al., 2000).
Indeed, in Ekvall et al. (2007) it is acknowledged how the
non-linear consequences of recycling rates on other inputs such
as the fuel consumption for waste collection cannot be captured
by traditional LCA studies. Nevertheless, functional unit-based
LCA has the property of homogeneous linearity, meaning
that there is a proportional relation between LCA results and
the functional unit (Heijungs, 2020). In order to modify the
underlying assumptions of unlimited supply of resources and
intermediate products and properly account for economies
of scale and further technological relationships, non-linear
functions can be introduced within the conventional process
LCA structure (Heijungs and Suh, 2002; Yang, 2017). However,
introducing such modifications may not be necessary, as far as
the conventional linear LCAmodel remains representative of the
dynamics related to the studied product system (Yang, 2017).

This might not be the case for the LCI of electricity
production, which might not scale linearly with the functional
unit (Caduff et al., 2011; Bahlawan et al., 2019). Indeed,
the technology mix that produces the electricity depends on
the demand level (Lund et al., 2010; Brondi et al., 2019), it
changes continuously, depending on the availability of wind
and solar resources, and varies from region to region (Laurent
and Espinosa, 2015; Cornago et al., 2020). Several studies
addressed the specificity of electricity grid operation. They
concluded that significant deviations of potential environmental
impact reductions occur when adopting marginal and dynamic
approaches instead of the conventional static linear LCA model,
which is based on average values (Amor et al., 2014; Messagie
et al., 2014). This is an important remark, as the contribution
of electricity supply to LCA impacts is already crucial and the

share of electricity in final energy consumption is expected to
further increase (Vandepaer et al., 2019). Accordingly, several
studies employed an energy system model (ESM) to enhance
the accuracy of LCA results. Dandres et al. (2017) pointed out
that the electricity grid operation may significantly change in
response to the penetration of energy-intensive systems, such as
data centers. Roux et al. (2017) modeled the complex interaction
with the grid entailed by the newest buildings, due to demand
control technologies. Both analyses concern with consequential
LCAs at sectoral level, aiming at analyzing the changes induced
by the introduction of a new system, which is able to influence
the evolution of the electricity grid. This is in accordance to
Mathiesen et al. (2009), who outlined the need to perform
sensitivity analyses across different scenarios through ESM in
order to correctly identify a complex set of marginal energy
technologies in consequential LCAs.

A similar context concerns with the penetration of Electric
Vehicles (EVs) in the transport sector. EVs already accounted for
2.6% of the 2019 global car sales and are projected to constitute
31% of the 2040 global vehicle fleet, with Battery Electric Vehicles
(BEVs) accounting for most of EVs (BloombergNEF, 2020; IEA,
2020). Policies are motivated by the lower environmental impacts
associated to EVs (IEA, 2020), which are also outlined by a
relevant report at the European level (Ricardo, 2020). Such
projected EV growth is expected to influence the evolution of
electricity grids toward more interconnected systems (Das et al.,
2020). In addition, different studies pointed out a significant
potential for reduction of excess electricity production from
renewables through coordinated charging of EV (Richardson,
2013; Jian et al., 2017; Mehrjerdi and Rakhshani, 2019).
Moreover, the variability of marginal electricity productions is
recognized to be a key factor to reduce the use phase impacts
of BEV and other electricity-shifting policies (Graff Zivin et al.,
2014). Coherently, such interest lead to more than 80 studies
in the LCA field for the only BEV technology, which is also
found to show the best performance among EVs (Ricardo,
2020). However, an accurate modeling of electricity used to
charge EVs is only included by a limited number of studies,
with many publications employing a ready-to-use dataset instead
(Girardi et al., 2015). This is a crucial shortfall, as potential
environmental impacts of EVs are strongly affected by electricity
supply (Doucette andMcCulloch, 2011; Nordelöf et al., 2014; Cox
et al., 2020; Ricardo, 2020), which is found to explain 70% of
the variability of the resulting EV carbon intensity (Marmiroli
et al., 2018). Such variability also depends on the interaction
of the EVs fleet with the electricity system and EVs charging
profile (Girardi et al., 2015; Rangaraju et al., 2015). Accordingly,
Marmiroli et al. (2018) indicated that adopting a vehicle-level
point of view and linearly upscaling the related results with EV
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penetration rate would not capture fleet-level dynamics, thus it
would be questionable, in addition to not being recommended
by LCA standards (EC-JRC, 2010). However, in addition to the
model developed within (Ricardo, 2020), few fleet-based LCAs on
EVs have been developed. Bohnes et al. (2017) evaluated different
scenarios of EV diffusion in the urban area of Copenhagen, while
Girardi et al. (2015) accounted for the interdependence between
EV and electricity grid. However, none of them investigated how
LCA results of different EV penetration scenarios may change,
due to the interdependence with the electricity grid. The present
study focuses on this gap, with a 3-fold aim.

Firstly, we introduce three possible approaches, which
progressively include BEV-specific dynamics, for improving the
LCI model of a BEV, by explicitly including the interaction
between the use phase of the fleet with the electricity grid within
the foreground system. BEVs are chosen to represent all EVs, due
to both their promising environmental performances and their
higher electricity intensity (Ricardo, 2020). Both the electricity
system and the BEVs fleet are modeled with the EnergyPLAN
ESM. EnergyPLAN is an input/output deterministic bottom up
model that aims to identify optimal energy system designs and
operation strategies looking at the complete energy system. It is
based on a series of hourly simulations over a 1-year time period
(Lund, 2014). Such model employs a sufficiently high temporal
resolution; thus it is able to couple BEVs demand variations with
electricity grid dynamics, induced e.g., by weather conditions,
especially for regions with a high installed capacity of renewable
electricity technologies. This work is contextualized within the
Italian country, which is of particular interest due to the diversity
of its electricity producing technologies.

Secondly, we evaluate and quantify the occurrence of non-
linearities in the LCA results due to five levels of BEVs market
penetration in 2030. The evaluation of new technologies diffusion
at large scale, additional to a Business-As-Usual (BAU) scenario
calls for a consequential LCA approach (EC-JRC, 2010; Dandres
et al., 2017).

Thirdly, we aim to discuss how the high time resolution and
the BEV charge profiles that are computed within EnergyPLAN
can provide a more accurate assessment of the marginal LCA
impacts, in accordance to the indications of Girardi et al. (2015),
and may be a further source of non-linearity in the LCA
results. Variations of LCA results across the three approaches for
marginal LCI modeling are discussed.

This analysis leads to the set-up of a new methodological
framework, that can be used to include sources of non-linearities
in the LCA of BEV, to obtain more robust conclusions to
support decisions and policies at the meso/macro level scale
(Sala et al., 2016).

MATERIALS AND METHODS

This section is organized into three parts. The first subsection
outlines the scope of the study. The second subsection provides
a methodological focus on the LCI, related to the calculations
of marginal long-term electricity mixes. The third subsection
provides an insight on the data used for simulating the Italian

energy system with EnergyPLAN, in order to facilitate the
interpretation of results.

Scope of the Study
The analyzed product system is constituted by a fleet of
BEV passenger cars, which are operated in Italy across their
useful life. Plug-in Hybrid Electric Vehicles (PHEV) and
hybrid electric vehicles are thus excluded from the study.
The functional unit of the study is related to the marginal
provision of 1 km transport service by BEV passenger cars. As
a starting point, the generic cradle-to-grave dataset “transport,
passenger car, electric” from the ecoinvent 3.6 consequential
database was considered. Within such dataset, the process
related to electricity consumed in BEV use phase constitutes
the foreground system of this study, which is refined according
to the ESM results. To enhance the interpretation of results,
a specific focus is devoted to an intermediate functional unit,
as made in Ricardo (2020): i.e., the electricity consumed in
the use phase of such system. Firstly, our study analyzes
the provision of 1 kWh of low voltage electricity in Italy.
Secondly, the supply of the yearly electricity demand associated
to the entire BEVs fleet is discussed. Thirdly, the variations
of the distributions of hourly LCA impacts associated to the
provision of 1 kWh of electricity are shown. Eventually, the
variations of LCA results of 1 km transport by BEV, due to
the explicit foreground LCI model of use-phase electricity
are discussed.

The ESM is chosen coherently with the aims of the study:
EnergyPLAN employs an hourly time resolution over a year,
while keeping a relatively simple and aggregated structure. The
model is able to integrate projections and historical data collected
and developed by national research institutes, such as Terna and
GSE in the Italian case. Moreover across this study, indications
on the Italian national energy strategy are drawn from the
“Integrated National Energy and Climate Plan,” which is the latest
set of policies submitted to the European Commission in 2019
(Piano Nazionale Integrato Energia e Clima, PNIEC) (MiSE et sl.,
2018). The ESM analyses are developed starting fromMarmiroli’s
work (2020).

Concerning LCI modeling, the consequential, long-term
approach is adopted. In the foreground system, the electricity
process is analyzed in terms of its structural response to changes,
being it modeled as a mix of long-term marginal processes.
According to the goal of the study, a BAU scenario for 2030
in Italy must be chosen. The most recent studies at the Italian
level outline that the current market trend is projected to
lead to a range of 1.8–2 million EVs (Enel European House
Ambrosetti, 2017; Energy Strategy group, 2018). At the policy
level, the PNIEC considers incentives for spreading low-emission
passenger vehicles, yet without providing any specific target
on expected shares of passenger EVs. Since our analysis only
includes BEVs, which do not constitute the totality of EVs, the
lowest value of 2030 EVs penetration rate, according to the
presented projections, is chosen to represent the BAU scenario.
Therefore, we assume that PNIEC objectives include the diffusion
of 1.8 million BEVs, which constitutes the BAU scenario. Data on
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electricity production by source for 2016 and 2030 BAU scenarios
are, respectively, collected in accordance to the PNIEC.

Concerning product system boundaries, the useful life of
the car modeled in the cited ecoinvent dataset is deducted
to be 150,000 km, according to the indications on car weight.
This dataset has a global geographical coverage, meaning
that its LCI processes are determined through the use of
global market mixes. In the present analysis, the geographical
coverage of the only use phase is modified, contextualizing
it within the Italian country. Within the use phase, the only
electricity provided for operating BEVs is included in the
foreground system, as it is the only process with both a
reasonable dependence on the country in which the vehicle
is operated and a noticeable relevance in determining LCA
impacts for BEVs. The background system includes production,
maintenance, road and wear-related emissions, and End-of-
Life (EoL) processes related to BEV; therefore, such system is
not changed in this study. Concerning time boundaries, the
ecoinvent 3.6 consequential database computes yearly marginal
electricity mixes using 2030 as the time horizon year and 2015
as reference year (Vandepaer et al., 2019). The same approach
is followed here, yet 2016 is chosen as reference year due to
data availability.

Within this framework, five scenarios with different 2030
BEVs diffusion levels into the Italian passenger car fleet are
implemented. In accordance to the goal of the study, to show
the potential occurrence of non-linearities in LCA results, the
penetration of BEVs into the Italian passenger car fleet is modeled
up to 100% with a stress test, with 4 steps of 25% each. According
to Capros et al. (2016), the size of the European passenger car fleet
is not expected to grow from 2016 on. Thus, the absolute level of

the Italian passenger car fleet is kept equal to the 2016 value, i.e.,
38 million cars (ACI, 2017). Therefore, BEVs constitute 4.75%
of the entire fleet in the BAU scenario, while the additional four
scenarios model a fleet which is constituted by 25, 50, 75, and
100% BEVs. The last 3 cases are purely speculative, as such values
are not reached even in the most optimistic scenarios developed
within (Enel European House Ambrosetti, 2017; Energy Strategy
group, 2018).

The selected Life Cycle Impact Assessment (LCIA) method
is ILCD 2.0 midpoint, as such method is designed for policy
decision support (Sala et al., 2012). The selection of the most
relevant impact categories for this study is based on three criteria.
Firstly, since the focus of the study is related to the Italian
marginal electricity mix, the relevance of LCIA results for this
process, relative to the cradle-to grave LCIA results, is evaluated.
Secondly, the relevance of BEV LCIA results with respect to
global impacts is accounted for. Thirdly, a selection within
LCIA categories which are similarly influenced by variations
of the Italian marginal electricity mix is carried out. Figure 1
focuses on the first two criteria: it shows the normalized BEV
LCIA results, grouped by relevant providers, for the “transport,
passenger car, electric” ecoinvent dataset, modified using Italian
electricity provider for BEV operation. Figure 1 shows that
the most relevant LCIA categories for the present analysis
can be Non-carcinogenic effects, Carcinogenic effects, Minerals
and metals, Climate change total, Freshwater eutrophication,
Freshwater ecotoxicity, and Fossils. However, it was observed
that LCIA trends for the Fossils and Freshwater ecotoxicity
categories are, respectively, similar to Climate change total and
Freshwater eutrophication (see Supplementary Figures 7–9),
thus according to the third criterion, these categories are not

FIGURE 1 | LCIA results for the “transport, passenger car, electric” dataset, modified using the Italian electricity provider for BEV operation, from ecoinvent 3.6

consequential database, grouped by relevant LCI processes, normalized according to global PEFCR factors (Siret et al., 2018), for the different ILCD midpoint 2.0

LCIA categories.
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considered. Finally, Respiratory effects, inorganics is included
in the study, as it is indicated to be relevant in the
Product Environmental Footprint Category Rules (PEFCR)
for batteries (Siret et al., 2018), thus it may be important
as well for the present study. Selection of impact categories
would not have changed if the final results for the electricity
dataset were considered: section Additional Discussion of the
Supplementary Material provides additional discussion on the
selection of impact categories. Moreover, section Outputs of the
Supplementary Material provides LCIA results for all the ILCD
impact categories.

LCI Methodological Setup
The present analysis overall requires six ESM simulations to
be built: the first is related to historical 2016 data, while the
remaining are related to the five 2030 scenarios of BEVs diffusion.
Then, marginal electricity mixes for each of the five 2030
scenarios are computed.

Recalling the first aim of the study, three different approaches
for computing marginals are here presented, representing three
different levels of detail that may be used in LCA for BEV.
The first approach computes marginal electricity mixes at the
yearly level, while the second one additionally involves the
hourly time resolution employed by EnergyPLAN. Finally, the
third approach even includes BEV hourly charging profiles.
The three approaches are named according to the temporal
resolution of marginal electricity productions used to compute
them and to the weighting of mixes to account for BEV charging
curves, whenever this is performed. Marginal mixes computed
through equation 1 are referred to as Yearly. Marginal mixes
computed through equation 2 are called Hourly. Eventually,
marginal mixes computed through equation 4 are named Hourly
weighted, since they account for a weighting process based on
BEV charging profiles.

Recalling the second aim of the study, results from the above
presented approaches are compared with the conventional linear
LCA approach, which is here represented by the use of the
ecoinvent 3.6 consequential dataset for the Italian electricity mix.
Accordingly, this approach is named Ecoinvent. The ecoinvent
long-term consequential system model aims at reflecting long-
term consequences of small-scale decisions. Such decisions do
not influence key market parameters, thus they are assumed to
linearly scale with the size of the related change (Vandepaer
et al., 2019). Instead, our analysis investigates the variation of
such key market parameters and the consequent occurrence
of non-linearities, which are thus quantified in contrast with
the Ecoinvent approach. In addition, a comparison with the
Ecoinvent approach can outline the relevance of underlying data
sources used to compute marginal electricity mixes, as the Italian
ecoinvent dataset is derived from European reference scenarios
(Vandepaer et al., 2019), differently from our study, as section
Modeling of Energy Scenarios outlines.

Eventually, given the third aim of the study, the differences
between the 3 BEV-dependent marginal mixes are outlined, too.

The first approach, Yearly, employs Equation 1, presented
in Vandepaer et al. (2019), for computing marginal electricity

supply shares with respect to 2016, across the five 2030 scenarios:

Si, 2030 =
Pi,2030−Pi,2016

∑n
i (Pi,2030−Pi,2016)

(1)

With i being each of the n unconstrained electricity production
technologies, P being the quantity of electricity produced within
the related year by technology i, S being the share of technology i
in the considered marginal supply mix. Unconstrained electricity
production technologies do not include electricity produced
in Combined Heat and Power (CHP) mode, as in that case
electricity is produced as a secondary product. Whenever the
numerator of the equation is negative, S is given the value of 0
(Vandepaer et al., 2019).

The Yearly approach does not consider that even if the
eventual Pi,2030 is lower than Pi,2016 , some technologies may
increase their hourly electricity production in 2030, with respect
to 2016, across some hours of the year. Thus, stating that a
specific electricity production technology is not included in the
yearly marginal electricity mix may not be fully true. Section
Modeling of Energy Scenarios outlines that for Italy, the 2030
electricity demand is projected to be higher than the 2016 one,
but Pnatural gas,2016 is equal to 126 TWh (GSE, 2018), while the
projected Pnatural gas,2030 is equal to 118 TWh (MiSE MATTM,
2017). Consequently, Snatural gas, 2030 is null. However, whenever
the 2030–2016 increase in electricity demand is not covered by
Variable Renewable Electricity Sources (VRES) (i.e., during hours
with a low solar irradiation or wind), thermal power plants must
cover such increase, thus leading to a positive marginal electricity
production within specific hours of the year, as will be shown by
Figure 2. The second approach, Hourly, aims at filling this gap
using Equation 2:

Si, 2030 =

∑8784
h (Pi,h,2030−Pi,h,2016)

∑8784
h (

∑n
i (Pi,h,2030−Pi,h,2016))

(2)

With h being the considered hour of the year. The same approach
was followed by Lund et al. (2010), who computed a long-term
yearly average marginal technology based on hourly dynamics.
EnergyPLAN employs 8,784 h, even if 2030 is not a leap
year. However, whenever hourly distributions are required (e.g.,
electricity demand, VRES productions), the 2016 distributions
are employed for 2030 as well, as a matter of consistency
between scenarios. Section Electricity System Specifications
and Additional Discussion of the Supplementary Material,
respectively, provide explanations and motivations on the use of
data distributions within EnergyPLAN.

Still, the Hourly shares do not consider the charging patterns
of BEVs, i.e., what the actual electricity consumed by BEVs
is. Thus, we propose a third method for calculating marginals,
based on the indications of Girardi et al. (2015). Therefore,
we introduce Wh, which is defined by Equation 3 and is used
to weigh the hourly electricity marginal productions on the
charging profiles of BEVs:

Wh =
Ch

∑n
i (Pi,h,2030−Pi,h,2016)

(3)
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FIGURE 2 | Marginal electricity mixes in the BAU scenario computed with the four different approaches.

With Ch being the amount of electricity which is used to charge
the BEVs fleet. The denominator of the equation represents the
total hourly marginal electricity production. Then, the Hourly,
weighted approach employs Equation 4 to obtain aggregated
shares which are representative of the actual electricity consumed
by our product system:

Si, 2030 =

∑8784
h

(

Pi,h,2030−Pi,h,2016
)

∗Wh
∑8784

h Ch

(4)

Finally, in accordance to the ecoinvent database, all the electricity
production terms Pi and Pi,h are computed according to the
consumption mix of the country. Due to the penetration of
VRES, Excess Electricity Production (EEP) may arise in the ESM
simulation. EEP must be either exported or curtailed, thus it is
not actually consumed within the country. Consequently, it had
to be subtracted from the electricity mix. Hence, the theoretical
electricity production P2030, theoretical related to each of the VRES
technologies is decreased, according to the values of EEP for the
related time step (yearly in case of equation 1 and hourly in case
of Equations 2 and 4). The subtraction term shown by Equations
5 and 6 is weighted on the relative electricity production of
each of these sources in the considered time interval. Electricity
production from Concentrated Solar Power (CSP) is decreased,
too. This technology has the possibility to store thermal energy
and it may theoretically allow for a higher degree of flexibility
of electricity production. However, CSP is still not mature in the
Italian market, thus as a conservative hypothesis, this technology
is assigned no stabilization property of the grid. Equation 5
is performed at the yearly level and applies to the Pi term of
equation 1, for both 2016 and 2030 years:

Pi, year = Pi,year, theoretical − EEP∗
Pi, year, theoretical

∑5
i Pi, year, theoretical

(5)

With i ranging from 1 to 5, which is the number of VRES
technologies included within such assessment, i.e., onshore and

offshore wind, solar photovoltaic (PV) and CSP, run-of-river
hydro. Equation 6 is instead performed at the hourly level,
according to the EnergyPLAN outputs:

Pi, year=

8784
∑

h

(Pi,h,year, theoretical − EEP∗h
Pi,h, year, theoretical

∑5
i Pi,h, year, theoretical

) (6)

In order to obtain the LCI and LCIA results related to every
scenario, the computed long-term electricity production mixes
are inputted to the high and low voltage electricity mix datasets
for Italy of the ecoinvent 3.6 consequential database, thus
changing the related LCI through the brightway2 software
(Mutel, 2017).

Modeling of Energy Scenarios
Within this subsection, the only data that are key to understand
the Results and Discussion sections are presented. A full
assessment of the entire energy system of Italy is not related to
the aims of the paper, since focus is devoted to the only electricity
system. On the demand side, we updated the values of total
electricity demand and import/exports, together with explicitly
modeling BEVs demand. On the supply side, the electricity
production data by source are computed. The evolution of
heating and cooling supply by means of technologies which
run on electricity, e.g., electric heating and cooling or CHP, is
not explicitly modeled here: the related data are kept fixed to
the 2016 levels and are discussed in section EnergyPlan of the
Supplementary Material, together with additional information
on EnergyPLAN technical parameters and equations.

Our analysis overall requires six ESM simulations. The
outputs of 2016 simulation are used both as reference for
calculating marginals and for calibration of EnergyPLAN
outputs. Concerning the 2030 scenarios, the installed capacities
of different technologies are computed on the BAU projections of
electricity production, according to the PNIEC objectives. Such
capacities are not changed across 2030 scenarios. This means
that reduced RES curtailment and thermal power plants are
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assumed to cover the additional BEVs electricity demand across
scenarios. Section Discussion of Model Assumptions discusses
the motivation behind this assumption and related implications.

Additional information used to model the 2030 BAU scenario
is based on the projections elaborated by RSE (2017) for the
National Energy Strategy (MiSE MATTM, 2017), which was
elaborated in 2017 to create a favorable context for the PNIEC
adoption. Quantitative targets of PNIEC that are of interest for
this study are the phase out of coal by 2025, together with the
2030 share of RES in electricity production and in the supply
of transport demand, which must, respectively, reach 55.4 and
21.6%. The PNIEC policies are estimated to lead to a 36%
reduction of greenhouse gases emission from car transport, with
respect to 2005, which is mostly due to the electrification of this
sector, rather than to biofuels penetration (MiSE et sl., 2018).

EnergyPLAN offers the possibility to perform either a
technical analysis, which implements different technical
simulation strategies, or a market exchange analysis, which
works on the optimization of business-economic profits for
each plant (Lund and Thellufsen, 2020). Due to the difficulty
in predicting energy prices, a technical simulation strategy
is set up. A discussion on the robustness of this analysis
is provided in section Discussion of Model Assumptions.
Required EnergyPLAN inputs are related to energy demands,
production capacities, efficiencies and energy sources. The
outputs consist of annual energy production balances, which are
then used to compute LCI marginals as described in section LCI
Methodological Setup.

All electricity data are here expressed in gross terms, since
this is the actual electricity produced. Grid electricity losses
are accounted for as in the original ecoinvent dataset. Losses
and modeling of hydroelectric pump operation are explained in
section Inputs of the Supplementary Material.

Demand
The 2016 electricity production is 325 TWh (MiSE et sl.,
2018), with a net import of 37 TWh (GSE, 2018). Still
according to the PNIEC, the electricity demand in 2030 is
expected to be 337 TWh, while the net import value decreases
with respect to 2016 and is expected to be 29 TWh. The
hourly distributions of total electricity demand and imports are
downloaded from the national transmission system operator
(Terna, 2020). Transmission line capacity, used by EnergyPLAN

to compute additional imports/exports is set to 0, as imports and
exports are exogenously fixed.

Concerning BEVs electricity demand, the amount of EVs in
Italy during 2016 is 5743 (both PHEV and BEV) (Marmiroli,
2020). As simplifying hypothesis, such vehicles are modeled as
BEVs. A yearly mileage per vehicle of 11,000 km/year (Energy
Strategy group, 2018) is assumed, together with an electricity
consumption of 0.199 kWh/km, which is in accordance to the
employed ecoinvent dataset and similar to the values indicated
by Girardi et al. (2015). The resulting electricity demand is
thus 2.19 MWh/y/vehicle, which results on 0.013 TWh/y for the
entire 2016 fleet. The grid-to-battery efficiency for both 2016
and 2030 is estimated to be equal to 90%, in accordance to
the EnergyPLAN models developed in Connolly et al. (2015).
Therefore, the resulting required supply of electricity is 2.43
MWh/y/vehicle, corresponding to an electricity demand from the
grid of 0.014 TWh/y. Consequently, assuming the same efficiency
values and yearlymileage of 2016, the demand for BEVs transport
increases as Table 1 shows.

The projected amount of electricity demand for BEVs in the
25% scenario constitutes around 6% of the 2030 total electricity
demand, which would be equal to 356 TWh in such scenario.
This is in accordance with (Terna, 2018), which estimated that
electricity demand from EV would at most be equal to 5% of
the total in the most aggressive scenario that is developed in that
report (27% EV in the national fleet).

Concerning the charging infrastructure of BEVs, the model
allows to differentiate between Dump and Smart Charge setting.
The Dump Charge is modeled as a traditional uncontrolled plug-
in charge, in which the user recharges the battery whenever
it is needed. With the Smart Charge, on the other hand,
battery charging is used aiming to decrease excess electricity
production. Such demand for 2016 is modeled with the
Dump Charge setting, while for the future 2030 scenarios,
BEVs diffusion is modeled with the Smart Charge. Additional
specifications on BEV modeling parameters and implications of
our choices are, respectively, discussed in section Battery Electric
Vehicles (BEVs) Specifications and Additional Discussion of the
Supplementary Material.

Supply
The review provided by Marmiroli (2020) outlines that in Italy,
future additional generation capacity will mainly consist of RES,

TABLE 1 | BEVs features in the future scenarios for 2030.

Scenario Number of

circulating BEVs

Total BEVs electricity

demand [TWh]

Required grid

electricity supply

[TWh]

Additional electricity supply

from the grid, with respect to

BAU scenario [TWh]

BAU −4.75%

BEV

1.8 million 3.94 4.38 0

25% BEV 9.5 million 20.80 23.11 18.73

50% BEV 19 million 41.59 46.21 41.83

75% BEV 28.5 million 62.39 69.32 64.94

100% BEV 38 million 83.18 92.42 88.04
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TABLE 2 | Electricity production [TWh] from RES (biomass excluded). Historical

data for 2016 and projected data for 2030 according to PNIEC objectives.

Technology Year

2016 2030—BAU

PV 22.1 71.25

Wind, onshore 16.5 36.95

Wind, offshore 0 3.15

CSP 0 3.25

Geothermal 6.3 7.1

Hydro,

Run-of-river

21.35 22.90

Hydro, Dammed

(without pumped)

24.85 26.40

with PV having the highest increase potential, to fill the gap
left by coal phase out. Hydroelectric power plants capacity
will not change dramatically, as most of the suitable sites are
already exploited.

With the technical simulation strategy of EnergyPLAN, within
each hour, VRES are given priority of production, as well as
electricity production from geothermal sources and CHP. The
latter technology is set up to only follow the demand for heat,
producing electricity as a byproduct, which is consistent with
considering it a constrained electricity production technology in
the ecoinvent consequential dataset for electricity production, as
section LCI Methodological Setup outlined. CSP and dammed
hydroelectric power plants are then operated in order to firstly
best utilize the natural input and secondly minimize EEP. Then,
reversible hydro power (i.e., pumped hydro) is activated in
order to reduce EEP and the amount of BEVs Smart Charge is
computed. Only after these steps, if still either the demand is
higher than the supply or grid stabilization requirements must
be fulfilled, electricity production from thermal power plants
is computed.

Table 2 shows VRES electricity productions, which are drawn
from the PNIEC, apart from CSP estimated production, which
is derived from the Italian national energy strategy. Moreover,
the specification of 2030 offshore wind electricity production
is based on PNIEC indication of projected capacity (900 MW)
and on the indications by IEA (2019), which state that new
offshore wind plants currently show capacity factors of 40–
50%. Concerning hydroelectric power plants, investments will
be focused on increasing the usage of hydro storage and they
will be mainly focused on big size plants (MiSE MATTM, 2017;
MiSE et sl., 2018). The additional 2030 electricity production
from hydroelectric sources is equal to 3.1 TWh, but no indication
was found on how such increase should be divided between
run-of-river and dammed plants. Therefore, we equally divide
the increase by these 2 sources, shown in Table 2. The 2016
total hydroelectric production, without pumped is equal to 46.2
TWh and it is selected from (MiSE et sl., 2018), while 2016
shares between run-of-river and dammed hydro are derived
from Terna (2016).

As will be seen in the Results section, marginal electricity
derived by dammed hydro power results to be much higher than

1.55 TWh due to additional water charging linked to pumped
hydro storage plants operation. The relatedmodeling is explained
in section Inputs of the Supplementary Material. We specified
BAU in the 2030 column heading because electricity production
from VRES is not fixed across scenarios: it increases in response
to higher BEVs demand, due to better exploitation of EEP.

Concerning thermal power plants, EnergyPLAN requires
fuel shares data, which are not changed across the possible
two operating modes of these plants. Indeed, thermal power
plants may produce both heat and electricity (CHP mode)
or electricity only (condensing mode). Historical 2016 data
on total (condensing + CHP) power production by source
are collected from GSE (2018). CHP electricity production is
collected by Eurostat, 2019) and is assumed to not change until
2030, due to unavailability of projections. Electricity production
in condensing mode is computed by subtracting electricity
production in CHP mode from the total amounts of electricity
by source. Electricity production from thermal power plants
for the BAU scenario is calibrated on the National Energy
Strategy model (MiSEMATTM, 2017). Fuel shares do not change
across the remaining 2030 scenarios, while electricity production
from these sources increases in response to BEVs demand,
which is why we specified BAU to the 2030 column heading in
Table 3 as well. Section Thermal Power Plants Electricity Supply
of Supplementary Material thoroughly describes assumptions
lying behind Table 3 values.

RESULTS

This section is divided into three parts, which present the
outcomes of our analysis, with discussions of drivers and
implications to facilitate interpretation. The first two subsections
are focused on the intermediate functional unit of the study,
i.e., the provision of electricity, while the third one discusses
the variation of LCIA results related to the cradle-to-grave LCA
for BEVs.

The first subsection focuses on LCI results across the four
approaches. LCI results in the BAU scenario are firstly shown
and then, the variability of electricity mixes across scenarios is
assessed. Such discussion is preliminary to the second subsection,
which analyzes the deviations of LCIA results, computed through
the 4 approaches, across the 5 scenarios. Such section introduces
to which degree accounting for the spreading of BEVs may
influence results, both in terms of unitary LCIA results (i.e.,
per kWh of electricity produced) and in terms of total LCIA
results (i.e., marginal potential impacts associated to the entire
BEVs fleet). Then, variations of hourly impacts distributions
across scenarios and the related implications across the presented
approaches are discussed, addressing the third aim of the study.
Finally, the third subsection highlights how cradle-to-grave BEV
impacts vary across the selected 6 impact categories, due to the
variation of the only use-phase electricity LCI.

Technology Shares
Figure 2 shows the marginal electricity mixes of the BAU
scenario, resulting from the four approaches outlined in section
LCI Methodological Setup. The Yearly approach leads to a
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TABLE 3 | Electricity production and fuel distributions of central thermal power plants (geothermal excluded), in condensing mode.

Year Type of data Technology

Coal Oil Natural gas Biomass

2016 Production [TWh] 28.15 3.13 98.53 14.86

Shares [%] 19.46 2.16 68.11 10.27

2030—BAU Production [TWh] 0.00 1.40 82.74 10.52

Shares [%] 0.00 1.48 87.41 11.11

Estimated values according to historical 2016 reference year data and to projected data according to PNIEC objectives for 2030 BAU scenario.

FIGURE 3 | Marginal electricity mixes across scenarios, computed with the three non-linear approaches.

mix with a strongly lower share of fossil fuels, with respect
to the Ecoinvent one. Indeed, neither natural gas nor biomass
condensing power plants increase their yearly production with
respect to 2016, as can be clearly seen by Table 3. The Yearly
mix is therefore dominated by PV and wind, which account
for more than 80% of it. Instead, the Hourly mix appears
to be more similar to the Ecoinvent one, with a natural gas
fueled plants share of 9.50%, which appears because they
operate during hours in which RES electricity production
cannot satisfy the additional hourly demand. Finally, the Hourly,
weighted mix still shows the presence of natural gas, yet with
a smaller contribution with respect to the Hourly marginals.
The share of PV is instead higher, since BEVs charging is
privileged across the central hours of the day, as Figure 4 will
further discuss. Furthermore, the share of hydro, dammed is
nearly halved with respect to the Hourly approach. Indeed,
as section Modeling of Energy Scenarios explained, when EEP
arises, EnergyPLAN decreases dammed hydroelectric power
production and instead, water storages are charged by means
of pumps.

Then, Figure 3 shows the variability of marginal electricity
mixes across the analyzed scenarios, for the 3 non-linear
approaches followed in this study. The Ecoinvent shares are not
shown here, as they do not vary across scenarios. Due to our
hypothesis of keeping VRES capacities constant across scenarios,
the general trend is related to the increase of natural gas share to
match additional BEV electricity demand. Such increase occurs
more steeply across the Yearly marginals, in which the share
of natural gas increases from 0% in the 25% BEV scenario to
32.79% in the 100% BEV scenario. Indeed, positive EEP amounts
of 12.68 and 3.69 TWh appear, respectively, in the BAU and 25%
BEV scenarios. Thus, according to our hypotheses, within the
BAU and the 50% BEV scenarios, the increase in BEVs electricity
demand is partly covered by EEP exploitation and partly by
thermal power plants. This is why the Yearlymarginal electricity
production from natural gas condensing power plants in the 25%
BEV scenario is still not positive (see Supplementary Table 4).
From the 50% BEV scenario on, the increase in BEVs electricity
demand is only covered by thermal power plants (mostly natural
gas, with small contributions of biomass, as can be inferred by
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FIGURE 4 | Distributions of the different 366 hourly charge profiles, relative to daily charge, with black markers representing average values, coupled with average

hourly marginal electricity mixes. Both charts are shown for the BAU and 100% BEV scenarios. In the x-axis, hour 1 refers to the first hour of the day and the same

happens for other values.

Table 3 shares) in condensingmode. This results in an increase in
the derivative of the curve related to the natural gas share, which
occurs from 25% BEV to 75% BEV scenarios. This variation
of derivative is much more evident for the Yearly marginals,
since the Hourly and Hourly, weighted approaches account for
the dynamics of electricity production within a year, which
smooth the increase of natural gas electricity production. From
75% BEV to 100% BEV scenarios, the derivative of the curve
related to natural gas share decreases again. TheHourly, weighted

marginals show the peculiarity of a steep increase of natural
gas share already in the 25% BEV scenario and the related
derivative does not decrease when moving toward the 100%
BEV scenario, in which the highest natural gas share across the
analyzed approaches is reached, being it equal to 38.94%.

To facilitate the interpretation of the Hourly, weighted LCI
results, Figure 4 outlines the interdependence between the
distribution of BEVs charge profiles, which are related to the
weightsWh, and the variation of average hourly electricity mixes
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across scenarios. Supplementary Figures 2, 3 provide the full
variation of both quantities across scenarios. Hourly charge
values are shown as a fraction of the electricity charged in the
related day, to clearly outline the contribution of each hour.

The distribution of 366 hourly charge profiles results from
both the transport demand curve, taken from the EnergyPLAN
models developed in Connolly et al. (2015) and the choice
of Smart Charge simulation, which stimulates charging when
EEP is produced. Even if the distribution of transport demand
is fixed across scenarios, distributions of hourly electricity
consumed for BEVs charging do change, as the absolute value
of transport demand changes with the size of the BEVs fleet,
too. Indeed, the BAU and 100% BEV scenarios show strongly
different distributions. The distribution of BEVs charge profiles
in the BAU scenario shows many outliers, which are due to the
EnergyPLAN model seeking to fully exploit electricity produced
by PV and CSP. Solar energy is highly relevant in the 2030 Italian
mix and is more available within the central hours of the day,
differently from other RES. EnergyPLAN applies the same logic
to wind energy exploitation, which is responsible for outliers
that are not within the central hours of the day. In the BAU
scenario, BEVs transport demand is very low and EEP is high,
therefore charging occurs mainly to reduce EEP. Conversely,
moving toward the 100% BEV scenario, the relevance of BEVs
on the total electricity demand increases, thus BEVs are charged
also within other hours of the day, which are not necessarily
those in which EEP may occur. Hence, additional BEVs make the
charging curve flatter and looking more similar to the transport
demand curve (see Supplementary Figure 2), with all the 100%
BEV ordinates being lower than 25% in Figure 4. Moreover,
from the 50% BEV scenario on, EEP is null, thus additional
electricity demand is mainly covered by natural gas, which starts
penetrating even in the central hours of the day. In particular,
Figure 4 shows that the penetration of natural gas especially
affects early morning and evening hours. Indeed, night shares
do not significantly change across scenarios, as the charging
process mainly happens within the day. This means that the
increase in electricity demand happens within hours in which
solar VRES cannot adequately respond. Therefore, the higher the
BEVs diffusion, the higher the contribution of thermal power

plants in charging additional BEVs. This trend is fully captured
by the Hourly, weighted approach only, as confirmed by the
related increase in natural gas share across scenarios in Figure 3.
Hence, our hypothesis of keeping the same VRES capacities
across different scenarios has particularly significant implications
especially on the actual electricity consumed by BEVs.

Impact Analysis
All the trends outlined in section Technology Shares are reflected
onto the related LCIA impacts. The unitary impacts per kWh of
marginal electricity, related to the BAU scenario mixes outlined
by Figure 2, are shown in Table 4. Then, Figure 5 shows the
trends of unitary impacts, relative to the values of BAU scenario
with the Hourly, weighted approach. Such representation allows
to outline which impact categories are mostly affected by
the variation of shares across scenarios and methodological
approaches. The Ecoinvent trend is constant, as this approach
cannot account for interactions between the electricity LCI and
the BEVs fleet.

Carcinogenic effects is the least affected impact indicator, with
the curves related to all the 4 approaches being confined within
the 80–100% interval. The opposite happens for Climate change
total indicator, in which the 3 non-linear curves span across
an interval of 60–220%. In the BAU scenario, results for the
Ecoinvent approach differ by +39.74% for the Climate change
total category and by−49.27% for Minerals and metals category,
with respect to the BAU,Hourly, weighted value. Thus, employing
different approaches for marginal calculations is a significant
source of variability of LCIA indicators. These two categories
also show the greatest variations of non-linear curves, as they are
strongly dependent by the balance between RES and fossil fuels
shares within the electricity mix, due to the unitary impact of
each technology (see Supplementary Figure 5). Apart from the
Climate change total charts, the difference within the 3 non-linear
curves decreases when moving toward the 100% BEV scenario.
Indeed as Figure 3 showed, the higher the BEVs demand, the
higher the penetration of natural gas. Therefore, within the
same scenario and across the 3 non-linear approaches, the
differences of shares related to other technologies decrease. Apart
from Climate change total, impact indicators are dominated by

TABLE 4 | Unitary impacts per kWh of marginal electricity supply, for the 6 selected LCIA categories and the four approaches, associated to the BAU scenario.

Scenario –

Approach

Impact category

Non-

carcinogenic

effects

[CTUh]

Carcinogenic

effects [CTUh]

Minerals and

metals [kg

Sb-eq]

Climate

change total

[kg CO2-eq]

Freshwater

eutrophication

[kg P-eq]

Respiratory

effects,

inorganics

[disease i.]

BAU—

Ecoinvent

6.05E-08 5.12E-09 2.94E-06 1.64E-01 6.04E-05 5.91E-09

BAU—Yearly 4.35E-08 5.81E-09 4.94E-06 7.50E-02 8.11E-05 4.85E-09

BAU—Hourly 3.99E-08 5.53E-09 4.17E-06 1.19E-01 7.27E-05 4.46E-09

BAU—

Hourly,

weighted

4.92E-08 6.25E-09 5.96E-06 1.17E-01 9.10E-05 5.58E-09

Frontiers in Sustainability | www.frontiersin.org 11 March 2021 | Volume 2 | Article 631268

https://www.frontiersin.org/journals/sustainability
https://www.frontiersin.org
https://www.frontiersin.org/journals/sustainability#articles


Rovelli et al. Non-linearities in LCA of BEV

FIGURE 5 | Unitary impacts associated to the provision of 1 kWh of marginal electricity supply, for the 6 selected LCIA categories and the four approaches, across

the analyzed scenarios. Values are relative to the BAU scenario impacts computed with the Hourly, weighted approach.

technologies other than natural gas, thus we see that the 3 non-
linear curves progressively approach each other. For instance,
the Minerals and metals impact indicator is dominated by PV
penetration: the lower the differences in PV shares, the lower
the differences in Minerals and metals impacts across the 3 non-
linear approaches. Indeed, starting from a 50% wide range, the
different curves converge into a very narrow range in the 100%
BEV scenario.

The Climate change total indicator computed with the Yearly
approach is highly sensitive to the increase of BEVs, as a
consequence of the highly variable shares outlined by Figure 3.
On the other hand, theHourly curve shows instead the smoothest
trends across LCIA categories, while the opposite holds true
for the Hourly, weighted results. Regarding this category, the
Hourly and Hourly, weighted curves start from very close values
in the BAU scenario, despite the latter having a much smaller

share of natural gas in the electricity mix, as shown by Figure 2.
This happens because the BAU mix for the Hourly, weighted
curve also shows a much smaller share of electricity from hydro,
dammed with respect to the same scenario for the Hourly curve.
Hydro, dammed electricity is one of the cleanest sources of
electricity production within this category, with unitary impacts
being one order of magnitude lower than electricity from PV
(see Supplementary Figure 5). Moreover, the trend of non-linear
curves within this impact category reflects the penetration of
natural gas within the marginal electricity supply mix, with a
steep growth from 25% BEV to 75% BEV scenario, followed
by a decreasing derivative within the 75% BEV and 100%
BEV scenarios.

It must be remarked that according to our model, Climate
change total is the only category which is negatively affected
by higher penetration of BEVs. However, the relative variations
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of other categories across the 5 scenarios are much smaller.
Within the Climate change category, moving from the BAU to
the 100% BEV scenario, all the 3 non-linear curves double their
unitary impacts.

Across the 6 impact categories, the ranges defined by the 4
curves in the BAU scenario are strongly different with respect
to those related to the 100% BEV scenario. For instance, in the
Climate change total category, the BAU scenario values range
from 60 to 140%, while the 100% BEV scenario values span across
140–220%. Figure 6 shows how this aspect is translated into
the LCIA indicators associated to the total marginal electricity
demand evolution across additional fleets of BEVs. Such curves
are obtained by multiplying the unitary impacts by the yearly
electricity demand per vehicle (see section Demand) and by the
number of additional BEVs associated to each scenario. From the
comparison with the Ecoinvent values, it is evident how linearly
upscaling marginal impacts with the number of circulating BEVs
(i.e., what would be done with a conventional LCA employing
the Ecoinvent approach, or in general employing the only
BAU unitary impact indicators) would lead to significant non-
linearities, as unitary impacts are found to vary across scenarios,
especially for the Climate change total category. Indeed, the linear
Ecoinvent approach leads to an underestimation of 8.35 Mton
CO2-eq in the 100% BEV scenario for the Climate change total

category, with respect to the Hourly, weighted results. Similarly,
linearly scaling the Hourly, weighted results keeping the BAU
unitary impact would lead to an underestimation of 12.45 Mton
CO2-eq with respect to the case in which the interaction with
the electricity grid is accounted for. In accordance with Figure 5,
non-linearities are especially significant for the Climate change
total and Minerals and metals category, while this is not the
case for the remaining impact categories. Total impacts for
penetration of additional BEVs are null in the BAU, as no
additional BEV is present in this scenario.

The last result of this section highlights again the capabilities
provided by an ESM. Impacts computed with the mixes derived
by Equations 2 and 4 are related to an aggregation at the yearly
level of 8,784 hourly mixes. Shares defined with the Hourly
approach can be stated to weight the hourly electricity mixes by
the related amount of marginal electricity production. That is, the
higher the marginal electricity production related to a specific
hour, the higher the influence of such hour in determining
Si, 2030. Shares defined by the Hourly, weighted approach are
instead weighted on the BEVs electricity charge of each hour.
Given the LCA methodology structure, the weighting process
may be done either with mixes (at the LCI level) or with impacts
(at the LCIA level). Figure 7 stresses out that the Hourly and
Hourly, weighted curves are the result of both an underlying

FIGURE 6 | Absolute impacts associated to the provision of the total electricity supply requested by the marginal BEV fleet, for the 6 selected LCIA categories and the

four approaches, across the analyzed scenarios.
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FIGURE 7 | Distributions of hourly unitary impacts and aggregated values computed with the Hourly and Hourly, weighted approaches, associated to the provision of

1 kWh of marginal electricity supply, for the 6 selected LCIA categories, across the analyzed scenarios.

hourly impact distribution, which varies across scenarios, and
an aggregation process, which varies across the two approaches
and clearly constitutes a source of deviations between aggregated
LCIA results. If different BEVs charge profiles were assumed, not
only the aggregation of the Hourly, weighted approach would
change, but also the underlying distribution would be different,
especially at higher number of circulating BEVs: see section
Contextualization Within the Literature.

Distributions of hourly impact indicators for the BAU
scenario appear to be asymmetrical, with the presence of outliers
in the upper part of the charts. This is due to the high EEP in the
BAU scenario, which makes the productions of VRES decrease
(see Equations 5 and 6) and is generally linked to the activation of
both natural gas, for grid stabilization requirements (see section
1.1.1 of the Supplementary Material) and the hydro pump
technology, which makes unitary impacts further increase (see
section Inputs of the Supplementary Material). Accordingly,
the higher the number of BEVs, the more the distributions are
symmetrical and less outliers are shown. Carcinogenic effects
show a large number of outliers, due to high unitary impacts
of wind and solar technologies (see Supplementary Figure 5),
which are also the most relevant VRES across marginal mixes.
Respiratory effects, inorganics shows the presence of outliers in
the BAU and 100% BEV scenario. For the former scenario, the
reason lies behind high presence of PV in the mix, which shows
the second higher unitary impact in this category. For the latter

scenario, the reason lies behind the presence of biomass in the
mix, which shows the highest unitary impact in this category.

Minerals and metals distributions yet remain strongly
asymmetrical. Given that impacts within this category are
dominated by PV (see Supplementary Figure 5), the shape of
this distribution can be inferred to be related to the presence
of sunny days. It is reasonable that 50% of the distribution
is instead confined within a small interval (lower than 2e-6 kg
Sb-eq), because these values are related to night hours.

Contextualization Within LCA Results for
BEVs
This subsection shows how the variability of the use phase
electricity LCI makes the cradle-to-grave LCIA results vary.
As in the previous section, Table 5 shows the unitary impacts
associated to the provision of 1 km of transport service by
passenger electric car in the 4 BAU scenarios. Then, Figure 8
shows the trends of unitary impacts, relative to the values of BAU
scenario with the Hourly, weighted approach.

In addition to what section Impact Analysis showed, Figure 8
outlines that the variability of BEV LCA results depends on
the relative importance of the electricity process within each
of the analyzed impact categories, which can be inferred from
Figure 1. Accordingly, even if the electricity process shows a
high variability within theMinerals andmetals category, Figure 8
shows that the variation of impacts for 1 km of electric transport
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TABLE 5 | Marginal unitary impacts associated to the provision of 1 km of transport service by BEV car in the BAU scenario, for the 6 selected LCIA categories and the

four approaches.

Scenario—

Approach

Impact category

Non-

carcinogenic

effects

[CTUh]

Carcinogenic

effects [CTUh]

Minerals and

metals [kg

Sb-eq]

Climate

change total

[kg CO2-eq]

Freshwater

eutrophication

[kg P-eq]

Respiratory

effects,

inorganics

[disease i.]

BAU—

Ecoinvent

7.41E-08 6.36E-09 9.23E-06 9.59E-02 1.09E-04 6.33E-09

BAU—Yearly 7.07E-08 6.49E-09 9.62E-06 7.83E-02 1.13E-04 6.12E-09

BAU—Hourly 7.00E-08 6.44E-09 9.47E-06 8.70E-02 1.11E-04 6.04E-09

BAU—Hourly,

weighted

7.18E-08 6.58E-09 9.83E-06 8.65E-02 1.15E-04 6.27E-09

FIGURE 8 | Marginal unitary impacts associated to the provision of 1 km of transport service by BEV passenger car, for the 6 selected LCIA categories and the four

approaches, across the analyzed scenarios. Values are relative to the BAU scenario impacts computed with the Hourly, weighted approach.

Frontiers in Sustainability | www.frontiersin.org 15 March 2021 | Volume 2 | Article 631268

https://www.frontiersin.org/journals/sustainability
https://www.frontiersin.org
https://www.frontiersin.org/journals/sustainability#articles


Rovelli et al. Non-linearities in LCA of BEV

is within an interval of 10% across the analyzed curves. Indeed,
the contribution to impacts of car and battery production
processes dominate within this category. LCIA indicators related
to Carcinogenic effects and Freshwater eutrophication show a
very low variability, due to both low variability of use phase
electricity-related impacts and a low relevance of this process
within BEVs results. In particular, Minerals and metals and
Freshwater eutrophication show an average 6.1% decrease of
the Hourly, weighted unitary impacts, across the two extreme
scenarios. Within Non-carcinogenic effects and Respiratory
effects, inorganics, the differences between the 3 curves is lower
than 5%, as well as the deviation with respect to the BAU
scenario. This is definitely not the case for the Climate change
total category, in which a range of 90.31–110.70% is defined for
the BAU scenario across the 4 curves. Moreover, for the Hourly,
weighted curve, the 100% BEV scenario shows a 32.52% higher
impact with respect to the BAU scenario. Concerning the Yearly
plot, the variation is even higher, spanning from 90.31 to 125.90%
across the analyzed scenarios, i.e., +39.40% total increase.
Therefore, within this category, moving toward high numbers of
circulating BEVs, the electricity process becomes more and more
dominant in determining the impacts of 1 km BEV transport (see
Supplementary Figure 6). TheHourly, weighted curve shows the
highest variations between the BAU and the 100% BEV scenarios,
which are on average equal to 9.28% across LCIA categories.

DISCUSSION

The present section aims at contextualizing the main results
obtained in section Results within the literature and discuss
assumptions and limitations of the study, in order to eventually
provide indications for including our methodological framework
within comprehensive assessments of entire transport systems for
policymaking support.

Subsection Contextualization Within the Literature discusses
key findings of the study, contextualizing them into the literature,
with a comparison of previous analyses results. The influence of
assumptions that are implied within the current study and by
the use of EnergyPLAN are discussed in subsection Discussion
of Model Assumptions. Then, methodological indications on
the inclusion of the evaluation of non-linearities are drawn in
subsection Methodological Indications.

Contextualization Within the Literature
The present study coupled the indications of Girardi et al.
(2015), which accounted for the interdependence between EV
and electricity grid, with the evaluation of different scenarios of
EVs diffusion as made in Bohnes et al. (2017) and Ricardo (2020).
Bohnes et al. (2017) did not account for changes in the electricity
grid operation due to BEVs penetration into the market. They
assumed that potential increases of electricity demand could be
counterbalanced by efficiency gains in EV. Moreover, their study
is focused on an urban area, while our study is related to the
country level. We did not consider counterbalancing factors,
as we aimed to model relevant interactions with the electricity
system, which may occur as outlined by other studies (Girardi
et al., 2015; Ricardo, 2020). Girardi et al. (2015) considered

energy prices dynamics within his model, which is not the case
in this study. In Ricardo (2020), an attributional approach is
followed, yet some consequential elements are modeled, too.
These are related to the additional electricity demand from EV,
economies of scale and decarbonization of production processes
over time. Table 6 provides a summary of similar studies that
can be compared with the present one, i.e., analyses related to
future BEVs.

In addition to the presented results, Huo et al. (2015)
evaluated average fuel-cycle emissions for 2025 BEVs operation,
finding values between 0.060 and 0.170 kg CO2-eq/km,
respectively, for China BTR and U.S. NPCC regions. Our results
are in line with Girardi et al. (2015), especially for the case in
which BEVs are charged by electricity produced for 50% by
PV. Using the Italian 2030 marginal mix, Girardi et al. (2015)
found a much higher result compared to our BAU scenario.
This is due to the assumption of the 2030 model employed
by that study, which considers BEVs electricity demand as an
additional demand, which will be covered by thermal power
plants only, assuming that RES are already fully used. This is
true for Bauer et al. (2015) as well, which further outlines how
BEVs results are influenced by the employed electricity mix.
The results found by Burchart-Korol et al. (2018) are also in
line with this considerations, as the Polish 2030 electricity mix
is constituted by 80% fossil fuels. Bohnes et al. (2017) found a
relatively high value of BEVs Climate change result, which is
due to retaining a share of coal in the marginal electricity mix
and to the higher electricity demand of BEVs. In Ricardo (2020),
a sensitivity analysis on electricity chain assumptions over
different time spans is performed. Such analysis shows the lowest
value of Table 6, due to the larger time span (2050), hypothesis
on decarbonization of production processes and a strongly
clean electricity mix. Similarly, Cox et al. (2020) integrated
2040 electricity scenarios from integrated assessment models
into the ecoinvent database, assessing variations of both the use
phase electricity mix and of production processes. Moreover,
such study also employed a Monte Carlo global sensitivity
analysis for all performance parameters of the assessed EVs. The
same authors already assessed such scenarios within a previous
study (Cox et al., 2018) which leads to similar considerations,
concerning Climate change impacts of future BEVs, thus it
was not added to Table 6. Both the TECH 1.5 and the ClimPol
scenarios model the implementation of European climate targets.
The variability of our results is correctly lower compared to
Bauer et al. (2015), Huo et al. (2015), Burchart-Korol et al.
(2018), Cox et al. (2020), and Ricardo (2020), which assessed
highly variable electricity mixes.

In Mathiesen et al. (2009) and Lund et al. (2010), it is
demonstrated that long-term marginal electricity supply cannot
be constituted by a single technology only and the determination
of such mix requires ESM simulations. Indeed, they stated
that affected technologies depend both on the geographical
location and on the temporal resolution of the study, especially
at higher shares of fluctuating renewable energy sources,
analyzing the Danish electricity system. Our study validates
such considerations for the Italian context too, as it shows that
noticeable differences between theYearly andHourly approaches,
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TABLE 6 | LCIA results of the current and previous studies on future passenger car BEVs penetration which assumed 2030 or further as time horizon, for the Climate

change total category.

Use phase electricity mix

specifications

LCI approach Climate change LCIA

results [kg CO2-eq/km]

References

Marginal, 2016–2030, Italy Consequential 0.096 Wernet et al., 2016; Vandepaer et al.,

2019—Ecoinvent approach

Marginal, 2016–2030, Italy, BAU–Italy,

100% BEV

Consequential 0.078–0.109 Current study—Yearly approach

Consequential 0.087–0.110 Current study—Hourly approach

Consequential 0.087–0.115 Current study—Hourly, weighted

approach

Marginal, 2015–2030, Denmark Consequential 0.202 Bohnes et al., 2017

Marginal 2030, Italy with 50% PV–Italy Attributional, using

marginals

0.102–0.149 Girardi et al., 2015

Average 2030, Germany, 100%

Hydro−100% Coal

Attributional 0.0558–0.308 Bauer et al., 2015

Average European, 2050 TECH 1.5 100%

VRES mix−2030 100% coal mix

Attributional 0.033–0.235 Ricardo, 2020

Average European, 2040 ClimPol (5th

percentile)−2040 Baseline (95th

percentile)

Attributional 0.06–0.2 (estimated from

charts)

Cox et al., 2020

Average, 2050 Czech Republic −2030

Poland

Attributional 0.147–0.256 Burchart-Korol et al., 2018

When the authors employed different scenarios of electricity mixes, a range of results is proposed.

which, respectively, neglect and account for hourly electricity
system dynamics. Moreover, we also show the relevance of the
different approaches on LCA results for BEV transport services,
further validating the need to perform complex analyses for
product systems in which energy supply is a relevant process,
as stated in Mathiesen et al. (2009). Furthermore, our study
highlights that the LCI of electricity supply is strongly sensitive
to the amount of marginal electricity demand (see the variations
across scenarios of BEV penetration), and to employing the latest
policy indications (see the variations between Ecoinvent and
Yearly approaches). Thus, we agree with (Mathiesen et al., 2009;
Lund et al., 2010) on the need to perform a scenario analysis,
in order to avoid that the LCA results become obsolete due to
changes in marginal electricity supply mix. Finally, the literature
suggested that the actual electricity used to charge BEVs, which
depends on the charging profile and on the interaction with the
grid, must be accounted for in order to provide accurate LCA
results (Nordelöf et al., 2014; Girardi et al., 2015; Rangaraju
et al., 2015). In our study, the Hourly, weighted approach shows
significant variations of LCIA results across scenarios. In our
model, such variations are indeed related to the variability
of the actual electricity consumed by BEVs across scenarios,
which are not fully captured by other approaches. Therefore,
we confirm the literature indications, as we find that accounting
for BEVs charging profiles constitutes an additional source of
non-linearities in LCIA results. Hence, we estimate that Hourly,
weighted is the most accurate approach in accounting for non-
linearities, too.

Discussion of Model Assumptions
The 2030 BAU scenario is modeled accounting for the system
response to current policies, detailed in the PNIEC, in accordance

to the consequential, long-term point of view (see section
Modeling of Energy Scenarios). However, our LCI model relies
on the assumption that no additional RES capacity is installed
to cope with the additional BEVs demand across the different
scenarios. Thus, no response, in terms of additional installed
capacity, of the 2030 system with respect to the 4 additional
scenarios with different levels of circulating BEVs is modeled.
Hence, the system response to BEVs which are additional with
respect to the BAU scenario is a short-term one, as such response
is only constituted by the variation of electricity production
(Marmiroli et al., 2018). Accordingly, LCI differences across
scenarios are mostly due to natural gas penetration, as shown by
Figure 3. Another way to build the LCI model could have been to
increase RES installed capacity, in order to be able tomeet PNIEC
objectives given the BEVs transport demand increase. However,
even in this case, in the BAU scenario, the differences between
the 4 analyzed approaches would emerge again, as they are not
affected by this hypothesis. Changing this hypothesis, we would
observe a lower penetration of natural gas in the LCI of marginal
mixes across scenarios, which would in turn affect especially the
LCIA results of the Climate change total indicator. Only for this
category, we estimate that the variability of LCIA results across
scenarios would probably decrease. The results of other LCIA
categories are instead mainly driven by single RES technologies
(e.g., PV is the main driver of Minerals and metals results).
Thus, they would vary according to which RES capacities increase
and consequently, several different trends may appear. However,
changing ourmain hypothesis would lead to additional problems.

Firstly, adding further hypotheses on additional RES installed
capacity for each of the analyzed 2030 scenarios, apart from
the BAU one. This means deciding on which type of RES is
installed and it would lead to lower reproducibility. Moreover,
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capacity may not be strongly increased for all RES, as for instance
hydroelectric capacity is already almost saturated in Italy (MiSE
et sl., 2018).

Secondly, a technical simulation strategy is chosen within
EnergyPLAN, thus excluding the dynamics of energy prices.
Moreover, the energy system is modeled as if it constituted a
single market zone. This is not true for Italy, which is constituted
by 6 market zones (Gestore Mercati Energetici, 2020). Moreover,
EnergyPLAN explicitly models neither frequency regulation nor
inertia within the energy system and the BEVs fleet is modeled
as if it was a single battery (Lund and Thellufsen, 2020).
Thus, with the current EnergyPLAN setup, we are not able to
distinguish whether BEVs demand is generated in the South
or in the North of Italy. Moreover, determining accurate BEVs
demand distributions at the national scale is challenging, since
the actual location of every BEVmatters, in determining whether
there are sufficient charging stations in a specific area. Grid
stabilization requirements are only managed through a specific
parameter (see section Electricity System Specifications of the
Supplementary Material). This means that simulating strongly
different systems, with respect to the 2030 reference one, with the
current set up of EnergyPLANwould not lead in any case tomore
accurate results.

Accordingly, particular attention must be devoted to the
geographical context of the study. The country electricity mix
is one of the most impacting parameters in the sensitivity
analysis performed by Ricardo (2020), even if differences across
countries will be lower over the years due to the progressive
decarbonization of electricity systems. Within our study, BEVs
are charged during the day to reduce EEP and to better use the
available solar energy, as captured by the BAU results of the
Hourly, weighted approach. However, this is a country-specific
result, as it depends on the projected strong reliance of Italy
on solar energy. If BEVs were operated in France, which mostly
runs on nuclear power, daily BEV charging is likely to not lead
to a higher exploitation of solar energy. Another example is
constituted by Denmark, which is expected to increase its RES
share mostly by means of wind power (Bohnes et al., 2017),
which may be available during the night too, thus it has different
dynamics than solar power. The general remark is that BEV
charging should enable a higher RES exploitation, i.e., when RES
are available in the specific area of the study, if the objective is
to reduce BEVs carbon footprint. Concerning the geographical
scale of the analysis, it may make sense to model high diffusions
of BEVs at a smaller scale than the national one. BEVs have the
potential to decrease urban air pollution (IEA, 2020) and several
studies focused on BEVs diffusion at the city scale (Bohnes et al.,
2017; Jian et al., 2017).

Another aspect of interest is related to the BEV charge
profiles. Figure 4 outlined that charging BEVs during hours
in which VRES cannot provide additional electricity, has
particularly strong implications on natural gas usage, since
thermal power plants would be the main source of electricity
which can adequately respond to such demand. Indeed, the
average electricity mixes related to early morning and evening
hours are the most affected by additional electricity demand. If
different BEVs charge profiles were assumed, or the Smart Charge

simulation was not chosen, not only the aggregation of the
Hourly, weighted approach would change, but also the underlying
distribution (see Figure 7) would be different, especially at higher
number of circulating BEVs. If for instance, BEVs were charged
during the night, two main effects would happen. Firstly, natural
gas production is likely to further increase, as the most relevant
VRES in Italy is solar, which is not available during night hours:
this would e.g., move the Climate change total distribution
upwards. This would shift upwards the Yearly, Hourly and
Hourly, weighted curves. Secondly, theHourly, weighted curve for
the Climate change total category would be pushed upwards even
more, as BEVs are likely to be charged during hours in which
only natural gas can respond to higher BEVs electricity demand.
The latter effect would not be captured by the Hourly curve. This
further confirms the capability of the Hourly, weighted approach
to fully capture changes on the actual electricity consumed by
BEVs and the related non-linearities.

Moreover, even if different technical parameters for BEVs
modeling were assumed, qualitative trends outlined by this
study would still appear, since the present analysis covered a
sufficiently wide of BEVs demand. The reference year of the
analysis would not have significantly changed results, too. See
section Additional Discussion of the Supplementary Material

for a detailed discussion.
Furthermore, the only non-linearity studied here is related

to electricity, but there could be many more, such as modeling
economies of scale for passenger car production and disposal
or decarbonization of materials. The frameworks developed in
Bohnes et al. (2017) and Ricardo (2020) comprehensively outline
different processes that may be coupled with this analysis.

Finally, given the goal of the present analysis, we did not focus
on evaluating LCA results for the BEVs fleet which is expected to
penetrate in the BAU scenario. Indeed, such analysis would not
require a consequential approach and an attributional electricity
mix for this scenario should be employed instead, as stated in
Dandres et al. (2017) for a similar study on data centers.

Concerning the ESM, EnergyPLAN implies some limitations
on energy system simulation. First of all, a technical
representation of electricity production is not what occurs
in reality. The electricity market is indeed based on the cost-
merit order, that defines which power plants can produce and
for what amount of electricity (Brondi et al., 2019). However,
given the goal of the study, introducing market prices is not
strictly required. Some reasonable hypotheses are encompassed
by the technical simulation, such as the priority of dispatch for
RES (biomass excluded). Moreover, the Smart Charge of BEVs
aimed at reducing EEP would happen if electricity prices were
considered, too. The literature indicates that charging strategies
aimed at both reducing energy cost and damping out RES
intermittency are being developed (Mehrjerdi and Rakhshani,
2019). In addition, EnergyPLAN allows to introduce accurate
data regarding hourly electricity production by source, electricity
demand and imports/export distributions. The 2016 model
is thus fully calibrated on available historical data. The 2030
BAU model can be still regarded accurate enough, since total
electricity productions are calibrated on the model discussed in
(RSE, 2017) for the Italian energy strategy. The issue is related to
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TABLE 7 | Summary of strengths and weaknesses related to different approaches

for computing marginal electricity mixes, to be used in LCA for BEV.

Approach Strengths Weaknesses

Ecoinvent Reproducibility of results

due to data availability

Data may be outdated;

cannot account for

correlations between BEVs

and the electricity system:

high deviation of results if

BEV diffusion is much higher

than the level assumed in

the BAU scenario

Yearly Possibility to account for

correlations between BEVs

and the electricity system,

inclusion of the latest policy

indications

Lower reproducibility due to

high data requirements

Hourly Possibility to account for

correlations between BEVs

and the electricity system,

including marginal dynamics

across the year and the

latest policy indications

Lower reproducibility due to

high data requirements

Hourly,

weighted

The most accurate

assessment of the impacts

associated to BEVs,

between the ones analyzed

in this paper

The highest variability of

results, due to the relevance

assumed by the charging

strategy in determining LCI

and LCIA results

possible future deviations of electricity production distributions
by source, since the electricity grid is expected to further develop,
allowing more flexibility through different technologies for
electricity storage and distributed energy production paradigms
(MiSE et sl., 2018). However, still EnergyPLAN suites the goal of
developing a framework which may then be coupled with more
accurate models.

Methodological Indications
Table 7 summarizes strengths and weaknesses related to each of
the 4 approaches shown in the modeling, in order to guide the
practitioner in the inclusion of non-linearities in the LCA study.
Such indications are firstly provided in the following table and
then discussed afterwards.

Firstly, updating the ecoinvent dataset with the latest policy
indications strongly influences the results, even if equation
1 is used in both the Yearly and the Ecoinvent approaches.
Then, moving from the Ecoinvent to the Hourly, weighted
approach increases the accuracy of results, but decreases their
reproducibility. Moreover, the high amount of data required
increases the variability of results, too. Integrating an ESMwithin
the LCA requires a high number of assumptions, which may
be hard to manage depending on the geographical scale and on
the chosen model. The higher the geographical scale, the more
complete the assessment is, yet the higher is the number of
data and assumptions required, too. However, if the geographical
scale is smaller, e.g., city or regional level, such complexity may
be managed with accurate data and models and the variability
of results may be more easily assessed. Our framework can

flexibly be coupled with different geographical scales or ESMs:
the methodology would not change.

CONCLUSIONS

This study aimed at providing an insight on the relevance of non-
linearities in LCA results for future BEVs diffusion in Italy, which
emerge when LCI correlations between the fleet of vehicles and
the electricity grid are accounted for. Marginal electricity supply
mixes are thus explicitly modeled in the foreground system,
being them dependent on the number of circulating BEVs. This
is achieved due to EnergyPLAN ESM, which models both the
electricity system and the BEVs fleet. Five different scenarios of
2030 BEVs market penetration are computed, the first being the
BAU scenario. Across the remaining four scenarios, the diffusion
of BEVs into the Italian passenger car fleet is modeled up to 100%
of the total, with four steps of 25% each.

Our contribution is 3-fold. Firstly, three different approaches
for building the LCI are summarized, based on indications from
the literature and on the possibilities provided by EnergyPLAN.
The Yearly approach computes marginal electricity mixes based
on differences in yearly electricity production by technology.
The Hourly approach exploits the hourly time resolution
of EnergyPLAN and computes yearly marginal electricity
production by summing up the hourly differences of electricity
production by technology. Finally, theHourly, weighted approach
weights hourly marginal mixes on BEVs charge profiles.

Secondly, we found that significant non-linearities may occur
across the analyzed scenarios and LCIA categories. We compared
LCI and LCIA results with the ecoinvent dataset results, which
is employed as reference to quantify the relevance of non-
linearities with respect to a conventional LCA approach. The
ecoinvent dataset is not computed according to the latest policy
indications and does not depend on the amount of circulating
BEVs. Our main hypothesis of keeping RES capacity constant
across scenarios leads to a progressive increase of natural gas
shares at higher numbers of circulating BEVs. Accordingly,
we find that Climate change total indicator shows the highest
variations across approaches and scenarios, since it is the only
selected LCIA indicator which is mainly driven by natural
gas consumption. In particular, within our hypotheses, we
found differences of unitary impacts, i.e., per kWh of marginal
electricity supplied, of about 40% within the BAU scenario, for
the Climate change total category, between the Ecoinvent and
the Hourly, weighted approaches. Changes of electricity mixes
across scenarios cannot be captured by using the constant value
of the ecoinvent dataset, which leads to an underestimation of
8.35 Mton CO2-eq in the 100% BEV scenario, with respect to the
Hourly, weighted results. Similarly, linearly scaling the Hourly,
weighted results keeping the BAU unitary impact would lead
to an underestimation of 12.45 Mton CO2-eq. The variation
of unitary impacts related to the cradle-to-grade BEV LCA is
still relevant, with an approximate increase of +33 and +40%,
respectively, for the Hourly, weighted and the Yearly approaches,
within the Climate change total category, between the BAU and
the 100% BEV scenario. Non-linearities still emerge in other
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LCIA indicators, which progressively decrease at higher BEVs
penetration, unlike Climate change total which increases instead.
In particular, Minerals andmetals and Freshwater eutrophication
show a 6.1% decrease ofHourly, weighted unitary impacts, across
the two extreme scenarios. Our results for the Climate change
total indicator are in the lower part of the ranges defined by
literature studies on future BEVs penetration, since we employ a
generally clean marginal mix: fossil fuel shares are at most equal
to 38.94% in our analyses. The variability of our Climate change
total indicator is lower than what is defined by other studies, since
we only modified the use phase electricity mix and we did not
assess mixes constituted by 100% fossil fuels.

Thirdly, different electricity mixes are found using of the
three approaches. In addition to the capabilities of the Yearly
approach, the Hourly and Hourly, weighted results can capture
the emergence of marginal technologies within specific hours of
the year, as happens for natural gas in the BAU scenario. All
the three approaches can represent the interaction between the
BEVs fleet and the electricity system. However, only the Hourly,
weighted curve can fully capture non-linearities associated to the
electricity that is actually consumed by BEVs. We acknowledge
that employing the Hourly, weighted approach requires a
significant amount of data and assumptions. Nonetheless, we
recommend this methodology as the most accurate to assess
non-linearities in LCA results emerging in response to the
increasing amount of circulating BEVs. Indeed, Hourly, weighted
is the only approach that correctly accounts for the potential
of BEVs to reduce VRES curtailment, especially in low BEVs
diffusion scenarios. Moreover, at higher BEVs diffusion, this
approach accurately captures the increased fossil fuel power
plants response that happens especially in the early morning and
in the evening.

The developed framework could be included in holistic
assessment of transport systems, such as Bohnes et al. (2017) and
Ricardo (2020), in order to provide additional robustness to the

policymaking support process. Moreover, our framework could
be coupled with different ESMs, such as the one developed in
Girardi et al. (2015), or may be evaluated at different geographical
scales, such as a city or a region.
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