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Abstract

In the near future many space missions will exploit the cislunar domain to advance and develop the technologies
required to bring humans on Mars. The Lunar orbital Platform Gateway (LOP-G) will play a key role as a deep-
space outpost but will require rendezvous and docking/undocking capabilities to safely operate and connect with
other spacecraft. While non-keplerian dynamics has been exploited by different stand-alone robotic missions in
both the Earth-Moon and the Sun-Earth systems, no autonomous proximity operation has been experienced so far in
that regime. In this framework, the goal of the present research is to demonstrate the applicability of the so-called
Bearing-Only technique to perform relative navigation in the cislunar environment. A novel quasi-autonomous
architecture based on a Shrinking Horizon — Model Predictive Control (SH-MPC) is developed to compute the
guidance profile and favour the target observability with angles-only measurements. A computationally efficient
dynamical formulation is adopted to allow the exploitation of the same architecture in both small satellites and large
spacecraft. The ability of this Guidance, Navigation and Control (GNC) scheme to navigate from the far-range to
precise hovering points is assessed with a numerical testing campaign and sensitivity analyses. The outcomes
highlight the effectiveness of the proposed architecture and its ability to meet traditional safety and navigation re-
quirements in most of the cislunar space domain.

Keywords: Rendezvous Optimisation, Relative Non-Keplerian Dynamics, Bearing-only Navigation, Shrinking
Horizon Model Predictive Control

Abbreviations
DRO Distant Retrograde Orbit QP Quadratic Programming
NLP Non Linear Programming SH  Shrinking Horizon
NRHO Near Rectilinear Halo Orbit SQP  Sequential Quadratic Programming

1. Introduction

The last decade has experienced a worldwide consolidation of numerous Moon related space missions to develop
and advance the technologies required for a future exploration of Mars. Among those, NASA’s Artemis program
plays a dominant role, aiming to bring back humans on the lunar surface by the mid-20s. In this framework, the
Lunar Orbital Platform Gateway (LOP-G) will play a critical part as a long-term modular infrastructure, supporting
activities on and around the Moon. The activities on the Gateway and on the lunar surface will be supported by
various space transportation systems which will deliver cargo, experiments, and logistics. To enable and safely ac-
complish these assembly and re-supply missions, autonomous rendezvous and docking/undocking capabilities must
be consolidated. In particular, although a great deal of experience on Guidance, Navigation and Control (GNC)
techniques for rendezvous in Low Earth Orbit (LEO) has been gained through the International Space Station (ISS)
programme, no proximity operation has been autonomously performed so far in the non-keplerian regime.

This paper focuses on assessing the applicability of already known approaches to perform proximity navigation on
Earth orbits, to the NRHO LOP-G case. In particular, the so-called Bearing-Only technique is here selected as po-
tentially available, from a sensor suite perspective, on all spacecraft classes, from nano to large sats. Bearing-Only
navigation estimates the relative state of an observer through angular measurements of the line-of-sight vector only.
Although this technique requires simple, cheap, and lightweight navigation sensors, its application in the space en-
vironment has been sparsely studied because of inherent limitations in estimating the range.

Recently, in the context of in orbit relative motion Woffinden [1] and Grzymisch [2] have proved that a necessary
and sufficient condition for observability is the execution of maneuvers that yield a difference of at least one mea-
surement between the perturbed trajectory and its evolution if no maneuvers had occurred. In addition, the former
author proposed a metric based on the relative range and the observability angle but analytical solutions were only
found for very simple cases [3]. On the other hand, Grzymisch [4] quantified the observability through the positive
linear independence of the relative position vector with a maneuver and that of the natural evolution and has shown
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the possibility of combining the same observability metric with a fuel objective to obtain a Quadratic Programming
(QP) optimisation problem [5]. More recently, Mok [6] developed a one-step guidance which exploits the Fisher
Information Matrix (FIM) to quantify and enhance the observability in a closed-loop architecture. Nevertheless,
little to no literature exists regarding the applicability of bearing-only navigation to perform proximity operations
in non-keplerian orbits.

Therefore the goal of the present paper is to develop a novel approach to favour the target observability while re-
specting traditional rendezvous requirements in the cislunar domain. In Section 2 the geometry of the bearing-only
problem is presented and is followed in Section 3 by a detailed description of the mathematical formulation behind
the proposed GNC architecture. Finally, in Sections 5 and 6 the simulation results are presented and few final
considerations are reported in Section 7.

2. Problem Definition

The geometry of the bearing-only range detectability is well illustrated by Fig. 1, where the target (the grey circle)
is fixed in the origin of the system and the chaser position is depicted before and after the observable maneuver
(red circles). The angle 6 is called the observability angle and is the angle between the natural and true Line-Of-
Sight (LOS) vectors. In the ideal scenario (i.e., perfect measurements) the relative distance p can be directly found
through the law of sines, however, the sensor readings will always be affected by some kind of noise ¢, leading
to an inherent uncertainty dp in the range estimation. These could be due to pixel misreadings or to errors in the
image processing algorithms.
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Figure 1: Range detectability geometry in the ideal (left) and real (right) scenario. r is the position vector of the
real trajectory whereas r represents the natural dynamics. Image readapted from [3].

For typical rendezvous applications, a useful design parameter is the relative range uncertainty. According to
Woffinden [3], under the assumption of small measurement errors, this metric is expressed as:

o _ < (1)

p  sinf
Therefore, there are two distinct ways to minimise the uncertainty. The first is to improve the sensor accuracy.
However, there are physical and technological limitations to the minimum achievable value for €. In addition, one
of the major benefits of bearing-only solutions is that they only require a camera to work, meaning great economic
savings in terms of hardware and requiring very accurate sensors would simply deny them any advantage. Thus,
this criterion clearly shows that in order to reduce the relative range estimation error, the design of the trajectory
should focus on maximising the observability angle 6. The following section illustrates how the observability angle
can be included inside the design of the rendezvous trajectory to favour the target observability.

3. Shrinking Horizon Bearing-Only Guidance

When dealing with a bearing-only architecture, the navigation process is directly influenced by the shape of the
trajectory, therefore, it is mandatory to include inside the trajectory design a contribution that allows to improve the
navigation performance. In this work, a Shrinking Horizon — Model Predictive Control (SH-MPC) is selected to
compute the maneuvers required to bring the spacecraft to a desired location. In this formulation, the trajectory is
discretised into a series of points, arbitrarily spaced in time. However, differently from a standard MPC approach
[7], with a shrinking horizon the rendezvous duration is fixed, and the problem is always solved from the current
epoch until the final time, thus the time window shrinks at each re-optimisation according to the remaining ren-
dezvous time. The course of action for this kind of architecture is displayed in Fig. 2. Calling 7,4, the desired
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rendezvous time, the trajectory is discretised into n steps tas = [tas,, tasy, .-+ tar, | and at each of those a maneu-
ver is allowed. At the same time, the number m of reoptimisation performed along the trajectory is scheduled for
to = [to,, to,, ---» to,,] and is such that to, does not necessarily equal ¢,,. Once the guidance is initialised, for
each update time ¢; it checks whether an optimisation is planned at the current epoch. If that is the case, the min-
imisation algorithms sets the estimated relative state as the initial point and searches a solution for the remaining
discretisation points, eventually updating the maneuver scheme U,,;. Afterwards, it also controls if a maneuver is
planned; whenever that is the case, the chaser executes the control action according to U,. Finally, the cycle is
stopped when 7.4, is reached.

NO
YES
A NO NO IND
YES YES
REOPTIMISE EXECUTE
Solve for Upian According to Upian

Figure 2: Guidance Flow-chart.

Please notice that in a real implementation, it might not be feasible to solve the optimisation problem and execute
a maneuver at the exact same epoch. Nevertheless, it is here assumed that the two tasks can be accomplished
simultaneously.

3.1. Dynamic Model

An object in the cislunar space domain is influenced by the gravitational potential of both Moon and Earth and
by the perturbing effects of the Sun’s gravitational force and the Solar Radiation Pressure (SRP). Considering a
formulation based on the Circular Restricted Three Body Problem (CR3BP), the absolute dynamics of the cislunar
domain can be approximated in the inertial frame as:

. 1—p)(x+ x—1+
5o _( u)g m o p( ! 1) t asn, + asrP,
1 T3
.. 1-
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The equations have been expressed in non-dimensional form through p, i.e., the mass parameter of the Earth-
Moon system. The terms 1 and r9 are the spacecraft distances from Earth and Moon, respectively. The relative
translational dynamics is easily obtained by differentiating the definition of the relative position vector of the chaser
with respect to the target, denoted as x:

K =iy 3)
Where ¥, and 1, are the absolute acceleration vectors of the two spacecraft. To allow the exploitation of traditional
linear control theory techniques for the design of the trajectory profile, the relative dynamics in Eq. (3) can be
linearised with respect to the target position by applying a first-order Taylor expansion, under the assumption that
the relative distance between the spacecraft is much smaller than the distance between the target and the primaries
[8]: .
m ~ H ) 16‘] N + {;’3] (u+da) = A(t) m + B (u + ba) @)

X = X
Where I3 a 3 x 3 identity matrix, u is the control input and da is the contribution of the environmental perturbing
accelerations. The matrix E(¢) depends only on the absolute position of the target (which is in turn function of
time), and is defined as:

1-— 1-— . R
2= (S ) s 0 )+ o o] ®
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where 7, and rp, identify the relative inertial unit position vectors between the target and the two primaries.
Notice that the propagation of the relative dynamics always requires the knowledge of the relative variables and
the absolute state of either the chaser or the target. This characteristic is a fundamental difference with respect
to classical LEO relative dynamics models, which require knowledge of only the 6 relative states. The system of
equations in Eq. (5) does not make any assumption on the model used to propagate the dynamics; thus, it can be
straightforwardly adapted to work either in the CR3BP or with the ephemeris model by changing the expression of
the primaries position vectors.

A closed form solution to Eq. (4) system does not exist since A is dependent on the absolute dynamics of the target,
which requires a numerical integration. Nevertheless, given x(¢) and u(t) the solution of Eq. (4) can be separated
into a free and forced contribution as:

x(t) = B(t, fo)x(to) + / @ (t,7)Bu(r)dr ©)

to

where ® denotes the State-Transition Matrix (STM) and satisfies:

D(t,t0) = A()®(t, o) and  P(lo,to) =6 (7

The solution of the forced response is more complicated and only in few cases the convolution integral of the time-
varying maneuver u(t) can be written as the product between a matrix and a vector. For impulsive controls at the
beginning of the time interval, the input matrix G(¢,tg) can be computed as G(t,ty) = ®(¢,t9)B. Once that is
available, the discrete-time solution of the relative dynamics over the time interval [ty 5 —1] is given by:

X(tr) = ®(te, th—1)X(tx—1) + G(tx, tx—1)u (®

A remarkable difference with respect to classic relative models, such as the Clohessy-Wiltshire (CW) equations,
other than the inexistence of an analytical solution is that the model in Eq. (4) is a time-varying linear system, thus:
Dty + At,t) # P(t; + At,t;) if t; # Ly, because the dependence of ® on the target state generates different
results for different initial times since x;(¢;) # X¢(¢x ). Therefore, it is necessary to compute ® at each discretisation
time even if a uniform time-step is adopted. However, from a computational standpoint, the exact evaluation of ®
and G could be too burdensome as it requires the integration of 42 differential equations at each update time. For
this reason, in this work inside the navigation and guidance algorithms, the STM is approximated with a 2nd order
Taylor series as:

B(t), + At ty) = I + ALAL + (A7 + Agp)At?/2 )

With Ay, used to indicate the value of A(t) at time ¢.

3.2. Optimisation Problem
The optimisation problem solved at each re-optimisation epoch is written in the form of:

myin Jr(y) (10a)
subject to Acgy = beg

Aiqy S biq

L <y<w

c(y) <0

where y is the vector of independent variables, containing the maneuvers directions and, possibly, other associated
quantities. A., and A;, are the matrices that express the equality and inequality constraints, respectively. These
are used to bound the relative motion to specific regions of space and specify the boundary conditions; namely, the
initial and final points of the trajectory. 1, and wu, are the lower and upper bounds for the solution space of y and
allow to include inside the problem the system engineering limitations (e.g., the maximum thrust available). Jr
is the objective to minimise and includes a linear expression of the fuel consumption. Finally, ¢(y) is a non-linear
function that constraints the observability angle at a given epoch to improve the navigation estimate.

To clarify the future notation, assuming the time-interval is discretised in n points, the relative states can be collected
inside a vector X = [x xI ... xZ]7 of size 6m x 1. At the same time, the maneuvers are admissible at every point
but the last one, otherwise an additional relative state would be produced. Thus, in a similar fashion they are

collected inside a global vector U = [uf u? ... ul_ ;] of size 3(n — 1) x 1.
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3.2.1. Fuel Objective
In this work, a representation of the fuel expenditure is obtained by adopting a so-called 1-norm objective; that is,
the sum of the absolute values of all thrust elements inside U:

3(n—1)
Tr, = Y |Uy (1)
k=1

This class of cost function generally yields solutions with smaller AV when compared to traditional quadratic con-
trol objectives. Additionally, the maneuver plan is characterised by sparser control actions that are quite appealing
when a continuous-thrust system is not available. However, the downside of having few maneuvers is that, if the
control schedule is not executed properly, the trajectory may be subject to large deviations from the original plan.
The objective in Eq. (11) is a piece-wise linear function and a conversion is desirable to efficiently solve the op-
timisation problem with a Sequential Quadratic Programming (SQP) algorithm. Therefore, a new set of variables
S = [s¥ s ... sT |]7, called slack variables [5] is introduced inside the optimisation vector Y. Then, by adding
specific inequality constraints, each of the elements inside S can be set equal to the absolute value of the corre-
sponding element in U. Defining Y = [U? ST]7 the augmented optimisation vector, the cost function in Eq. (11)
is written as:

Jr, =F'Y (12)

where the vector F has the first 3(n — 1) elements equal to zero and the remaining set to one. To ensure S equals
the absolute value of U, each j-element must be subject to the following two constraints:

U; -§,; <0
(13)
-U; -8, <0
The system in Eq. (12) is generalised to every maneuver by expressing all the individual constraints through a

matrix as:
lm - Im

< =
AY < b, where Ay I:Im 1,

} and b, = 0y, (14)
with m = 3(n — 1). Notice that, even though with non-linear solvers the 1-norm of U can be computed without
the need of introducing slack variables, the SQP algorithm finds a solution in less time when JF is a continuous
and smooth function; that would not be the case if the sum of the modulus of U was directly computed.

3.2.2. Boundary Conditions
To specify a desired final point for the trajectory, the final position is written as function of the global maneuver
vector U and of the initial conditions:

x, = GU+ A, x (15)

where x; is the initial point and A is defined as:

j—1
Ajj=T[®x ifj>i and Ay=1 ifj<i (16)
k=1
and G is a 6 x m matrix equal to:
G=[G1 Gy ... Gu_i] and G;=Ay;1),G; (17)

The final equality constraint is written in the form of:
ApcY =bpc with Apgec = [G 06><m] and bpc =Xpc — Alnxl (18)

where X ¢ is the desired final point. On the other hand, thrust magnitude constraints are easily added through the
lower and upper bound vectors as:
} T
(19)
T
U = Upy [11><m llxm}

I, = —up, [11><7n 01xm

Due to the discrete formulation of the original problem in Eq. (8), u,, is expressed as a velocity and equals the
maximum AV available for each maneuver.
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3.2.3. Non-linear Observability Constraint

The easiest and most effective approach to include the observability angle inside the optimisation problem is to aug-
ment (10) with an additional non-linear constraint, demanding that after M steps the observability angle should be
greater or equal than a given threshold. The number of steps can be used as an additional tuning parameter. For ex-
ample, it can be selected to ensure the error is reduced by the time the next re-optimisation occurs. Mathematically,
the constraint is expressed as:

S, 20)
Xz [ [[xa (U)
where X,; depends only on the initial conditions. By formulating this constraint as an inequality, the solver will
automatically find the solution with the lowest fuel consumption among all the possible values of @ > 07 . The
two vectors in the previous expression are easily computed as:

C(U) = 9THR —

v = A ux

21)
Xy = X + G]V[U
The matrix G is similar to (17) but is evaluated only up to the (M — 1)-th term:
Gu=[G1 ... Gyu—1 0 ... 0  G;=AG4HuG; (22)

The evaluation of the non-linear constraint can be accelerated by pre-computing these matrices.

4. Simulation Environment

To investigate the ability of the proposed architecture to perform a quasi autonomous bearing-only rendezvous, the
Shrinking Horizon - MPC guidance is tested in a closed-loop system along with a navigation filter. Throughout the
analysis, the target is always assumed to be moving on a periodic non-keplerian orbit. A southern NRHO around
the Earth-Moon L2 point has been selected as a reference orbit to mimic a potential rendezvous scenario with the
LOP-G. In addition, since previous researches have identified the NRHO apolune region as the most favourable
area to perform the complex rendezvous and docking operations [8] [9], these simulations position both spacecraft
in the same neighborhood.

Ideal _ Chaser Real
Thrusters a o Dynamics
X Bearing-Only
Target Real | Measurements y
Dynamics
Xt
v Y
u MPC X | Navigation |
Guidance N Filter b

Figure 3: Simulation architecture scheme.

A scheme of the simulation architecture is presented in Fig. 3. In this framework, the guidance uses the navigation
estimate for the optimisation and updates the control plan accordingly to the logic shown in Fig. 2. A high-fidelity
propagator is used to simulate the chaser and target absolute dynamics, accounting for the perturbing effects of
the Sun gravitational force and the SRP and exploiting NASA Spice toolbox to retrieve the position of the main
celestial bodies. In this regard, the target is assumed to be a 400-tons spacecraft with an exposure area of 12.000
m?, mimicking an ISS-class object. On the other hand, the chaser represents a hypothetical automated transfer
vehicle, with a mass of 20 tons and total surface of 125 m?.

Notice that the propagation of the relative dynamics inside the navigation filter requires knowledge of the target
absolute state. For this reason, it is here supposed that at each re-optimisation epoch, an uncertain estimate of the
absolute state of the target is transmitted to the chaser. Then, the information is propagated on-board until the next
optimisation. Practically, the communication link could transmit the absolute states of either spacecraft, as the
other is immediately available from the relative state. Unfortunately, this need for the absolute navigation makes
impossible to completely automatise this guidance scheme. The control problem is not considered in this work,
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thus thrusters are modelled as ideal actuators, neglecting transient states and any kind of pointing errors. An EKF
is chosen as navigation filter and is aided by a Dynamic Model Compensation (DMC) to tune the state process
covariance and approximate unmodelled accelerations. The propagation step is based on the model in Eq. (8), the
STM is approximated according to Eq. (9) and the update frequency is set to 1 Hz. The target position with respect
to the primaries is expressed in the inertial frame because it allows for a more reliable estimation than that of a
rotating perspective, where the presence of cross-coupling perturbing terms is harder to model. Concerning the
desired accuracy threshold, a conservative value of 0.5% of the range has been chosen instead of the classical 1%.

5. Case Studies

The performance of the proposed architecture are compared with the approach of Gryzmisch [5], which is also based
on a shrinking horizon guidance but it enhances observability in a different way. In particular, an observability
cost function, denoted as 7, is exploited to enforce the positive linear independence between the natural and the
perturbed position vectors. This cost function is quadratic in the optimisation variables and is combined with the
fuel objective through a weighted-sum approach. The resulting problem can be solved with Quadratic Programming
(QP) algorithms. The major difference with respect to the proposed approach is that 7, can be minimised by either
changing the angle between the two vectors (i.e., #) or reducing their magnitude (i.e., moving closer to the target).
To statistically characterise the navigation performance, 300 Monte Carlo simulations are run for each scenario,
varying the filter initialisation and the noise effects. Two Holding Points (HP) are used to identify the desired initial
and final relative states. In a practical rendezvous approach, these points are used as checkpoints: they allow to
account for operational constraints by enforcing few desired relative positions throughout the approach.

5.1. Case A: Center Manifold

In this scenario, the initial holding point is placed on the NRHO center manifold at a relative distance of 250 km.
The natural dynamics of this location is characterised by a periodic hovering motion around the target. Therefore, it
can be exploited to ensure the chaser does not drift away from the target if the control functions were to malfunction
at the beginning of the rendezvous. On the other hand, to guarantee a strong passive safety, the second holding
point is set on the unstable manifold at the boundary of a 1 km Keep-Out-Sphere (KOS). In a real operation, this
location ensures a safe drift away from the target in case of failures [9]. The total rendezvous duration is set to 12
hours.

Method | AV [m/s] | AVg[-] [Ep[km] 1Reop [km] [ NA[m] | PA[m]

QP 25.06 2.12 1.22 29.16 0.84 17.76
NLP 21.58 1.82 1.04 124.42 0.91 23.20

Table 1: Center manifold navigation performance.

AVp is the ratio between the AV of the observability-enhanced and fuel-optimal trajectories. Ey;, is the average value of the Root Mean
Square Error (RMSE) of the estimated position and Re¢on, is the relative distance at which the filter reaches the desired accuracy. NA and PA
are the final navigation and position mean errors (1o), respectively. The arrow indicates whether the parameter should be minimised (J.) or

maximised (7).

The results of the simulation are visually represented in Fig. 4 and summarised in Table 1. From the left figure,
it immediately stands out that the proposed formulation (NLP) provides a sudden reduction of the relative error.
By directly acting on the observability angle, the maneuver performed near the 1-hour mark greatly enhances the
observability of the system, causing an improvement of about 3000 m in the navigation estimate, while remaining
at arelatively higher distance from the target with respect to the alternative. In this regard, the time-evolution of the
range highlights the behaviour of an observability metric that includes information on the range: the QP technique
favors a fast reduction of the relative distance at the cost of expensive initial impulses. However, this trajectory
does not appear convenient from an operational viewpoint as the accuracy threshold is violated for most of the
approach. In particular, Table 1 shows that for the formulation based on 7, the distance at which the filter reaches
the desired accuracy is extremely close to the target because the maneuver that minimises the objective reduces
the range while keeping 6 very small. Thus, it is very likely that these kind of trajectories would not comply with
plausible safety and navigation requirements for a rendezvous with the LOP-G. On the other hand, the non-linear
approach guarantees that from approximately 125 km, the error never exceeds the 0.5% of the relative distance.
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Figure 4: Performance of the bearing-only guidance with the initial point on a center manifold

5.2. Case B: Quasi-Periodic Orbit

In this test, the natural dynamics of the initial point is associated to a periodic mode of the NRHO. In particular,
since the two spacecraft are on the same absolute orbit, the unperturbed motion simulates an along-track formation,
with the chaser shifted backwards of an arbitrary phase angle. Instead, the final point is placed on the very same
unstable manifold of the previous scenarios. The rendezvous duration is reduced to 8 hours.
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Figure 5: Performance of the bearing-only guidance with the initial point on a quasi-periodic mode

Figure 5 presents remarkable differences with respect to the performance of the previous test. Indeed, the initial
maneuvers computed with the QP objective are completely uncapable of providing an improvement in the navi-
gation estimate for almost half of the rendezvous duration. A significant drop of the error only happens when the
chaser is extremely close to the target, few hundreds of meters away from the boundary of the KOS. As a result,
the relative error at 30 km is almost ten times greater than the allowed maximum.

Method | AV [m/s] |} AVr[-] JEm,[km] 1Reon[km] J[NA[m] JPA [m]

QP 12.64 1.77 1.01 1.03 2.21 6.81
NLP 15.51 2.16 0.67 34.67 0.67 25.78

Table 2: Periodic mode navigation performance.

AVF is the ratio between the AV of the observability-enhanced and fuel-optimal trajectories. E., is the average value of the Root Mean
Square Error (RMSE) of the estimated position and Rcon, is the relative distance at which the filter reaches the desired accuracy. NA and PA
are the final navigation and position mean errors (1o), respectively. The arrow indicates whether the parameter should be minimised (J.) or
maximised (1).

Additional insights on the reasons behind the inability to reduce the error are provided by Fig. 6. The original
periodic trajectory (the violet line) is characterised by an initial motion perpendicular to the z-y plane; at the same
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time, the QP formulation draws an almost straight line along the y-axis and thus, has minimal differences in terms
of azimuth measurements with respect to the nominal trajectory. As a consequence, the filter is unable to reduce
the uncertainty along the y-axis. The navigation estimate begins to improve only after 3 hours, when the natural
motion bends towards the right-side, effectively differentiating the azimuths.
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(a) Azimuth differences. (b) Trajectory projection in the z-y plane.

Figure 6: Approaching trajectories characteristics. NOM stands for the nominal trajectory and the tiny dots repre-
sent the relative position of the chaser after 3 hours.

On the other side, the NLP guidance performs a maneuver at the 1 hour-mark that forces the chaser to move on the
opposite side of they-axis, causing a sudden reduction of more than 1000 m of the navigation error. Concerning
the final errors, in spite of having the best performance throughout the rendezvous, the non-linear approach has the
worst position dispersion. This is associated with the absolute navigation error at the time of the last re-optimisation.
Since the QP trajectories remain in close-proximity of the target for half of the rendezvous duration, they have plenty
of time to reduce their absolute errors. Thus, when the final planning is performed, the navigation uncertainty is
minimal. With this in mind, these two test scenario highlight that an observability metric based on 7, is always
able to bring the chaser to the desired rendezvous point, with dispersions of only few metres. However, if standard
safety and operational requirements (e.g., a threshold on the maximum percentage navigation error) are imposed,
the resulting trajectories will most likely be deemed unfeasible. On the other hand, the addition of a non-linear
constraint to enforce the desired observability angle has proven successful in both cases. Indeed, it consistently
allowed the filter to reach convergence at reasonable distances from the target and at the same time, it had very
good accomplishments in the remaining performance metrics. As a last remark, the final position dispersion can
be reduced by introducing additional trajectory re-optimisations towards the ending phase of the rendezvous.

5.3. Observability Weights

The previous results were obtained with a fixed observability weight w for the weighted-sum optimisation. To
display what happens to the quadratic observability metric (QP) J, for different choices of w, the navigation
performance for 50 different weights have been collected in Fig. 7 and 8.
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(a) Absolute navigation error. (b) Average relative error.

Figure 7: Navigation errors for increasing observability weights (i.e., for greater AV's) for the quadratic observ-
ability objective.
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Notice that each point represents the average performance of 200 Monte Carlo simulations of a rendezvous with
similar settings to Case A. In addition, since increasing the observability weight favours a higher fuel consumption
(see Fig. 8a), the AV was used in place of w to aid the readability of the plots. A clear trade-off between the
absolute navigation errors and the trajectory cost is visible in Fig. 7. In both plots, the points distributions resemble
a standard convex Pareto curve, where small increments of AV lead to remarkable improvements of the naviga-
tion errors. The exact Pareto Front for the two objectives is visible in Fig. 8a and confirms that the weighted-sum
approach is successful in finding the Pareto optimal solutions. However, despite increasing the observability ob-
jective effectively reduces the absolute navigation error, Fig. 8b shows that the convergence distance does not have
a clear nor monotonic trend with the AV,
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Figure 8: Performance for increasing observability weights (i.e., for greater AV's) for the quadratic observability
objective.

Physically, increasing the observability weight generates larger initial maneuvers to move the chaser towards the
final point as fast as possible. Thus, similarly to Fig. 5, the 1-norm of the absolute error is minimised at the highest
AV because the chaser spends most of his time in close-proximity of the target. Indeed, recall from Eq. (1) that
in a bearing-only application, the absolute estimation error is proportional to the relative distance. This behaviour
is likely connected to the shrinking horizon formulation. In particular, by defining 7, as the products between all
the discretisation points, the optimisation algorithm finds easier to minimise the objective by reducing as much
as possible the norm of the final relative position vectors; leading to a hovering motion around the target for the
remaining time.

6. Sensitivity Analysis
To prove the robustness of the proposed SH-MPC architecture, the navigation performance are tested over a wide
range of orbital families and filter settings. Besides the importance in the field of bearing-only techniques, this

analysis will also provide useful insights to aid the implementation of any type of navigation technique in the
cis-lunar non-keplerian environment.

6.1. Filter settings
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Figure 9: Filter settings comparisons.

SpaceOps-2021,7,x1630 10



16th International Conference on Space Operations, Cape Town, South Africa—3 - 5 May 2021.
Copyright ©2021 by the International Astronautical Federation (IAF). All rights reserved.

When applied to bearing-only navigation, one of the major limitations of the EKF in cartesian coordinates comes
from the linearisation of the measurements equations, which instead are strongly non-linear. As a consequence,
further inaccuracies are introduced in the estimation problem. Therefore, it is reasonable to expect an improvement
in the navigation performance when an UKF is adopted. This statement is confirmed by Fig. 9, which presents
the effects that different initialisation errors have on the navigation quality. The 1x initial errors correspond to a
position and velocity uncertainty on each axis of 6 km and 1 m/s, respectively. The error trends show that for small
initial uncertainties, the performance of the two filters are quite similar. Yet, when the initial errors increase the
EKF is not able to reach convergence because it operates far from its linearisation point. On the other hand the
UKF proves more robust, taking an average of 1.18 ms for each iteration with respect to the 0.21 ms of the EKF
(with an Intel i17-6700 and a RAM of 16 GB). Nevertheless, for very large initial errors the accuracy threshold is
violated for both filters until the chaser arrives in close-proximity of the target.

6.2. Target Propagation Models

To investigate the robustness of this architecture in different orbital families, a few more considerations regarding
the knowledge of the target absolute state are worth the attention. By this point, it should be well known that
this information is necessary because the state transition matrix of the linearised relative dynamics depends on the
motion of the target. In turn, the STM is requested by the guidance and navigation functions at each maneuver
and update time, respectively. Previously, it was assumed that the information was passed at each re-optimisation
epoch because an active communication link throughout the whole rendezvous might not always be available. In
this regard, the chaser could directly interface with the target spacecraft, or be supported by a ground station. For
example, for safety reasons it could be reasonable to assume that in a rendezvous operation, the two spacecraft
can directly exchange data among themselves. Additionally, the same considerations hold when the state vector
of the chaser is transmitted, as the absolute state of the target is easily obtained through the estimated relative
variables. However, whenever that is the case, the target state will be affected by the same level of uncertainty of
the navigation estimate and it will be harder to get accurate results. That said, once the absolute orbital information
is at hand, different options are available and are summarised in Fig. 10.

Since the original linear system is time-varying and the shrinking-horizon MPC computes the trajectory from the
initial time until the final one, the state information at a given epoch must be propagated on-board over the remaining
sample times. Similarly to the relative motion, different levels of approximations can be exploited to compute the
absolute dynamics of the target, from a simple CR3BP to a more sophisticated model based on the ephemerides.
To maximise the autonomy level of the architecture, it is here assumed that the propagation must be carried out
on-board. However, depending on the type of application and on the spacecraft computational resources, the same
process can be performed on ground and the complete history of the trajectory is transmitted when needed. An
alternative approach is available by assuming that the time-dependence of the linear system has negligible impact
on the relative dynamics for short propagation times (e.g., a typical rendezvous duration). If this hypothesis holds
true, the STM can be assumed constant and computed using a single value of the target state, leading to great
simplifications in the assembly of the optimisation problem. However, note that the errors introduced by this
approximation are also dependent on the shape of the target motion.

Propagation step

STM
Constant
Uncertainties % 1st order
T 5 CR3BP ’
arget State Time-varying 2nd order
EpR4BP

Figure 10: Target propagation approximations. This process is performed at each re-optimisation epoch.

Regardless of the propagation accuracy, the knowledge of the target absolute state is always affected by an inherent
uncertainty, which impacts in different ways both the navigation and guidance algorithms. Regarding the filter, the
prediction step at a generic time tj, is written as:

Xpt1 = (I’(th)xk + Grug (23)

Therefore, the estimation error for X1 depends on the previous error at ¢, and on the wrong evaluation of ®;, due
to the inaccuracies of x; at the current time. The latter, irrespective of the propagation method, grow proportional
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to the time passed from the last communication of the target state (i.c., the last re-optimisation epoch). Hence, it is
to be expected that the impact of errors in the target state will be greater for longer intervals between two successive
transmissions of absolute navigation data.

On the other hand, inside the optimisation problem the STM is exploited to enforce the desired boundary conditions
and evaluate the observability metrics. Thus, the inexact knowledge of the target state leads to maneuvers that
are incapable of either bringing the chaser to the correct destination point or providing the requested degree-of-
observability. However, differently from the navigation filter, the absolute state error at any arbitrary time affects
the quality of the solution, since in a SH-MPC the optimisation problem is always solved from the current epoch
until the final one. Therefore, when this architecture is implemented, one should always make sure the target does
not cross any regions that are characterised by a strong non-linear behaviour. Vice-versa, since in a standard MPC
implementation (i.e., with a fixed horizon), the guidance only computes the relative motion over a limited window,
the errors in the target dynamics should have a minor impact in the optimisation problem.

On the basis of these considerations, the performance of the proposed architecture in other cis-lunar regions will
mainly depend on their numerical stability and on the ability to correctly predict the motion of the target spacecraft
throughout the whole rendezvous duration.

6.3. NRHO Rendezvous Region

Previous studies [8] [9] identified the NRHOs perilunes as unfeasible areas to accomplish a rendezvous, since
any small perturbation of a state variable generates large deviations in the spacecraft trajectory. In this paragraph,
a similar feasible rendezvous region is identified by analysing the performance of the navigation and guidance
algorithms for different positions of the target along the whole NRHO. A time anomaly 6, is used to represent the
location of the target on its absolute orbit: 6; = 27t/T, where T is the orbital period and a null value for the
anomaly identifies the aposelene of the orbit. The relative initial conditions are settled on the central manifold
of each discretisation point and the rendezvous duration is fixed at 8 hours. The outcomes of the simulations are
collected in Fig. 11 and 12. Note that each line is the average of 100 Monte Carlo runs.
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Figure 11: Navigation error evolution along a NRHO.

It stands quite clear that whenever the target moves in the region between 160 and 200 degrees, the performance
of the architecture significantly deteriorate. In particular, the divergence of the navigation filter is caused by the
numerical instability of the perilune region: the trajectory predicted with an uncertain relative state results remark-
ably different from the actual motion because of the high sensitivity to small state perturbations. Successively,
the navigation divergence reflects into the inability of the guidance to define a proper maneuver plan. At each re-
optimisation, the chaser finds himself in a completely wrong position and new expensive maneuvers are constantly
required to adjust the trajectory.

These results are in agreement with previous studies and confirm once more that the NRHOs perilune region is not
a viable candidate to perform a rendezvous. The identified safe” and “forbidden” regions are depicted in Fig 13
and the red area shall be avoided as far as the proposed Bearing-Only guidance-assisted approach is adopted. In
particular, since in a shrinking horizon the time of flight is a fixed design variable, the target initial conditions shall
be chosen to ensure the spacecraft never reaches the unstable region throughout the whole rendezvous duration.
Vice-versa, if the initial position of the target is given, the maximum rendezvous duration equals the time it takes
the spacecraft to reach the boundary of the stable region.
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Figure 13: Suitable rendezvous region in a NRHO.

As a final remark, the performance of the GNC architecture for the different approximation techniques in Fig. 10 did
not show any significant deviations with respect to those presented above. The higher accuracy of the ephemeris
second order time-varying model only comes into play for close-proximity operations, where estimation errors
below 1 meter are desired.

6.4. Time-Invariant Approximation

A time-invariant formulation holds many benefits with respect to a time-varying model. In this framework, having
a constant expression for the STM allows for an easier assembly of the optimisation problem constraints and an
overall reduction of the computational effort required by the GNC functions. In addition, when only the absolute
position is available, the target state cannot be propagated forward in time because its velocity is unknown, making
a constant first-order STM approximation the only viable approach.

The time-dependence is associated with the variations of the relative position vectors of the target with respect to
the primaries. Four different time-contributions are identifiable in Eq. (5): the magnitudes of the vectors rr, ,,
and their directions (i.e., the unit vectors /2). As the focus is on the cislunar domain, it is reasonable to assume
that the variations of the Earth-related terms are negligible because of the much higher distance with respect to the
Moon. A proper criterion to establish when the approximation holds is found by evaluating the correlation between
the navigation error and the time derivatives of both 7, and rr,; namely, the range-rate and the rotation velocity
of the vector.
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Figure 14: Correlation between the angular rate of change of rr, and the navigation error in a family of DROs.
The red markers identify the regions where the time-invariant validity threshold is violated.

Using as a baseline the family of DROs in Fig. 14a, for each orbit a rendezvous approach based on a constant
STM approximation was simulated and the 1-norm of the navigation errors is shown in Fig 14b as function of the
angular rate of change of f1,,. A deterioration of the navigation performance happens for angular speeds higher than
2 mdeg/s, which correspond to the innermost orbits highlighted in red in Fig. 14a. All the remaining simulations
are clustered together, meaning that for lower angular rates, the time-invariant approximation does not affect in a
significant way the estimation error. On the other hand, no evident correlation was found between the range-rate
and increments of the navigation errors, suggesting that for the cislunar orbital families a criterion based on the
angular rate of 7, is enough to identify the validity regions for the time-invariant approximation.

The investigation has been expanded to other relevant families in the cislunar domain, as shown in Fig. 15 and 16.
The regions where the approximation does not hold are all associated to the close-passages of the spacecraft around
the Moon, such as in the NRHOs perilunes. Interestingly, the red areas of the L1/L2 Lyapunov families exhibit
the same kind of numerical instability mentioned in the previous section. Indeed, regardless of the propagation
method, the proposed architecture is never able to accomplish a safe rendezvous in those areas. Therefore, Fig. 15
and 16 also identify the regions were a rendezvous operation shall be avoided with the GNC scheme under study
(i.e., the red areas). Viceversa, it is well known that DROs are particularly stable orbits and indeed, any kind of
time-varying approximation is accurate enough to perform proximity operations even in the innermost orbits.
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Figure 15: Angular rate of change of rp, in the L1/L2 CR3BP Lyapunov families. The red markers identify the
regions where the time-invariant validity threshold is violated. The color scale is associated to the same values of
Fig. 14.
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Figure 16: Angular rate of change of t7, in the CR3BP Halo and NRHO orbital families. The red markers identify
the regions where the time-invariant validity threshold is violated. The color scale is associated to the same values
of Fig. 14.

7. Conclusions

In this work the capability of a SH-MPC quasi-autonomous architecture to perform proximity operations with
angles-only measurements has been extensively tested. The outcomes highlighted that in the non-keplerian dy-
namics, the minimisation of an observability measure based on the positive linear independence of the natural and
perturbed relative position vectors generates trajectories with an extremely low degree-of-observability. In partic-
ular, it was inferred that in the cislunar space the minimisation of an objective which includes information on the
range always favours a reduction of the relative distance rather than an increment on the observability angle. On the
other hand, by directly targeting the angle, the guidance scheme here proposed effectively reduced the navigation
error whilst remaining at relatively high distances from the target. In addition, due to its simple formulation, the
optimisation problem resulted computationally efficient, with solving times in the order of fractions of a second.
Finally, the analysis on the applicability of this model allowed to define critical regions in proximity of the Moon
where rendezvous operations are unfeasible regardless of the propagation method, such as the NRHO and L1/L2
Lyapunov perilunes.
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